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Abstract

In this paper, we revisit the problem of Differ-

entially Private Stochastic Convex Optimization

(DP-SCO) in Euclidean and general ℓdp spaces.

Specifically, we focus on three settings that are

still far from well understood: (1) DP-SCO over

a constrained and bounded (convex) set in Eu-

clidean space; (2) unconstrained DP-SCO in ℓdp
space; (3) DP-SCO with heavy-tailed data over

a constrained and bounded set in ℓdp space. For

problem (1), for both convex and strongly con-

vex loss functions, we propose methods whose

outputs could achieve (expected) excess popula-

tion risks that are only dependent on the Gaus-

sian width of the constraint set, rather than the

dimension of the space. Moreover, we also show

the bound for strongly convex functions is opti-

mal up to a logarithmic factor. For problems (2)

and (3), we propose several novel algorithms and

provide the first theoretical results for both cases

when 1 < p < 2 and 2 ≤ p ≤ ∞.

1 INTRODUCTION

Learning from data that contains sensitive information has

become a critical consideration. It enforces machine learn-

ing algorithms to not only learn effectively from the train-

ing data but also provide a certain level of guarantee on

privacy preservation. To address the privacy concern, as a

rigorous notion for statistical data privacy, differential pri-

vacy (DP) [Dwork et al., 2006] has received much attention

in the past few years and has become a de facto technique

for private data analysis.

As the two most fundamental models in machine learn-

ing, Stochastic Convex Optimization (SCO) [Vapnik,

1999] with its empirical form, Empirical Risk Minimiza-

tion (ERM), can find numerous applications, such as

biomedicine and healthcare. However, as these applications

always involve sensitive data, it is essential to design DP

algorithms for SCO and ERM, which corresponds to the

problem of DP-SCO and DP-ERM, respectively. DP-SCO

and DP-ERM have been extensively studied for over a

decade, starting from Chaudhuri and Monteleoni [2008].

For example, Bassily et al. [2014] presents the optimal

rates of general DP-ERM for both convex and strongly loss

functions. Bassily et al. [2019], Feldman et al. [2020] later

study the optimal rates of general DP-SCO, which is later

extended by Su et al. [2022], Asi et al. [2021b] to loss func-

tions that satisfy the growth condition. Bassily et al. [2021],

Asi et al. [2021a] provide the first study on DP-SCO over

non-Euclidean space, i.e., the ℓp space with 1 ≤ p ≤ ∞.

While there are a vast number of studies on DP-SCO/DP-

ERM, there are still several open problems left, especially

the constrained case in Euclidean space where the convex

constraint set has some specific geometric structures, and

the case where the space is non-Euclidean. In detail, while

it has been shown that the optimal rate of DP-ERM over

ℓ2-norm ball depends on O(
√
d) and O(d) for convex and

strongly convex loss, respectively [Bassily et al., 2014], Tal-

war et al. [2014] show that for general constraint set C, the

bound on d could be improved to O(GC) and O(G2
C) for

these two classes of functions, where GC is the Gaussian

width of set C (see Definition 12 for details), which could

be far less than the dimension d. However, compared to DP-

ERM with Gaussian width, DP-SCO with Gaussian width

is far from well understood. The best-known result even

cannot recover the optimal rate of the ℓ2-norm ball case

[Amid et al., 2022]. For the non-Euclidean case, Bassily

et al. [2021] only study the constrained case where the con-

strained set has a bounded diameter. Theoretical behaviors

for the unconstrained case are still unknown. Moreover, In

the Euclidean case, recently, there has been a line of work

focusing on DP-SCO where the distribution of loss gradi-

ents is heavy-tailed rather than uniformly bounded [Wang

et al., 2020, Hu et al., 2022, Kamath et al., 2022]. How-

ever, non-Euclidean DP-SCO with heavy-tailed data has
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not been studied so far.

In this paper, we study the theoretical behaviors of three

problems: (1) DP-SCO (with Lipschitz loss) over a convex

constraint set C in Euclidean space; (2) unconstrained DP-

SCO in ℓdp space; (3) DP-SCO with heavy-tailed data over

a convex constraint set C in ℓdp space. Specifically, our con-

tributions can be summarized as follows.

1. For problem (1), we consider both convex and strongly

convex (smooth) loss functions. We show that for con-

vex functions, there is an (ǫ, δ)-DP algorithm whose out-

put could achieve an (expected) excess population risk of

O(
GC

√
log(1/δ)

ǫn + 1√
n
), where n is the sample size. The

rate could be improved to O(
G2

C log(1/δ)
n2ǫ2 + 1

n ) for strongly

convex functions. Moreover, we also show that the bound

for strongly convex functions is optimal up to a factor of

Poly(log d) if C is contained in the unit ℓ2-norm ball. To

the best of our knowledge, this is the first lower bound of

DP-SCO that depends on Gaussian width.

2. We then study problem (2). Specifically, when 1 <
p < 2, we propose a novel method named Noisy Reg-

ularized Mirror Descent, which adds regularization terms

and Generalized Gaussian noise to Mirror Descent. By

analyzing its stability, we show the output could achieve

an excess population risk of Õ(κ
4
5 (

√
d log(1/δ)

nǫ )
2
5 ), where

κ = min{ 1
p−1 , 2 log d}. We also discuss the case when

2 ≤ p ≤ ∞.

3. Finally, we consider problem (3), assuming that the

second-order moment of ‖ · ‖∗-norm of the loss gradient is

bounded. When 1 < p < 2, through a noisy, shuffled, and

truncated version of Mirror Descent, we show a bound of

Õ(
4
√

κ2d log(1/δ))√
nǫ

) in the high privacy regime ǫ = Õ(n−
1
2 ),

and a bound of O(κ
2
3 (d log(1/δ))

1
6

(nǫ)
1
3

) for general 0 < ǫ < 1.

We also study the case when 2 ≤ p ≤ ∞.

2 RELATED WORK

As there is a long list of work on DP-SCO/DP-ERM, here

we just mention the work close to the problems we study in

this paper. See Table 1 and 2 for detailed comparisons.

DP-SCO/DP-ERM with Gaussian width. For DP-ERM

over ℓ2-norm ball, although Bassily et al. [2014] show the

optimal rate ofO(

√
d log(1/δ)

nǫ ) andO(d log(1/δ)
n2ǫ2 ) for convex

and strongly convex loss, respectively, Talwar et al. [2014]

show that for general constraint set C it is possible to im-

prove the factor d to the Gaussian width of C. After that,

Kasiviswanathan and Jin [2016] further improve the rate

for generalized linear functions, Wang et al. [2017] pro-

vide an accelerated algorithm, and Wang and Xu [2019]

extend to non-convex loss functions. However, all of them

only study the problem of DP-ERM, and their methods can-

not be generalized to DP-SCO directly. For DP-SCO, the

only known result is given by Amid et al. [2022], which

studies general convex loss under the setting where there is

some public data. As we can see from Table 1, our result

significantly improves theirs. Moreover, we show a nearly

optimal rate for strongly convex functions, which is the

first lower bound of DP-SCO/DP-ERM that depends on the

Gaussian width.

DP-SCO in ℓdp space. Compared to the Euclidean space

case, there is little work on DP-SCO in non-Euclidean (ℓdp)

space. Bassily et al. [2021] provide the first study of the

problem for 1 ≤ p ≤ ∞ and propose several results for

p = 1, 1 < p < 2 and 2 ≤ p ≤ ∞. Later Han et al.

[2022] further extend to the online setting. However, all

the previous algorithms and utility analyses highly rely on

the assumption that the diameter of the constrained set is

bounded and known, i.e., their results will not hold in the

unconstrained case, which is more difficult than the con-

strained case. In this paper, we fill the gap by providing

the first results for unconstrained DP-SCO in ℓdp space by

proposing several new methods.

3 PRELIMINARIES

In this section, we recall some definitions and lemmas that

would be used throughout the paper. Notation summary can

be found in the appendix 3.

Definition 1 (Differential Privacy [Dwork et al., 2006]).

Given a data universe X , we say that two datasets D,D′ ⊆
X are neighbors if they differ by only one data sample,

which is denoted as D ∼ D′. A randomized algorithm

A is (ǫ, δ)-differentially private (DP) if for all neighboring

datasets D,D′ and for all events S in the output space of

A, we have Pr(A(D) ∈ S) ≤ eǫPr(A(D′) ∈ S) + δ.

Lemma 1 (Advanced Composition Theorem Dwork et al.

[2014]). Given target privacy parameters 0 < ǫ < 1 and

0 < δ < 1, to ensure (ǫ, T δ′ + δ)-DP over T mechanisms,

it suffices that each mechanism is (ǫ′, δ′)-DP, where ǫ′ =
ǫ

2
√

2T ln(2/δ)
and δ′ = δ

T .

Definition 2 (DP-SCO in General Normed Space [Bassily

et al., 2021]). Given a dataset D = {x1, · · · , xn} from a

data universe X where {xi = (zi, yi)}i with a feature vec-

tor zi and a label/response yi are i.i.d. samples from some

unknown distribution D, a normed space (E, ‖·‖) of dimen-

sion d, a convex constraint set C ⊆ E, and a convex loss

function ℓ : C × X 7→ R. Differentially Private Stochastic

Convex Optimization (DP-SCO) is to find θpriv to minimize

the population risk, i.e., L(θ) = Ex∼D[ℓ(θ, x)] with the

guarantee of being differentially private.1 The utility of the

1Note that in this paper we consider the proper learning case,

that is θpriv should be in C.



Methods Problem Assumption Convex Bound Strongly Convex Bound

[Talwar et al., 2014] ERM Lipschitz Õ(GC

nǫ ) Õ(
G2

C

n2ǫ2 )

[Kasiviswanathan and Jin, 2016] ERM Lipschitz and GLM Õ(
√
GC√
nǫ

) —

Amid et al. [2022] SCO Lipschitz Õ(
√
GC√

nn
1/4
public

+ 1√
n
) —

This paper SCO Lipschitz Õ(GC

nǫ + 1√
n
) Õ(

G2
C

n2ǫ2 + 1
n ) (*)

Table 1: Comparisons on the results for (ǫ, δ) DP-SCO/DP-ERM in Euclidean space with bounded constraint set C (depen-

dence on other parameters are omitted). Here GC is the Gaussian width of C, n is the sample size, and npublic is the size

of public data. Õ hides other logarithmic factors. (*): We also show such a bound is nearly optimal when C is contained in

unit ℓ2 ball.

Methods Constrained Assumption Bound for ℓdp (1 < p < 2) Bound for ℓdp (2 ≤ p ≤ ∞)

[Bassily et al., 2021] Yes Lipschitz Õ(
√

κ
n + κ

√
d

nǫ ) Õ(d
1
2
− 1

p√
n

+ d
1− 1

p

nǫ )

This paper No Lipschitz Õ(κ
4
5 · (

√
d

nǫ )
2
5 ) Õ(d1−

2
p ( 1√

n
+

√
d

ǫn ))

This paper Yes Heavy-tailed Õ(
4√
κ2d)√
nǫ

)/Õ(κ
2
3 (d)

1
6

(nǫ)
1
3
) (*) Õ(d

3
2
− 1

p√
n

+ d
3
2
− 1

2p√
nǫ

)

Table 2: Comparisons on the results for (ǫ, δ) DP-SCO in ℓdp space with 1 < p ≤ ∞ (dependence on other parameters are

omitted). Here d is the dimension, n is the sample size, and κ = min{ 1
p−1 , 2 log d}. Õ hides other logarithmic factors. (*):

The first bound is for the case of ǫ = Õ(n−
1
2 ) and the second one is for general 0 < ǫ < 1.

algorithm is measured by the (expected) excess population

risk, that is L(θpriv)−L(θ∗),where θ∗ = argminθ∈C L(θ).
Besides the population risk, we can also measure the empir-

ical risk of dataset D: L̂(θ,D) = 1
n

∑n
i=1 ℓ(θ, xi).

In Definition 2, we consider DP-SCO in general normed

space with a convex set C ⊆ E. In this paper, we mainly

focus on two cases: 1) Constraint Euclidean case where

E = R
d, ‖ · ‖ is the ℓ2-norm, and C is a bounded set whose

diameter is denoted as ‖C‖2 = maxθ,θ′∈C ‖θ − θ′‖2; 2) ℓdq
case where E = R

d and ‖ · ‖ is the ℓp-norm ‖ · ‖p with

1 < p ≤ ∞ (where ||x||p = (
∑d

j=1 |xj |p)
1
p ), and C could

be either bounded or unbounded. Since ℓdp spaces are regu-

lar. To better illustrate our idea, we will introduce regular

spaces.

Let (E, || · ||) be a normed space of dimension d and let

〈·, ·〉 be an arbitrary inner product over E (not necessarily

inducing the norm ‖·‖). The dual norm over E is defined as

||y||∗ = max
||x‖≤1

〈y, x〉. So (E, || · ||∗) is also a d-dimensional

normed space. For example, let ℓdp = (Rd, || · ||p) with 1 ≤
p ≤ ∞, the dual norm of ℓdp is ℓdq , where 1

p + 1
q = 1.

We call a normed space regular if its dual norm is suffi-

ciently smooth. In detail, we have the following definition.

Definition 3 (κ-regular Space Juditsky and Nemirovski

[2008]). Given κ ≥ 1, we say a normed space (E, || · ||)
κ-regular if there exists a κ+, s.t., 1 ≤ κ+ ≤ κ and there

exists a norm || · ||+ such that (E, || · ||+) is κ+-smooth, i.e.,

for all x, y ∈ E,

||x+ y||2+ ≤ ||x||2+ + 〈∇(|| · ||2+)(x), y〉+ κ+||y||2+.
And || · || and || · ||+ are equivalent with the following con-

straint: ||x||2 ≤ ||x||2+ ≤ κ
κ+

||x||2 (∀x ∈ E).

For ℓdp space with 2 ≤ p ≤ ∞, it is κ-regular with κ =
min{p − 1, 2e log d}. In this case we have ‖x‖+ = ‖x‖r
with r = min{p, 2 log d + 1} and κ+ = (r − 1) Düm-

bgen et al. [2010]. So in the ℓp spaces with 1 < p < 2
we focus on, their dual spaces are κ-regular with κ =
min{ 1

p−1 , 2 ln d}.

In the following, we introduce the mechanisms that will be

used in the latter sections.

Lemma 2 (Gaussian Mechanism). Given a dataset D ∈
Xn and a function q : Xn → R

d, the Gaussian mechanism

is defined as q(D)+ξ where ξ ∼ N (0,
2∆2

2(q) log(1.25/δ)
ǫ2 Id),

where ∆2(q) is the ℓ2-sensitivity of the function q, i.e.,

∆2(q) = supD∼D′ ‖q(D)−q(D′)‖2.Gaussian mechanism

preserves (ǫ, δ)-DP.

Note that the Gaussian mechanism is tailored for the case

where the query has bounded ℓ2-norm sensitivity. Bassily



et al. [2021] propose a Generalized Gaussian mechanism

that leverages the regularity of the dual space (E, ‖ · ‖∗).
Definition 4 (Generalized Gaussian distribution Bassily

et al. [2021]). Let (E, || · ||∗) be a d-dimensional κ-

regular space with smooth norm || · ||+. Define the gen-

eralized Gaussian distribution GG||·||+(µ, σ
2), as one with

density g(z) = C(σ, d) · e−
||z−µ||2+

2σ2 , where C(σ, d) =

[Area({||x||+ = 1}) (2σ
2)d/2

2 Γ(d2 )]
−1, and the Area is the

d− 1 dimensional surface measure on R
d.

Lemma 3 (Generalized Gaussian mechanism Bassily et al.

[2021]). Given a dataset D ∈ Xn, and a query q : Xn →
E with bounded || · ||∗-sensitivity: s = supD∼D′ ||q(D) −
q(D

′

)||∗, the Generalized Gaussian mechanism is defined

as q(D) + ξ where ξ ∼ GG||·||+(0,
2κ log(1/δ)s2

ǫ2 ). The Gen-

eralized Gaussian mechanism preserves (ǫ, δ)-DP.

Lemma 4 (Prop 4.2 in [Bassily et al., 2021]).

For any m ≥ 1, if z ∼ GG||·||+(0, σ
2), then

E[‖z‖m+ ] ≤ (2σ2)
m
2 Γ(m+d

2 )/Γ(d2 ). Specifically,

E[‖z‖2∗] ≤ E[‖z‖2+] ≤ dσ2, where Γ(·) is the Gamma

function.

In the following, we recall some terminologies on the prop-

erties of the loss function and the constraint set C.

Definition 5. (L-Lipschitz) Given the loss function ℓ(·, ·) :
C ×X → R. It is L-Lipschitz w.r.t. the norm || · || if for all

x ∈ X and w1, w2 ∈ C we have

|ℓ(w1, x)− ℓ(w2, x)| ≤ L · ||w1 − w2||.

Definition 6. (β-Smooth) Given the loss function ℓ(·, ·) :
C × X → R. It is β-smooth w.r.t. the norm || · || if its

gradient is β-Lipschitz w.r.t. || · ||, namely, for all x ∈ X
and w1, w2 ∈ C we have

||∇ℓ(w1, x)−∇ℓ(w2, x)||∗ ≤ β · ||w1 − w2||.

Definition 7. (Strongly convex) Given the loss function

ℓ(·, ·) : C ×X → R, it is α-strongly convex w.r.t. the norm

|| · || if for all x ∈ X and w1, w2 ∈ C,

〈∇ℓ(w1, x)−∇ℓ(w2, x), w1 − w2〉 ≥ α · ||w1 − w2||2.

Definition 8. (Bregman divergence) For a convex function

Φ : E → R, the Bregman divergence is defined as

DΦ(y, x) = Φ(y)− Φ(x)− 〈∇Φ(x), y − x〉.

Notice that the Bregman divergence is always positive, and

it is convex in the first argument.

Definition 9. (Relative strongly convex [Lu et al., 2018])

A function f : E → R is α-strongly convex relative to

Φ : E → R if for all x, y ∈ E,

f(x) + 〈∇f(x), y − x〉+ αDΦ(y, x) ≤ f(y).

Definition 10. (Relative smooth [Lu et al., 2018]) A func-

tion f : E → R is β-smooth relative to Φ : E → R if

∀x, y ∈ E, f(x) + 〈∇f(x), y − x〉+ βDΦ(y, x) ≥ f(y).

Next, we introduce some basic concepts on Minkowski

norm of a symmetric, closed, and convex set C.

Definition 11 (Minkowski norm). For a centrally symmet-

ric convex set C ⊆ R
d, the Minkowski norm (denoted by

|| · ||C) is defined as follows. For any vector v ∈ R
d,

|| · ||C = min{r ∈ R
+ : v ∈ rC}.

The dual norm of || · ||C is denoted as || · ||C∗ , and for

any vector v ∈ R
d, ||v||C∗ = max

w∈C
|〈w, v〉|. Note that by

Holder’s inequality, for any pair of dual norms || · || and

|| · ||∗, and any x, y ∈ R
d, |〈x, y〉| ≤ ||x|| · ||y||∗. So we

have |〈x, y〉| ≤ ||x||C · ||y||C∗ .

In the constrained Euclidean case, our work relies on appro-

priately quantifying the size of a convex body, which leads

to the following definition of Gaussian width.

Definition 12. (Gaussian width) Let ξ ∼ N (0, Id) be a

Gaussian random vector in R
d, for a set C, the Gaussian

width is defined as GC = Eξ[sup
w∈C

〈ξ, w〉].

Compared to dimension d, the Gaussian width of a convex

set C ⊂ R
d could be much smaller. For example, when

C is the unit ℓ1-norm ball, GC = O(
√
log d); and when

C is the set of of all unit s-sparse vectors on R
d, GC =

O(
√

s log d
s ). We refer readers to Talwar et al. [2014] for

details.

4 DP-SCO IN EUCLIDEAN SPACE

In this section, we focus on the Euclidean case with a

closed, bounded, and convex constraint set C, and the loss

function could be either convex or strongly convex.

4.1 GENERAL CONVEX CASE

Before showing our idea, we need to discuss the weakness

of previous approaches. Note that since our goal is getting

an upper bound that depends on the Gaussian width of the

constrained set C, we will not discuss the approaches that

achieve upper bounds that are polynomial in d.

In general, all methods can be categorized into two classes:

gradient perturbation and objective function perturbation.

In gradient perturbation methods [Talwar et al., 2014], the

key idea is modifying the Mirror Descent by adding noise

to gradients. While this approach could achieve satisfactory

bounds for the empirical risk [Wang et al., 2017, Wang and

Xu, 2019], however, when considering the population risk



we need to use batched gradients at each iteration, which

will induce a sub-optimal rate [Amid et al., 2022]. Instead

of perturbing the gradient, Talwar et al. [2014] show that

the objective function perturbation method in Chaudhuri

et al. [2011] could also achieve an upper bound that only

depends on the Gaussian width, instead of d. However, this

approach has two weaknesses: First, Talwar et al. [2014]

only shows the bound for the empirical risk, and whether

its excess population risk is satisfactory or not is unknown;

Secondly, it is well-known that the objective perturbation

approach needs to exactly get the minimizer of the per-

turbed objective function, which is inefficient in practice.

Motivated by the objective perturbation method in Talwar

et al. [2014], our algorithm is an approximate version pro-

posed in Bassily et al. [2019]. See detailed procedures in

Algorithm 1. In detail, first, similar to the standard objec-

tive perturbation, we add a random and linear term
〈G,θ〉

n
with Gaussian noise G and an ℓ2 regularization to the

original empirical risk function to obtain a new objective

function J (θ,D). Then we obtain an approximate mini-

mizer θ2 of the perturbed empirical risk J (θ,D) via any

efficient optimization method (such as proximal SVRG

Xiao and Zhang [2014] or projected SGD) to ensure that

J (θ2, D) − min
θ∈C

J (θ,D) is at most α. Formally, we can

define such an optimization method as an optimizer func-

tion O : F × [0, 1] → C, where F is the class of objec-

tives and the other argument is the optimization accuracy.

Finally, we perturb θ2 with Gaussian noise to fuzz the dif-

ference between θ2 and the true minimizer, we then project

the perturbed θ2 onto set C.

Since the algorithm itself is not new, here we highlight

our contributions: First, with some specific parameters, we

show such an algorithm could achieve an excess popula-

tion risk of O(GC

nǫ + 1√
n
), while Bassily et al. [2019] only

show an upper bound of O(
√
d

nǫ + 1√
n
); Second, we extend

the algorithm to the strongly convex case (see Section 4.2

for details). In the following, we will show the theoretical

guarantees of our algorithm. First, we need the following

assumption on the loss function ℓ.

Assumption 1. The loss function ℓ is twice differentiable,

L-Lipschitz and β-smooth w.r.t. the Euclidean norm || · ||2
over C.

Theorem 1. Suppose that Assumption 1 holds and that the

smoothness parameter β satisfies β ≤ ǫnλ
r . Then for any

0 < ǫ, δ < 1, AApp-ObjP (Algorithm 1) is (ǫ, δ)-DP.

It is notable that although we need to assume β is not large

enough, as we will see in Theorem 2, the assumption will

always hold when n is sufficiently large.

Theorem 2. Suppose that Assumption 1 holds. When

n is large enough such that n ≥ r2β2||C||22
ǫ2L2 and

Algorithm 1 AApp-ObjP: Approximate Objective perturba-

tion

1: Input: Dateset D, loss function ℓ, regularization pa-

rameter λ, optimizer O : F × [0, 1] → C, where F is

the class of objectives, and the other argument is the

optimization accuracy. α ∈ [0, 1] : optimization accu-

racy.

2: Sample G ∼ N (0, σ2
1Id) where σ2

1 = 128L2 log(2.5/δ)
ǫ2 .

Set λ ≥ rβ
ǫn , where r = min{d, 2 · rank(∇2ℓ(θ, x))}

with rank(∇2ℓ(θ, x)) being the maximal rank of the

Hessian of ℓ for all θ ∈ C and x ∼ P .

3: Let J (θ,D) = L̂(θ,D) + 〈G,θ〉
n + λ||θ||22.

4: return θ̂ = ProjC [O(J , α) + H] where H ∼
N (0, σ2

2Id) with σ2
2 = 64α log(2.5/δ)

λǫ2

n ≥ O

(√
d log(1/δ)

ǫ

)

, take λ = L√
n||C||2 and α ≤

min

{

L||C||2
n

3
2
,

ǫ2L||C||32
G2

C log(1/δ)n
5
2

}

in Algorithm 1, we have

E[L(θ̂)]− L(θ∗) ≤ O

(

L ·GC
√

log(1/δ)

ǫn
+
L||C||2√

n

)

,

where the expectation is taken over the internal randomness

of the algorithm.

Remark 1. While we consider the same algorithm as in

Bassily et al. [2019], there are several crucial differences.

First, to achieve the upper bound of O(
√
d

nǫ + 1√
n
), Bassily

et al. [2019] only need to set α ≤ O( 1
n2 max{ 1√

n
, d
nǫ})

while we need to be more aggressive by choosing α ≤
O(ǫ2n−

5
2 ). This is reasonable as we aim to get an im-

proved upper bound. Thus we have to get a more accurate

estimation. Secondly, besides enforcing the perturbed ap-

proximation to lie in the set C as it does in Bassily et al.

[2019], the projection operator in Step 4 of Algorithm 1

plays a more critical role in achieving a bound that de-

pends on GC in our analysis, i.e., the bound in Bassily

et al. [2019] will still hold even there is no projection step,

while this is not true for our case. Specifically, although

the noise H is a d-dimensional Gaussian noise, we can

show that due to the projection operator, the error intro-

duced by the noise depends only on GC rather than
√
d,

i.e., ||θ̂ − θ2||22 ≤ O(
√

α log(1/δ)
λ · GC

ǫ ). A similar idea

has also been used in privately answering multiple linear

queries [Nikolov et al., 2016].

4.2 STRONGLY CONVEX CASE

We aim to extend our above idea to the strongly convex

case. First, we impose the following assumption.

Assumption 2. We assume the loss is twice differentiable,

L-Lipschitz and β-smooth w.r.t. || · ||2, and it is ∆-strongly

convex w.r.t. || · ||C over the set C.



Note that we can relax the assumption to strongly convex

w.r.t ‖·‖2 as ‖v‖2 ≥ Cmin ·‖v‖C , where Cmin is in Theorem

5. See the proof of Theorem 5 for details.

Our method is shown in Algorithm 2. Note that, compared

with Algorithm 1, the main difference is the regularization

parameter λ. This is because the loss function is already ∆-

strongly convex, thus smaller λ will be sufficient to make

J to be rβ
ǫn -strongly convex. Moreover, when n is large

enough, we can see λ = 0, indicating that we can get an

improved excess population risk compared to the convex

case.

Algorithm 2 AApp-ObjP-SC: Approximate Objective pertur-

bation for strongly convex function

1: Input: Dateset D, loss function ℓ, regularization pa-

rameter λ, optimizer O : F × [0, 1] → C, where F
is the class of objectives and the other argument is the

optimization accuracy. α ∈ [0, 1] : optimization accu-

racy.

2: Sample G ∼ N (0, σ2
1Id) where σ2

1 = 128L2 log(2.5/δ)
ǫ2 .

Set λ = max
{

rβ
ǫn −∆, 0

}

, where r = min{d, 2 ·
rank(∇2ℓ(θ, x))} with rank(∇2ℓ(θ, x)) being the max-

imal rank of the Hessian of ℓ for all θ ∈ C and x ∼ P .

3: Let J (θ,D) = L̂(θ,D) + 〈G,θ〉
n + λ||θ||22.

4: return θ̂ = ProjC [O(J , α) + H] where H ∼
N (0, σ2

2Id) with σ2
2 =

64α log(2.5/δ)·||C||22
∆ǫ2

Theorem 3. If the loss function satisfies Assumption 2.

Then for any 0 < ǫ, δ < 1, AApp-ObjP-SC (Algorithm 2) is

(ǫ, δ)-DP.

Theorem 4. Suppose that Assumption 2 holds. If n is

large enough such that n ≥ O(max{L2||C||22
∆2 ,

||C||22r2β2

L2ǫ2 })
and n ≥ O

(√
d log(1/δ)

ǫ

)

, then by setting α ≤

O
(

min
{

L2||C||22
∆n2 ,

L4·||C||62ǫ2
∆3n4G2

C log(1/δ)

})

, we have

E[L(θ̂)]− L(θ∗) ≤ O

(
L2||C||22
∆nǫ

+
G2

CL
2 log(1/δ)

∆n2ǫ2

)

,

where the expectation is taken over the internal randomness

of the algorithm.

Remark 2. First, it is notable that an objective perturbation

method for strongly convex loss has also been presented by

Talwar et al. [2014]. However, there are two major differ-

ences: (1) the method in Talwar et al. [2014] needs to solve

the perturbed objective function exactly, indicating it is in-

efficient; (2) Talwar et al. [2014] only provide the excess

empirical risk. It is unknown whether their method could

achieve the same bound as ours for the excess population

risk. Secondly, when C is an ℓ2-norm ball, the bounds in

Theorem 2 and Theorem 4 will recover the optimal rate of

DP-SCO over ℓ2-norm ball for convex and strongly convex

loss functions, respectively [Bassily et al., 2019]. Thirdly,

the terms of O(GC

nǫ ) and O(
G2

C

n2ǫ2 ) match the best-known re-

sults of excess empirical risk for the convex and strongly

convex case, respectively [Talwar et al., 2014].

In Remark 2, we showed that our results are optimal when

C is an ℓ2-norm ball and are comparable to the best results

of DP-ERM with Gaussian width. A natural question is

whether we can further improve these two upper bounds.

In the following, we partially answer the question by pro-

viding a lower bound for strongly convex loss functions.

Theorem 5. Let C be a symmetric body contained in the

unit Euclidean ball Bd
2 in R

d and satisfies ‖C‖2 = 1.

For any n = O(

√
d log(1/δ)

ǫ ), ǫ = O(1) and 2−Ω(n) ≤
δ ≤ 1/n1+Ω(1), there exists a loss ℓ which is 1-Lipschitz

w.r.t. ‖ · ‖2 and C2
min-strongly convex w.r.t. ‖ · ‖C , and a

dataset D = {x1, · · · , xn} ⊆ Cn such as for any (ǫ, δ)-
differentially private algorithm on minimizing the empiri-

cal risk function L̂(θ,D) over C, its output θpriv ∈ C satis-

fies

E[L(θpriv)]−L(θ∗) = Ω

(

max

{
G2

C log(1/δ)

(log(2d))4ǫ2n2
,
1

n

})

,

where the expectation is taken over the internal randomness

of the algorithm A. Here Cmin = min{‖v‖2 : v ∈ ∂C}
with ∂C as the boundary of the set C, i.e., it is the distance

between the original point to the boundary of C.

Taking ∆ = C2
min and L = 1 in Theorem 4, we can

see the rate of excess population risk in Theorem 4 for

strongly convex loss functions is nearly optimal by a fac-

tor of Õ(C−2
min). It is unknown whether we can further close

the gap, and we will leave it as an open problem.

5 DP-SCO IN ℓ
d
p SPACE

In this section, we will focus on DP-SCO in ℓdp space where

1 < p ≤ ∞. As we mentioned in the Introduction section,

we study two settings: (1) C is R
d and the gradient of the

loss function is bounded (i.e., the loss is Lipschitz); (2) C
is bounded, and the distribution of gradient of the loss is

heavy-tailed. Similar to the previous study in Bassily et al.

[2021], for each setting, there are two cases: 1 < p < 2
and 2 ≤ p ≤ ∞. Notice that, unlike the previous section,

we only study the case where the loss functions are con-

vex. The reason is that except for the Euclidean space, for a

strongly convex function, the ratio between its smoothness

and strong convexity, i.e., the condition number, will de-

pend on the dimension of E. For example, in the ℓd1 space,

it has been shown that there is no function whose condition

number is less than d [Juditsky and Nesterov, 2014].



5.1 UNCONSTRAINED CASE

In this part, we will study Lipschitz loss under the follow-

ing assumption that is commonly used in the related work

on general stochastic convex optimization.

Assumption 3. We assume ℓ(·, x) is convex, β-smooth and

L-Lipschitz w.r.t. || · || over Rd.

Due to its difficulty, we first consider the case where 1 <
p < 2. See Algorithm 3 for details. Note that Algorithm

3 could be considered as a noisy and regularized version

of the standard mirror descent, i.e., at each iteration, we

first perform linearization of L̂(wt, D), then we add a gen-

eralized Gaussian noise to its gradient to privatize the algo-

rithm, a Bregman divergence term and a regularized term

αΦ(·) with some specific α to the linearization term. Then

we solve the perturbed and regularized optimization prob-

lem. We output a linear combination of the intermediate

parameters as the final output.

It is notable that although our method is a noisy modifi-

cation of Mirror Descent, it is completely different from

the previous private Mirror Descent based methods in Tal-

war et al. [2014], Wang et al. [2017], Bassily et al. [2021],

Amid et al. [2022]: First, instead of directly adding noise

to the gradient in standard Mirror Descent, here we have

an additional regularization term, which is crucial for us

to make the algorithm stable, indicating that we can get an

excess population risk. To be more specific, first, by the def-

inition of ‖ · ‖+, and the duality between strong convexity

and smoothness, we can easily see Φ is 1-strongly convex

w.r.t ‖·‖. This indicates that the function L̂(w,D)+αΦ(w)
is relatively strongly convex and smooth (note that it is

not smooth as the regularization term is not smooth when

1 < p < 2). And the update step is just a noisy version of

Mirror Descent for L̂(w,D)+αΦ(w). Recently, it has been

shown that Mirror Descent is stable for relatively strongly

convex and smooth functions. Thus, we can also show that

Algorithm 3 is stable, indicating that we can get an excess

population risk. From the above intuition, we can also see

the parameter α need to be carefully tuned to balance the

stability and the excess empirical risk. The second differ-

ence is that, instead of using the last iterate or the average

of iterates, our output is a linear combination of interme-

diate iterates, which is due to the noise we added. In the

following we show the main results.

Theorem 6. For the ℓdp space with 1 < p < 2, suppose

Assumption 3 holds, then for any 0 < ǫ, δ < 1, Algorithm

3 is (ǫ, δ)-DP.

Theorem 7. For the ℓdp space with 1 < p < 2, suppose

Assumption 3 holds. In Algorithm 3, take α = 4β
T log2

n
T

and T = O(( nǫκ√
d log(1/δ)

)
2
5 ), assume n is sufficiently large

such that n ≥ O
(

ǫ4

(d log(1/δ))2κ1/2

)

, then we have

E[L(ŵ)]− L(θ∗) ≤ Õ(κ
4
5 · (

√

d log(1/δ)

nǫ
)

2
5 ),

where Õ hides β, L and a factor of ED[C̃2
D] with C̃2

D =

‖w̃∗‖2κ+
≤ ‖w̃∗‖2 and w̃∗ = argmin

w∈E

L̂(w,D)).

The key idea to prove Theorem 7 is to show that Algo-

rithm 3 is uniformly stable (w.r.t ‖ · ‖) by bounding the

term E[‖wt+1 − w′
t+1‖], where w′

t+1 is the corresponding

iterate of the algorithm when the input data is D′, which

is a neighboring data of D. To show this, rather than an-

alyzing the stability of wt+1 directly via the approach in

Hardt et al. [2016], our strategy is bounding ‖wt+1 −w∗
α‖,

where w∗
α = argmin L̂(w,D) + αΦ(w). As the regular-

ized function L̂(w,D) + αΦ(w) now is relatively smooth

and convex, the stability of w∗
α is O( 1n ). Thus we can get

the sensitivity of wt+1. Then we can bound the sensitivity

of ŵ.

Remark 3. In the constrained case, Bassily et al. [2021]

show that it is possible to achieve an upper bound of

Õ((M +M2)(
√
κ√
n
+

κ
√

d log 1/δ

nǫ )), where M is the diam-

eter of set C. Thus, we can see there is still a gap between

the unconstrained case and the constrained case.

Algorithm 3 Noisy Regularized Mirror Descent for ℓdp (1 <
p < 2).

1: Input: Dateset D, loss function ℓ, smoothness parame-

ter β and parameter α.

2: Take w1 = 0.

3: for t = 1, · · · , T do

4: Solve the following optimization problem

wt+1 = argmin
w∈E

{〈∇L̂(wt, D) + gt, w − wt〉

+ β ·DΦ(w,wt) + αΦ(w)}, (1)

where gt ∼ GG||·||+(0, σ
2) with σ2 = 64L2κT log(1/δ)

n2ǫ2

and || · ||+ is the smooth norm for (E, || · ||∗). κ =
min{ 1

p−1 , 2 log d} and Φ(x) = κ
2 ||x||2κ+

with κ+ =
κ

κ−1 .

5: end for

6: return ŵ =
∑T

t=1(
2β+α
2β )

t·wt+1
∑T

t=1(
2β+α
2β )

t .

Next, we study the case where 2 ≤ p ≤ ∞. The key idea

is to reduce the ℓdp space to the Euclidean space by leverag-

ing the relationship between the ℓp norm and the Euclidean

norm. Thus, here we adopt the Phased DP-SGD algorithm

proposed by Feldman et al. [2020]. As the parameters in the

original Phased DP-SGD depend on the diameter, we mod-

ify them to the unconstrained case. Specifically, we have

the following result.



Theorem 8. For the ℓdp space with 2 ≤ p ≤ ∞, suppose

Assumption 3 holds. Then for any 0 < ǫ, δ < 1, there is an

(ǫ, δ)-DP algorithm whose output θ satisfies

E[L(θ)]−L(θ∗) ≤ O(d1−
2
p ‖θ∗‖2( 1√

n
+

√

d log(1/δ)

ǫn
)).

In the constrained case, Bassily et al. [2021] shows the opti-

mal rate of O(Md
1
2− 1

p ( 1√
n
+

√
d log 1/δ

nǫ )), where M is the

diameter of the set C w.r.t. ‖ · ‖. Thus, we can see there is

a difference of O(d
1
2− 1

p ). This is because, rather than lin-

ear in M in the constrained case, in the Euclidean and un-

constrained case, we can show the excess population risk

depends on ‖θ∗‖22, which is less than d1−
2
p ‖θ∗‖2.

5.2 HEAVY-TAILED AND CONSTRAINED CASE

In the above section, we studied DP-SCO with Lipschitz

loss functions, i.e., the ‖ · ‖∗ norm of the loss gradient is

uniformly bounded by L. Next, we will relax this assump-

tion to a heavy-tailed distribution, i.e., we only assume the

variance of the loss gradient w.r.t ‖ ·‖∗ is finite. As we have

discussed the difficulty of the unconstrained case compared

to the constrained case, throughout the section, we focus on

the constrained case with the ‖ · ‖-norm diameter M .

Assumption 4. We assume ℓ(·, x) is convex and β-smooth

|| · || over C. Moreover, for all w ∈ C there exists a known

constant σ > 0 such that E[||∇ℓ(w, x)−∇L(w)||2∗] ≤ σ2.

It is noteworthy that the heavy-tailedness assumption is

commonly used in previous related work, such as Vural

et al. [2022]. Besides the norm of gradient, there is another

line of work that only assumes the second-order moment of

each coordinate of the gradient is bounded [Hu et al., 2022,

Kamath et al., 2022, Wang et al., 2020, Wang and Xu, 2022,

Tao et al., 2022]. We leave such a relaxed assumption as fu-

ture work.

Like the previous section, we first study the case where

1 < p < 2. We present our algorithm in Algorithm 4,

which could be considered a shuffled, truncated, and noisy

version of one-pass Mirror Descent. Specifically, in the first

step, we shuffle the dataset and divide it into several batches

(we will use one batch for one iteration). Using the by-

now standard method of privacy amplification by shuffling

[Feldman et al., 2022], we can amplify the overall privacy

guarantee by a factor of Õ( 1n ) as compared to the analysis

for the unshuffled dataset. Next, motivated by Nazin et al.

[2019], at each iteration, we first conduct a truncation step

to each sample gradient ∇ℓ(wt−1, x). Such an operator can

not only remove outliers, but also upper bound the ‖ · ‖∗-

sensitivity of the truncated gradients to O(βM + λ). Then

we perform the Mirror Descent update by these perturbed

and truncated sample gradients. In the following, we show

the privacy and utility guarantees of our algorithm.

Algorithm 4 Shuffled Truncated DP Mirror Descent

1: Input: Dataset D, loss function ℓ, initial point w0 = 0,

smooth parameter β and λ.

2: Randomly permute the data and denote the permuted

data as {x1, · · · , xn}.

3: Divide the permuted data into T batches {Bi}Ti=1

where |Bi| = n
T for all i = 1, · · · , T

4: for t = 1, · · · , T do

5: for each x ∈ Bt do

6: gx =

{

∇ℓ(wt−1, x) if ||∇ℓ(wt−1, x)||∗ ≤ βM + λ

0 otherwise

7: end for
8: Update

wt = argmin
w∈C











〈

∑

x∈Bt

gx + Zt
x

|Bt|
, w

〉

+ γt ·DΦ(w,wt−1)











,

where Zt
x ∼ GG||·||+(σ

2
1) with σ2

1 =

O
(

log(n
δ )·κ(βM+λ)2·log(1/δ)

nǫ2

)

, || · ||+ is the smooth

norm for (E, || · ||∗). κ = min{ 1
p−1 , 2 log d} and

Φ(x) = κ
2 ||x||2κ+

with κ+ = κ
κ−1 .

9: end for

10: return ŵ = (
∑T

t=1 γ
−1
t )−1 ·∑T

t=1 γ
−1
t wt

Theorem 9. For the ℓdp space with 1 < p < 2, sup-

pose Assumption 4 holds. Algorithm 4 is (ǫ, δ)-DP if ǫ =

O(
√

log(n/δ)
n ) and 0 < δ < 1.

Theorem 10. For the ℓdp space with 1 < p < 2, sup-

pose Assumption 4 holds and assume n is sufficiently

large such that n ≥ O(
max{β2,1}M2

√
dκ2 log(1/δ)

ǫ ). Given

a failure probability δ′ > 0, in Algorithm 4, take

T = O( M2n2ǫ2

λ2d log(1/δ) ), {γ}Tt=1 = γ̄ =
√
T , and λ =

O(
√
nǫ

4
√

κ2d log(1/δ)
), then the output ŵ satisfies the following

with probability 1− δ′

E[L(ŵ)]− L(w∗) ≤ Õ(
M 4
√

κ2d log(1/δ) log(1/δ
′

)√
nǫ

),

where the expectation is taken over the randomness of

noise, and the probability is w.r.t. the dataset D ∼ Dn.

Remark 4. First, note that due to the privacy amplification,

here the noise added to each sample gradient is Õ(βM+λ√
nǫ

)

rather than Õ(βM+λ
ǫ ) if without shuffling. Secondly, note

that the truncation step is quite different from the previ-

ous work on DP-SCO with heavy-tailed data [Wang et al.,

2020], i.e., we enforce the sample gradient to become zero

if its norm exceeds the threshold. Finally, compared to the

best-known result O(
√

κ
n ) in the non-private and heavy-

tailed case [Nazin et al., 2019] and the bound Õ(
√

κ
n +

κ
√
d

nǫ ) for private and Lipschitz case [Bassily et al., 2021],



we can see there may exist a space to improve our bound

further.

There are two limitations in Theorem 10. First, Algorithm

4 is (ǫ, δ) only for ǫ = Õ(n−
1
2 ), which cannot be general-

ized to mid or low privacy regime. Secondly, Theorem 10

only holds for the case 1 < p < 2. To address the first issue,

we can slightly modify the algorithm by using batched Mir-

ror Descent without shuffling, while we will get a worse

upper bound. For the second one, similar to Theorem 8, we

can reduce the problem to the Euclidean case. The formal

theorems (as well as proofs) are relegated into Appendix D.

6 CONCLUSION

In this paper, we revisited the problem of Differentially

Private Stochastic Convex Optimization (DP-SCO) in Eu-

clidean and general ℓdp spaces. Specifically, we focused on

three settings that are still far from well understood and pro-

vided several new results. Specifically, for DP-SCO over a

constrained and bounded (convex) set in Euclidean space,

for both convex and strongly convex loss functions, we pro-

posed methods whose outputs could achieve (expected) ex-

cess population risks that are only dependent on the Gaus-

sian width of the constraint set rather than the dimension of

the space. Moreover, we also showed the bound for strongly

convex functions is optimal up to a logarithmic factor. We

also provided the first theoretical results for unconstrained

DP-SCO in ℓdp space and DP-SCO with heavy-tailed data

over a constrained and bounded set in ℓdp space.
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A NOTATION SUMMARY

C: constraint set GC : Gaussian width of set C
d: dimension n: sample size

ǫ, δ: privacy parameters ℓ: convex loss funtion

L: Lipschitz constant β: smoothness constant

λ: regularization parameter α: optimization accurancy

ℓdp: Normed space corresponds to ‖ · ‖p, where ‖x‖p = (
∑d

j=1 |xj |p)1/p L(θ): population risk

L̂(θ,D): empirical risk κ: κ-regular space

|| · ||C : Minkowski norm, ‖ · ‖C = min{r ∈ R
+ : v ∈ rC} ‖ · ‖C∗ : dual norm of ‖ · ‖C

σ: the variance of Gaussian noise ‖ · ‖+: the smooth norm for (E, ‖ · ‖∗)

Table 3: Notation summary of the paper.

B OMITTED PROOFS IN SECTION 4

B.1 PROOF OF THEOREM 1

Algorithm 5 AObjP: Objective perturbation

1: Input: Dateset D, loss function ℓ, regularization parameter λ.

2: Sample G ∼ N (0, σ2
1Id) where σ2

1 = 32L2 log(1/δ)
ǫ2 . Set λ ≥ rβ

2ǫn , where r = min{d, 2 · rank(∇2ℓ(θ, x))} with

rank(∇2ℓ(θ, x)) being the maximal rank of the Hessian of ℓ for all θ ∈ C and x ∼ P .

3: Let J (θ,D) = L̂+ 〈G,θ〉
n + λ||θ||22.

4: return θ1 = argmin
θ∈C

J (θ,D).

Proof. Let θ1 = argmin
θ∈C

J (θ,D), where J (θ,D) = L̂(θ,D) + 〈G,w〉
n + λ||θ||22. Let θ2 = O(J , α) where O is the

optimizer defined in the algorithm. Notice that one can compute θ̂ from tuple (θ1, θ2 − θ1 +H) by simple post-processing.

Furthermore, the algorithm that outputs θ1 is (ǫ, δ)-DP by the following theorem.

Lemma 5 (Theorem 1 in [Iyengar et al., 2019]). Suppose Assumption 1 holds and that the smoothness parameter satisfy

β ≤ ǫnλ
r , the algorithm AObjP (Algorithm 5) that outputs θ1 = argmin

θ∈C
J (θ,D) is (ǫ, δ)-DP.

Next, we will bound the term ||θ2 − θ1|| to make (θ2 − θ1 +H) differentially private, conditioned on θ1. As J (θ,D) is

λ-strongly convex, we have J (θ2, D) ≥ J (θ1, D) + λ
2 ||θ2 − θ1||22, which implies that

||θ2 − θ1||2 ≤
√

2

λ
(J (θ2, D)− J (θ1, D)) ≤

√

2α

λ
. (2)

Thus, conditioned on θ1, θ2 − θ1 has the l2 sensitivity of

√
8α
λ . Therefore, (θ2 − θ1) +H is (ǫ/2, δ.2)-DP. By the standard

composition in Dwork et al. [2014], the tuple (θ1, θ2 − θ1 +H) satisfies (ǫ, δ)-DP and hence θ̂ satisfies (ǫ, δ)-DP.

B.2 PROOF OF THEOREM 2

Proof. Let θ1 be the exact minimizer of J (θ,D). We split the objective E[L(θ̂)] − L(θ∗) into two parts and bound them

separately.

E[L(θ̂)]− L(θ∗) = E[L(θ̂)− L(θ1)] + E[L(θ1)]− L(θ∗). (3)



In the following, we bound the term E[L(θ̂) − L(θ1)] and the term E[L(θ1)] − L(θ∗) separately. To bound the term

E[L(θ1)] − L(θ∗), we need the following two lemmas. The first lemma states the excess empirical risk of θ1 while the

second lemma states the stability property of regularized empirical risk minimization.

Lemma 6. (Excess empirical loss of θ1 in AObjP). Let D ∼ Pn, under Assumption 1, the excess empirical loss of θ1
satisfies

E[L̂(θ1, D)]−min
θ∈C

L̂(θ,D) ≤ O

(

LGC
√

log(1/δ)

ǫn
+ λ||C||22

)

, (4)

where the expectation is taken over the randomness induced by Gaussian noise.

Lemma 7. [[Shalev-Shwartz and Ben-David, 2014]] Let f : C × D → R be a convex, ρ-Lipschitz loss function where

D = {x1, · · · , xn} ∼ Pn. Let A be an algorithm that outputs θ̃ = argmin
θ∈C

{F̂ (θ,D) + λ||θ||2} with λ > 0 where

F̂ (θ,D) = 1
n

∑n
i=1 f(θ, xi), then A is 2ρ2

λn -uniformly stable, i.e., for all neighboring datasets D ∼ D′ we have

sup
z

|E[f(A(D), z)− f(A(D′), z)]| ≤ 2ρ2

λn
.

The property of uniform stability is described by the following lemma.

Lemma 8 (Bousquet and Elisseeff [2002]). Let A : Xn → C be an α-uniformly stable algorithm w.r.t. loss ℓ : C×X → R.

Let D ∼ Pn where P is the distribution over X . Then,

E
D∼Pn,A

[L(A(D))− L̂(A(D), D)] ≤ α.

Now we begin to bound the term L(θ1) − L(θ∗) using the above three lemmas. Fix any realization of the noise vector G,

we define fG(θ, x) = ℓ(θ, x) + 〈G,θ〉
n , then fG is

(

L+ ||G||2
n

)

-Lipschitz.

Define F̂G(θ,D) = 1
n

∑n
i=1 fG(θ, xi), and we have θ1 = argmin

θ∈C
F̂G(θ,D) + λ||θ||22, so from Lemma 7, the algorithm

that outputs θ1 is
2
(

L+
||G||2

n

)2

λn -uniformly stable. Denote FG(θ) = E
x∼P

[fG(θ, x)], according to Lemma 8, we have

E
D∼Pn

[L(θ)− L̂(θ,D)] = E
D∼Pn

[FG(θ)− F̂G(θ,D)] ≤
2
(

L+ ||G||2
n

)2

λn
.

Take the expectation w.r.t. G ∼ N (0, 32L
2 log(1/δ)
ǫ2 Id) as well, we get

E[L(θ)− L̂(θ,D)] ≤ O








L2 ·
(

1 +

√
d log(1/δ)

ǫn

)2

λn








≤ O

(
L2

λn

)

, (5)

where we assume n ≥ O(

√
d log(1/δ)

ǫ ).

Thus
E[L(θ1)]− L(θ∗) = E[L(θ1)]−min

θ∈C
L(θ)

≤ E[L̂(θ1, D)−min
θ∈C

L̂(θ,D)] + E[L(θ1)− L̂(θ1, D)]

≤ O

(

L ·GC ·
√

log(1/δ)

ǫn
+ λ||C||22 +

L2

λn

)

,

(6)

where we use the fact that E
D∼Pn

[min L̂
θ∈C

(θ,D)] ≤ min
θ∈C

E
D∼Pn

[L̂(θ,D)] = min
θ∈C

L(θ) and the last bound is directly from

Eq.(4) and Eq.(5).



Now we bound the term E[L(θ̂)]− L(θ1). Recall that θ2 = O(J , α) and

E[L(θ̂)]− L(θ1) = E[L(θ̂)]− L(θ2) + L(θ2)− L(θ1).

Note the term L(θ2)−L(θ1) ≤ L · ||θ1−θ2||2 ≤ L ·
√

2α
λ (From Eq.(2)), and the term E[L(θ̂)]−L(θ2) ≤ L ·E[||θ̂−θ2||2].

Also note that θ̂ = ProjC(θ2 +H). Let q be the line through θ2 and θ̂, and let p be the projection of θ3 = θ2 +H onto q.

The key observation is that p lies on the ray from θ̂ to infinity otherwise p will be a point in C that is closer to θ3 than θ̂.

Thus we have

E[||θ̂ − θ2||22] = E[〈θ̂ − θ2, θ̂ − θ2〉]
≤ E[〈θ̂ − θ2, θ3 − θ2]

= E[〈H, θ̂ − θ2〉]
≤ 2 ·max

θ∈C
E[〈H, θ〉]

≤ O(E[max |〈H, θ〉|])

= O

(√

α log(1/δ)

λ
· GC
ǫ

)

,

where the last equation is from the definition of Gaussian width.

So we have

E[L(θ̂)]− L(θ1) ≤ L ·
√

2α

λ
+ L · E[||θ̂ − θ2||2]

≤ O

(

L · 4

√

α log(1/δ)

λ
·
√

GC
ǫ

+ L

√
α

λ

)

.

(7)

In total, combining Eq.(6) and Eq.(7), we can bound Eq. (3) by

E[L(θ̂)]− L(θ∗) = E[L(θ̂)− L(θ1)] + E[L(θ1)]− L(θ∗)

≤ O

(

L · 4

√

α log(1/δ)

λ
·
√

GC
ǫ

+ L

√
α

λ
+
L ·GC ·

√

log(1/δ)

ǫn
+ λ||C||22 +

L2

λn

)

.

Since α ≤ min

{

L||C||2
n

3
2
,

ǫ2L||C||32
G2

C log(1/δ)n
5
2

}

, we have
√

L · ||C||2
√
nα ≤ L·||C||2√

n
and L · 4

√
α log(1/δ)

λ ·
√

GC

ǫ ≤ L·||C||2√
n

. Let

λ = L√
n||C||2 , then

E[L(θ̂)]− L(θ∗) ≤ O

(

L ·GC ·
√

log(1/δ)

ǫn
+
L||C||2√

n

)

.

Note that we need λ = L√
n||C||2 ≥ rβ

ǫn , namely, n ≥ r2β2||C||22
ǫ2L2 .

Proof of Lemma 6. Let L̄(θ,D) = L̂(θ,D) + λ||θ||22 and θ̄ = argmin
θ∈C

L̄(θ,D). So J (θ,D) = L̄(θ,D) + 〈G,θ〉
n . Since

θ1 minimizes J (θ,D), we have J (θ̄, D) ≥ J (θ1, D), namely,

L̄(θ̄, D) +
〈G, θ̄〉
n

≥ L̄(θ1, D) +
〈G, θ1〉
n

.



Recall that G ∼ N (0, 128L
2 log(1/δ)
ǫ2 Id), rearrange the inequality and take the expectation at both sides and we get

E[L̄(θ1, D)− L̄(θ̄, D)] ≤ E[
〈G, θ̄ − θ1〉

n
]

≤ 2 ·max
θ∈C

E

[ 〈G, θ〉
n

]

≤ 2 · E
[

max
θ∈C

∣
∣
∣
∣

〈G, θ〉
n

∣
∣
∣
∣

]

= O

(

L ·GC
√

log(1/δ)

ǫn

)

,

where the last bound is from the definition of Gaussian width.

Thus
E[L̂(θ1, D)− L̂(θ∗, D)] = E[L̄(θ1, D)− L̄(θ∗, D) + λ||θ∗||22 − λ||θ1||22]

≤ E[L̄(θ1, D)− L̄(θ∗, D) + λ||θ∗||22]
≤ E[L̄(θ1, D)− L̄(θ̄, D) + λ||θ∗||22]

≤ O

(

L ·GC
√

log(1/δ)

ǫn
+ λ||C||22

)

.

B.3 PROOF OF THEOREM 3

Proof. The proof is similar to the convex case. Note that J (θ,D) is a rβ
ǫn -strongly convex function.

B.4 PROOF OF THEOREM 4

Proof. By the assumptions we made about n, we have ∆ ≥ L·||C||2√
n

and L√
n||C||2 ≥ rβ

ǫn .

Since the loss function is ∆-strongly convex with respect to || · ||C , which implies that the loss function is ∆
||C||22

-strongly

convex w.r.t. || · ||2 and thus L√
n||C||2 -strongly convex w.r.t. || · ||2, where we use the fact that ∆ ≥ L·||C||2√

n
and ||v||C ≥ ||v||2

||C||2
for any vector v ∈ C.

Since ∆ ≥ L√
n||C||2 ≥ rβ

ǫn , we have λ = max
{

rβ
ǫn −∆, 0

}

= 0.

The population loss can be disassembled as the following two parts, and we bound them separately.

E[L(θ̂)]− L(θ∗) = E[L(θ̂)− L(θ1)] + E[L(θ1)]− L(θ∗).

We first bound E[L(θ̂)− L(θ1)]. Note that

E[L(θ̂)− L(θ1)] = E[L(θ̂)− L(θ2)] + E[L(θ2)− L(θ1)].

For term E[L(θ2) − L(θ1)], since L is ∆-strongly convex w.r.t. || · ||C and thus ∆
||C||22

-strongly convex w.r.t. || · ||2. So by

the definition of strong convexity of L, we have

α ≥ L(θ2)− L(θ1) ≥
∆

2||C||22
||θ2 − θ1||22,

where α is the optimization accuracy.

Thus,

||θ2 − θ1||2 ≤
√

2α||C||22
∆

.



So using the definition of L-Lipschitz,

E[L(θ2)− L(θ1)] ≤ L · E[||θ2 − θ1||2] ≤ L ·
√

2α||C||22
∆

.

For term E[L(θ̂)− L(θ2)], it is similar to the convex case, and we have

E[L(θ̂)− L(θ2)] ≤ O

(

L · 4

√

α log(1/δ)||C||22
∆

·
√

GC
ǫ

)

.

Thus,

E[L(θ̂)− L(θ1)] ≤ O

(

L · 4

√

α log(1/δ)||C||22
∆

·
√

GC
ǫ

+ L ·
√

2α||C||22
∆

)

.

Next we bound E[L(θ1)]− L(θ∗). Note that

E[L(θ1)]− L(θ∗) ≤ E[L̂(θ1, D)−min
θ∈C

L̂(θ,D)] + E[L(θ1)− L̂(θ1, D)],

where we used the fact that E[min
θ∈C

L̂(θ,D)] ≤ min
θ∈C

E[L̂(θ,D)] = L(θ∗).

For term E[L(θ1) − L̂(θ1, D)], note that with λ = 0, fG(θ, x) = ℓ(θ, x) + 〈G,θ〉
n would be ∆

||C||22
strongly convex w.r.t.

|| · ||2. Using the same notation as in the convex case, where F̂G(θ,D) = 1
n

∑n
i=1 fG(θ, xi) and FG(θ) = E

x∼P
[fG(θ, x)],

we have

E[L(θ1)− L̂(θ1, D)] = E[FG(θ1)− F̂G(θ1, D)]

≤

(

L+ ||G||2
n

)2

||C||22
n∆

(According to Lemma 7)

≤ O

(
L2||C||22
n∆

)

(since n ≥ O

(√

d log(1/δ)

ǫ

)

).

Let θ
′

= argmin
θ∈C

L̂(θ,D). In the following, we bound the term E[L̂(θ1, D)−min
θ∈C

L̂(θ,D)] = E[L̂(θ1, D)− L̂(θ′

, D)].

By the definition of strong convexity,

L̂(θ1, D) ≥ L̂(θ′

, D) +
∆

2
||θ1 − θ

′ ||2C ,

⇔ L̂(θ1, D) +
〈G, θ1〉
n

− 〈G, θ1〉
n

≥ L̂(θ′

, D) +
〈G, θ′〉
n

− 〈G, θ′〉
n

+
∆

2
||θ1 − θ

′ ||2C ,

⇔ J (θ1, D)− 〈G, θ1〉
n

≥ J (θ
′

, D)− 〈G, θ′〉
n

+
∆

2
||θ1 − θ

′ ||2C .

So,

J (θ1, D)− J (θ
′

, D) +
〈G, θ′ − θ1〉

n
≥ ∆

2
||θ1 − θ

′ ||2C .

Since J (θ1, D)− J (θ
′

, D) ≤ 0 (due to the optimality condition), we get

〈G, θ′ − θ1〉
n

≥ ∆

2
||θ1 − θ

′ ||2C ,

⇒||θ1 − θ
′ ||C ≤

2 · 〈G, θ
′−θ1

||θ′−θ1||C
〉

n∆
,

⇒||θ1 − θ
′ ||C ≤ 2 ·max

θ∈C

〈G, θ〉
n∆

=
2||G||C∗

n∆
.

(8)



Using J (θ1, D)− J (θ
′

, D) ≤ 0 again, and take the expectation at both sizes,

L(θ′

) + E[
〈G, θ′〉
n

] ≥ L(θ1) + E[
〈G, θ1〉
n

].

Thus

L(θ1)− L(θ′

) ≤ E[
〈G, θ′ − θ1〉

n
]

≤ E

[ ||G||C∗

n
· ||θ1 − θ

′ ||C
]

(Holder’s inequality)

≤ E

[
2||G||2C∗

n2∆

]

(according to Eq.(8))

≤ O

(
G2

CL
2 log(1/δ)

∆n2ǫ2

)

.

Thus E[L̂(θ1, D)−min
θ∈C

L̂(θ,D)] ≤ O
(

L2||C||22
n∆ +

G2
CL

2 log(1/δ)
∆n2ǫ2

)

. So

E[L(θ̂)]− L(θ∗) ≤ O

(

L2||C||22
n∆

+
G2

CL
2 log(1/δ)

∆n2ǫ2
+ L · 4

√

α log(1/δ)||C||22
∆

·
√

GC
ǫ

+ L ·
√

2α||C||22
∆

)

.

When α ≤ O
(

min
{

L2||C||22
∆n2 ,

L4·||C||62ǫ2
∆3n4G2

C log(1/δ)

})

, we have L ·
√

2α||C||22
∆ ≤ L2||C||22

n∆ and L · 4

√
α log(1/δ)||C||22

∆ ·
√

GC

ǫ ≤
L2||C||22

n∆ .

Thus,

E[L(θ̂)]− L(θ∗) ≤ O

(
L2||C||22
n∆

+
G2

CL
2 log(1/δ)

∆n2ǫ2

)

.

B.5 PROOF OF THEOREM 5

Proof. To show the proof, we first prove the following theorem on the lower bound of excess empirical risk and then use

reduction from Private ERM to Private SCO to get the lower bound for excess population risk.

Theorem 11. Let C be a symmetric body contained in the unit Euclidean ball Bd
2 in R

d and satisfies ‖C‖2 = 1. For any

n = O(

√
d log(1/δ)

ǫ ), ǫ = O(1) and 2−Ω(n) ≤ δ ≤ 1/n1+Ω(1), there exists a loss ℓ which is 1-Lipschitz w.r.t. ‖ · ‖2
and C2

min-strongly convex w.r.t. ‖ · ‖C , and a dataset D = {x1, · · · , xn} ⊆ C such as for any (ǫ, δ)-differentially private

algorithm A, its output satisfies

E[L̂(A, D)]−min
θ∈C

L̂(θ,D) = Ω

(
G2

C log(1/δ)

(log(2d))4ǫ2n2

)

,

where the expectation is taken over the internal randomness of the algorithm A.

Theorem 12 (Reduction from private ERM to private SCO [Bassily et al., 2019]). For any γ > 0, suppose there is a
(

ǫ
4 log(1/δ) ,

e−ǫδ
8 log(2/δ)

)

-DP algorithm A such that for any distribution on domain X , A yields expected population loss

EA[L(A)] − minw L(w) < γ. Then, there is a (ǫ, δ)-DP algorithm B that given any dataset D ∈ Xn, it yields expected

excess empirical loss EB[L̂(B, D)]−minw L̂(w,D) < γ.

From Theorem 12, for any dataset D and any 1-Lipschitz, C2
min- strongly convex loss ℓ, if there exists an algorithm with

excess population loss

E[L(θpriv)]−min
θ∈C

L(θ) = o

(
G2

C log(1/δ)

(log(2d))4ǫ2n2

)

,



then there exists an algorithm B such that the excess empirical loss E[L̂(B, D)]−min
θ∈C

L̂(θ,D) = o
(

G2
C log(1/δ)

(log(2d))4ǫ2n2

)

, which

contradicts Theorem 11.

Thus, ∀n = O(

√
d log(1/δ)

ǫ ), there exists a dataset D = {x1, · · · , xn} ⊆ C and a strongly convex loss function ℓ such that

for any output θpriv , the excess population loss E[L(θpriv)]−min
θ∈C

L(θ) = Ω
(

G2
C log(1/δ)

(log(2d))4ǫ2n2

)

.

As a result, we have

E[L(θpriv)]−min
θ∈C

L(θ) = Ω

(

max

{
G2

C log(1/δ)

(log(2d))4ǫ2n2
,
1

n

})

,

where the first term is the lower bound on excess empirical loss and the second term is the lower bound on excess population

loss in the non-private setting.

Proof of Theorem 11. Before starting our proof, we give some background on the mean point problem.

Let x̄ = 1
n

n∑

i=1

xi be the mean of the database D, where D = {x1, · · · , xn} is a multiset of points in C. The sample

complexity of the mean point problem to achieve an error α with respect to an algorithm A is defined as

SCmp(C,A, α) = min{n : sup
D

(E||A(D)− x̄||22)1/2 ≤ α},

where the supremum is taken over the database D consisting of at most n points from C and the expectation is taken over

the randomness of the algorithm A.

The sample complexity of solving the mean point problem with error α under (ǫ, δ)-differential privacy over convex set C
is defined as the minimum number of samples among all the differentially private algorithm A.

SCmp(C, α) = min{SCmp(C,A, α) : A is (ǫ, δ)-differentially private}.

Previous work Kattis and Nikolov [2016] shows that we can characterize sample complexity SCmp(C, α) as a natural

property of convex set C.

Lemma 9. Kattis and Nikolov [2016] Let C be a symmetric convex body contained in the unit Euclidean ball Bd
2 in R

d.

Let c be an absolute constant, then for any ǫ = O(1), 2−Ω(n) ≤ δ ≤ 1/n1+Ω(1) and any α ≤ GC

c
√
d(log 2d)2

,

SCmp(C, α) = Ω

(

GC
√

log(1/δ)

(log 2d)2αǫ

)

, (9)

SCmp(C, α) = O

(

min

{

GC
√

log(1/δ)

α2ǫ
,

√

d log(1/δ)

αǫ

})

.

When GC = Ω(
√
d), then SCmp(C, α) = Θ

(
σ(ǫ,δ)

√
d

α

)

for any α ≤ 1/c.

Now we start our proof with the help of the above lemma.

Let ℓ(θ;x) = 1
2 ||θ − x||22 be half of the squared ℓ2-distance between θ ∈ C ⊆ Bd

2 and xi ∈ C, which is 1-Lipschitz and

1-strongly convex w.r.t to ‖ · ‖2. Actually, based on the following lemma we can easily show it is C2
min-strongly convex

w.r.t ‖ · ‖C .

Lemma 10. For any x, we have ‖x‖2 ≥ ‖x‖C · Cmin.

Proof. By the definition of ‖x‖C we can see it is sufficient to show that x ∈ ‖x‖2

Cmin
C. Note that as C is symmetric and Cmin

is the minimal distance from the original point to the boundary of C, thus, C
Cmin

contains the unit ℓ2-norm ball, indicating

that x ∈ ‖x‖2

Cmin
C.



The strongly convex decomposable loss function is defined as L̂(θ;D) = 1
2n

n∑

i=1

ℓ(θ;xi) =
1
2n

n∑

i=1

||θ − xi||22. Notice that

the minimizer of L̂(·;D) over Bd
2 is θ∗ = 1

n

n∑

i=1

xi ∈ C, and the excess empirical risk can be written as:

E[L̂(θpriv;D)]− L̂(θ∗;D) =
1

2
E||θpriv − θ∗||22 =

1

2
E||θpriv − 1

n

n∑

i=1

xi||22.

We prove the theorem by contradiction. Assume Theorem 11 is false, then for any dataset D, there exists a (ǫ, δ)-

differentially private algorithm A, for some n = O(

√
d log(1/δ)

ǫ ), it outputs θpriv such that E[L̂(θpriv;D)] − L̂(θ∗;D) =

1
2E||θpriv − 1

n

n∑

i=1

xi||22 = o
(

G2
C log(1/δ)

(log(2d))4ǫ2n2

)

.

In Lemma 9,
SCmp =min{n : sup

D
(E||θpriv − x̄||22) ≤ α2}

=Ω

(

GC
√

log(1/δ)

(log 2d)2αǫ

)

(Using Eq.(9))

=o(n) ( By letting α = o

(

GC
√

log(1/δ)

(log(2d))2ǫn

)

),

which leads to a contradiction.

C OMITTED PROOFS IN SECTION 5

C.1 PROOF OF THEOREM 6

Proof. Note that for any neighboring dataset D and D
′

, we have ||∇L̂(wt, D) − ∇L̂(wt, D
′

)||∗ ≤ 2L
n by the Lipschitz

assumption. Since for ℓdp-space, || · ||∗ = || · || p
p−1

, the space (E, || · ||∗) is κ-regular with κ = min{ p
p−1 − 1, 2 ln d} =

min{ 1
p−1 , 2 ln d}, so using the privacy guarantee provided by generalized Gaussian mechanism and the advanced compo-

sition theorem, the algorithm is (ǫ, δ)-DP.

C.2 PROOF OF THEOREM 7

Proof. Observe that Φ(x) = κ
2 ||x||2κ+

where κ = min{ 1
p−1 , 2 ln d} and κ+ = κ

κ−1 is 1-strongly convex w.r.t. || · ||
by the definition of || · ||κ+ and the duality between strongly convexity and smoothness. We recall the following lemma

showing that adding regularization may impair smoothness, but it also induces good properties such as relatively smooth

and strongly convex.

Lemma 11. (Lemma 14 in Attia and Koren [2022]) Let f(x) be a convex and β-smooth function w.r.t. || · || and Φ(x) be

1-strongly convex w.r.t. || · ||, then fα(x) = f(x) + α · Φ(x) for α > 0 is (α + β)-smooth relative to Φ(x) as well as

α-strongly convex relative to Φ(x).

Let w∗
α = argmin

w∈E

L̂(w,D) + αΦ(w), w∗ = argmin
w∈E

L(w) and w̃∗ = w̃∗(D) = argmin
w∈E

L̂(w,D), and CD = Φ
1
2 (w̃∗).

Based on the optimality of w∗
α for the regularized objective function L̂(w,D) + αΦ(w), along with the optimality of w̃∗

for the objective L̂(w,D), we have

L̂(w∗
α, D) + αΦ(w∗

α) ≤ L̂(w̃∗, D) + αΦ(w̃∗),

=⇒ Φ(w̃∗)− Φ(w∗
α) ≥

L̂(w∗
α, D)− L̂(w̃∗, D)

α
> 0,

=⇒ Φ(w̃∗) > Φ(w∗
α). (10)



Since w1 = 0 = argmin
w∈E

Φ(w), from the first-order optimality of w1, we have 〈∇Φ(w1), w1 − w∗
α〉 ≤ 0 and thus

DΦ(w
∗
α, w1) = Φ(w∗

α)− Φ(w1)− 〈∇Φ(w1), w
∗
α − w1〉

≤ Φ(w∗
α)− Φ(w1)

≤ Φ(w̃∗)− Φ(w1)( From Eq.( 10))

≤ C2
D (Let C2

D = Φ(w̃∗)).

Now we rewrite our objectives in Algorithm 3:

〈∇L̂(wt, D) + gt, w − wt〉+ β ·DΦ(w,wt) + αΦ(w)

=〈∇L̂(wt, D) + gt, w − wt〉+ (β + α) ·DΦ(w,wt) + αΦ(x)− α ·DΦ(w,wt)

=〈∇L̂(wt, D) + gt, w − wt〉+ (α+ β) ·DΦ(w,wt) + αΦ(w)− α · (Φ(w)− Φ(wt)− 〈∇Φ(wt), w − wt〉)
=〈∇L̂(wt, D) + α∇Φ(wt) + gt, w − wt〉+ (α+ β) ·DΦ(w,wt) + αΦ(wt)

=〈∇L̂(α)(wt, D) + gt, w − wt〉+ (α+ β) ·DΦ(w,wt) + αΦ(wt).

where L̂(α)(w,D) , L̂(w,D)+α·Φ(w) and note that L̂(α)(w,D) is (α+β)-smooth relative to Φ(x) as well as α-strongly

convex relative to Φ(w) according to Lemma 11. Next, we recall the following “three-point property":

Lemma 12. (Three point property) Tseng [2008]. Let φ(x) be a convex function andDΦ(·, ·) be the Bregman divergence

for Φ(·). For given z, let z∗ = argmin
x∈E

{φ(x) +DΦ(x, z)}, then for all x ∈ E we have

φ(x) +DΦ(x, z) ≥ φ(z∗) +DΦ(z
∗, z) +DΦ(x, z

∗).

Let φ(w) = 1
α+β · 〈∇f(wt) + gt, w − wt〉 where f(w) = L̂(w,D) + α · Φ(w), set z = wt in Lemma 12, we get

1

α+ β
· 〈∇f(wt) + gt, w − wt〉+DΦ(w,wt) ≥

1

α+ β
· 〈∇f(wt) + gt, wt+1 − wt〉+DΦ(wt+1, wt) +DΦ(w,wt+1),

which implies

(α+ β) ·DΦ(wt+1, wt) ≤ 〈∇f(wt) + gt, w − wt+1〉+ (α+ β) · (DΦ(w,wt)−DΦ(w,wt+1)).

Since f(w) is (α+ β)-smooth relative to Φ(w), we have

f(wt+1) ≤f(wt) + 〈∇f(wt), wt+1 − wt〉+ (α+ β) ·DΦ(wt+1, wt)

≤f(wt) + 〈∇f(wt), w − wt〉+ (α+ β) · (DΦ(w,wt)−DΦ(w,wt+1)) + 〈gt, w − wt+1〉.
(11)

Since f(w) is α-strongly convex relative to Φ(w), from the definition, we have

f(wt) + 〈∇f(wt), w − wt〉 ≤ f(w)− α ·DΦ(w,wt).

So inequality (11) becomes

f(wt+1) ≤ f(w)− α ·DΦ(w,wt) + (α+ β) · (DΦ(w,wt)−DΦ(w,wt+1)) + 〈gt, w − wt+1〉
≤ f(w) + β ·DΦ(w,wt)− (α+ β) ·DΦ(w,wt+1) + 〈gt, w − wt+1〉.

(12)

Note that for any constant a > 0

〈gt, w − wt+1〉 ≤a · ||gt||2∗ +
1

2a
· ||w − wt+1||2

≤a · ||gt||2∗ +
1

2a
·DΦ(w,wt+1),

where the last inequality is due to Φ being 1-strongly convex w.r.t. ‖ · ‖. Now inequality (12) can be written as

f(wt+1) ≤ f(w) + β ·DΦ(w,wt)− (α+ β − 1

2a
) ·DΦ(w,wt+1) + a · ||gt||2∗. (13)



Let w in Eq. (13) to be w∗
α = argmin f(w), let a = 1

α , we have

DΦ(w
∗
α, wt+1) ≤

β

α+ β − 1
2a

·DΦ(w
∗
α, wt) +O

(
a

α+ β − 1
2a

· ‖gt||2∗
)

≤ 1

1 + α
2β

·DΦ(w
∗
α, wt) +O

(
1

αβ
· ||gt||2∗

)

.

Letting t = 1, 2, · · · , T , add these inequalities together, we have

E[DΦ(w
∗
α, wT+1)] ≤

(

1

1 + α
2β

)T

·DΦ(w
∗
α, w1) +O

(
1

α2
· g2
)

=

(

1 +
α

2β

)−T

·DΦ(w
∗
α, w1) +O

(
1

α2
· g2
)

≤2−
αT
2β ·DΦ(w

∗
α, w1) +O

(
1

α2
· g2
)

≤2−
αT
2β · C2

D +O

(
1

α2
· g2
)

,

where the expectation is taken over all g1, · · · , gT and g2 = E[||gt||2∗]. The last inequality utilizes the fact that (1+ 1
x )

x ≥ 2

for all x ≥ 1 and note that 2β
α ≥ 1. Since Φ is strongly convex, we also have

1

2
E[||w∗

α − wT+1||2] ≤ E[DΦ(w
∗
α, wT+1)] ≤ 2−

αT
2β · C2

D +O

(
1

α2
· g2
)

.

Thus, we have

E[||w∗
α − wT+1||] ≤ O

(

2−
αT
4β · CD +

1

α
· g
)

.

Now we consider a neighboring data D′ of D where they differ by the i-th entry. Denote w∗′

α = L̂(w,D′) + α · Φ(w) and

w
′

T+1 as the parameters of the algorithm on D′. Then, similar to the previous case we can get

E[||w∗′

α − w
′

T+1||] ≤ O

(

2−
αT
4β · CD +

1

α
· g
)

.

Next, we will bound the term ||w∗
α − w∗′

α || by the following lemma.

Lemma 13. Let f1, f2 : E → R be convex and α-strongly convex (relatively). Let x1 = argmin
x∈E

f1(x) and x2 =

argmin
x∈E

f2(x), then

||x2 − x1|| ≤
2

α
||∇(f2 − f1)(x1)||∗.

From the above lemma, let f1(w) = L̂(w,D) + α · Φ(w) and f2(w) = L̂(w,D′

) + α · Φ(w), we can get

||w∗
α − w∗′

α || ≤ 2||∇ℓ(w∗
α;xi)−∇ℓ(w∗

α;x
′

i)||∗
nα

≤ 4L

nα
.

In total

E[||w′

T+1 − wT+1||] ≤O
(

2−
αT
4β · CD +

L

nα
+
g

α

)

=O

(

2−
αT
4β · CD +

L

nα
+
L
√

log(1/δ)dκT

αnǫ

)

.



Similarly, we can also show that for any t we have

E[||w′

t+1 − wt+1||] ≤O
(

2−
αt
4β · CD +

L

nα
+
g

α

)

=O

(

2−
αt
4β · CD +

L

nα
+
L
√

log(1/δ)dκT

αnǫ

)

.

Now we go back to Eq. (13),

f(wt+1)− f(w∗
α) ≤β ·DΦ(w

∗
α, wt)− (α+ β − 1

2a
) ·DΦ(w

∗
α, wt+1) + a · ||gt||2∗

≤β ·DΦ(w
∗
α, wt)− (β +

α

2
) ·DΦ(w

∗
α, wt+1) +O

(
1

α
· ||gt||2∗

)

.

Since

T∑

t=1

(
2β + α

2β

)t

· E[f(wt+1)− f(w∗
α)]

≤β
[

T∑

t=1

(
2β + α

2β

)t

·DΦ(w
∗
α, wt)−

T∑

t=1

(
2β + α

2β

)t+1

·DΦ(w
∗
α, wt+1)

]

+O

(
T∑

t=1

(
2β + α

2β

)t

· 1
α
g2

)

=β

[

2β + α

2β
·DΦ(w

∗
α, w1)−

(
2β + α

2β

)T+1

·DΦ(w
∗
α, wT+1)

]

+O

(
T∑

t=1

(
2β + α

2β

)t

· 1
α
g2

)

≤2β + α

2
·DΦ(w

∗
α, w1) +O

(
T∑

t=1

(
2β + α

2β

)t

· 1
α
g2

)

.

Let

ŵ =

∑T
t=1

(
2β+α
2β

)t

· wt+1

∑T
t=1

(
2β+α
2β

)t .

And we have



E[f(ŵ)− f(w∗
α)] = E




f






∑T
t=1

(
2β+α
2β

)t

· wt+1

∑T
t=1

(
2β+α
2β

)t




− f(w∗

α)






≤ E






∑T
t=1

(
2β+α
2β

)t

· f(wt+1)

∑T
t=1

(
2β+α
2β

)t − f(w∗
α)






=

E

[
∑T

t=1

(
2β+α
2β

)t

· (f(wt+1)− f(w∗
α))

]

∑T
t=1

(
2β+α
2β

)t

=

∑T
t=1

(
2β+α
2β

)t

· E[f(wt+1)− f(w∗
α)]

∑T
t=1

(
2β+α
2β

)t

≤ (2β + α) ·DΦ(w
∗
α, w1)

2 ·∑T
t=1

(
2β+α
2β

)t +O

(
1

α
g2
)

=
α ·DΦ(w

∗
α, w1)

2

[(
2β+α
2β

)T

− 1

] +O

(
1

α
g2
)

≤ α

2
·DΦ(w

∗
α, w1) +O

(
1

α
g2
)

(14)

≤ O

(

α ·DΦ(w
∗
α, w1) +

1

α
g2
)

,

where we used the fact that when T ≥ 2β
α ,

(
2β + α

2β

)T

= (1 +
α

2β
)T ≥ 2

in inequality (14).

Denote w̃∗ = argmin
w∈E

L̂(w,D), we have

E[L̂(ŵ,D)− L̂(w̃∗, D)] = E[L̂(α)(ŵ,D)− L̂(α)(w̃∗, D)] + α · Φ(w̃∗)− α · Φ(ŵ)
≤ E[L̂(α)(ŵ,D)− L̂(α)(w∗

α, D)] + α · Φ(w̃∗)− α · Φ(ŵ)

≤ O (α ·DΦ(w
∗
α, w1)) +O

(
1

α
g2
)

+ α · Φ(w̃∗)− α · Φ(ŵ)

≤ O (α ·DΦ(w̃
∗, w1)) +O

(
1

α
g2
)

+ α · C2
D

≤ O(α · C2
D +

1

α
g2).

Now we bound the sensitivity of ŵ:

E[||ŵ − ŵ
′ ||] ≤

∑T
t=1

(
2β+α
2β

)t

E[||wt+1 − w
′

t+1||]
∑T

t=1

(
2β+α
2β

)t

≤ O






∑T
t=1

(
2β+α
2β

)t

2−
αt
4β · CD

∑T
t=1

(
2β+α
2β

)t +
L

nα
+
L
√

log(1/δ)dκT

αnǫ




 .

(15)



We bound the first term above:

∑T
t=1

(
2β+α
2β

)t

2−
αt
4β · CD

∑T
t=1

(
2β+α
2β

)t =
CD ·∑T

t=1

[
2β+α
2β ·

(
1
2

) α
4β

]t

∑T
t=1

(
2β+α
2β

)t

=CD ·
1− 2β+α

2β

2β+α
2β ·

[

1−
(

2β+α
2β

)T
] ·

2β+α
2β ·

(
1
2

) α
4β ·

(

1−
[
2β+α
2β ·

(
1
2

) α
4β

]T
)

1− 2β+α
2β ·

(
1
2

) α
4β

=CD ·
(
1

2

) α
4β

· α

(2β + α) ·
(
1
2

) α
4β − 2β

·

[
2β+α
2β ·

(
1
2

) α
4β

]T

− 1
(

2β+α
2β

)T

− 1

.

(16)

Consider function f(x) = (1 + x) · ax. Its derivative f ′(x) = ln a · ax + ax + ln a · x · ax = ax(ln a + 1 + ln a · x), let

a = 1√
2

, then f ′(x) > 0 for x ∈ [0, 1]. Thus we have (1 + x) · ( 1√
2
)x > 1. Let x = α

2β , we have (1 + α
2β ) · ( 12 )

α
4β > 1,

namely (2β + α) · ( 12 )
α
4β − 2β > 0.

In the following, we bound the term α

(2β+α)·( 1
2 )

α
4β −2β

.

α

(2β + α) ·
(
1
2

) α
4β − 2β

=
α

(2β + α) ·
(

( 12 )
α
4β − 1

)

+ α

≤ α

(2β + α) · (− α
4β ) + α

=
1

1
2 − α

4β

≤ 4 (Assume
α

β
≤ 1),

where we use the fact that ( 12 )
α
4β − 1 ≥ − α

4β . (To prove this is to prove that 2
α
4β (1− α

4β ) ≤ 1. Let f(x) = ax(1− x). The

derivative f ′(x) = ln a · ax − ln a · x · ax − ax = ax · (ln a − x · ln a− 1) < 0 when a < e. So f(x) decreases in [0, 1],
and thus f(x) ≤ 1, ∀x ∈ [0, 1]. Let a = 2 and x = α

4β , and we will get 2
α
4β · (1− α

4β ) ≤ 1.)

Now we bound the term

[

2β+α
2β ·( 1

2 )
α
4β

]T
−1

( 2β+α
2β )

T−1
.

[
2β+α
2β ·

(
1
2

) α
4β

]T

− 1
(

2β+α
2β

)T

− 1

=

(
2β+α
2β

)T

· ( 12 )
αT
4β − ( 12 )

αT
4β + ( 12 )

αT
4β − 1

(
2β+α
2β

)T

− 1

=

(
1

2

)αT
4β

+
( 12 )

αT
4β − 1

(
2β+α
2β

)T

− 1

<

(
1

2

)αT
4β

.

Thus, Eq. (16) becomes
∑T

t=1

(
2β+α
2β

)t

2−
αt
4β · CD

∑T
t=1

(
2β+α
2β

)t = O



CD ·
(
1

2

)α(T+1)
4β



 .

Bring this back to Eq.(15) and we can get

E[||ŵ − ŵ′||] ≤ O

(

CD · 2
−α(T+1)

4β +
L

nα
+
L
√

log(1/δ)dκT

αnǫ

)

.



Since the loss is L-Lipschitz w.r.t ‖ · ‖, we can see the generalization error E[L(ŵ) − L̂(ŵ,D)] ≤ L ·
O

(

CD · 2
−α(T+1)

4β + L
nα +

L
√

log(1/δ)dκT

αnǫ

)

.

Take α = 4β
T+1 log2

n
T ,

E[L(ŵ)]− L(w∗) = E[L(ŵ)− L̂(ŵ,D)] + E[L̂(ŵ,D)− L̂(w∗, D)]

≤ L · E[||ŵ − ŵ′||] + E[L̂(ŵ,D)− L̂(w̃∗, D)]

= O

(

L · 2
−α(T+1)

4β · E[CD] +
L2

nα
+
L2
√

log(1/δ)dκT

αnǫ
+ α · E[C2

D] +
1

α
· L

2 log(1/δ)dκT

n2ǫ2

)

= Õ

(

T
√
κ

n
+
T

3
2

√

d log(1/δ)κ

nǫ
+
T 2d log(1/δ)κ

n2ǫ2
+
κ

T

)

(By substituting α =
4β

T + 1
log2

n

T
)

= Õ

(

T
√
κ

n
+
T

3
2

√

d log(1/δ)κ

nǫ
+
κ

T

)

≤ Õ

(

T
3
2

√

d log(1/δ)κ

nǫ
+
κ

T

)

(Since T = O

(√

n
√
κ

)

)

= Õ



κ
4
5

(√

d log(1/δ)

nǫ

) 2
5



 (By letting T = Θ





(

nǫ
√
k

√

d log(1/δ)

) 2
5



),

where Õ hides a factor of E[C̃2
D] with C̃2

D = ‖w̃∗‖2κ+
and w̃∗ = argmin

w∈E

L̂(w,D).

(Note that since we assume n = O
(

ǫ4

(d log(1/δ))2κ1/2

)

, the constraint T = O
(√

n
√
κ
)

comes for free when letting

T = Θ

((

nǫ
√
k√

d log(1/δ)

) 2
5

)

).
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To be self-contained, we first review the Phased DP-SGD algorithm in Feldman et al. [2020]. Since we are concerned about

the unconstrained case, we slightly modify the original Phased DP-SGD algorithm by eliminating the projection step.

Algorithm 6 Phased-DP-SGD algorithm Feldman et al. [2020]

1: Input: Dataset S = {x1, · · · , xn}, convex loss ℓ, step size η (will be specified later), privacy parameter ǫ and (or) δ.

2: Set k = ⌈log2 n⌉. Partite the whole dataset S into k subsets {S1, · · · , Sk}. Denote ni as the number of samples in Si,

i.e., |Si| = ni, where ni = ⌊2−in⌋. Moreover, set w0 = 0.

3: for i = 1, · · · , k do

4: Let ηi = 4−iη, w1
i = wi−1.

5: for t = 1, · · · , ni do

6: Update wt+1
i = wt

i − ηi∇ℓ(wt
i , x

t
i), where xti is the t-th sample of the set Si.

7: end for

8: Set wi =
1

ni+1

ni+1∑

t=1
wt

i .

9: For (ǫ, δ)-DP, wi = wi + ξi, where ξi ∼ N (0, σ2
i Id) with σi =

4Lηi

√
log(1/δ)

ǫ .

10: end for

11: return wk

Lemma 14. (Modification of Theorem 4.4 in Feldman et al. [2020]) Let ℓ(·, x) be β-smooth, convex and L-Lipschitz

function over Rd for each x. If we set η = 1
L min{ 4√

n
, ǫ

2
√

d log(1/δ)
} and if η ≤ 1

β (i.e., n is sufficiently large), then



Algorithm 6 will be (ǫ, δ)-DP for all ǫ ≤ 2 log(1/δ). The output satisfies

E[L(wk)]− L(θ∗) ≤ O

(

L‖θ∗‖22

(

1√
n
+

√

d log(1/δ)

ǫn

))

.

Proof. First, we have the following result, which can be found in the standard convergence bounds for SGD

Lemma 15. Consider the Gradient Descent method with initial parameter w0, fixed stepsize η and iteration number T ,

assume in the t-the iteration we have wt, then for any w we have

L(w̄T , D)− L(w,D) ≤ O(
‖w0 − w‖22

ηT
+ ηL2), (17)

where w̄T = w0+w1+w2+···+wT

T+1 .

Now we focus on the i-th epoch, by Lemma 15 we have for any w

E[L(w̄i)]− L(w) ≤ O(
E[‖wi−1 − w‖22]

ηT
+ ηL2). (18)

Now let’s be back to our proof. We have (denote θ∗ = argminw∈Rd L(w) )

L(wk)− L(θ∗) = L(wk)− L(w̄k)
︸ ︷︷ ︸

A

+
k∑

i=2

(L(w̄i)− L(w̄i−1))

︸ ︷︷ ︸

B

+L(w̄1)− L(θ∗)
︸ ︷︷ ︸

C

For term A, by the Lipschitz property we have

E[L(wk)]− L(w̄k) ≤ LE[‖wk − w̄k‖2] ≤ LE‖ζk‖2.

For each term of B by (18) and take w = w̄i−1 we have

E[L(w̄i)]− L(w̄i−1) ≤ O(
E[‖wi−1 − w̄i−1‖22]

ηini
+ ηiL

2) = O(
E[‖ζi‖22]
ηini

+ ηiL
2) (19)

For term C, by (18) and take w = θ∗ we have

E[L(w̄1)]− L(θ∗) ≤ O(
‖θ∗‖22
η1n1

+ η1L
2). (20)

Thus, combing (18), (19) and (20), we have

E[L(wk)]− L(θ∗) ≤ O(LE[‖ζk‖2] +
‖θ∗‖22
η1n1

+ η1L
2 +

k∑

i=2

(
E[‖ζi‖22]
ηini

+ ηiL
2) (21)

Now, we analyze the case of (ǫ, δ)-DP, it is almost the same for ǫ-DP. Specifically, we have E[‖ζi‖22] = O(
dL2η2

i log(1/δ)
ǫ2 ).

Thus,

LE[‖ζk‖2] ≤ L
√

E‖ζk‖22 = L2 ·
√

d log(1/δ)ηk
ǫ

= O(

√

d log(1/δ)ηL2

n2ǫ
)

= O(L(

√

d log(1/δ)

n2.5ǫ
+

1

n2
)).



where the second inequality is due to η = 1
L min{ 1√

n
, ǫ√

d log(1/δ)
}. And

‖θ∗‖22
η1n1

+ η1L
2 = O(

‖θ∗‖22
ηn

+ ηL2)

= O(‖θ∗‖22L(
1

n
max{√n,

√

d log(1/δ)

ǫ
}+ 1√

n
))

≤ O(‖θ∗‖22L(
1√
n
+

√

d log(1/δ)

nǫ
)),

where the second inequality is due to η = 1
L min{ 1√

n
, ǫ√

d log(1/δ)
}.

k∑

i=2

(
E‖ζi‖22
ηini

+ ηiL
2) = O(

k∑

i=2

(
dL2η2i log(1/δ)

ηiniǫ2
+ ηiL

2)

= O(

k∑

i=2

2−i

nη
+ 4−i L√

n
)

= O(

k∑

i=2

(2−i(
1

nη
+

L√
n
))

≤ O(
∞∑

i=2

(2−iL(
1

n
max{√n,

√

d log(1/δ)

ǫ
}+ 1√

n
))

≤ O(L(
1√
n
+

√

d log(1/δ)

nǫ
)).

Thus, combining with the previous three bounds into (21), we have our result.

Next, we will prove Theorem 8 via Lemma 14. Specifically, we have the following result.

Theorem 13. For the ℓdp space with 1 < p < 2 and suppose Assumption 3 holds. Then Algorithm 6 will be (ǫ, δ)-DP for

all ǫ ≤ 2 log(1/δ). If we set η = 1
L min{ 4√

n
, ǫ

2
√

d log(1/δ)
}, the output satisfies

E[L(ŵ)]− L(θ∗) ≤ O

(

Ld1−
2
p ‖θ∗‖2

(

1√
n
+

√

d log(1/δ)

ǫn

))

. (22)

Proof. We bound the ‖ · ‖2-diameter and Lipschitz constant for the ℓdp-setting. First we have that ‖θ∗‖2 ≤ d
1
2− 1

p ‖θ∗‖.

Moreover, since ℓ is Lipschitz w.r.t. ‖ · ‖, we can see it is L-Lipschitz w.r.t ‖ · ‖2 as ‖∇ℓ(w, x)‖2 ≤ ‖∇ℓ(w, x)‖∗ ≤ L.

Moreover since ℓ is β-smooth w.r.t ‖·‖, we have ‖∇ℓ(w, x)−∇ℓ(w′, x)‖2 ≤ ‖∇ℓ(w, x)−∇ℓ(w′, x)‖2‖∗ ≤ β‖w−w′‖ ≤
β‖w − w′‖2, indicating that it is β-smooth w.r.t. ‖ · ‖2. Thus, we have

E[L(ŵ)]− L(θ∗) ≤ O

(

Ld1−
2
p ‖θ∗‖2

(

1√
n
+

√

d log(1/δ)

ǫn

))

. (23)
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Proof. We first recall the following lemma:



Lemma 16. [Feldman et al., 2022] For a domain D, let R(i) : f ×D → S(i) for i ∈ [n] be a sequence of algorithms such

that R(i)(z1:i−1, ·) is a (ǫ0, δ0)-DP local randomizer for all values of auxiliary inputs z1:i−1 ∈ S(1) × · · · × S(i−1). Let

AS : Dn → S(1) × · · · × S(n) be the algorithm that given a dataset x1:n∈Dn , sample a uniformly random permutation

π, then sequentially computes zi = R(i)(z1:i−1, xπ(i)) for i ∈ [n], and the outputs z1:n. Then for any δ ∈ [0, 1] such that

ǫ0 ≤ log
(

n
16 log(2/δ)

)

, AS is (ǫ, δ +O(eǫδ0n))-DP where ǫ = O

(

(1− e−ǫ0) · (
√

eǫ0 log(1/δ)√
n

+ eǫ0

n )

)

.

Now let’s get back to the proof. Note that by the Generalized Gaussian mechanism, we can see R(x) = gx +

GG||·||+(σ
2) with σ2 = O

(
κ(βM+λ)2 log(1/δ0)

ǫ20

)

will be a (ǫ0, δ0)-DP local minimizer. The output could be consid-

ered as the postprocessing of the shuffled output R(x). Thus, the algorithm will be (ǫ̂, δ̂ + O(eǫ̂δ0n))-DP where

ǫ̂ = O

(

(1− e−ǫ0) · (
√

eǫ0 log(1/δ̂)√
n

+ eǫ0

n )

)

.

Now, assume that ǫ0 ≤ 1
2 , then ∃c1 > 0, s.t.,

ǫ̂ ≤ c1(1− e−ǫ0) ·





√

eǫ0 log(1/δ̂)
√
n

+
eǫ0

n





≤ c1 ·



(eǫ0/2 − e−ǫ0/2) ·

√

log(1/δ̂)

n
+
eǫ0 − 1

n





≤ c1 ·





(

(1 + ǫ0)− (1− ǫ0
2
)
)

·

√

log(1/δ̂)

n
+

(1 + 2ǫ0)− 1

n





= c1 · ǫ0 ·




3

2

√

log(1/δ̂)

n
+

2

n



 .

Set δ̂ = δ
2 , δ0 = c2 · δ

eǫ̂n
for some constant c2 > 0 and replace ǫ0 =

c3·κ(βM+λ)·
√

log(1/δ0)

σ1
:

ǫ̂ ≤ c1 · c3 ·
κ(βM + λ) ·

√

log(1/δ0)

σ1
·




3

2

√

log(1/δ̂)

n
+

2

n





≤ O




κ(βM + λ) ·

√

log(1/δ0) log(1/δ̂)

σ1
√
n





≤ O

(

κ(βM + λ) ·
√

log(1/δ) log(eǫ̂n/δ)

σ1
√
n

)

.

For any ǫ ≤ 1, if we set σ = O

(
κ(βM+λ)

√
log(1/δ) log(n/δ)

ǫ
√
n

)

, then we have ǫ̂ ≤ ǫ. Furthermore, we need

ǫ0 = O

(
κ(βM+λ)

√
log(1/δ0)

σ

)

≤ 1
2 , which would be ensured if we set ǫ = O

(√
log(n/δ)

n

)

. This implies that for

σ = O
(

κ(βM+λ)·log(n/δ)
ǫ
√
n

)

, algorithm 4 satisfies (ǫ, δ)-DP as long as ǫ = O

(√
log(n/δ)

n

)

.
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Proof. Denote yt = 1
|Bt|

∑

x∈Bt
gx, zt = 1

|Bt|
∑

x∈Bt
Zt
x and ỹt = yt + zt. The optimality condition for wt =

argmin
w∈C

{

〈
∑

x∈Bt
gx+Zt

x

|Bt| , w〉+ γt ·DΦ(w,wt−1)

}

has the form:

〈ỹt + γt(∇Φ(wt)−∇Φ(wt−1)), z − wt〉 ≥ 0, ∀z ∈ C.



Equivalently, we have

〈ỹt, wt − z〉 ≤ γt〈∇Φ(wt)−∇Φ(wt−1), z − wt〉
= γt(DΦ(z, wt−1)−DΦ(z, wt)−DΦ(wt, wt−1)), ∀z ∈ C.

Let ξt = yt −∇L(wt−1) + zt = ỹt −∇L(wt−1), then we have

〈∇L(wt−1), wt − z〉 ≤ γt(DΦ(z, wt−1)−DΦ(z, wt)−DΦ(wt, wt−1))− 〈ξt, wt − z〉.
On the other hand, we know that

L(wt)− L(z) = (L(wt)− L(wt−1)) + (L(wt−1)− L(z))
= 〈∇L(wt−1), wt − wt−1〉+ β ·DΦ(wt, wt−1) + 〈∇L(wt−1), wt−1 − z〉 (24)

≤ 〈∇L(wt−1), wt − z〉+ γt
2
DΦ(wt, wt−1) (25)

≤ γt(DΦ(z, wt−1)−DΦ(z, wt)−
1

2
DΦ(wt, wt−1))− 〈ξt, wt − z〉,

where Eq. (24) uses the fact that DΦ(wt, wt−1) ≥ 1
2 ||wt − wt−1||2 and L is smooth as well as the convexity of L while

Eq. (25) is because γt ≥ 2β.

Due to the strong convexity of DΦ(·, wt−1), we have

〈ξt, wt−1 − wt〉 ≤
γt‖wt−1 − wt‖22

4
+

||ξt||2∗
γt

=⇒ 〈ξt, wt−1 − wt〉 ≤
γt
2
DΦ(wt, wt−1) +

||ξt||2∗
γt

=⇒ 〈ξt, z − wt〉 −
γt
2
DΦ(wt, wt−1) ≤ 〈ξt, z − wt−1〉+

||ξt||2∗
γt

.

Thus,

L(wt)− L(z) ≤ γt(DΦ(z, wt−1)−DΦ(z, wt))− 〈ξt, wt−1 − z〉+ ||ξt||2∗
γt

⇒ 1

γt
(L(wt)− L(z)) ≤ DΦ(z, wt−1)−DΦ(z, wt)−

〈ξt, wt−1 − z〉
γt

+
||ξt||2∗
γ2t

.

Thus, summing over t = 1, · · · , T ,

T∑

t=1

(γ−1
t ) · (L(wt)− L(z)) ≤ DΦ(z, w0)−DΦ(z, wT ) +

T∑

t=1

( 〈ξt, z − wt−1〉
γt

+
||ξt||2∗
γ2t

)

⇒(

T∑

t=1

γ−1
t ) · (L(

∑T
t=1 γ

−1
t wt

∑T
t=1 γ

−1
t

)− L(z)) ≤ DΦ(z, w0)−DΦ(z, wT ) +

T∑

t=1

( 〈ξt, z − wt−1〉
γt

+
||ξt||2∗
γ2t

)

⇒(

T∑

t=1

γ−1
t ) · (L(ŵ)− L(z)) ≤ DΦ(z, w0) +

T∑

t=1

( 〈ξt, z − wt−1〉
γt

+
||ξt||2∗
γ2t

)

.

Take the expectation over the randomness of the noise, we get

(

T∑

t=1

γ−1
t ) · (E[L(ŵ)]− L(z)) ≤ DΦ(z, w0) +

T∑

t=1

E[〈ξt, z − wt−1〉]
γt

+

T∑

t=1

E[||ξt||2∗]
γ2t

.

To bound the term
∑T

t=1
E[〈ξt,z−wt−1〉]

γt
, let xt = yt −∇L(wt−1) and notice that

T∑

t=1

E[〈ξt, z − wt−1〉]
γt

=

T∑

t=1

E[〈yt −∇L(wt−1), z − wt−1〉]
γt

=

T∑

t=1

[〈xt, z − wt−1〉]
γt

.

We will bound
∑T

t=1〈xt, z − wt−1〉 =
∑T

t=1 ψt. First, we recall the following lemma proposed by Nazin et al. [2019].



Lemma 17. When βM ≤ λ, we have

||xt||∗ ≤ 2βM + λ ≤ 3λ⇒ |〈xt, z − wt−1〉| ≤ 3λM,

||E[xt]||∗ ≤ β ·M ·
(σ

λ

)2

+
σ2

λ
≤ 2σ2

λ
⇒ |E[〈xt, z − wt−1〉]| ≤

2σ2M

λ
,

(
E[||xt||2∗]

)1/2 ≤ σ + βM · σ
λ
≤ 2σ ⇒

(
E[(〈xt, z − wt−1〉)2]

)1/2 ≤ 2σM.

Next, we recall Bernstein’s inequality for martingales Freedman [1975],

Lemma 18. Suppose X1, · · · , Xn are a sequence of random variables such that 0 ≤ Xi ≤ 1. Define the martingale

difference sequence {Yn = E[Xn|X1, · · · , Xn−1]−Xn} and denote Kn the sum of the conditional variances

Kn =

n∑

t=1

Var(Xn|X1, · · · , Xn−1).

Let Sn =
∑n

i=1Xi, then for all ǫ, k ≥ 0 we have

Pr[

n∑

i=1

E[Xn|X1, · · · , Xn−1]− Sn ≥ ǫ,Kn ≤ k] ≤ exp(− ǫ2

2k + 2ǫ/3
). (26)

we have

Pr

{
T∑

t=1

ψt ≥
2TMσ2

λ
+ 3 · (2σM)

√
τT

}

≤ exp






− 9 · τ
2 + 2

3 · 3
√
τ ·(3λM)

2σM
√
T







≤ exp






− 9τ

2 + 3λ
√
τ

σ
√
T







≤ e−τ

for all τ = O
(

σ2T
λ2

)

.

Thus, for all τ = O
(

σ2T
λ2

)

w. p. 1− e−τ ,

T∑

t=1

ψt ≤ O

(
TMσ2

λ
+ σM

√
Tτ

)

.

Next we bound the term of
∑T

t=1 E[||ξt||2∗]. It is notable that

E[||ξt||2∗] = E[‖xt + zt‖2∗] ≤ 2‖xt‖2∗ + 2E[‖zt‖2∗] = 2‖xt‖2∗ + 2g2,

with

g2 = O(
1

|Bt|
log(nδ ) · dκ(βM + λ)2 · log(1/δ)

nǫ2
) = O(

log(nδ ) · dTκ(βM + λ)2 · log(1/δ)
n2ǫ2

).

Thus, it is sufficient for us to bound
∑T

i=1 ‖xt‖2∗ =
∑T

i=1 φi. Similar to Lemma 17 we have the following result

Lemma 19. [Nazin et al., 2019] When M ≤ λ, we have

E[φi] ≤ (σ +
Mσ

λ
)2 ≤ 4σ2,

φi ≤ (2M + λ)2 ≤ 9λ2,

[E(φ2i )]
1
2 ≤ (σ +

Mσ

λ
)(2M + λ) ≤ 6λσ.



Thus, by Berstern’s inequality, we have if τ = O
(

σ2T
λ2

)

Pr[

T∑

t=1

||xt||2∗ ≥ 4σ2T + 18λσ
√
Tτ ] ≤ exp(− 9τ

2 + 3
√
τλ

σ
√
T

) ≤ exp(−τ).

In total, let γt = γ̄, we have with probability at least 1− 2 exp(−τ)

E[L(ŵ)]− L(θ∗) ≤ O

(
DΦ(θ

∗, w0) · γ̄
T

+
Mσ2

λ
+
σM

√
τ√

T
+
σ2

γ̄
+
Mσ

√
τ√

T γ̄
+

log(nδ ) · dTκ(βM + λ)2 · log(1/δ)
n2ǫ2γ̄

)

.

(27)

Let γ̄
T = O(

(βM+λ)
√

d log(1/δ)

nMǫ ), and since DΦ(θ
∗, w0) = Φ(θ∗) ≤ κM2

2 we have

E[L(ŵ)]− L(θ∗) ≤ Õ

(

Mσ2

λ
+
σM

√
τ√

T
+
Mσ2

γ̄
+

(βM + λ)Mκ
√

d log(1/δ)

nǫ

)

.

Let λ = σ
√
nǫ

4
√

κ2d log(1/δ)
≥ max{β, 1}M , we have

E[L(ŵ)]− L(θ∗) ≤ O

(

Mσκ 4
√

d log(1/δ)√
nǫ

+
σM

√
τ√

T
+
Mσ2

γ̄

)

.

Let γ̄ =
√
T , then

√
T = O( Mnǫ

(βM+λ)
√

d log(1/δ)
), and it holds that

E[L(ŵ)]− L(θ∗) ≤ O

(

M max{σ2, σ} 4
√

κ2d log(1/δ)
√

log(1/δ′)√
nǫ

)

w.p. at least 1− δ
′

.

D ADDITIONAL THEOREMS AND PROOFS

Theorem 14. For the ℓdp space with 1 < p < 2, suppose Assumption 4 holds and assume n is large enough such that

O((
√
nǫM

κ 4
√

d log(1/δ)
)

2
3 ) ≥ max{β, 1}M . For any 0 < ǫ, δ < 1, Algorithm 7 is (ǫ, δ)-DP. Moreover, if we set {γt} = γ =

√
T ,

T = nǫ

Mλ
√

d log(1/δ)
and λ = O((

√
nǫM

κ 4
√

d log(1/δ)
)

2
3 ). Then for any failure probability δ′, the output ŵ satisfies the following

with probability at least 1− δ′

E[L(ŵ)]− L(θ∗) ≤ O

(

M
4
3
κ

2
3 (d log(1/δ))

1
6

√

log(1/δ′)

(nǫ)
1
3

)

,

where the expectation is taken over the randomness of noise, and the probability is w.r.t. the dataset D.
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We propose our method in Algorithm 7. Note that there are two key differences compared to Algorithm 4. First, since we

do not need the privacy amplification via shuffling, there is no shuffling step. Secondly, instead of adding noise to each

truncated gradient gx, here we add a generalized Gaussian noise to the averages of the gradients for each batch. In the

following we will prove our theoretical results in Theorem 14.

Proof. The proof of DP is just by the Generalizer Gaussian mechanism. For utility, the proof is almost the same as in the

proof for Theorem 10, while the only difference is the noise. Similar to (27) we have the following result with probability

at least 1− 2 exp(−τ)

L(ŵ)− L(θ∗) ≤ O

(
κM2γ̄

T
+
Mσ2

λ
+
σM

√
τ√

T
+
σ2

γ̄
+
Mσ

√
τ√

T γ̄
+
dT 2κ(βM + λ)2 · log(1/δ)

n2ǫ2γ̄

)

. (28)



Algorithm 7 Truncated DP Batched Mirror Descent

1: Input: Dataset D, loss function ℓ, initial point w0 = 0, smooth parameter β and and λ.

2: Divide the permuted data into T batches {Bi}Ti=1 where |Bi| = n
T for all i = 1, · · · , T

3: for t = 1, · · · , T do

4: for each x ∈ Bt do

5: gx =

{

∇ℓ(wt−1, x) if ||∇ℓ(wt−1, x)||∗ ≤ βM + λ

0 otherwise

6: end for

7: Let

8: wt = argmin
w∈C

{

〈

∑

x∈Bt

gx

|Bt|
+ Zt, w〉+ γt ·DΦ(w,wt−1)

}

, where Zt ∼ GG||·||+(σ
2
1) with σ2

1 = O
(

κ(βM+λ)2·log(1/δ)
|Bt|2ǫ2

)

,

|| · ||+ is the smooth norm for (E, || · ||∗). κ = min{ 1
p−1 , log d} and Φ(x) = κ

2 ||x||2κ+
with κ+ = κ

κ−1 .

9: end for

10: return ŵ = (
∑T

t=1 γ
−1
t )−1 ·∑T

t=1 γ
−1
t wt

Take γ̄ =
√
T then we have

L(ŵ)− L(θ∗) ≤ O

(
κM2

√
τ√

T
+
M2

λ
+
dT 3/2κλ2 · log(1/δ)

n2ǫ2

)

.

Take T = nǫ

Mλ
√

d log(1/δ)
we have

L(ŵ)− L(θ∗) ≤ O

(

κM
√
λ 4
√

d log(1/δ)
√
τ√

nǫ
+
M2

λ

)

.

Take λ = O((
√
nǫM

κ 4
√

d log(1/δ)
)

2
3 ) ≥ max{β, 1}M we have w.p at least 1− δ′

L(ŵ)− L(θ∗) ≤ O

(

M
4
3
κ

2
3 (d log(1/δ))

1
6

√

log(1/δ′)

(nǫ)
1
3

)

.

Theorem 15. For the ℓdp space with 2 ≤ p ≤ ∞, suppose Assumption 4 holds. Then the Algorithm 1 in Kamath et al.

[2022] is (ǫ, δ)-DP for all 0 < ǫ, δ < 1. Moreover, suppose the loss function is non-negative, there exists R = O(1) such

that ‖∇L(w)‖∗ ≤ R for all w ∈ C and 3) in Assumption 5 holds. then the output satisfies

E[L(w)]− L(θ∗) ≤ O

(

d
3
2− 1

p

√
n

+
d

3
2− 1

2p

√
nǫ

)

. (29)

D.2 PROOF OF THEOREM 15

Kamath et al. [2022] study DP-SCO with heavy-tailed data in Euclidean space and propose an (ǫ, δ)-DP algorithm for any

0 < ǫ, δ < 1 that achieves an expected excess population risk of O(M d√
n
+

√
Md

5
4√

nǫ
), where M is the ℓ2-norm diameter of

the constraint set C, under the following assumptions

Assumption 5. 1) The loss function ℓ(w, x) is non-negative, differentiable and convex for all w ∈ C. 2) The loss function

is β-smooth. 3) The gradient of L(w) at the optimum is zero. 4) There is a constant σ such that for all j ∈ [d] and w ∈ C
we have E[〈∇ℓ(w, x)−∇L(w), ej〉2] ≤ σ2, where ej is the j-th standard basis vector. 5) For any w ∈ C, the distribution

of the gradient has bounded mean, i.e., ‖∇L(w)‖2 ≤ R.

For ℓdp space, we know that L-Lipschitz w.r.t ‖·‖ implies L-Lipschitz w.r.t ‖·‖2. Moreover, E[||∇ℓ(w, x)−∇L(w)||2∗] ≤ σ2

implies E[||∇ℓ(w, x)−∇L(w)||22] ≤ σ2 which indicates condition 4) in Assumption 5. For the diameter, it has the diameter

of d
1
2− 1

pM w.r.t ‖ · ‖2. Thus we have the following result.
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