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Abstract

In this paper we study estimating Generalized Linear Models (GLMs) in the case where
the agents (individuals) are strategic or self-interested and they concern about their privacy
when reporting data. Compared with the classical setting, here we aim to design mechanisms
that can both incentivize most agents to truthfully report their data and preserve the privacy
of individuals’ reports, while their outputs should also close to the underlying parameter. In
the first part of the paper, we consider the case where the covariates are sub-Gaussian and the
responses are heavy-tailed where they only have the finite fourth moments. First, motivated by
the stationary condition of the maximizer of the likelihood function, we derive a novel private
and closed form estimator. Based on the estimator, we propose a mechanism which has the
following properties via some appropriate design of the computation and payment scheme for
several canonical models such as linear regression, logistic regression and Poisson regression: (1)
the mechanism is o(1)-jointly differentially private (with probability at least 1− o(1)); (2) it is
an o( 1

n
)-approximate Bayes Nash equilibrium for a (1 − o(1))-fraction of agents to truthfully

report their data, where n is the number of agents; (3) the output could achieve an error of o(1)
to the underlying parameter; (4) it is individually rational for a (1 − o(1)) fraction of agents
in the mechanism ; (5) the payment budget required from the analyst to run the mechanism
is o(1). In the second part, we consider the linear regression model under more general setting
where both covariates and responses are heavy-tailed and only have finite fourth moments. By
using an ℓ4-norm shrinkage operator, we propose a private estimator and payment scheme which
have similar properties as in the sub-Gaussian case.

1 Introduction

As one of the most fundamental models in statistics and machine learning, Generalized Linear
Models (GLMs) have been intensively studied and widely applied to many areas such as medical
trails [32], census surveys [30] and crowdsourcing [2]. Among these studies, it is always assumed
that the analysts hold high-quality data, which is essential to the success of GLMs. However, in
many scenarios, such as medical trails and census surveys, data of interest may contain sensitive

∗The paper was done when Yuan Qiu was a research intern at King Abdullah University of Science and Technology.
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information and thus they may be collected from strategic and self-interested individuals who are
concerned with their privacy. In this case, data providers (agents)1 may be unwilling to truthfully
report their data, which will result in the failure of estimating the underlying model. Thus, com-
pared with the classical statistical setting, it is necessary to model utility functions of individuals
and to design mechanisms that can output accurate estimators, preserve the privacy of individuals
reports, and provide proper incentives to encourage most individuals to truthfully report their data
to the analyst.

In general, the goal of solving the problem can be divided into two interconnected components –
data acquisition and privacy-preserving data analysis. On one hand, an analyst will pay individuals
(agents) in compensation for possible privacy violation. He/She should pay each agent strategically
according to how well the reported data aligned with the underlying statistical model and peers’
data, but meanwhile he/she needs to minimize the total payment budget. On the other hand,
the analyst needs to perform privacy-preserving computation on the reported data to learn the
underlying model accurately. Thus, there is a tradeoff between the accuracy of the estimator and
the amount of payment budget required to compensate participants. In this paper, we provide the
first study on this tradeoff for GLMs by proposing several Differentially Private (DP) mechanisms
under different settings. Specifically, our contribution can be summarized as follows.

• In the first part of the paper, we focus on GLMs where the distributions of covariates are sub-
Gaussian and the distributions of response are heavy-tailed (only have finite fourth moments).
First, based on stationary condition of the maximizer of the likelihood function for GLMs, we
derive a closed form estimator and privatize the estimator to make it satisfies DP (with high
probability). Based on the DP estimator, we propose a general design of computation and
payment scheme. Specifically, for some canonical models such as linear regression, logistic
regression and Poisson regression, our mechanism has the following properties (if we assume
that the dimension of the data is O(1)):

1. The mechanism preserves privacy for individuals’ reported data, i.e., the output of
the mechanism is o(1)-Jointly Differentially Private (Definition 3) with probability 1 −
O(n−Ω(1)), where n is the number of participants (agents).

2. The private estimator of the mechanism is o(1)-accurate, i.e., when the number of agents
increases, our private estimator will be sufficiently close to the underlying parameter.

3. The mechanism is asymptotically truthful, i.e., it is an o( 1n)-approximate Bayes Nash
equilibrium for a (1− o(1))-fraction of agents to truthfully report their data.

4. The mechanism is asymptotically individually rational, i.e., the utilities of a (1− o(1))-
fraction of agents are non-negative.

5. The mechanism only requires o(1) payment budget, i.e., when the number of participants
increases, the total payment tends to zero.

• One disadvantage of the previous method is that the it relies on the assumption that the
distributions of covariates are sub-Gaussian, which may not hold in some scenarios. To address
this issue, in the second part we consider a more general setting where the distributions of
both covariates and responses are heavy-tailed. Specifically, we focus on the linear regression
model and provide a private estimator by applying an ℓ4-norm shrinkage operator to each
covariate. Based on the private estimator and the idea of the above method, we present a
mechanism which has similar properties as in the sub-Gaussian data case.

1In this paper, individuals, data providers and participants are the same and all represent agents.
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Due to space limit, all the proofs and technical lemmas are included in the Appendix.

2 Related work

Start from [18], there is a long list of work studies data acquisition from agents that have privacy
concern from different perspectives [27, 16, 29, 17, 14]. However, most of them do not consider
statistical estimation problems. [11] is the work that is most closest to ours. It focuses on estimating
the linear regression model from self-interested agents that have privacy concern. However, there
are several critical differences compared with our work. First, the method in [11] is based on
the optimal solution of linear regression, which has a closed form and thus cannot be extended
to GLMs as the optimal solution of GLMs does not have closed form in general. Secondly, [11]
needs strong assumptions on the data distribution to achieve the privacy guarantee, i.e., it need
to assume that the ℓ2-norm of the covariates and responses are bounded, while in this paper we
extend the setting to the heavy-tailed case. Such extension is non-trivial as here we use the ℓ4-norm
shrinkage (see Section 4.3.1 for details) to preprocess the covariates. Recently [26] also considers
mean estimation and linear regression estimation from agents with privacy concern. However, there
is no DP guarantee for their methods. Thus, it is incomparable with our work.

In the classical setting of estimating GLMs in the DP model, there are numerous approaches,
such as [3, 23, 34, 7, 5]. However, all of them are based on adding noise to the output of some op-
timization methods, privatizing the objective function or adding noise to gradients in optimization
methods, which cannot be adopted to our problem as data acquisition is just a single-round inter-
active procedure between analyst and agents, while those above approaches need multiple rounds of
interactions. To address the issue, we propose a novel and non-trivial private estimator for GLMs.
Compared with the previous approaches, our estimator has a closed-form expression and can be
gotten via single round of interaction. This is similar to the linear regression case and we believe
that it can also be used in other related problems.

Besides the privacy concern, statistical estimation from strategic agents also has been studied
in a variety of different contexts. For example, [9] studies linear regression in the case where
agents may intentionally introduce errors to maximize their own benefits and presents several group
strategyproof linear regression mechanisms, which are later extended to classification problems [8].
[20] proposes learning classifiers that are robust to agents strategically misreporting their feature
vectors to trick the algorithm into misclassifying them. In [6], the authors study fitting linear
regression model in the case where agents can only manipulate their costs instead of their data.

3 Preliminaries

Notations: Given a matrix X ∈ R
n×d, we denote its i-th row by xT

i and its (i, j)-th entry by [X]ij .
For a vector v, denote [v]j or vij as its j-th coordinate. For any p ∈ [1,∞], let ‖X‖p denote its

p-norm, i.e., ‖X‖p := supy 6=0
‖Xy‖p
‖y‖p . For an event A, we denote the indicator as 1A where 1A = 1

if A occurs, otherwise 1A = 0. The sign function of a real number x is a piecewise function which
is defined as sgn(x) = −1 if x < 0; sgn(x) = 1 of x > 0; and sgn(x) = 0 if x = 0.

3.1 Problem Setting

Suppose that there is a data universe D = X × Y ⊆ R
d × R and n agents in the population. The

i-th agent has a feature vector (covariate) xi ∈ X , and a response variable yi ∈ Y. We assume
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{(xi, yi)}ni=1 are i.i.d. sampled from a Generalized Linear Model (GLM). That is, xi are i.i.d.
random vectors drawn from some unknown distribution F and there exists a θ∗ ∈ R

d such that the
conditional probability function Gxi = p(·|xi) of yi has the following parameterized form:

p(yi|xi; θ
∗) = exp

{
yi〈xi, θ

∗〉 −A(〈xi, θ
∗〉)

φ
+ c(yi, φ)

}
, (1)

where φ ∈ R is a fixed and known scale parameter, c(·, ·) is some known function and A(·) is
the link function. We assume that function A is twice differentiable, and its derivative function
A′ is monotonic increasing. It is well-known that E[y|xi, θ

∗] = A′(〈xi, θ
∗〉) and var[y|xi, θ

∗] =
A′′(〈xi, θ

∗〉)φ (where A′′(·) is the second derivative function of A(·)). Note that GLMs include
several canonical models such as linear regression, logistic regression and Poisson regression (see
Section 4.3 for details). In this paper, we focus on the low dimensional case which means n ≫ d
and we make the following assumptions on the parameter of interest.

Assumption 1. Throughout the paper, we assume that the model parameter θ∗ ∈ R
d is drawn from

a prior distribution p(θ), and ‖θ∗‖2 ≤ τθ with some (known) constant τθ > 0.

There is an analyst who aims to estimate the underlying parameter in (1) from agents’ data.
That is, she/he wants to estimate θ∗ based on data D = {Di = (xi, yi)}ni=1. As we mentioned
previously, here we consider the case that the agents are strategic or self-interested, and they
concern on the privacy when reporting their data. Specifically, we assume that each agent is
characterized by a privacy cost coefficient ci ∈ R+. Higher value of ci indicates that agent i
concerns more about the privacy violation due to truthfully reporting yi to the analyst. Thus, due
to the privacy concern, each agent i can manipulate his/her response yi.

2 If we denote ŷi as the
the reported response, D̂i = (xi, ŷi) as the reported data, and σi as the reporting strategy, i.e.,
ŷi = σi(Di). Then the main goal of the analyst is to estimate the parameter vector θ∗ ∈ R

d based
on the reported data D̂ = {D̂i}ni=1. Moreover, as agents may lie about their private responses yi,
the analyst need to construct a payment rule π : Dn → Πn that encourages truthful reporting, i.e.,
misreporting the response yi will lead to lower received payment πi.

Overall, the analyst aims to a design a truthful mechanism M which takes the reported data
D̂ as input, and outputs an estimator θ̄ of θ∗ and a set of non-negative payments {πi}ni=1 for each
agent. To make the mechanism incentivize truthful participation of most agents, there should be
some privacy guarantees for the reports provided by agents. Informally, we seek private mechanisms
that allow accurate estimation of θ∗ and require only asymptotically small payment budget. All
the above build upon the agents’ rational behaviors and the privacy model, which will be discussed
in details in the following sections.

3.2 Differential Privacy

In this section, we define the desired criteria of privacy protection. We adopt some relaxations of
the canonical notion of Differential Privacy (DP).

Definition 1 (ε-Differential Privacy [13]). Given a data universe D and any positive integer n,
we say that two n-size datasets D,D′ ⊆ Dn are neighbors if they differ by only one data sample,

2However, we assume that each agent i cannot manipulate her/his feature vector xi, which has the same setting
as in [11].
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which is denoted as D ∼ D′. A randomized algorithm A is ǫ-differentially private (DP) if for all
neighboring datasets D,D′ and for all events S in the output space of A, we have 3

P(A(D) ∈ S) ≤ eǫP(A(D′) ∈ S).

The definition of DP guarantees that the distributions of A(D) and A(D′) are almost indistin-
guishable. In other words, if a mechanism is DP, one cannot tell whether any specific individual’s
data is included in the original dataset or not based on observing its output. For our problem,
at a high-level, the canonical notion of DP requires that all outputs by the mechanism, including
the payments it allocates to agents, are insensitive to each agent’s input. However, this is quite
stringent since the payment to each agent is shared neither publicly nor with other agents. Thus,
instead of the original DP, we consider one of its relaxations namely joint differential privacy [24].

Definition 2 (ε-Joint Differential Privacy [24]). Consider a randomized mechanism M : Dn →
Θ × Πn with arbitrary response sets Θ,Πn. For each i ∈ [n], let M(·)−i = (θ, π−i) ∈ Θ × Πn−1

denotes the portion of the mechanism’s output that is observable to outside observers and agents
j 6= i. Then the mechanism M is ǫ-jointly differentially private (JDP) if for every agent i, every
dataset D ∈ Dn and every D′

i,Di ∈ D we have

∀S ⊆ Θ×Πn−1,P (M(Di,D−i)−i ∈ S|(Di,D−i)) ≤ eεP
(
M(D′

i,D−i)−i ∈ S|(D′
i,D−i)

)
,

where D−i ∈ Dn−1 is the dataset D that excludes the i-th sample in D and π−i is the vector that
comprises all payments excluding the payment of agent i.

In Definition 2 we assume that the private estimator θ computed by the mechanism M is a
publicly observable output; in contrast, each payment πi can only be observed by agent i. Thus,
from the view of each agent i, the mechanism output that is publicly released and that in turn
might violate his/her privacy is (θ, π−i).

In this paper, we further relax the definition of JDP by relaxing the requirement that the ratio
between two output distributions is upper bounded for all pairs of datasets, to the requirement
that the bounded ratio holds for likely dataset pairs. Specifically, motivated by the definition of
random DP [19, 31], we consider random joint differential privacy:

Definition 3 ((ε, γ)-Random Joint Differential Privacy). Consider the same setting as in Defi-
nition 2, we call a mechanism M preserves (ε, γ)-random joint differential privacy (RJDP), at
privacy level ε > 0 and confidence level γ ∈ (0, 1), if for every agent i, every dataset D ∈ Dn and
every Di,D

′
i ∈ D we have

P[∀S ⊆ Θ×Πn−1,P(M(Di,D−i)−i ∈ S|(Di,D−i)) ≤ eεP(M(D′
i,D−i)−i ∈ S|(D′

i,D−i))] ≥ 1− γ.

with the inner conditional probabilities take over the mechanism’s randomization, and the outer
probability takes over datasets (Di,D−i), (D

′
i,D−i).

Note that there exists another relaxation of ǫ-JDP called approximate JDP, or (ǫ, δ)-JDP, which
is derived from (ǫ, δ)-DP. An (ε, δ)-JDP mechanism on any dataset (including likely ones) may leak
sensitive information on low probability responses, forgiven by the additive δ relaxation, while
(ǫ, γ)-RJDP offers an alternative relaxation, where on all but a small γ-proportion of unlikely
dataset pairs, pure ǫ-JDP holds. Similar to the approximate JDP, here we hope that γ = o( 1n).

3All the methods and results in this paper can be extended to (ǫ, δ) version of DP by adding Gaussian noise. For
simplicity, we omit them here.
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3.3 Utilities of Agents

Based on the privacy definition, we now present the model on agents’ utility. Here we adopt
a similar assumption on the privacy cost as in the previous work [11, 18]. Specifically, for each
agent i, he/she has a privacy cost parameter ci and a privacy cost function fi(ci, ε, γ) which measures
the cost he/she incurs when his/her data is used in an (ǫ, γ)-RJDP mechanism. Moreover, with
payment πi, we define agent i’s utility from reporting his/her data as ui = πi − fi(ci, ε, γ). In
this paper, following the previous work, we assume that all functions fi are bounded above by a
function of ǫ, γ and ci.

Assumption 2. The privacy cost function of each agent satisfies

fi(ci, ε, γ) ≤ ciF (ε, γ).

where F (ε, γ) is an increasing function of both ε and γ, and F (ε, γ) ≥ 0 for all ε ∈ R
+.

Recall that ε, γ are privacy parameters of the mechanism (see Definition 3). As larger values
of ε and γ imply weaker privacy guarantee, which means the privacy cost of an agent becomes
larger. Thus, it is natural to let F be a component-wise increasing function. Note that in [11], the
authors consider the case where γ = 0 and F (ǫ, γ) = ǫ2. Thus, Assumption 2 can be considered as
a generalization of their assumption.

We also assume that each cost parameter ci is drawn independently from some distribution C.
Here we allow ci to be correlated with the data sample Di. This is reasonable since for example, in
a medical survey setting, if agent i has a private value yi = 1 which means she/he is diagnosed as
some disease, then she/he is probably more unwilling to truthfully report the value, which implies
ci is larger. However, we assume that an agent’s cost coefficient ci does not provide any information
about other agents:

Assumption 3. Given Di, (D−i, c−i) is conditionally independent of ci:

p(D−i, c−i|Di, ci) = p(D−i, c−i|Di, c
′
i) for all D−i, c−i,Di, ci, c

′
i.

where c−i is the collection of privacy costs excluding the privacy cost of agent i.

In addition, we assume that the probability distribution of ci has exponential decay. Actually
we can relax the assumption to polynomial decay and here the exponential decay assumption is
only for simplicity.

Assumption 4. There exists some constant λ > 0 such that the conditional distribution of privacy
cost coefficient satisfies

inf
Dj

Pci∼p(ci|Dj)(ci ≤ τ) ≥ 1− e−λτ .

3.4 Truthful Mechanisms

In this paper, we aim to design mechanisms that have the following properties: (1) truthful reporting
is an equilibrium; (2) the private estimator of the outputs should be close to θ∗; (3) the utilities
for almost all agents are non-negative; (4) the payment budget required from the analyst to run
the mechanism is small. We will quantify these properties using the notion of Bayesian game. A
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multiagent, one-shot, and simultaneous-move symmetric Bayesian game can model the outcome
of agents’ strategic reporting behavior. Formally, there are n agents involved in the game. They

privately observe their types (xi, yi, ci)
iid∼ F×Gxi×C. Each agent i plays action (xi, ŷi) and receives

a real-valued payment πi. And finally he/she receives utility ui = πi − fi(ci, ε, γ). Let σi denote
agent i’s reporting strategy (i.e., ŷi = σi(yi)), σ = (σ1, · · · , σn) denote the collection of all agents’
strategies, and σ−i = (σ1, · · · , σi−1, σi+1, · · · , σn) denote the collection of strategies except σi.

4

Based on this, we first quantify the property (1) by Bayesian Nash equilibrium.

Definition 4 (η-Bayesian Nash equilibrium). A reporting strategy profile σ = (σ1, · · · , σn) forms
an η-Bayesian Nash equilibrium if for every agent i, Di and ci, and for any other reporting strategy
σ′
i 6= σi,

ED−i,c−i
∼p(D−i,c−i|Di,ci)[ui(σi(Di, ci), σ−i(D−i, c−i))]

≥ ED−i,c−i∼p(D−i,c−i|Di,ci)[ui(σ
′
i(Di, ci), σ−i(D−i, c−i))]− η.

The positive value η quantifies at most how much additional expected payment an agent can
receive if she/he changes her/his reporting strategy. As we want all agents to truthfully report their
data, we require the payment rule to keep η as small as possible. In this paper we consider the
following threshold strategy. We will show that if all agents follow the threshold strategy with some
common positive value τ , then such a strategy profile achieves an η-Bayesian Nash equilibrium.

Definition 5 (Threshold strategy). Define the threshold strategy στ as follows:

ŷi = στ (xi, yi, ci) =

{
yi, if ci ≤ τ,

arbitrary value in Y, if ci > τ.

To link truthful reporting strategy threshold τ and privacy cost coefficients ci, following [11],
we use the following definition.

Definition 6. Fix a probability density function p(c) of privacy cost parameter, and let

τ1α,β = inf{τ > 0 : P(c1,··· ,cn)∼pn(#{i : ci ≤ τ} ≥ (1− α)n) ≥ 1− β},
τ2α = inf{τ > 0 : inf

Di

Pcj∼p(c|Di)(cj ≤ τ) ≥ 1− α}.

Define τα,β as the larger of these two thresholds: τα,β = max{τ1α,β, τ2α}.

Note that τ1α,β is such a threshold that with probability at least 1− β, at least 1−α fraction of

agents have cost coefficient ci ≤ τα,β. And τ2α is such a threshold that conditioned on his/her own
dataset Di, each agent i believes that with probability 1− α any other agent j has cost coefficient
cj ≤ τα,β.

For property (2), we use the square of ℓ2-norm distance between the private estimator θ̄P and
the true parameter θ∗.

Definition 7 (η-accurate). We call the mechanism is η-accurate if its output θ̄P satisfies E[‖θ̄P −
θ∗‖22] ≤ η.

4Note that throughout in the Bayesian game, the strategy spaces, the payoff functions, possible types, and the
prior probability distribution are assumed to be common knowledge.
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To satisfy property (3), we should make payments high enough to compensate privacy cost.

Definition 8 (Individual rationality). Let ui denote the utility agent i receives. A mechanism is
individually rational if E[ui] ≥ 0 for every agent i.

We also concern on the total amount of payment budget required by the analyst to run the
mechanism, and want it tend to be zero when the number of agents increases.

Definition 9 (Asymptotically small budget). An asymptotically small budget is such that B =∑n
i=1 E[πi] = o(1) for all realizable D = {(xi, yi)}ni=1.

4 Sub-Gaussian Case for Generalized Linear Models

In this section we consider generalized linear models (1) with sub-Gaussian covariates.

Definition 10 (Sub-Gaussian random variable). A zero-mean random variable X ∈ R is said
to be sub-Gaussian with variance σ2 (X ∼ subG(σ2)) if its moment generating function satisfies

E[exp(tX)] ≤ exp(σ
2t2

2 ) for all t > 0.

Definition 11 (Sub-Gaussian random vector). A zero mean random vector X ∈ R
d is said to be

sub-Gaussian with variance σ2 (X ∼ subGd(σ
2)) if 〈X,u〉 is sub-Gaussian with variance σ2 for

any unit vector u ∈ R
d.

The class of sub-Gaussian random variables is quite large. It includes bounded random variables
and Gaussian random variables, and it enjoys strong concentration properties.

Lemma 1 ([36]). If X ∼ subG(σ2), then for any t > 0, it holds that P(|X| > t) ≤ 2 exp(− t2

2σ2 ).

Lemma 2 ([36]). For a sub-Gaussian vector X ∼ subGd(σ
2), with probability at least 1−δ we have

‖X‖2 ≤ 4σ
√

d log 1
δ .

We make the following assumptions used throughout this section.

Assumption 5. The covariates x1,x2, · · · ,xn ∈ R
d are i.i.d. (zero-mean) sub-Gaussian random

vectors with variance σ2

d with σ = O(1), Moreover, the covariance matrix Σ of xi satisfies that
‖Σ‖∞ ≥ κ∞ and ‖Σ‖2 ≥ κ2 for constants κ∞, κ2 = Θ(1), i.e., ∀w ∈ R

d, ‖Σw‖∞ ≥ κ∞‖w‖∞ and
‖Σw‖2 ≥ κ2‖w‖2. We also assume that yi have finite fourth moment R := E[y4i ] = O(1). 5 We
focus on the low dimension case where n = Ω̃(d), where Ω̃ omits the term of log n. 6

Note that by Lemma 2, with high probability each ‖xi‖2 is upper bounded by a constant. This
can be thought as a generalization of [11] which assumes all ‖xi‖2 are bounded by a constant.
However, [11] also assumes that each yi is also bounded where here we assume that it only has
finite fourth moment.

5For simplicity, here we assume the variance proxy as σ2

d
is to make ‖xi‖2 bounded by a constant so that we can

compare with the previous work on linear regression with bounded covariates. We can extend all of our results to
the general σ2 case with additional factor of Poly(d) in the upper bounds of our results.

6It is also notable that for all the constants, Big-O and Big-Ω notations of in this paper we omit the terms of
σ,R, κ2, κ∞, λmax as we assume they are constants, where λmax is the largest eigenvalue of Σ. See the proofs in
Appendix for the full version of the results.
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4.1 Main Idea

Before showing our method, we first go back to estimating θ∗ without privacy constraint and
manipulating the response. Given n samples {(xi, yi)}ni=1, the maximum likelihood estimator of θ∗

based on the probability distribution (1) is given by

θ̃ ∈ argmax
θ

n∏

i=1

p(yi|xi; θ) = argmin
θ

− 1

n
θTXT y +

1

n
1TA(Xθ), (2)

where X = (xT
1 , · · · ,xT

n )
T ∈ R

n×d, y = (y1, · · · , yn)T ∈ R
n and A(Xθ) ∈ R

n with [A(Xθ)]j =
A(xT

j θ). Since θ̃ is the maximizer of likelihood function (2), motivated by [38], it must satisfies the
stationary condition:

XT y = XT∇A(Xθ̃),

where ∇A(η) ≡ (A′(η1), · · · , A′(ηn))T ∈ R
n for any η ∈ R

n. Intuitively, it means that ∇A(Xθ̂) ≈ y
which implies Xθ̃ ≈ [∇A]−1(y), where [∇A]−1(y) ≡ ((A′)−1(y1), · · · , (A′)−1(yn)). However, the
challenge here is that the function (A′)−1(·) may not be well defined on every point of Y. In fact
the function A′(·) is only onto the interior Mo of the response moment polytopeM, which is defined
as M := {µ : µ = Ep[y], for some distribution p over y ∈ Y} [37]. Thus to make it well-defined we
should project each yi onto Mo first. However, as Mo is an open set, the projection operator may
not be well-defined. Thus, we use a closed subset of Mo instead. In this paper, for different GLM
models, we construct a different closed subset M̄ of the interior Mo. The projection operator
ΠM̄(·) is defined as ΠM̄(yi) = argminµ∈M̄ |yi−µ| for any variable yi ∈ Y, and [ΠM̄(y)]i = ΠM̄(yi)

for any vector y ∈ R
n. After projecting each yi, we can approximate θ̃ via the least square method

on (X, [∇A]−1(ΠM̄(y))). In total we have

θ̃ ≈ (
XTX

n
)−1X

T [∇A]−1(ΠM̄(y))

n
. (3)

From (3) we can see it is sufficient for the i-th agent to share xi, yi and the analyst computes xT
i xi

and xT
i (A

′)−1(ΠM̄(yi)). To achieve RJDP, by the basic mechanism in DP one direct approach is to

add noise to the term (X
TX
n )−1X

T [∇A]−1(ΠM̄(y)
n , where the magnitude should be proportional to the

sensitivity of the term. However, the challenge here is that the sensitivity of the RHS term in (3)

maybe unbounded with constant probability. To be more concrete, there are two terms (X
TX
n )−1

and
XT [∇A]−1(ΠM̄(y)

n . The sensitivity of the term (X
TX
n )−1 is bounded with high probability due to

Lemma 2. However, the main issue is, as we only assume yi has bounded fourth moment, the term
[∇A]−1(ΠM̄(y) could be unbounded with high probability (such as Poisson regression). And this
could cause the sensitivity of the RHS term in (3) be unbounded. To overcome the challenge, here
we will further conduct a clipping step, that is, we shrink each yi into an bounded interval [−τ2, τ2]
for some finite positive value τ2:

ỹi := sgn(yi)min{|yi|, τ2}. (4)

In total, our non-private estimator will be

θ̂(D) = (XTX)−1XT (∇A)−1(ΠM̄(ỹ)). (5)

9



Later we will show that with high probability the ℓ2-norm sensitivity of (5) is bounded. Thus, we
can add noise to θ̂(D) to make it private: θ̂P (D) = θ̂(D) + noise. Since we assume ‖θ∗‖2 ≤ τθ, we
need to project θ̂P (D) onto a ℓ2-norm ball:

θ̄P (D) = Πτθ (θ̂
P (D)), (6)

where Πτθ (v) = argminv′∈B(τθ) ‖v′ − v‖22 and B(τθ) is the closed ℓ2-norm ball with radius τθ and
centers at the origin.

Previously we focused on the privacy and accuracy. In the following we will consider the payment
rule. The analyst should pay each agent strategically. If the analyst knows the ground-truth after
collecting the reports, she/he can pay each agent according to how well the reports are aligned
with the ground-truth, e.g., by using ℓ2 norm as the distance metric for relatedness. However, in
our setting, the data is unverifiable, which means we do not have ground truth as reference. To
deal with this problem, we adopt the peer prediction method [28, 12, 33, 1, 10], which extracts
information from peers’ reports used for reference. In other words, each agent will receive higher
payment if her/his report is more consistent with the statistical model estimated by using other
agents’ reports. Since we assume that all data are generated by the same statistical model, the
peer prediction method intuitively encourages truthful reporting if most agents report their data
truthfully. There are many ways to quantify the relatedness between each agent’s reports and
her/his peers’ reports, e.g., point-wise mutual information [25], delta matrices [1], the Brier scoring
rule [17]. Here we adopt the rescaled Brier score rule. Formally, the analyst uses payment rule

Ba1,a2(p, q) = a1 − a2(p − 2pq + q2), (7)

where a1, a2 > 0 are parameters to be determined, q is the prediction of agent i’s response given
her/his reports, and p is the prediction of agent i’s response given her/his feature vector and her/his
peers’ reports. Note that Ba1,a2(p, q) is a strictly concave function of q which is maximized at q = p,
which means the prediction of agent i’s response given her/his information is aligned with the one
given peers’ information. In GLMs, for agent i, since E[yi|xi, θ

∗] = A′(〈xi, θ
∗〉), it is natural to let

p = A′(〈xi, θ̄
P (D̂b)〉) and q = A′(〈xi,Eθ∼p(θ|D̂i)

[θ]〉), where θ̄P (D̂b) is the private estimator on a

dataset D̂b that does not include D̂i, and p(θ|D̂i) is the posterior distribution of θ after the analyst
receives D̂i.

Based on the previous analysis, we formalize our Mechanism 1. Note that instead of using
agents’ original data, we use the reported data (which may contain manipulated responses) to
obtain the estimator. In order to eliminate dependency, we need to partition the dataset into two
subgroups D̂0 and D̂1. To calculate the payment for each agent i in group b ∈ {0, 1}, we use D̂1−b

to estimate θ∗, and then use the estimator and her/his feature vector xi to predict the response.

4.2 Theoretical Analysis

Before showing our results, we first list some notations for later use. By Assumption 5 and Lemma 2,
with probability at least 1− n−Ω(1), it holds that ‖xi‖2 ≤ Cσ

√
log n for all i ∈ [n] with sufficiently

large C > 0. Denote τ1 = Cσ
√
log n, then |〈xi, θ

∗〉| ≤ τ1τθ for all i ∈ [n]. The following notations

10



correspond to the upper bounds of some functions on some closed sets.

M′ := {µ : µ = A′(a), a ∈ [−τθτ1, τθτ1]},
κA,0 := max

a∈M′∪M̄
|[(A′)−1]′(a)|, κA,1 := max

a∈M̄∩[−τ2,τ2]
|(A′)−1(a)|,

κA,2 := max
a∈[−τθτ1,τθτ1]

|A′′(a)|, MA := max
a∈[−τθτ1,τθτ1]

|A′(a)|,

εM̄ := max
yi∈Y∩[−τ2,τ2]

|yi −ΠM̄(yi)|,

where τ2 is the threshold value in (4) and M̄ is the closed set in (5). Note that all these parameters
depend on the link function A, which varies for different specific models. Thus, here we cannot
assume they are constants. In the following we will always assume Assumptions 1-5 hold.

Mechanism 1: Private Generalized Linear Models Mechanism

1 Ask all agents to report their data D̂1, · · · , D̂n;

2 Randomly partition agents into two groups, with respective data pairs D̂0, D̂1;

3 Compute estimators θ̂(D̂), θ̂(D̂0), θ̂(D̂1) according to (5) on D̂, D̂0 and D̂1 respectively;
4 Compute estimator sensitivity ∆n,∆n/2, and set differential privacy parameter ε;

5 Draw v ∈ R
d according to distribution p(v) ∝ exp(− ε

∆n
‖v‖2), and independently draw

v0, v1 ∈ R
d according to distribution p(v) ∝ exp(− ε

∆n/2
‖v‖2);

6 Add noise: θ̂P (D̂) = θ̂(D̂) + v, θ̂P (D̂b) = θ̂(D̂b) + vb for b = 0, 1;

7 Compute private estimators θ̄P (D̂) = Πτθ (θ̂
P (D̂)) and θ̄P (D̂b) = Πτθ (θ̂

P (D̂b)) for b = 0, 1;
8 Set parameters a1, a2, and compute payments to each agent i: if agent i’s is in group 1− b,

then he will receive payment

πi = Ba1,a2

(
A′(〈xi, θ̄

P (D̂b)〉), A′(〈xi,Eθ∼p(θ|D̂i)
[θ]〉)

)
.

Lemma 3 (Sensitivity). With probability at least 1 − C1n
−Ω(1) the ℓ2-norm sensitivity of θ̂(D)

computed by (5) satisfies

max
D∼D′

‖θ̂(D)− θ̂(D′)‖2 ≤ ∆n = C0κA,1

√
d log n√

n
,

where C0, C1 > 0 are constants. For later use, we denote γn = C1n
−Ω(1) as the failure probability.

Lemma 4 (Accuracy of the non-private estimator). With probability at least 1 − O(n−Ω(1)) one
has

‖θ̂(D)− θ∗‖2 ≤ λn

√
log n

n
,

where λn := Õ(κA,0(
√

κA,2 +
1
τ22

+ (MA + τ2)
4

√
1
n + εM̄) and the Big-Õ notation omits the term of

Poly(log n).

The previous lemma indicates that the closed-form estimator (5) on the original dataset is

consistent. It is notable that its convergence rate may not be as fast as Õ(
√

1
n) since λn has

different growth rates in different specific models.
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Theorem 1 (Privacy). Mechanism 1 satisfies (2ε, γn + 2γn/2)-random joint differential privacy,

where γn = C1n
−Ω(1) is in Lemma 3.

Theorem 2 (Truthfulness). Fix a privacy parameter ε, a participation goal 1 − α and a desired
confidence parameter β in Definition 6. Then with probability at least 1 − β − O(n−Ω(1)), the
symmetric threshold strategy στα,β

is an η-Bayesian Nash equilibrium in Mechanism 1 with

η = Õ

(
a2κ

2
A,2(α

2κ2A,1nd+
λ2
n

n
+

κ2A,1d
3

nǫ2
) + τα,βF (2ε, γn + 2γn/2)

)
,

where γn = C1n
−Ω(1) is in Lemma 3, λn is in Lemma 4, a2 is in (7), τα,β is in Definition 6 and

function F is in Assumption 2.

Theorem 3 (Accuracy). Fix a privacy parameter ε, a participation goal 1 − α and a desired
confidence parameter β in Definition 6. Then under the symmetric threshold strategy στα,β

, the

output θ̄P (D̂) of Mechanism 1 satisfies that with probability at least 1− β −O(n−Ω(1)),

E[‖θ̄P (D̂)− θ∗‖22] ≤ Õ

(
α2κ2A,1nd+

κ2A,1d
3

ε2n
+

λ2
n

n

)
,

where λn is in Lemma 4.

Theorem 4 (Individual rationality). With probability at least 1− β −O(n−Ω(1)), Mechanism 1 is
individually rational for all agents with cost coefficients ci ≤ τα,β as long as

a1 ≥ a2(MA + 3M2
A) + τα,βF (2ε, γn + γn/2)

regardless of the reports from agents with cost coefficients above τα,β, where γn = C1n
−Ω(1) is in

Lemma 3, a1, a2 are in (7) and λn is in Lemma 4.

Theorem 5 (Budget). With probability at least 1− β −O(n−Ω(1)), the total expected budget B :=
E[
∑n

i=1 πi] required by the analyst to run Mechanism 1 under threshold equilibrium strategy στα,β

satisfies

B ≤ n(a1 + a2(MA +M2
A)),

where a1, a2 are in (7).

4.3 Implementation for Some Specific Models

In this section we will apply our framework to three canonical models in GLM: linear regression,
logistic regression and Poisson regression. Based on our previous results, to provide appropriate
design of computation and payment scheme it is sufficient to construct M̄, specify the growth
rates of {κA,i}2i=0,MA, εM̄, and set suitable parameters including α, β, ε, a1, a2, τ2. In this section,
we suppose that the privacy cost dominated function F (ε, γ) in Assumption 2 satisfies F (ε, γ) =
(1 + γ)ε4 for simplicity. It is notable that functions of F can also be other functions. Moreover,
for some specific models we may allow more relaxed assumptions on the dependency of ǫ and γ in
F (ǫ, γ).
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4.3.1 Linear Regression

Example 1. Consider the (Gaussian) linear regression model y = 〈θ∗,x〉 + ζ, where random
variables x and ζ are independent, and ζ ∼ N (0, σ2). Then conditioned on x, the response y follows

the distribution p(y|x; θ∗) = 1√
2πσ

exp{− (y−〈x,θ∗〉)2
2σ2 } = exp{y〈x,θ∗〉− 1

2
〈x,θ∗〉2

σ2 − 1
2(

y2

σ2 + log(2πσ2))}.
Thus, A(a) = 1

2a
2, φ = σ2, and c(y, φ) = −1

2(
y2

σ2 + log(2πσ2)).

Corollary 1. For any δ ∈ (14 ,
1
3 ) and c > 0, we set M̄ = R ( we have ΠM̄(ỹi) = ỹi), ε = n−δ,

τ2 = n
1−3δ

2 α = Θ(n−3δ), β = Θ(n−c), a2 = O(n−4δ), a1 = a2(MA +3M2
A) + τα,βF (2ε, γn +2γn/2).

Then the output of Mechanism 1 satisfies (O(n−δ), O(n−Ω(1)))-RJDP. Moreover, with probability
at least 1−O(n−Ω(1)), it holds that: 7

• the symmetric threshold strategy στα,β
is a Õ(n−4δ)-Bayesian Nash equilibrium for a 1 −

O(n−3δ) fraction of agents to truthfully report their data;

• the private estimator θ̄P (D̂) is Õ(n−δ)-accurate;

• it is individually rational for a 1−O(n−3δ) fraction of agents to participate in the mechanism;

• the total expected budget required by the analyst is Õ(n−4δ+1).

Remark. In [11], the authors also study the problem of truthful linear regression. Specifically, they
show that under the assumption of F (ǫ, γ) = ǫ2 it is possible to design an o( 1√

n
)-JDP mechanism

that is an o( 1n)-approximate Bayes Nash equilibrium, o(1)-accurate, individually rational for (1 −
o(1)) fraction of truthful agents and needs o(1) budgets. In comparison, here we need stronger
dependency on ǫ in the function F and our algorithm can only guarantee o( 1

4
√
n
)-RJDP. However,

it is notable that o( 1
4
√
n
)-RJDP is still in the extremely high privacy regime as in practice ǫ = 0.1−0.5

is enough to preserve privacy. For the dependency of ǫ in F , it is notable that [11] need to assume
yi is bounded where here we relax it to the case where it only has finite fourth moment. Thus, their
results are incomparable with ours.

4.3.2 Logistic Regression

Example 2. Here the response y ∈ Y ≡ {−1, 1}. Let p := P(y = 1|xi, θ
∗), then the conditional

distribution of y can be written as p
y+1

2 (1 − p)
1−y
2 = exp{y

2 log
p

1−p + 1
2 log p(1 − p)}. If we set

〈xi, θ
∗〉 = 1

2 log
p

1−p , then p = e〈xi,θ
∗〉

e〈xi,θ∗〉+e−〈xi,θ∗〉 and the above distribution is equal to exp{y〈xi, θ
∗〉 −

log(exp(−〈xi, θ
∗〉) + exp(〈xi, θ

∗〉))}. Hence, here A(a) = log(e−a + ea), φ = 1, and c(y, φ) = 0.

Corollary 2. For any δ ∈ (14 ,
1
2) and c > 0, we set M̄ = [−1 + ε′, 1 − ε′] for ε′ = 2n−δ (we have

ΠM̄(ỹi) = ỹi(1−2n−δ)), ε = n−δ, τ2 = 1, α = Θ(n−3δ), β = Θ(n−c), a2 = O(n−4δ), a1 = a2(MA+
3M2

A)+τα,βF (2ε, γn+2γn/2). Then the output of Mechanism 1 satisfies (O(n−δ), O(n−Ω(1)))-RJDP.

And with probability at least 1−O(n−Ω(1)), it holds that:

• the symmetric threshold strategy στα,β
is a Õ(n−4δ)-Bayesian Nash equilibrium for a 1 −

O(n−3δ) fraction of agents to truthfully report their data;

• the private estimator θ̄P (D̂) is Õ(n−1+2δ)-accurate;

7Note that for clearness and to be consistent with the previous results [11] here we omit the term of Poly(d), the
same for all the other corollaries in this paper.
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• it is individually rational for a 1−O(n−3δ) fraction of agents to participate in the mechanism;

• the total expected budget required by the analyst is Õ(n−4δ+1).

4.3.3 Poisson Regression

Example 3. For a count-valued response y ∈ Y ≡ {0, 1, 2, · · · }, suppose its distribution is given
by p(y) = λy

y! e
−λ with parameter λ > 0. If we set 〈xi, θ

∗〉 = log λ, then the distribution is equal to
exp{y〈xi, θ

∗〉 − exp(〈xi, θ
∗〉)− log(y!)}. Thus, A(a) = ea, φ = 1, and c(y, φ) = 0.

Corollary 3. For any δ ∈ (14 ,
1
3 ) and c > 0, we set M̄ = [n−δ,+∞) (we have ΠM̄(ỹi) =

1{ỹi=0}n
−δ + 1{ỹi 6=0}ỹi), ε = n−3δ, τ2 = Θ(n

1
4 ), α = Θ(n−3δ), β = Θ(n−c), a2 = O(n−6δ), a1 =

a2(MA+3M2
A)+τα,βF (2ε, γn+2γn/2). Then the output of Mechanism 1 satisfies (O(n−3δ), O(n−Ω(1)))-

RJDP. And with probability at least 1−O(n−Ω(1)), it holds that

• the symmetric threshold strategy στα,β
is a Õ(n−4δ)-Bayesian Nash equilibrium for a 1 −

O(n−3δ) fraction of agents to truthfully report their data;

• the private estimator θ̄P (D̂) is Õ(n−1+3δ)-accurate;

• it is individually rational for a 1−O(n−3δ) fraction of agents to participate in the mechanism;

• the total expected budget required by the analyst is Õ(n−4δ+1).

5 Heavy-tailed Case for Linear Regression

In the previous section, we studied GLMs with sub-Gaussian covariates. However, the sub-Gaussian
assumption is quite strong in practice. For example, it has been widely known that large-scale
imaging datasets in biological studies and macroeconomic variables are corrupted by heavy-tailed
noises due to limited measurement precision [15, 4], which reveal that heavy-tailed distribution is
a stylized feature of high-dimensional data. Thus, one natural question is whether we can extend
the setting to the case where the data distribution is heavy-tailed. In this section, we focus on the
linear regression and leave the generalized linear models as future work. Specifically, we consider
the case where both covariate vectors xi and responses yi only have bounded fourth moments. It
is notable that Assumption 6 is commonly used in the previous study in robust statistics [15, 22].

Assumption 6. We assume that x1, x2, · · · , xn are i.i.d. and for each xi there exist constants
R1, R2 = O(1) such that supν∈Sd−1 E(νTxi)

4 ≤ R1 for any unit vectors ν ∈ R
d and E[y4i ] ≤ R2.

Moreover, the covariance matrix Σ of xi satisfies that ‖Σ‖∞ ≥ κ∞ and ‖Σ‖2 ≥ κ2 for some
constants κ∞, κ2 = Θ(1), i.e., ∀w ∈ R

d, ‖Σw‖∞ ≥ κ∞‖w‖∞ and ‖Σw‖2 ≥ κ2‖w‖2. We also only
focus on the low dimension case where n = Ω̃(d).

Before showing our method, we first discuss why θ̂(D) in (5) in the non-private case does not
work in this setting. Recall that in the case of linear model, as shown in Section 4.3.1 we have
θ̂(D) = (XTX)−1XT ỹ in (5). However, as now each xi is heavy-tailed, the previous Lemma 3 on
the ℓ2-norm sensitivity will not hold as the terms XTX and XT ỹ will not be concentrated with high
probability. Inspired by [15], similar to ỹi, here we also need to preprocess each xi. Specifically,
we apply a similar clipping operation as in the previous section to yi and an l4-norm shrinkage

operation to xi, i.e., let x̃i satisfies x̃i = min{‖xi‖4, τ1}xi/‖xi‖4 and ỹi = sgn(yi)min{|yi|, τ2} for
each i ∈ [n], where τ1, τ2 > 0 are predetermined threshold values. Since now each x̃i and ỹi are
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bounded, the terms of X̃T X̃ and X̃T ỹ will be concentrated with high probability by Hoeffding’s
inequality. In total, now the non-private estimator becomes to

θ̂(D) = (X̃T X̃)−1X̃T ỹ. (8)

Similar to the sub-Gaussian case we then project θ̂P (D) = θ̂(D) + noise onto the ℓ2-norm ball:
θ̄P (D) = Πτθ(θ̂

P (D)). In the following we show the ℓ2-norm sensitivity and the accuracy of θ̂(D).

Lemma 5 (Sensitivity). If we set τ1 = Θ((n/ log n)1/4) and τ2 = Θ((n/ log n)1/8), then with
probability at least 1−C1n

−Ω(1), the ℓ2-norm sensitivity of θ̂(D) computed from (8) satisfies

max
D∼D′

‖θ̂(D)− θ̂(D′)‖2 ≤ ∆n = C0d
3
4 (
log n

n
)
1
8 ,

where C0, C1 > 0 are constants.

Lemma 6 (Accuracy of the non-private estimator). By setting τ1, τ2 as in Lemma 5, with probability
at least 1−O(n−Ω(1)), one has with some constant C > 0:

‖θ̂(D)− θ∗‖2 ≤ Cd(
log n

n
)
1
4 .

Remark. Compared with the previous linear regression in the sub-Gaussian case, we can see due to
the clipping parameters τ1 and τ2, both sensitivity and accuracy become larger. Secondly, besides the
ℓ4-norm shrinkage operator in (8), another way is performing the element-wise shrinkage operator
to each xi [22], i.e., x̃i satisfies x̃ij = sgn(xij)min{|xij |, τ1} for each i ∈ [n], j ∈ [d]. However, by

a similar proof as in Lemma 5 one can see the ℓ2-norm sensitivity of θ̂(D) based on this shrinkage

operation will be Õ(d
3
2 ( 1n )

1
8 ), which is larger than the bound in Lemma 5. Thirdly, while there

are some work also uses different shrinkage operators (such as ℓ2-norm shrinkage or element-wise
shrinkage) to variants statistical estimation problems [22, 15], here we use the ℓ4-norm shrinkage
and the thresholds τ1, τ2 are not equal, which are quite different with the previous approaches.

Based on the previous two lemmas and the similar idea as in the sub-Gaussian case, we propose
Mechanism 2. Specifically, we have the following results under Assumptions 1-4 and 6.

Theorem 6 (Privacy). Mechanism 2 satisfies (2ε, γn + 2γn/2)-random joint differential privacy,

where γn = C1n
−Ω(1) is the failure probability in Lemma 5.

Theorem 7 (Truthfulness). Fix a privacy parameter ε, a participation goal 1 − α and a desired
confidence parameter β in Definition 6. Then with probability at least 1 − β − O(n−Ω(1)), the
symmetric threshold strategy στα,β

is an η-approximate Bayesian Nash equilibrium in Mechanism 2
with

η = Õ(a2(α
2d2n

9
4 + d4n

1
4 ε−2) + τα,βF (2ε, γn + 2γn/2)).

Theorem 8 (Accuracy). Fix a privacy parameter ε, a participation goal 1 − α and a desired
confidence parameter β in Definition 6. Then under the symmetric threshold strategy στα,β

, the

output θ̄P (D̂) of Mechanism 2 satisfies that with probability at least 1− β −O(n−Ω(1)),

E‖θ̄P (D̂)− θ∗‖22 = Õ(α2d
3
2n

7
4 + d

7
2n− 1

4 ε−2).
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Mechanism 2: Private Heavy-tailed Linear Model Mechanism

1 Ask all agents to report their data D̂1, · · · , D̂n;

2 Randomly partition agents into two groups, with respective data pairs D̂0, D̂1;

3 Compute estimators θ̂(D̂), θ̂(D̂0), θ̂(D̂1) according to (8) with τ1 and τ2 in Lemma 5;
4 Compute the sensitivity upper bounds ∆n,∆n/2 in Lemma 5, and set differential privacy

parameter ε;

5 Draw v ∈ R
d according to distribution p(v) ∝ exp(− ε

∆n
‖v‖2), and independently draw

v0, v1 ∈ R
d according to distribution p(v) ∝ exp(− ε

∆n/2
‖v‖2);

6 Add noise: θ̂P (D̂) = θ̂(D̂) + v, θ̂P (D̂b) = θ̂(D̂b) + vb for b = 0, 1;

7 Compute private estimators θ̄P (D̂) = Πτθ (θ̂
P (D̂)) and θ̄P (D̂b) = Πτθ (θ̂

P (D̂b)) for b = 0, 1;
8 Set parameters a1, a2, and compute payments to each agent i: if agent i’s is in group 1− b,

then he will receive payment

πi = Ba1,a2

(
〈x̃i, θ̄

P (D̂b)〉, 〈x̃i,Eθ∼p(θ|D̂i)
[θ]〉
)
.

Theorem 9 (Individual rationality). With probability at least 1− β −O(n−Ω(1)), Mechanism 2 is
individually rational for all agents with cost coefficients ci ≤ τα,β as long as

a1 ≥ a2(d
1
4 τ1τθ + 3d

1
2 τ21 τ

2
θ ) + τα,βF (2ε, γn + 2γn/2),

regardless of the reports from agents with cost coefficients above τα,β.

Theorem 10 (Budget). The total expected budget B := E[
∑n

i=1 πi] required by the analyst to run
Mechanism 2 under threshold equilibrium strategy στα,β

satisfies

B = Õ(n(a2
√
dn+ τα,βF (2ε, γn + 2γn/2))).

Corollary 4. Suppose that F (ε, γ) = (1 + γ)ε9. For any δ ∈ (19 ,
1
8) and c > 0, we set M̄ = R,

τ1 = Θ((n/ log n)1/4), τ2 = Θ((n/ log n)1/8), ε = n−δ, α = Θ(n−1+δ), β = Θ(n−c), a2 = n− 1
2
−9δ,

a1 = a2(d
1
4 τ1τθ + 3d

1
2 τ21 τ

2
θ ) + τα,βF (2ε, γn + 2γn/2). Then the output of Mechanism 2 satisfies

(O(n−δ), O(n−Ω(1)))-random joint differential privacy. And with probability at least 1−O(n−Ω(1)),
it holds that

• the symmetric threshold strategy στα,β
is a Õ(n−9δ)-Bayesian Nash equilibrium for a 1 −

O(n−1+δ) fraction of agents to truthfully report their data;

• the private estimator θ̄P (D̂) is Õ(n− 1
4
+2δ)-accurate;

• it is individually rational for a 1−O(n−1+δ) fraction of agents to participate in the mechanism;

• the total expected budget required by the analyst is Õ(n−9δ+1).

Remark. It is worth mentioning that throughout the whole paper, the privacy cost function fi(ci, ǫ, γ)
can change with respect to the distortion in the report, i.e. |yi − ŷi|. But we do not write explicitly
this relation, since it does not matter in reaching our results above. What really matters is the
assumption on upper bounding the privacy cost function (see Assumption 2). And we only consider
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the case where an agent can reduce his/her privacy cost at most by misreporting the data (see the
last paragraph in the proof of Theorem 2). However, the lack of a closer look at the distribution
of an agent’s utility under different reporting strategies prevents us concluding that each agent will
have the highest utility in average if she truthfully reports the data (We only establish that the sym-
metric threshold strategy is an η Bayesian Nash equilibrium, which means an agent may increase η
utility by misreporting the data). Thus, we need to further study how the payment and privacy cost
vary under different reporting strategies to obtain a more satisfactory result.
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A Supporting lemmas

Lemma 7. For any w,w′ ∈ R
d and closed convex set C ⊆ R

d we have

‖ΠC(w)−ΠC(w
′)‖2 ≤ ‖w − w′‖2,

where ΠC is the projection operation onto the set C, i.e., ΠC(v) = argminu∈C ‖u− v‖2.

Lemma 8 ([36]). Let X1, · · · ,Xn be n independent random variables such that Xi ∼ subG(σ2).
Then for any a ∈ R

n, t > 0, we have

P(|
n∑

i=1

aiXi| > t) ≤ 2 exp(− t2

2σ2‖a‖22
).

Lemma 9 (Hoeffding’s inequality [36]). Let X1, · · · ,Xn be independent random variables bounded
by the interval [a, b]. Then, for any t > 0,

P(| 1
n

n∑

i=1

Xi −
1

n

n∑

i=1

E[Xi]| > t) ≤ 2 exp(− 2nt2

(b− a)2
).

Lemma 10 (Bernstein’s inequality [36]). Let X1,X2, · · · ,Xn be independent centered bounded
random variables, i.e. |Xi| ≤ M and E[Xi] = 0, with variance E[X2

i ] = σ2. Then, for any t > 0,

P(|
n∑

i=1

Xi| >
√
2nσ2t+

2Mt

3
) ≤ 2e−t.

Lemma 11 (Billboard lemma [21]). Let M : Dn → O be an ε-differential private mechanism.
Consider a set of n functions πi : D×O → R, for i ∈ [n]. Then the mechanism M′ : Dn → O×Rn

that computes r = M(D) and outputs M′(D) = (r, π1(D1, r), · · · , πn(Dn, r)), where Di is the agent
i’s data, is ε-differential private.

Lemma 12. If v ∈ R
d is drawn from the distribution with probability density function p(v) ∝

exp(− ε
∆‖v‖2), then E[v] = 0, E[‖v‖22] = d(d+ 1)(∆ε )

2, E[‖v‖2] = d∆
ε .

Lemma 13. Let θ̂(D) and θ̂(D′) be the estimators on two fixed datasets D,D′ that differ on at
most k entries. Suppose that with probability at least 1−γn, the sensitivity of θ̂(D) is upper bounded
by ∆n. Then we have with probability at least 1− kγn, it holds that

‖θ̂(D)− θ̂(D′)‖2 ≤ k∆n.

Lemma 14 (Bound on threshold τα,β). Under the Assumption 4, τα,β ≤ 1
λ log 1

αβ .

Lemma 15 (Largest singular value of sub-Gaussian matrices [35]). Let A be an n×d matrix whose
rows Ai are independent sub-Gaussian isotropic (i.e. E[AiA

T
i ] = I) random vectors in R

d. Then

for every t ≥ 0, with probability at least 1− 2e−c0t2 one has

‖A‖2 ≤ √
n+ C0

√
d+ t.

where c0, C0 ≥ 0 are universal constants.
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Lemma 16 (Covariance estimation for sub-Gaussian distribution [35]). Assume that X be an n×d
matrix whose rows xT

i are independent sub-Gaussian random vectors in R
n with covariance matrix

Σ. Then for every s ≥ 0, with probability at least 1− 2 exp(−c1s
2), one has

‖X
TX

n
− Σ‖2 ≤ max(δ, δ2) where δ = C1

√
d

n
+

s√
n
,

where c1, C1 > 0 are universal constants.

Lemma 17 (Covariance estimation for heavy-tailed distribution). Assume that X be an n × d
matrix whose rows xT

i are independent random vectors in R
d with finite fourth moment, i.e.,

supν∈Sd−1 E(νTxi)
4 ≤ R < ∞, where Sd−1 is a d dimensional unit sphere. Denote the co-

variance matrix as Σ := E[xix
T
i ]. For any δ > 0, let τ1 = Θ((nR/(δ log n))1/4) and x̃i =

min{‖xi‖4, τ1}xi/‖xi‖4 for each i ∈ [n]. Then, with probability at least 1− dn−Cδ it holds that

‖X̃
T X̃

n
− Σ‖2 ≤ 2

√
δRd log n

n
,

where constant C > 0 is a universal constant.

B Proofs of Supporting Lemmas

Proof of Lemma 7. Denote b = ΠC(w) and b′ = ΠC(w′). Since b and b′ are in C, so the segment
bb′ is contained in C, thus we have for all t ∈ [0, 1], ‖(1 − t)b+ tb′ − w‖2 ≥ ‖b− w‖2. Thus

0 ≤ d

dt
‖tb+ (1− t)b′ − w‖22|t=0 = 2〈b′ − b, b− w〉

Similarly, we have 〈b − b′, b′ − w′〉 ≥ 0. Now consider the function D(t) = ‖(1 − t)b + tw − (1 −
t)b′ − tw′‖22 = ‖b− b′+ t(w−w′ + b′− b)‖22, which is a quadratic function in t. And by the previous
two inequalities we have D′(0) = 2〈b − b′, w − w′ + b′ − b〉 ≥ 0. Thus D(·) is a increasing function
on [0,∞), thus D(1) ≥ D(0) which means ‖w − w′‖2 ≥ ‖b− b′‖2.

Proof of Lemma 12. Write p(v) = 1
Z exp(− ε

∆‖v‖2), in which Z is a constant such that
∫
Rd p(v) dv =

1. Then

Z =

∫

Rd

exp(− ε

∆
‖v‖2) dv =

∫ ∞

0
exp(− ε

∆
r)Adr

d−1 dr = Ad(d− 1)!(
∆

ε
)d,

where Ad is the ”area” of boundary of d-dimensional unit ball and the last inequality follows from
integration by parts for d− 1 times. Similarly,

E[‖v‖22] =
∫

Rd

1

Z
exp(− ε

∆
‖v‖2)‖v‖22 dv =

∫ ∞

0

1

Z
exp(− ε

∆
r)Adr

d+1 dr

=
1

Z
Ad(d+ 1)!(

∆

ε
)d+2 = d(d+ 1)(

∆

ε
)2,

and E[‖v‖] = d∆
ε . Since p(v) is symmetric to the origin, E[v] = 0.
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Proof of Lemma 13. Define a sequence of datasets D0,D1, · · · ,Dk, such that D0 = D, Dk = D′,
and for each i ∈ [k], Di,Di−1 differ on at most one agent’s dataset. Then, by the triangular
inequality, we obtain

‖θ̂(D)− θ̂(D′)‖2 = ‖θ̂(D0)− θ̂(Dk)‖2 = ‖
k∑

i=1

θ̂(Di−1)− θ̂(Di)‖2 ≤
k∑

i=1

‖θ̂(Di−1)− θ̂(Di)‖2 ≤ k∆n.

with probability at least 1− kγn by taking a union bound over k failure probabilities γn.

Proof of Lemma 14. We first bound τ1α,β. Since n = #{i : ci ≤ τ} + #{i : ci > τ}, the event
{#{i : ci ≤ τ} ≥ (1−α)n} is equivalent to the event {#{i : ci > τ} ≤ αn}. Thus, by the definition
of τ1α,β,

τ1α,β = inf{τ > 0 : P(c1,··· ,cn)∼pn(#{i : ci > τ} ≤ αn) ≥ 1− β}
= inf{τ > 0 : P(c1,··· ,cn)∼pn(#{i : ci > τ} > αn) ≤ β},

By Markov’s inequality, we have

P(c1,··· ,cn)∼pn(#{i : ci > τ} > αn) ≤
E(c1,··· ,cn)∼pn [

∑n
i=1 1{ci>τ}]

αn

=

∑n
i=1 Eci∼p[1{ci>τ}]

αn
=

nP[ci > τ ]

αn
=

P[ci > τ ]

α
.

Thus, {τ > 0 : P(ci > τ) ≤ αβ} ⊆ {τ > 0 : P(c1,··· ,cn)∼pn(#{i : ci > τ} > αn) ≤ β}, which implies

τ1α,β ≤ inf{τ > 0 : P(ci > τ) ≤ αβ}. The Assumption 4 implies that P(ci > τ) ≤ e−λτ . Hence,

τ1α,β ≤ 1
λ log 1

αβ . By the definition of τ2α and Assumption 4, we have τ2α ≤ 1
λ ln 1

α . Since β ∈ (0, 1),
1
λ log 1

αβ > 1
λ log 1

α , then τα,β = max{τ1α,β , τ2α} ≤ 1
λ log 1

αβ .

Proof of Lemma 17. Note that

‖x̃ix̃
T
i ‖2 = sup

v∈Sn−1

|νT x̃ix̃
T
i ν| = sup

ν∈Sd−1

|νT x̃i|2 = ‖x̃i‖22 ≤
√
d‖x̃i‖24 ≤

√
dτ2,

and

‖Ex̃ix̃
T
i ‖2 = sup

ν∈Sd−1

|νTEx̃ix̃
T
i ν| = sup

ν∈Sd−1

E|νT x̃i|2 ≤ sup
ν∈Sd−1

E|νTxi|2 ≤ sup
ν∈Sd−1

√
E(νTxi)4 =

√
R.

Thus,

‖x̃ix̃
T
i − Ex̃ix̃

T
i ‖2 ≤ ‖x̃ix̃

T
i ‖2 + ‖Ex̃ix̃

T
i ‖2 ≤

√
dτ2 +

√
R.

Also note that

‖E(x̃ix̃
T
i )

2‖2 = sup
ν∈Sd−1

|νTE(x̃ix̃
T
i )

2ν| = sup
ν∈Sd−1

E(νT x̃i)
2‖x̃i‖22 ≤ sup

ν∈Sd−1

d∑

i=j

Ex2ij(ν
Txi)

2

≤ sup
ν∈Sd−1

d∑

j=1

√
E(x4ij)E(ν

Txi)4 ≤ Rd.
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Thus,

‖E(x̃ix̃
T
i − Ex̃ix̃

T
i )

2‖2 = ‖E(x̃ix̃
T
i )

2 − (Ex̃ix̃
T
i )

2‖2 ≤ ‖E(x̃ix̃
T
i )

2‖2 + ‖Ex̃ix̃
T
i ‖22 ≤ R(d+ 1).

By Theorem 5.29 in [35], for any t > 0, it holds that

P(‖ 1
n

n∑

i=1

x̃ix̃
T
i − Ex̃ix̃

T
i ‖2 > t) ≤ 2d exp

[
− cmin{ nt2

R(d+ 1)
,

nt√
dτ2 +

√
R
}
]
. (9)

where c > 0 is a constant. In addition,

‖Ex̃ix̃
T
i − Exix

T
i ‖2 = sup

ν∈Sd−1

|νT (Ex̃ix̃
T
i − Exix

T
i )ν|

= sup
ν∈Sd−1

|E(((νT x̃i)
2 − (νTxi)

2)1{‖xi‖4>τ})|

≤ sup
ν∈Sd−1

|E(νTxi)
21{‖xi‖4>τ}|

≤ sup
ν∈Sd−1

√
E(νTxi)4P(‖xi‖4 > τ)

≤ sup
ν∈Sd−1

√
E(νTxi)4

E‖xi‖44
τ4

≤ R
√
d

τ2
. (10)

Let τ = Θ((nR/(δ log n))1/4) and t =
√

δRd log n/n. Then, combining (9) and (10) delivers that
with probability at least 1− 2dn−Cδ one has

‖X̃
T X̃

n
− Σ‖2 ≤ ‖ 1

n

n∑

i=1

x̃ix̃
T
i − Ex̃ix̃

T
i ‖2 + ‖Ex̃ix̃

T
i − Exix

T
i ‖2 ≤ 2

√
δRd log n

n
.

C Omitted Proofs

Proof of Lemma 3. Let D and D′ be two arbitrary neighboring datasets that differ only on the
last agent’s report (xn, ŷn) in D and (x′

n, ŷ
′
n) in D′. Let E := {maxi∈[n] ‖xi‖2 ≤ 4

√
cσ

√
log n} for

constant c > 1. By Lemma 8, we have P(Ec) ≤ n−c+1. In the following, we will always assume the
event E holds.

Step 1: Upper bound ‖XT (A′)−1(ΠM̄(y))
n ‖2. By Lemma 15, and note that xT

i Σ
− 1

2 is isotropic, then

with probability at least 1 − 2e−c0n we have ‖XT ‖2 = ‖X‖2 = ‖XΣ− 1
2Σ

1
2‖2 ≤ ‖XΣ− 1

2 ‖2‖Σ
1
2‖2 ≤

(2
√
n+ C0

√
d)
√
λmax, where λmax is the largest eigenvalue of Σ. Thus,

‖X
T (A′)−1(ΠM̄(ỹ))

n
‖2 ≤

1

n
‖XT ‖2‖(A′)−1(ΠM̄(ỹ))‖2

≤ 1

n
(2
√
n+ C0

√
d)
√

λmax

√
nκA,1 = O(

√
λmaxκA,1).

Step 2: Upper bound the sensitivity of ‖XT (A′)−1(ΠM̄(ỹ))
n ‖2.

‖X
T (A′)−1(ΠM̄(ỹ))

n
− X ′T (A′)−1(ΠM̄(ỹ′))

n
‖2 =

1

n
‖xn(A

′)−1(ΠM̄(ỹn)− x′
n(A

′)−1(ΠM̄(ỹ′n))‖2

≤ 1

n

(
‖xn‖2|(A′)−1(ΠM̄(ỹn))|+ ‖x′

n‖2|(A′)−1(ΠM̄(ỹ′n))|
)
= O(

1

n
σ
√

log nκA,1).
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Step 3: Upper bound ‖(XTX
n )−1‖2. For any nonzero vector w ∈ R

d, Note that

‖X
TX

n
w‖2 = ‖X

TX

n
w − Σw +Σw‖2

≥ ‖Σw‖2 − ‖(X
TX

n
−Σ)w‖2 ≥ (κ2 − ‖X

TX

n
− Σ‖2‖w‖2). (11)

By Lemma 16, let s = C1t
√
d for any t ≥ 1, then when n ≥ 4C2

1 t
2d = Ω(t2d), with probability

at least 1 − 2e−t2d, we have ‖XTX
n − Σ‖2 ≤ 2C1t

√
d
n . Thus, when n ≥ 16C2

1 t
2d

κ2
2

, we have ‖XTX
n −

Σ‖2 ≤ κ2

2 . Combining this inequality and (11) yields that ‖XTX
n w‖2 ≥ κ2

2 ‖w‖2, which implies

‖(XTX
n )−1‖2 ≤ 2

κ2
.

Step 4: Next we bound the sensitivity of ‖(XTX
n )−1‖2. Note that for any two nonsingular square

matrices A,B with the same size, it holds that A−1 −B−1 = −B−1(A−B)A−1. Thus,

‖(X
TX

n
)−1 − (

X ′TX ′

n
)−1‖2 ≤ ‖(X

TX

n
)−1‖2‖(

X ′TX ′

n
)‖2‖

XTX

n
− XTX

n
‖2

≤ 4

κ22
(‖X

TX

n
− Σ‖2 + ‖Σ− X ′TX ′

n
‖2) ≤

16C1t

κ22

√
d

n
.

Take t =
√
log n we have ‖(XTX

n )−1 − (X
′T X′
n )−1‖2 = O( 1

κ2
2

√
d logn

n ).

Step 5: Applying the inequality ‖AB − A′B′‖2 = ‖AB − AB′ + AB′ − A′B′‖2 ≤ ‖A‖2‖B −
B′‖2 + ‖A−A′‖2‖B′‖2, we have with probability at least 1− n−c+1 − 4n−d,

‖θ̂(D)− θ̂(D′)‖2

= ‖(X
TX

n
)−1X

T (A′)−1(ΠM̄(ỹ))

n
− (

X ′TX ′

n
)−1X

′T (A′)−1(ΠM̄(ỹ′))
n

‖2

= O(κA,1(
2σ

κ2

√
log n

n
+

√
λmax

κ22

√
d log n

n
), (12)

where the first inequality is due to Lemma 7.

Proof of Lemma 4. Note that by the proof of Lemma 3 we can see that when n ≥ 16C2
1 t

2d

κ2
2

, with

probability at least 1− 2e−t2d we have ‖(XTX
n )−1‖2 ≤ 2

κ2
. Thus,

‖θ∗ − θ̂(D)‖2

= ‖θ∗ −
(XTX

n

)−1XT (A′)−1(ΠM̄(ỹ))

n
‖2

≤ ‖
(XTX

n

)−1‖2‖
(XTX

n

)
θ∗ − XT (A′)−1(ΠM̄(ỹ))

n
‖2

≤ 2

κ2
‖X

T

n
{Xθ∗ − (A′)−1(ΠM̄(ỹ))}‖2

≤ 2
√
d

κ2
‖X

T

n
{Xθ∗ − (A′)−1(ΠM̄(ỹ))}‖∞. (13)
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To complete the proof, we upper bound the term ‖XT

n {Xθ∗ − (A′)−1(ΠM̄(ỹ))}‖∞.

‖X
T

n
{Xθ∗ − (A′)−1(ΠM̄(ỹ))}‖∞

= max
j∈[d]

|[X
T

n

{
Xθ∗ − (A′)−1(ΠM̄(ỹ))

}
]j |

= max
j∈[d]

| 1
n

n∑

i=1

xij(
d∑

k=1

xikθ
∗
k − (A′)−1(ΠM̄(ỹi)))|

= max
j∈[d]

| 1
n

n∑

i=1

xij((A
′)−1 ◦A′(〈xi, θ

∗〉)− (A′)−1(ΠM̄(ỹi)))|

= max
j∈[d]

| 1
n

n∑

i=1

xij [(A
′)−1]′(ξi)(A

′(〈xi, θ
∗〉)−ΠM̄(ỹi))| (by mean value theorem)

≤ max
j∈[d]

| 1
n

n∑

i=1

xij [(A
′)−1]′(ξi)(A

′(〈xi, θ
∗〉)− ỹi)|+max

j∈[d]
| 1
n

n∑

i=1

xij[(A
′)−1]′(ξi)(ỹi −ΠM̄(ỹi))|

≡ max
j∈[d]

Ij +max
j∈[d]

IIj, (14)

where ξi is some value between A′(〈xi, θ
∗〉) and ΠM̄(ỹi). Let E := {maxi∈[n] ‖xi‖2 ≤ 4

√
cσ

√
log n}

for constant c > 1. By Lemma 8, we have P(Ec) ≤ n−c+1. In the following, we will omit the
conditioning on the event E .

Since xij
iid∼ subG(σ2/d),∀i ∈ [n], by Lemma 8, for any t > 0, P(Ij > t) ≤ 2 exp(− t2

2σ2‖a‖22/d
),

where a = [ 1n [(A
′)−1]′(ξi)(A(〈xi, θ

∗〉)− ỹi)]
n
i=1. Let t = c′1σ‖a‖2

√
log n/

√
d. then

P


Ij > c′1

σ√
d

√√√√ 1

n

n∑

i=1

([(A′)−1]′(ξi)(A′(〈xi, θ∗〉)− ỹi))2

√
log n

n


 ≤ 2n− c′

2

1
2 .

Since |[(A′)−1](ξi)| ≤ κA,0, with probability at least 1− 2n− c′
2

1
2 we have

Ij ≤ c′1
σ√
d
κA,0

√√√√ 1

n

n∑

i=1

(A′(〈xi, θ∗〉)− ỹi)2

√
log n

n
.

Since (A′(〈xi, θ
∗〉) − ỹi)

2 ≤ (MA + τ2)
2, by Hoeffding’s inequality (Lemma 9), with probability at

least 1− 2n− c′
2

1
2 − 2n−ζ

Ij ≤ c′1
σ√
d
κA,0

√

E[(A′(〈xi, θ∗〉)− ỹi)2] + (MA + τ2)2

√
ζ log n

n

√
log n

n
.

Note that

E[(A′(〈xi, θ
∗〉)− ỹi)

2] = E[(A′(〈xi, θ
∗〉)− yi + yi − ỹi)

2] ≤ 2(E[(A′(〈xi, θ
∗〉)− yi)

2] + E[(yi − ỹi)
2]).
(15)
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Since E[yi|xi, θ
∗] = A′(〈xi, θ

∗〉) and var[yi|xi, θ
∗] = A′′(〈xi, θ

∗〉)φ ≤ κA,2φ, we have

E[(A′(〈xi, θ
∗〉)− yi)

2] = Exi [(Eyi [yi|xi, θ
∗]− yi)

2] = Exi [A
′′(〈xi, θ

∗〉)φ] ≤ κA,2φ. (16)

For the second term of (15), we have

E[(yi − ỹi)
2] = E[(yi − ỹi)

21(|yi| > τ2)] ≤ E[y2i 1{|yi|>τ2}]

≤
√

E[y4i ]P(|yi| > τ2) ≤
√

E[y4i ]

√
E[y4i ]

τ42
≤ R

τ22
. (17)

Combining (15), (16) and (17) delivers that

Ij ≤ c′1
σ√
d
κA,0

√

(κA,2φ+
R

τ22
) + (MA + τ2)2

√
ζ log n

n

√
log n

n
. (18)

Similarly, since xij
iid∼ subG(σ2/d), by Lemma 8, with probability at least 1− 2n− c′

2

2
2 it holds that

IIj ≤ c′2
σ√
d
κA,0εM̄

√
log n

n
. (19)

Combining (18) and (19), by the union bound for all j ∈ [d], yields that with probability at least

1− 2dn− c′
2

1
2 − 2dn−ζ − 2dn− c′

2

2
2 ,

max
j∈[d]

Ij +max
j∈[d]

IIj ≤ O((

√

(κA,2φ+
R

τ22
) + (MA + τ2)2

√
ζ log n

n
+ εM̄ )

σ√
d
κA,0

√
log n

n
). (20)

Considering the failure of the event E and combining (13), (14), and (20) delivers that for any

δ > 0, with probability at least 1− n−c+1 − 2dn− c′
2

1
2 − 2dn−ζ − 2dn− c′

2

2
2 = 1−O(n−Ω(1)),

‖θ∗ − (
XTX

n
)−1X

T (A′)−1(ΠM̄(ỹ))

n
‖2 ≤ λn

√
log n

n

where λn := Õ(κA,0(
√

κA,2 +
1
τ22

+ (MA + τ2)
4

√
1
n + εM̄).

Proof of Theorem 1. We first show that θ̂P (D̂) is (ε, γn)-random joint differential privacy (RJDP).
Let D̂ and D̂′ be any two datasets that differ only on one agent’s dataset. For any fixed θ ∈ Θ ⊆ R

d,
by Lemma 2, with probability at least 1− γn we have ‖θ̂(D̂)− θ̂(D̂′)‖2 ≤ ∆n. Thus

p(θ̂P (D̂) = θ|D̂)

p(θ̂P (D̂′) = θ|D̂′)
=

p(θ̂(D̂) + v = θ|D̂)

p(θ̂(D̂′) + v′ = θ|D̂′)
=

p(v = θ − θ̂(D̂)|D̂)

p(v′ = θ − θ̂(D̂′)|D̂′)

= exp{ ε

∆n
(‖θ̂(D̂)‖2 − ‖θ̂(D̂′)‖2)} ≤ exp{ ε

∆n
‖θ̂(D̂)− θ̂(D̂′)‖2} ≤ exp(ε),

which means θ̂P (D̂) is (ε, γn)-RJDP. The estimators θ̂P (D̂0) and θ̂P (D̂1) are computed in the same
way as θ̂P (D̂), so θ̂P (D̂0) and θ̂P (D̂1) each satisfy (ε, γn/2)-RJDP. Since θ̂P (D̂0) and θ̂P (D̂1) are
computed on disjoint subsets of the data, then by the Parallel Composition Theorem, together they
satisfy (ε, 2γn/2)-RJDP. By the Sequential Composition Theorem, the estimators (θ̂P (D̂),θ̂P (D̂0),θ̂P (D̂1))
together satisfy (2ε, γn + 2γn/2)-RJDP. Finally, using the post-processing property and Billboard

Lemma 11, the output (θ̄P (D̂),θ̄P (D̂0), θ̄P (D̂1), {πi(Di, θ̄
P (D̂b))}ni=1) of Mechanism 1 satisfies

(2ε, γn + 2γn/2)-RJDP.

26



Proof of Theorem 2. Suppose all agents other than i are following strategy στα,β
. Let agent i

be in group 1 − b, b ∈ {0, 1}. We will show that στα,β
achieves η-Bayesian Nash equilibrium by

bounding agent i’s incentive to deviate. Assume that ci ≤ τα,β, otherwise there is nothing to show
because agent i would be allowed to submit an arbitrary report under στα,β

. For ease of notation,
we write σ for στα,β

for the remainder of the proof. We first compute the maximum expected mount
(based on his belief) that agent i can increase his payment by misreporting to the analyst, i.e.

E[πi(D̂i, σ(D
b, cb))|Di, ci]− E[πi(Di, σ(D

b, cb))|Di, ci]

= E

[
Ba1,a2

(
A′(〈xi, θ̄

P (D̂b)〉), A′(〈xi,Eθ∼p(θ|D̂i)
[θ]〉)

) ∣∣Di, ci

]

− E

[
Ba1,a2

(
A′(〈xi, θ̄

P (D̂b)〉), A′(〈xi,Eθ∼p(θ|Di)[θ]〉)
) ∣∣Di, ci

]
. (21)

Note that Ba1,a2(p, q) = a1 − a2(p − 2pq + q2) is linear with respect to p, and is a strictly concave
function of q maximized at q = p. Thus, (21) is upper bounded by the following with probability
1− C1n

−Ω(1)

Ba1,a2(E[A
′(〈xi, θ̄

P (D̂b)〉)|Di, ci],E[A
′(〈xi, θ̂

P (D̂b)〉)|Di, ci])

−Ba1,a2(E[A
′(〈xi, θ̄

P (D̂b)〉)|Di, ci], A
′(〈xi,Eθ∼p(θ|Di)[θ]〉))

= a2

(
E[A′(〈xi, θ̄

P (D̂b)〉)|Di, ci]−A′(〈xi,Eθ∼p(θ|Di)[θ]〉)
)2

= a2

(
E[A′(〈xi, θ̄

P (D̂b)〉)−A′(〈xi,Eθ∼p(θ|Di)[θ]〉)|Di, ci]
)2

≤ a2

(
E[κA,2x

T
i (θ̄

P (D̂b)− Eθ∼p(θ|Di)[θ])|Di, ci]
)2

≤ a2κ
2
A,2‖xi‖22‖E[θ̄P (D̂b)− Eθ∼p(θ|Di)[θ]|Di, ci]‖22

≤ Ca2κ
2
A,2σ

2 log n‖E[θ̄P (D̂b)− Eθ∼p(θ|Di)[θ]|Di, ci]‖22.

We continue by bounding the term ‖E[θ̄P (D̂b)− Eθ∼p(θ|Di)[θ]|Di, ci]‖2. By Lemma 7

‖E[θ̄P (D̂b)− Eθ∼p(θ|Di)[θ]|Di, ci]‖2
≤ ‖E[θ̄P (D̂b)− θ̄P (Db)|Di, ci]‖2 + ‖E[θ̄P (Db)|Di, ci]− Eθ∼p(θ|Di)[θ]|Di, ci]‖2
≤ ‖E[θ̂P (D̂b)− θ̂P (Db)|Di, ci]‖2 + ‖E[θ̄P (Db)|Di, ci]− Eθ∼p(θ|Di)[θ]|Di, ci]‖2
≤ E‖θ̂(D̂b)− θ̂(Db)‖2 + ‖E[θ̄P (Db)|Di]− Eθ∼p(θ|Di)[θ]‖2, (22)

Since agent i believes that with at least probability 1 − β, at most αn agents will misreport
their datasets under threshold strategy στα,β

, datasets Db and D̂b differ only on at most αn agents’

datasets. By Lemma 13, with probability at least 1−αnγn/2 we have E‖θ̂(D̂b)− θ̂(Db)‖2 ≤ αn∆n/2.
For the third term of (22),

E[θ̄P (Db)|Di]− Eθ∼p(θ|Di)[θ]

= EDb∼p(Db|Di)[θ̄
P (Db)]− Eθ∼p(θ|Di)[θ]

= Eθ∼p(θ|Di)[EDb∼p(Db|θ)[θ̄
P (Db)]|θ]− Eθ∼p(θ|Di)[θ]

= Eθ∼p(θ|Di)[EDb∼p(Db|θ)[θ̄
P (Db)− θ]|θ].

Since

p(Db|θ) = p(Xb, yb|θ) = p(yb|Xb, θ)p(Xb|θ) = p(yb|Xb, θ)p(Xb),
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we have

EDb∼p(Db|θ)[θ̂(D
b)− θ] = EXb [Eyb [θ̄

P (Xb, yb)− θ]|Xb, θ].

Since we have the prior knowledge that ‖θ∗‖2 ≤ τθ. Thus, the for posterior distribution θ ∼ p(θ|D̂i)
it will also have ‖θ‖2 ≤ τθ. By Jensen’s inequality, Lemma 7 and Lemma 4, with probability at
least 1−O(n−Ω(1)) we have

‖E[θ̄P (Db)|Di]− Eθ∼p(θ|Di)[θ]‖2 ≤ Eθ∼p(θ|Di),Xb [Eyb [‖θ̄P (Xb, yb)− θ‖2|Xb, θ]]

≤ Eθ∼p(θ|Di),Xb [Eyb [‖θ̂P (Xb, yb)− θ‖2|Xb, θ]] ≤ λn

√
log n

n
+ E‖vb‖2,

where λn := Õ(σκA,0(
√

κA,2 +
1
τ22
+(MA+τ2)

4

√
1
n+εM̄). In addition to an increased payment, agent

i may also experience decreased privacy costs from misreporting. By Assumption 2, this decrease
in privacy costs is bounded above by ciF (2ε, γn + 2γn/2). Since we have assumed ci ≤ τα,β, the
decrease in privacy costs for agent i is bounded above by τα,βF (2ε, γn + 2γn/2). Hence, agent i’s
total incentive to deviate is bounded above by

η = O(a2κ
2
A,2σ

2 log n(αn∆n/2 + λn

√
log n

n
+

d∆n/2

ǫ
)2 + τα,βF (2ε, γn + 2γn/2)).

Proof of Theorem 3. For any realization D held by agents, let D̂ = στα,β
(D). Then by Lemma

7 we have

E[‖θ̄P (D̂)− θ∗‖22] ≤ E‖θ̂P (D̂)− θ∗‖22
= E‖θ̂P (D̂)− θ̂(D) + θ̂(D)− θ∗‖22
= E‖θ̂P (D̂)− θ̂(D)‖22 + 2〈θ̂P (D̂)− θ̂(D), θ̂(D)− θ∗〉++‖θ̂(D)− θ∗‖22
≤ 2E‖θ̂P (D̂)− θ̂(D)‖22 + 2E‖θ̂(D)− θ∗‖22. (23)

For the first term of (23), by Lemma 13 and Lemma 12, with probability at least 1−β−αnγn, we
have

E‖θ̂P (D̂)− θ̂(D)‖22 = E‖θ̂(D̂) + v − θ̂(D)‖22
= E‖θ̂(D̂)− θ̂(D)‖22 + E‖v‖22 + 2E〈θ̂(D̂)− θ̂(D), v〉
= E‖θ̂(D̂)− θ̂(D)‖22 + E‖v‖22 + 2〈Eθ̂(D̂)− θ̂(D),E[v]〉

≤ (αn∆n)
2 + d(d+ 1)(

∆n

ε
)2. (24)

For the last term of (23), by Lemma 4,

‖θ̂(D)− θ∗‖22 ≤ λ2
n

log n

n
. (25)

Combining (24) and (25) yields that with probability at least 1− β − Cdn−Ω(1),

E[‖θ̂P (D̂)− θ∗‖22] ≤ O((αn∆n)
2 + d2(

∆n

ε
)2 + λ2

n

log n

n
).
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Proof of Theorem 4. Let agent i have privacy cost ci ≤ τα,β and consider agent i’s utility from
participating in the mechanism. Suppose agent i is in group 1− b, then his expected utility is

E[ui] = E

[
Ba1,a2

(
A′(〈xi, θ̄

P (D̂b)〉), A′(〈xi,Eθ∼p(θ|D̂i)
[θ]〉)

)
|Di, ci

]
− fi(ci, ε)

≥ Ba1,a2

(
E[A′(〈xi, θ̄

P (D̂b)〉)|Di, ci], A
′(〈xi,Eθ∼p(θ|D̂i)

[θ]〉)
)
− τα,βF (2ε, γn + 2γn/2). (26)

Since both |〈xi, θ̄
P (D̂b)〉| and |〈xi,Eθ∼p(θ|D̂i)

[θ]〉| are bounded by τ1τθ with probability at least

1− β −O(n−Ω(1)), both two inputs of Ba1,a2(·, ·) are bounded above by MA. Note that

Ba1,a2(p, q) = a1 − a2(p− 2pq + q2) ≥ a1 − a2(|p|+ 2|p||q|+ |q|2), (27)

thus by (26) and (27) agent i’s expected utility is non-negative as long as

a1 ≥ a2(MA + 3M2
A) + τα,βF (2ε, γn + γn/2).

Proof of Theorem 5. Note that

Ba1,a2(p, q) ≤ Ba1,a2(p, p) = a1 − a2(p − p2) ≤ a1 + a2(|p|+ |p|2),
thus

B =
n∑

i=1

E[πi] =
n∑

i=1

E[Ba1,a2

(
A′(〈xi, θ̄

P (D̂b)〉), A′(〈xi,Eθ∼p(θ|D̂i)
[θ]〉)

)
|Di, ci]

≤ n(a1 + a2(MA +M2
A)).

Proof of Corollary 1. The response moment polytope for the real-valued response variable is
M = R. Thus its interior is M◦ = R. We set M̄ = R, so that ΠM̄(ỹi) = ỹi, εM̄ = 0. To bound
κA,0, κA,1, κA,2,MA, we first compute that A′(a) = a, (A′)−1(a) = a, [(A′)−1]′(a) = 1, A′′(a) = 1.
Note that M′ = [−τθτ1, τθτ1] = [−Cστθ

√
log n,Cστθ

√
log n], thus we have

κA,0 = 1, κA,1 = τ2, κA,2 = 1,MA = Cστθ
√

log n.

For any δ ∈ (14 ,
1
3) and c > 0, we set ε = n−δ, τ2 = n

1−3δ
2 , α = Θ(n−3δ), β = Θ(n−c) ,

a2 = O(n−4δ), and a1 = a2(MA+3M2
A)+ τα,βF (2ε, γn+2γn/2). Then, by Lemma 3, the sensitivity

of the private estimator is ∆n = Õ(τ2n
− 1

2 ) = Õ(n− 3δ
2 ). Since for any δ ∈ (14 ,

1
3 ) we always have

1−3δ
2 < 1

4 , which means τ2 = O(n
1
4 ), by Lemma 4 we obtain λn = O(1), ‖θ̄(D)− θ∗‖2 = Õ(n− 1

2 ).

Recall that by Theorem 3, the private estimator is Õ(α2κ2A,1nd+
κ2
A,1d

3

ε2n
+ λ2

n
n )-accurate. Note that

Õ(α2κ2A,1nd) = Õ(n−9δ+2), Õ(
κ2
A,1d

3

ε2n
) = Õ(n−δ), Õ(λ

2
n
n ) = Õ(n−1). Since for any δ ∈ (14 ,

1
3) it holds

that −1 < −9δ + 2 < −δ, we obtain E‖θ̄P (D̂) − θ∗‖22 = Õ(n−δ). To bound the expected budget,
we first bound the threshold value τα,β and the term τα,βF (2ε, γn + 2γn/2). By Lemma 14, τα,β ≤
1
λ log 1

αβ = Θ(3δ+c
λ log n) = Θ̃(1). If F (ε, γ) = (1 + γ)ε4, then τα,βF (2ε, γn + 2γn/2) = Õ(n−4δ).

Recall that by Theorem 2, the first term of truthfulness bound is a2κ
2
2(α

2κ2A,1nd+
λ2
n
n +

κ2
A,1d

3

nε2
) =

Õ(n−5δ), thus η = Õ(n−5δ +n−4δ) = Õ(n−4δ). By the choice of a1 and Theorem 4, the mechanism
is individual rational for at least 1−O(n−3δ) fraction of agents. By Theorem 5, the total expected
budget is B = Õ(na2(2MA + 4M2

A) + nτα,βF (2ε, γn + 2γn/2)) = Õ(n−4δ+1).
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Proof of Corollary 2. The response moment polytope for the binary response variable y ∈
{−1, 1} is M = [−1, 1]. Thus, its interior is given by M◦ = (−1, 1). For the closed subset of
M◦, we define it as M̄ = [−1 + ε′, 1 − ε′] for some ε′ ∈ (0, 1). Then, we can easily compute
that ΠM̄(ỹi) = ỹi(1 − ε′), εM̄ = ε′. Since |y| ≤ 1, here we can just set τ2 = 1. To bound

κA,0, κA,1, κA,2,MA, we first compute that A′(a) = e2a−1
e2a+1

, (A′)−1(a) = 1
2 log

1+a
1−a . [(A′)−1]′(a) =

1
1−a2

, A′′(a) = 4
(ea+e−a)2

. Note that M′ = [− e2Cστθ
√

logn−1

e2Cστθ
√

logn+1
, e

2Cστθ
√

logn−1

e2Cστθ
√

logn+1
], then we have

κA,0 = max
a∈M′∪M̄

|[(A′)−1]′(a)| = max
a∈M′∪M̄

1

2
(

1

1− a
+

1

1 + a
)

< max{1
2
+

1

2
e2Cστθ

√
logn,

1

ε′
} = max{1

2
+

1

2
n

2Cστθ√
log n ,

1

ε′
},

κA,1 =
1

2
log

2− ε′

ε′
, κA,2 ≤ 1,MA ≤ 1.

For any δ ∈ (14 ,
1
2), we choose ε′ = 2n−δ and let n ≥ e(

2Cστθ
δ

)2 then κA,0 = O(nδ), κA,1 = Õ(1).
We set ε = n−δ, α = Θ(n−3δ), β = Θ(n−c) for any c > 0, a2 = n−4δ, a1 = a2(MA + 3M2

A) +

τα,βF (2ε, γn +2γn/2). Then, by Lemma 3, the sensitivity of the private estimator is ∆n = Õ(n− 1
2 ).

Then, by Lemma 4, we have λn = Õ(κA,0) = Õ(nδ) and ‖θ̄(D) − θ∗‖2 = Õ(n− 1−2δ
2 ). Note

that α2κ2A,1nd = Õ(n−6δ+1),
κ2
A,1d

3

ε2n
= n−1+2δ, λ2

n
n = Õ(n−1+2δ). Since for any δ ∈ (14 ,

1
2) it

holds that −6δ + 1 < −1 + 2δ, by Theorem 3, we obtain E[‖θ̄P (D̂) − θ∗‖22] = Õ(n−1+2δ). By

Lemma 14 and the assumption that F (ε, γ) = (1 + γ)ε4, τα,βF (2ε, γn + 2γn/2) = Õ(n−4δ). Note

that a2κ
2
A,2(α

2κ2A,1nd+
λ2
n
n +

κ2
A,1d

3

nε2 ) = Õ(n−1−2δ) = Õ(n−4δ), thus by Theorem 2, η = Õ(n−4δ). By

the choice of a1 and Theorem 4, the mechanism is individual rational for at least 1−O(n−3δ) fraction
of agents. By Theorem 5, the total expected budget is B = Õ(na2(2MA +4M2

A) + nτα,βF (2ε, γn +

2γn/2)) = Õ(n−4δ+1).

Proof of Corollary 3. In this case, the response moment polytope for the count-valued y ∈
{0, 1, 2, · · · } is M = [0,+∞). Thus, its interior is given by M◦ = (0,+∞). For the closed subset
of the interior, we define M̄ = [ε′,+∞), for some ε′ ∈ (0, 1), and thus ΠM̄(ỹi) = 1{ỹi=0}ε

′ +
1{ỹi 6=0}ỹi, εM̄ = ε′. To bound κA,0, κA,1, κA,2,MA, we compute that A′(a) = ea, (A′)−1(a) = log a,

[(A′)−1]′(a) = 1
a , A

′′(a) = ea. Note that M′ = [e−Cστθ
√
logn, eCστθ

√
logn], then we have

κA,0 = max
a∈M′∪M̄

|[(A′)−1]′(a)| = max
a∈M′∪M̄

|1
a
| = max{eCστθ

√
logn,

1

ε′
} = max{n

Cστθ√
log n ,

1

ε′
}

κA,1 = max{| log ε′|, | log τ2|}, κA,2 = MA = n
Cστθ√
log n .

For any δ ∈ (14 ,
1
3), set ε′ = n−δ, then when n ≥ e(

Cστθ
δ

)2 , we have κA,0 = O(nδ). Also

κA,2 = MA = O(nδ). We choose ε = n−3δ, τ2 = Θ(n
1
4 ), α = Θ(n−3δ), , β = Θ(n−c) for any c > 0,

a2 = n−6δ, and a1 = a2(MA + 3M2
A) + τα,βF (2ε, γn + 2γn/2). By Lemma 3, the sensitivity of the

private estimator is ∆n = Õ(n− 1
2 ). Then, recall that by Lemma 4, λn = Õ(κA,0(

√
κA,2 +

1
τ22

+

(MA + τ2)
4

√
1
n + εM̄)). We have

√
κ2 +

1
τ22

= O(n
δ
2 ), (MA + τ2)

4

√
1
n = O(n− 1

4
+δ) = O(n

δ
2 ),

εM̄ = O(1). Thus, λn = Õ(n
3δ
2 ) and ‖θ̄(D)−θ∗‖2 = Õ(n− 1−3δ

2 ). Nota that α2κ2A,1nd = Õ(n−6δ+1),
κ2
A,1d

3

ε2n
= Õ(n−1+2δ), λ2

n
n = Õ(n−1+3δ). For any δ ∈ (14 ,

1
3), it holds that −6δ+1 < −1+2δ < −1+3δ,
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thus by Theorem 3, we obtain E‖θ̂P (D̂)−θ∗‖22 = Õ(n−1+3δ). By Lemma 14 and the assumption that

F (ε, γ) = (1 + γ)ε4, τα,βF (2ε, γn + 2γn/2) = Õ(n−4δ). Note that a2κ
2
A,2(α

2κ2A,1nd+
λ2
n
n +

κ2
A,1d

3

nε2
) =

Õ(n−1−δ) = Õ(n−4δ), thus by Theorem 2, η = Õ(n−4δ). By the choice of a1 and Theorem 4, the
mechanism is individual rational for at least 1 − O(n−3δ) fraction of agents. By Theorem 5, the
total expected budget is B = Õ(na2(2MA + 4M2

A) + nτα,βF (2ε, γn + 2γn/2)) = Õ(n−4δ+1).

Proof of Lemma 5. We apply the same techniques as in the proof of Lemma 3. Let D and D′

be two arbitrary neighboring datasets that differ only on the last agent’s dataset. First,

‖X̃
T ỹ

n
‖2 ≤

1

n
‖X̃T ‖2‖ỹ‖2 =

1

n
sup

v∈Sn−1

‖X̃T v‖2‖ỹ‖2

=
1

n
sup

v∈Sn−1

‖
∑

i∈[n]
x̃ivi‖2‖ỹ‖2 ≤ 1

n
sup

v∈Sn−1

∑

i∈[n]
‖x̃i‖2|vi|‖ỹ‖2

≤ 1

n
sup

v∈Sn−1

∑

i∈[n]
d

1
4 ‖x̃i‖4|vi|‖ỹ‖2 ≤

d
1
4 τ1τ2√
n

sup
v∈Sn−1

∑

i∈[n]
|vi| ≤ d

1
4 τ1τ2.

Then we bound the sensitivity of ‖ X̃T ỹ
n ‖2,

‖X̃
T ỹ

n
− X̃ ′T ỹ′

n
‖2 =

1

n
‖x̃nỹn − x̃′

nỹ
′
n‖2 ≤

1

n
(‖x̃n‖2|ỹn|+ ‖x̃′

n‖2|ỹ′n|) ≤
2d

1
4 τ1τ2
n

.

For any nonzero vector w ∈ R
d,

‖X̃
T X̃

n
w‖2 = ‖X̃

T X̃

n
w − Σw +Σw‖2

≥ ‖Σw‖2 − ‖(X̃
T X̃

n
− Σ)w‖2 ≥ (κ2 − ‖X̃

T X̃

n
− Σ‖2)‖w‖2. (28)

By Lemma 17, when τ1 = Θ((n/ log n)1/4), with probability at least 1 − dn−C0 we have ‖ X̃T X̃
n −

Σ‖2 ≤ 2
√

Rd logn
n . Thus when n is sufficiently large such that 2

√
Rd logn

n ≤ κ2

2 , we have ‖ X̃T X̃
n −

Σ‖2 ≤ κ2

2 . Combining this inequality and (28) delivers that ‖ X̃T X̃
n w‖2 ≥ κ2

2 ‖w‖2, which implies

‖( X̃T X̃
n )−1‖2 ≤ 2

κ2
. Thus,

‖(X̃
T X̃

n
)−1 − (

X̃ ′T X̃ ′

n
)−1‖2 ≤ ‖(X̃

T X̃

n
)−1‖2‖(

X̃ ′T X̃ ′

n
)−1‖2‖

X̃T X̃

n
− X̃ ′T X̃ ′

n
‖2

≤ 4

κ22
(‖X̃

T X̃

n
− Σ‖2 + ‖Σ − X̃ ′T X̃ ′

n
‖2) ≤

8

κ22

√
Rd log n

n
.

By applying the inequality ‖AB−A′B′‖2 = ‖AB −AB′ +AB′ −A′B′‖2 ≤ ‖A‖2‖B −B′‖2 + ‖A−
A′‖2‖B′‖2 and setting τ2 = Θ((n/ log n)1/8) we have

‖θ̂(D)− θ̂(D′)‖2 = ‖(X̃
T X̃

n
)−1 X̃

T ỹ

n
− (

X̃ ′T X̃ ′

n
)−1 X̃

′T ỹ′

n
‖2

≤ 8d
1
4 τ1τ2
κ22

√
Rd log n

n
+

4d
1
4 τ1τ2
κ2n

= O(d
3
4 (
log n

n
)
1
8 ). (29)
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Proof of Lemma 6. Note that by the proof of Lemma 5, when n is sufficiently large such that

2
√

Rd logn
n ≤ κ2

2 , with probability at least 1− dn−C0 , we have ‖( X̃T X̃
n )−1‖2 ≤ 2

κ2
. Thus,

‖θ̂(D)− θ∗‖2 = ‖θ∗ −
(X̃T X̃

n

)−1 X̃T ỹ

n
‖2

≤ ‖
(X̃T X̃

n

)−1‖2‖
(X̃T X̃

n

)
θ∗ − X̃T ỹ

n
‖2

≤ 2

κ2
‖X̃

T

n
{X̃θ∗ − ỹ}‖2

≤ 2
√
d

κ2
max
j∈[d]

| 1
n

n∑

i=1

x̃ij(〈x̃i, θ
∗〉 − ỹi)|. (30)

Next we bound | 1n
∑n

i=1 x̃ij(〈x̃i, θ
∗〉 − ỹi)|.

| 1
n

n∑

i=1

x̃ij(〈x̃i, θ
∗〉 − ỹi)|

≤ | 1
n

n∑

i=1

x̃ij〈x̃i, θ
∗〉 − E[x̃ij〈x̃i, θ

∗〉]|+ |E[x̃ij〈x̃i, θ
∗〉]− E[x̃ij ỹi]|+ | 1

n

n∑

i=1

x̃ij ỹi − E[x̃ij ỹi]|

≡ I + II + III.

Under the assumption that E(νTxi)
4 ≤ R1 for any ν ∈ Sd−1, if ν = xi

‖xi‖2 , then E‖xi‖42 ≤ R1; if

ν = ej for any j ∈ [d] (ej is the unit vector whose j-th element is 1), then E|xij|4 ≤ R1 and thus

E‖xi‖44 =
∑d

j=1 E|xij |4 ≤ dR1. Since

| 1
n
(x̃ij〈x̃i, θ

∗〉 − E[x̃ij〈x̃i, θ
∗〉])| ≤ 2

n
|x̃ij|‖x̃i‖2‖θ∗‖2 ≤ 2d

1
4 τ21 τθ
n

,

and

var(
1

n
(x̃ij〈x̃i, θ

∗〉 − E[x̃ij〈x̃i, θ
∗〉])) ≤ 1

n2
E|x̃ij |2‖x̃i‖22‖θ∗‖22 ≤

τ2θ
n2

E‖xi‖42 ≤
τ2θR1

n2
,

by Bernstein’s inequality (Lemma 10), we obtain for any t > 0,

P


I >

4d
1
4 τθτ

2
1 t

3n
+

√
2R1τ2θ t

n


 ≤ 2 exp(−t). (31)

32



Next we bound II.

II = |Ex̃ij(〈x̃i, θ
∗〉 − ỹi)|

≤ |Ex̃ij〈x̃i − xi, θ
∗〉|+ |Ex̃ij(〈xi, θ

∗〉 − yi)|+ |Ex̃ij(yi − ỹi)|
≤ E|x̃ij |‖x̃i − xi‖2‖θ∗‖2 + |Exi [x̃ijEyi [〈xi, θ

∗〉 − yi]]|+ E|x̃ij(yi − ỹi)|
≤ τθE|x̃ij |‖x̃i − xi‖21{‖xi‖4>τ1} + E|x̃ij(yi − ỹi)1{|yi|>τ2}|

≤ τθ

√
E|x̃ij|2‖x̃i − xi‖22

√
P(‖xi‖4 > τ1) +

√
E|x̃ij|2|yi − ỹi|2

√
P(|yi| > τ2)

≤ τθ

√
E‖x̃i‖22‖x̃i − xi‖22

√
E‖xi‖44

τ41
+ (E|x̃ij |4)

1
4 (E|yi − ỹi|4)

1
4

√
E|yi|4
τ42

≤ τθ

√
E‖xi‖42

√
E‖xi‖44

τ41
+ (E|xij|4)

1
4 (E|yi|4)

3
4
1

τ22

≤
√
dτθR1

1

τ21
+R

1
4

1 R
3
4

2

1

τ22
. (32)

Since | 1n(x̃ij ỹi − E[x̃ij ỹi])| ≤ 2
nτ1τ2, var(

1
n(x̃ij ỹi − E[x̃ij ỹi])) ≤

√
R1R2

n2 , by Bernstein’s inequality
(Lemma 10), we obtain for any t > 0,

P


III >

4τ1τ2t

3n
+

√
2
√
R1R2t

n


 ≤ 2 exp(−t). (33)

Let τ1 = Θ((n/ log n)1/4), τ2 = Θ((n/ log n))1/8 and t = δ log n for any δ > 0. Combining (31), (32),
and (33) delivers that for some constant C = O(1) and for any δ > 1,

P

(
I + II + III > Cd

1
2 (
δ log n

n
)
1
4

)
≤ 1− 4n−δ.

By the union bound for all j ∈ [d] and (30), it holds that

‖θ∗ −
(X̃T X̃

n

)−1 X̃T ỹ

n
‖2 ≤ Cd(

δ log n

n
)
1
4 ,

with probability at least 1− 4dn−δ − dn−C0 .

Proof of Theorem 6. The proof is the same as the proof of Theorem 1. We omit it here for
simplicity.

Proof of Theorem 7. Similar to the proof of Theorem 2, it is not difficult to compute the max-
imum expected increased payment by misreporting to the analyst

E[πi(D̂i, σ(D
b, cb))|Di, ci]− E[πi(Di, σ(D

b, cb))|Di, ci]

≤ a2‖x̃i‖22‖E[θ̄P (D̂b)− Eθ∼p(θ|Di)[θ]|Di, ci]‖22
≤ a2

√
dτ21 (E‖θ̂(D̂b)− θ̂(Db)‖2 + Eθ∼p(θ|Di),Xb [Eyb [‖θ̂(Xb, yb)− θ‖2|Xb, θ]] + E‖vb‖2)2

≤ a2

√
dn

log n
(αn∆n/2 + Cd(

log n

n
)
1
4 +

d∆n/2

ε
)2.
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The decrease in privacy cost is bounded above by τα,βF (2ε, γn + 2γn/2). Thus agent i’s total
incentive to deviate is bounded above by

η = O(a2

√
dn

log n
(αn∆n/2 + Cd(

log n

n
)
1
4 +

d∆n/2

ε
)2 + τα,βF (2ε, γn + 2γn/2)).

Proof of Theorem 8. Similar to the proof of Theorem 3, we have

E‖θ̄P (D̂)− θ∗‖22 ≤ E‖θ̂P (D̂)− θ∗‖22
≤ 2E‖θ̂P (D̂)− θ̂(D)‖22 + 2E‖θ̂(D)− θ∗‖22
≤ 2((αn∆n)

2 + d(d+ 1)(
∆n

ε
)2 + Cd2(

log n

n
)
1
2 )

= Õ(α2d
3
2n

7
4 + d

7
2n− 1

4 ε−2 + d2n− 1
2 ).

Proof of Theorem 9. Both of two inputs of Ba1,a2(·, ·), i.e., 〈x̃i, θ̄
P (D̂b)〉 and 〈x̃i,Eθ∼p(θ|D̂i)

[θ]〉,
are bounded above by d

1
4 τ1τθ. Thus agent i’s expected utility is non-negative as long as

a1 ≥ a2(d
1
4 τ1τθ + 2(d

1
4 τ1τθ)(d

1
4 τ1τθ) + (d

1
4 τ1τθ)

2) + τα,βF (2ε, γn + 2γn/2)

= a2(d
1
4 τ1τθ + 3d

1
2 τ21 τ

2
θ ) + τα,βF (2ε, γn + 2γn/2).

Proof of Theorem 10.

B ≤ n(a1 + a2(d
1
4 τ1τθ + (d

1
4 τ1τθ)

2)). (34)

Substitue a1 = a2(d
1
4 τ1τθ+3d

1
2 τ21 τ

2
θ )+τα,βF (2ε, γn+2γn/2) into (34) and let τ1 = Θ((n/ log n)1/4),

then

B = Õ(n(a2
√
dn+ τα,βF (2ε, γn + 2γn/2))).

Proof of Corollary 4. For any δ ∈ (19 ,
1
8) and c > 0, we set τ1 = Θ((n/ log n)1/4), τ2 = Θ((n/ log n)1/8),

ε = n−δ, α = Θ(n−1+δ), β = Θ(n−c), a2 = n− 1
2
−9δ , a1 = a2(d

1
4 τ1τθ + 3d

1
2 τ21 τ

2
θ ) + τα,βF (2ε, γn +

2γn/2). Then, by Theorem 8, the private estimator is Õ(n− 1
4
+2δ)-accurate. By Lemma 14 and

the assumption that F (ε, γ) = (1 + γ)ε9, we have τα,βF (2ε, γn + 2γn/2) = Õ(n−9δ). Note that

a2(α
2d2n

9
4 + d4n

1
4 ε−2) = Õ(n− 1

4
−7δ). For any δ ∈ (19 ,

1
8), it holds that −1

4 − 7δ < −9δ. Thus,

by Theorem 7, we have η = Õ(n−9δ). By the choice of of a1 and Theorem 9, the mechanism is
individual rational for least 1 − O(n−1+δ) fraction of agents. Finally, by Theorem 10, the total
expect budget is B = Õ(n−9δ+1).
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