Differentially Private (Gradient) Expectation Maximization Algorithm
with Statistical Guarantees

Abstract

(Gradient) Expectation Maximization (EM) is a
widely used algorithm for estimating the maximum
likelihood of mixture models or incomplete data
problems. A major challenge facing this popular
technique is how to effectively preserve the privacy
of sensitive data. Previous research on this problem
has already lead to the discovery of some Differen-
tially Private (DP) algorithms for (Gradient) EM.
However, unlike in the non-private case, existing
techniques are not yet able to provide finite sample
statistical guarantees. To address this issue, we pro-
pose in this paper the first DP version of (Gradient)
EM algorithm with statistical guarantees. To do
this, we propose a new mechanism for privately
estimating the mean of a heavy-tailed distribution,
which significantly improves a previous result in
[Wang et al., 2020, and it could be extended to
the local DP model, which has not been studied
before. Next, we apply our general framework to
three canonical models: Gaussian Mixture Model
(GMM), Mixture of Regressions Model (MRM)
and Linear Regression with Missing Covariates
(RMC). Specifically, for GMM in the DP model,
our estimation error is near optimal in some cases.
For the other two models, we provide the first fi-
nite sample statistical guarantees. Our theory is
supported by thorough numerical experiments.

1 INTRODUCTION

As one of the most popular techniques for estimating the
maximum likelihood of mixture models or incomplete data
problems, Expectation Maximization (EM) algorithm has
been widely applied to many areas such as genomics [Laird,
2010], finance [[Faria and Gongalves| 2013]], and crowdsourc-
ing [Dawid and Skenel|1979]. EM algorithm is well-known
for its convergence to an empirically good local estima-
tor [Wu et al.,|1983]]. Recent studies have further revealed

that it can also provide finite sample statistical guarantees
[Balakrishnan et al.l [2017b} |[Zhu et al., 2017, |Wang et al.,
2015} Y1 and Caramanis}, 2015]). Specifically, [Balakrishnan
et al., [2017b] showed that classical EM and its gradient
ascent variant (Gradient EM) are capable of achieving the
first local convergence (theory) and finite sample statistical
rate of convergence. They also provided a (near) optimal
minimax rate for some canonical statistical models such as
Gaussian mixture model (GMM), mixture of regressions
model (MRM) and linear regression with missing covariates
(RMO).

The wide applications of EM also present some new chal-
lenges to this method. Particularly, due to the existence of
sensitive data and their distributed nature in many appli-
cations like social science, biomedicine, and genomics, it
is often challenging to preserve the privacy of such data
as they are extremely difficult to aggregate and learn from.
Consider a case where health records are scattered across
multiple hospitals (or even countries), it is not possible to
process the whole dataset in a central server due to privacy
and ownership concerns. A better solution is to use some
differentially private mechanisms to conduct the aggrega-
tion and learning tasks. Differential Privacy (DP) [Dwork
et al.,|2006] is a commonly-accepted criterion that provides
provable protection against identification and is resilient to
arbitrary auxiliary information that might be available to
attackers.

Thus, to be able to use (Gradient) EM algorithm to learn
from these sensitive data, it is urgent to design some DP
versions of the (gradient) EM algorithm. [[Park et al.| 2017]]
proposed the first DP EM algorithm which mainly focuses
on the practical behaviors of the method. Their algorithm
needs quite a few assumptions on the model and the data,
which make it difficult to extend to some canonical mod-
els mentioned above. Furthermore, unlike the aforemen-
tioned non-private case, their algorithm does not provide
any finite sample statistical guarantee on the solution (see
Related Work section for detailed comparison). Thus, it is
still unknown whether there exists any DP variant of the
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(gradient) EM algorithm that has finite sample statisti-
cal guarantees.

To answer this question, we propose in this paper the first
(g,8)-DP (Gradient) EM algorithm with finite sample sta-
tistical guarantees. Specifically,

* We first show that, given an appropriate initialization
Bt (i.e., ||B™M — B*|l2 < k||B*||2 for some constant
K € (0,1)), if the model satisfies some additional as-
sumptions and the number of sample # is large enough,
the output 37" of our DP (Gradient) EM algorithm
is guaranteed to have a bounded estimation error,

B8P — B*|l2 < O(d—\/g), with high probability, where
d is the dimensionality and 7 is an upper bound of the
second-order moment of each coordinate of the gradi-
ent function. To get the result, we propose a new mech-
anism for privately estimating the mean of a heavy-
tailed distribution, which is based on a finer analysis of
the mechanism given by [Wang et al.,2020]. Moreover,
our mechanism could be easily extended to the local
privacy model, which is the first result on the problem.
Thus, we believe our mechanism could be used in other
machine learning problems.

e We then apply our general framework to the three
canonical models: GMM, MRM and RMC. Our pri-
vate estimator achieves an e}stimation err(gr that is upper
bounded by 0(\/%), 0(%) and O(%) for GMM,
MRM and RMC, respectively. We note that they are
the first statistical guarantees for MRM and RMC in
the Differential Privacy model, and the error bound for
GMM is near optimal in some cases. We also conduct
thorough experiments on the these three models. Ex-
perimental results on these models are consistent with
our theoretical analysis.

Due to the space limit, some additional background and ex-
periments and omitted proofs are included in the Appendix.
The source code of experiments can also be found in the
Supplementary Material.

2 RELATED WORK

As we mentioned previously, designing DP version of EM
algorithm is still not well studied. To our best knowledge,
the only work on DP EM algorithm is given by [Park et al.,
2017]). However, their result is incomparable with ours for
the following reasons. Firstly, our work aims to achieve
finite sample statistical guarantees for the DP EM algo-
rithm, while [Park et al.,|2017]] mainly focuses on designing
practical DP EM algorithm that does not provide any statisti-
cal guarantees. Particularly, [[Park et al.l 2017] assumed that
datasets are pre-processed such that the ,-norm of each data
record is less than 1. This means that their algorithm will
likely introduce additional bias on the statistical guarantees.
Secondly, [Park et al., [2017]] studied only the exponential
family so that noise can be directly added to the sufficient
statistics. However, most of the latent variable models do

not satisfy such an assumption. This includes the MRM and
RMC models to be considered in this paper.

In this paper, we implement our general framework on three
specific models, and DP GMM is the only one that has
been studied previously. Specifically, [Nissim et al., 2007]
provided the first result for the general k-GMM based on
the sample-and-aggregate framework. Later on, [Kamath
et al., [2019]] improved the result by a factor of Vd /€, and
also claimed that their sample complexity is near optimal.
Compared with their result, our proposed algorithm ensures
that when € is some constant, it has the same sample com-
plexity. Also, although their algorithm has polynomial time
complexity, it is actually not very practical and thus no prac-
tical study has been conducted. Moreover, their algorithm is
heavily dependent on a previous clustering algorithm; it is
unclear whether it can be extended to other mixture models.
From these two perspectives, our framework is more general
and practical.

3 PRELIMINARIES

Let Y and Z be two random variables taking values in the
sample spaces % and 2, respectively. Suppose that the pair
(Y,Z) has a joint density function fg- that belongs to some
parameterized family {fg-|B* € Q}. Rather than consider-
ing the whole pair of (Y,Z), we observe only component Y.
Thus, component Z can be viewed as the missing or latent
structure. We assume that the term /g (y) is the margin distri-
bution over the latent variable Z, i.e., hg(y) = [4 fp(y,2)dz.
Let kg (z|y) be the density of Z conditional on the observed
_ fpa)

BRION

Given n observations yi,y,---,y, of Y, the EM algo-
rithm is to maximize the log-likelihood maxgcq £4(B) =
Y1 loghg(y;). Due to the unobserved latent variable Z, it
is often difficult to directly evaluate ¢,(f). Thus, we con-
sider the lower bound of ¢,(f3) . By Jensen’s inequality, we
have

variable Y =y, that is, kg (z[y)

n

l[f"(ﬁ) _g”(ﬁ/)] =z %Zn:/gfkﬁ’@b’i)logfﬁ(yuz)dz
i=1"-
- ,llizn%/g,kﬁ’(dyz‘)10gfp'(yz‘,z)dz. (1

Let Qu(B;B') = 1Y% qi(B;B’), where
a(B:) = [ 7kﬁf(z\y,~>logfﬁ<y,~,z>dz ®)

Also, it is convenient to let Q(f; ) denote the expectation
of 0,(B;B’) w.rt {y;}!_,, that is,

O(B:B') = Eyng. / ko @y)log fy(n2)dz. ()

We can see that the second term on the right hand side of
is independent on 3. Thus, given some fixed ', we can

"We use ¢(3; B') for general sample y.



maximize the lower bound function Q,(8;p’) over B to
obtain sufficiently large ¢,(B) — ¢,(B’). Thus, in the ¢-th
iteration of the standard EM algorithm, we can evaluate
On(+;B") at the E-step and then perform the operation of
B! = maxgeq 0(B:B') at the M-step. See [McLachlan
and Krishnan, 2007|] for more details.

In addition to the exact maximization implementation of
the M-step, we add a gradient ascent implementation of the
M-step, which performs an approximate maximization via a
gradient descent step.

Gradient EM Algorithm [Balakrishnan et al., 2017b]
When Q,(-; B) is differentiable, the update of B’ to B'*!
consists of the following two steps.

* E-step: Evaluate the functions in (2) to compute
On (3 B7).-

*» M-step: Update B'*! = B +nVQ,(B";B"), where V
is the derivative of Q,, w.r.t the first component and 7
is the step size.

Next, we give some examples that use the gradient EM algo-
rithm. Note that they are the typical examples for studying
the statistical property of EM algorithm [Wang et al., 2015}
Balakrishnan et al., |2017bl (Y1 and Caramanis|, [2015| |[Zhu
et al|[2017]). See Appendix [C|for their specified Vg;(B; ')

in @).

Gaussian Mixture Model (GMM) Let y;,---,y, be ni.i.d
samples from Y € R? with
Y=Z-B"+V, 4)

where Z is a Rademacher random variable (i.e., P(Z =
+1)=P(Z=-1)=4), and V ~ #(0,0621,) is indepen-
dent of Z for some known standard deviation o.

Mixture of (Linear) Regressions Model (MRM) Let

(x1,51), (x2,¥2), -, (xn,yu) be n samples i.i.d sampled
from Y € R and X € R? with

Y =Z(B".X)+V, &)

where X ~ .4(0,1), V ~ .4(0,62), Z is a Rademacher
random variable, and X,V Z are independent.

Linear Regression with Missing Covariates (RMC) We
assume that ¥ € R and X € RY satisfy

Y =(X,p")+V, 6)

where X ~ .4(0,1;) and V ~ .4 (0,6?) are independent.
Let x1,x3,- -+ ,x, be n observations of X with each coordi-
nate of x; missing (unobserved) independently with proba-
bility p,, € [O, 1).

Next, we provide several definitions on the required prop-
erties of functions Q,(+;-) and Q(-;). Note that some of
them have been used in previous studies on the statistical
guarantees of EM algorithm [Balakrishnan et al., [2017b|
Wang et al., 2015 |Zhu et al., 2017].

Definition 1. Function Q(-;8*) is self-consistent if f* =
argmaxgeqo Q(B;B8%). That is, B* maximizes the lower
bound of the log likelihood function.

Definition 2 (Lipschitz-Gradient-2(y, #)). Q(-;-) is called
Lipschitz-Gradient-2(y, %), if for the underlying parameter
B* and any 8 € £ for some set A, the following holds

IVO(B:B") =VOB: B2 <VIB—=Bl2. (D)

We note that there are some differences between the defi-
nition of Lipschitz-Gradient-2 and the Lipschitz continuity
condition in the convex optimization literature [Nesterov,
2013]. Firstly, in , the gradient is w.r.t the second com-
ponent, while the Lipschitz continuity is w.r.t the first com-
ponent. Secondly, the property holds only for fixed B* and
any f3, while the Lipschitz continuity is for all §,3’ € A.

Definition 3 (u-smooth). Q(-;5*) is p-smooth, that
is if for any B,B' € &, Q(B:B*) = Q(B":B*) + (B —
B)TVO(B":B*)—5IIB" B3

Definition 4 (v-strongly concave). Q(-; %) is v-strongly
concave, that is if for any B,B' € B, Q(B;B*) <
O(B":B*)+(B—B)"VO(B":B*) — 3IB'—Bl>-

In the following we will propose the assumptions that will
be used throughout the whole paper. Note that these assump-
tions are commonly used in other works on statistical anal-
ysis of EM algorithm such as [Balakrishnan et al., [2017al
Zhu et al., 2017, Wang et al.,2015].

Assumption 1. We assume that function Q(-;-) in (3) is
self-consistent, Lipschitz-Gradient-2(y, %), p-smooth, v-
strongly concave over some set Z. Moreover, we assume
that Vj € [d] and B € £, there is some known upper
bound 7 on the second-order moment of the j-coordinate
of Vg(B,B), i.e., Ey(V,q(B,B))* < t and for each i € [n],
V;qi(B,B) is independent with others.

Definition 5 (Differential Privacy [Dwork et al., [2006])).
Given a data universe 2, we say that two datasets D, D’ C
Z are neighbors if they differ by only one entry, which is
denoted as D ~ D'. A randomized algorithm <7 is (g,8)-
differentially private (DP) if for all neighboring datasets
D, D’ and for all events S in the output space of <7, we have
P(« (D) € S) < efP(/(D') € S) + 6.

Definition 6 (Gaussian Mechanism). Given a function
q: " — RP, the Gaussian Mechanism is defined as:
Ms(D,q,€) = q(D)+Y, where Y is drawn from a Gaus-

sian Distribution .4 (0,62%1,) with o > Y———1222% 21n( 125/ e
Ay (q) is the £»-sensitivity of the function g, i.e., Az( )=
supp.pr ||g(D) — q(D')||2. Gaussian Mechanism preserves
(g, 0)-differentially private.

Due to the similarity with the Gradient Descent algorithm
and the simplicity of illustrating our idea compared with
the original EM algorithm, in this paper, we will mainly
focus on DP Gradient EM algorithm. See Appendix [I] for
the statistical guarantees of the DP EM algorithm.



4 MAIN METHOD

4.1 MAIN DIFFICULTY
In the previous section, we introduced the Gradient EM

algorithm, which updates the estimator via the gradient
VO, (B"; B"). It is notable that this idea is quite similar to
the Gradient Descent algorithm. Moreover, we know that
there are several DP versions of the (Stochastic) Gradient
Descent algorithm such as [Bassily et al.|[2014] [Wang et al.}
2017,Song et al., 2013, |Wang and Xu, |2019, |Lee and Kifer,
2018]). The key idea of DP Gradient Descent is adding some
randomized noise such as Gaussian noise to preserve DP
property in each iteration, and by the composition theorem
of DP ([Dwork et al.} 2014]), the whole algorithm will still
be DP. Thus, motivated by this, to design a DP variant of
Gradient EM algorithm, the most direct way is adding some
Gaussian noise to the gradient VQ,(; B") in each iteration
and updating the parameter.

However, it is notable that we cannot add Gaussian noise
directly to the gradient in the Gradient EM algorithm. The
main reason is that all previous DP Gradient Descent algo-
rithms need to assume that each component of the gradient
(which correspond to the function Vg; in ) is bounded, or
the loss function is O(1)-Lipschitz, such as Logistic Regres-
sion, so that its /-norm sensitivity is bounded and thus the
Gaussian mechanism can be used. However, in the Gradi-
ent EM algorithm, each component (Vg;(B'; B*) in (@) is
unbounded in most of the cases. For example, we can easily
show the following fact.

Theorem 1. Consider the GMM in @]), there is a case with
fixed 3, such that for each constant ¢, with positive proba-
bility w.r.t y we have ||Vg(B;B)|]2 > c.

Thus, to design a DP (Gradient) EM algorithm, the major
difficulty lies in how to process the gradient to make its
sensitivity bounded. Two main approaches are used in pre-
vious work: (1) [Park et al.l 2017]] assumed that datasets
are pre-processed such that the ¢, norm of each sample is
bounded by 1. However, as mentioned previously, our goal
is to achieve the statistical guarantees for the DP (Gradi-
ent) EM algorithm. If a similar approach is adopted in our
algorithm, the (manual) normalization can easily destroy
many statistical properties of the data and force the private
estimator to introduce additional bias, making it inconsis-
tentE] (2) Instead of normalizing the datasets, [Abadi et al.,
2016] first clipped the gradient to ensure that the £;-norm
of each component of the gradient is bounded by the thresh-
old C, and then added Gaussian noise (see Algorithmﬂ] for
more details). However, such an approach may cause two
issues. First, in general clipping gradient could introduce
additional bias even in statistical estimation, which has also
been pointed out in [[Song et al.,|[2020|]. Second, the thresh-
old C heavily affects the convergence speed and selecting
the best C is quite difficult (see Experimental section for

2 An estimator f3, is consistent if lim, e, || — B*||2 = 0.

more details). Due to these two reasons, it is hard to study
the statistical guarantees of Algorithm[I] Thus, we need a
new approach to pre-process the gradient to ensure that it
has not only bounded #;-norm but also consistent statistical
guarantee.

Algorithm 1 Clipped DP Gradient EM
Input: D = {y;}?_, C RY, privacy parameters €, §; On(-+)
and its ¢(-;-), initial parameter B°, gradient norm C, step
size 1 and the number of iterations 7.

1: forr=1,2,---,T do

2: For each i € [n], evaluate the function in (2) to com-

pute g;(B:p").
3: Clip gradient:

Vai(B B

max{1, ||qu'(ﬁ”c"2ﬁ"' )2 } ’

4: Update B’ = B’ 4+ n(VO.(B" LB +
A (0,C*c%1y), where VOB LB =

ti(ﬁtfl;ﬁtfl) _

1
%Z?ZIti(ﬁ“l;B”l) and o2 = cTr:;'ff for some
constant c.
5: end for
6: Return BT

4.2 OUR METHOD
In this section, we will propose our method to overcome the

aforementioned difficulties. Since our method is motivated
by a robust and private mean estimator for heavy-tailed
distributions, which was given in [Wang et al.| 2020]], and
it is derived from the robust mean estimator in [[Holland,
2019]. To be self-contained, we first review their estimator.
We now consider a 1-dimensional random variable x and
assume that xy,xp,---,x, are i.i.d. sampled from x. The
estimator consists of three steps:

Scaling and Truncation For each sample x;, we first re-
scale it by dividing s (which will be specified later). Then,
the re-scaled one was passed through a soft truncation func-
tion ¢@. Finally, we put the truncated mean back to the origi-
nal scale. That is,

s & X; ~
ﬁi;d’(?) ~EX. 8)

Here, we use the function given in [Catoni and Giulini,
2017],

dW=122 isva ©)

A key property for ¢ is that ¢ is bounded, that is,

242
Y2

¢(x)| <

Noise Multiplication Let 1,15, -+, 7, be random noise
generated from a common distribution 1 ~ ) with En = 0.



We multiply each data x; by a factor of 1+ 1;, and then
perform the scaling and truncation step on the term x;(1 +
7n;). That is,

Sy XM
i (10)

Noise Smoothing In this final step, we smooth the multi-

plicative noise by taking the expectation w.r.t. the distribu-
tions. That is,

£=Ex(n) =

n
Y [o T aym).
n= s
Computing the explicit form of each integral in (TI)) depends
on the function ¢(-) and the distribution y. Fortunately,
[Catoni and Giulini, 2017] showed that when ¢ is in @) and
X~ (0, %) (where 3 will be specified later), we have for

any aand b >0

b2 3
Eno(a+by/Bn) = 1—?)—€+C(a b),

where C(a,b) is a correction form which is easy to imple-
ment and its explicit form will be given in the Appendix
D

12)

The estimation error of the mean estimator X after these
three steps is given as following.

Lemma 1 (Lemma 5 in [Holland, 2019]). Let xi,x2,---,x,
be i.i.d. samples from distribution x ~ pt. Assume that there
is some known upper bound on the second-order moment,
i.e., Eyx? < 7. For a given failure probability ¢, if set f =

210g% and s = , then with probability at least 1 — §

nt
Zlog%

/71
we have |£ —Ex| < O( Tog‘:)

To obtain an (&, §)-DP estimator, the key observation is that
the bounded function ¢ in (9) also makes the integral form

of (11) bounded by M . Thus, we know that the /;-norm

sensitivity is ‘4‘f Hence the query

52 log%

%(D) :XA+Z,Z’\J </V(07 62),0-2 == O(W)

13)

will be (€, §)-DP, which leads to the following result.

Lemma 2 (Theorem 6 in [Wang et al., 2020]). Under the
assumptions in Lemma with probability at least 1 — { the
following holds

Tlog % log%
ne?

|/ (D) —E(x)| < O( ): (14)

Although in Lemma [2] we just need to assume that x has
bounded second order moment instead of bounded norm,
there are still other two problems: First, Lemma[2is directly

followed by Lemma [I| with the same parameter s and f3.
However, due to the noise we add, is it possible that we
can further improve the result by some other specific s and
B? Second, by using the previous parameters we cannot
extend to the local DP model since it will have a huge
error (we can easily see that in the local DP setting, the

s*log L
mechanism is equivalent to lb with 62 = O(2 n(::% 8) =

0(8%) which could be considered as a constant error since
it is not decayed to zero when n increases. See Appendix [H
for details). Thus, can we extend the method to the local DP
model? In the following we provide affirmative answer of
these two questions through finer analysis of the mechanism
(T3). Our analysis is started from a Legendre transform of
the mapping given by [[Catoni, 2004], see Appendix [E|for
details.

Theorem 2. Let xq,x7,--- ,x, be i.i.d. samples from distri-
bution x ~ . Assume that there is some known upper bound
on the second-order moment, i.e., Euxz < 7. For a given

failure probability &, if set = L

1 — _ Vner
loggands oz Liog”* §

then with probability at least 1 — { mechanism satisfies

Tlogl/2 Liogd
CEx| <O(|) —— 225,
ne
Remark 1. Compared with (T4)), we can see the error bound
in l) improves a factor of O( \[) We will also see that,

by using a similar analysis, we can have a local DP version

|7 (D) 15)

Tlog 1/2 lo
T) (see Ap-
pendix [H for details). To our best knowledge, this is the first
result on private mean estimation of heavy-tailed distribu-
tion in the local DP model.

of (13) with an error bound of O(

Inspired by the previous private 1-dimensional mean estima-
tion, we propose our method (Algorithm 2). In Algorithm
the key idea is that, in the ¢-th iteration of Gradient EM
algorithm, we first apply the previous private estimator to
each coordinate of the gradient VQ,(B'~!; B'~1), and then
perform the M-step. We can easily show that Algorithm[2]is
(g,6)-DP.

Theorem 3 (Privacy guarantee). For any 0 < €,6 < 1, Al-
gorithm[2]is (&, §)-DP.

In the following, we will show the statistical guarantee for
the models under Assumption |1} if the initial parameter S°
is closed to the underlying parameter * enough.

Theorem 4. Let the parameter set B ={f : || — B*|2 <
R} for R = k|| 3*||2 for some constant x € (0,1). Assume
that Assumption [1| holds for parameters y, %, I, v, T satis-

fying the condition of 1 — 2 +Z € (0,1). Also, assume that

B9 — B*|]2 < &, nis large enough so that

2 /
a(( 1 d T logélogg

v—y eR?

a7



Algorithm 2 DP Gradient EM Algorithm

Input: D = {y;}"_, C R, privacy parameters €,8, Q(;-) and its ¢;(-;-), initial parameter B° € %, T which satisfies
Assumption the number of iterations T (to be specified later), step size 1 and failure probability { > 0.

1: Letéz\/logé—l—s—\/log%,s:;]:gfi,ﬁ: log%.
2: fort=1,2,--- . T do

3: For each j € [d], calculate the robust gradient by - and add Gaussian noise, that is

=

V(BB

1
;i 252

g (B =

1

(quz'(ﬁtl7ﬁtl)(l

-1 2\ wi 2 _ 16s2dT _ 4dTt
where Z; A(0,07) with 0= = 955 = onpTE"

4: Let vector VQ,(B'~!) € R denote VQ, (B ") = (g7 ' (B 1), g5 (BN, .85 1 (B1)).

5: Update B! = B/~ + nﬁQn(ﬁt_l)
6: end for

)_

g V.qi(ﬁt—17ﬁt—l) ‘V.qi(ﬁlflﬁf*l)‘
2y e ,—
+ni; ( s / S\/B

652

viqius”,ﬁ”))

>+z;1, (16)

Then, with probability at least 1 — {, we have, for all ¢ €
[T], B' € #.1f it holds and if taking T = O(*Y logn) and

Vv

_ 2
n= IHV,wehave
R ~ T, dﬁ/log%log%ﬁ
||ﬁ _B ||2§0(R (V—')/)3 \/IE )7 (18)

where the O-term and Q-term omit logd, logn and other
factors (see Appendix for the explicit form of the result).

Remark 2. There are several points that need to note.
Firstly, the assumptions of the parameter set 8 and the ini-
tial parameter B° are commonly used in other papers on
statistical guarantees of (Gradient) EM algorithm such as
[Balakrishnan et al., [2017al |[Zhu et al., 2017, Wang et al.|
2015]. Even though Theorem [4]requires that the initial esti-
mator be close enough to the optimal one, our experiments
show that the algorithm actually performs quite well for any
random initialization. Secondly, in we need to assume
that 7 o ﬁ, where R is the radius of Z. This is due to that
in Algorithm we need to keep each ' € 2 under pertur-
bation. When R is small, we have to let the noise be small
enough, which means that n should be large enough. Finally,
for specific models, R, v, L,y are constants, this means that

the error in 1' is 0(%). However, here T depends on the

model, which may also depend on d and ||3*|]>.

We can see the main idea of our algorithm is motivated by a
result of estimating the mean of heavy-tailed distributions
in DP model. It is notable that recently [Kamath et al.[[2019]]
and Brunel and Avella-Medinal[2020]] also studied the same
problem. In Appendix [G we will talk about why we cannot
use their method to our problem (or why ours is better).

5 IMPLICATIONS FOR SOME SPECIFIC
MODELS

In this section, we apply our framework (i.e., Algorithm2)
to the models mentioned in the Preliminaries section. To
obtain results for these models, we only need to find the
corresponding A, 7,k,R,v, |, T to ensure that Assumption|I]
and the assumptions in Theorem 4 hold. Due to the space
limit, theoretical results of RMC are included in Appendix

[Al

5.1 GAUSSIAN MIXTURE MODEL

Lemma 3 ([Balakrishnan et al., [2017b} |Y1 and Caramanis),
2015[). If @ > r, where r is a sufficiently large con-
stant denoting the minimum signal-to-noise ratio (SNR),
then there exists an absolute constant C > 0 such that the
properties of self-consistent, Lipschitz-Gradient-2(y, %),
u-smoothness and v-strongly concave hold for function
Q(;-) with y = exp(—Cr?),u = v = 1,R = k||B*||2,k =
7o and B={B:|B B2 <R}.

Lemma 4. With the same notations as in Lemma 3] for each
B € A, the j-the coordinate of Vg(B;p) (i.e., Viq(B;B))
satisfies the following inequality

E,(V;q(B:B))* < O((IB*[1% +6%)).
Also, for fixed j € [d], each V;q;(B:B), where i € [n], is
independent with others.

Combining with Lemma and Theorem [4] we have the
following statistical guarantee for GMM.

Theorem 5. With the same notations as in Lemma [3] in
Algorithm assume that [|8° — B*||» < §||[3*||2 and n is
large enough so that

) (dzx/ B2 + 02y /log 5 log ¢
o)
el|B*13

y<n (19



Moreover, if take T = O(logn) and n = O(1), then we have
with probability at least 1 —

d{‘/log&logC\/Hﬁ (X +62)
vne (20)

where the O, Q terms omit logarithmic and other factors.

1B = B[l < O(IIB" 2

Remark 3. Note that if we assume that o, [|*[]> = O(1),
then the error in is upper bounded by 0(\/%). This
means that to achieve the error of o € (0, 1), the sample
) It is notable that for GMM, the near
optimal rate is O(dz( e as) [Kamath et al., 2019]. Thus
when € is some constant, our result matches their near opti-
mal rate. However, as mentioned in previous section, their

algorithm is too complicated to be practical and it is difficult
to extend their method to other Mixture models.

complexity is 0(

5.2 MIXTURE OF REGRESSIONS MODEL

Lemma 5 ([Balakrishnan et al., [2017b, |Y1 and Caramanis),
2015)). If @ > r, where r is a sufficiently large constant
denoting the required minimal signal-to-noise ratio (SNR),
then function Q(+;-) of the Mixture of Regressions Model
has the properties of self-consistent, Lipschitz-Gradient-
2(y, A), u-smoothness, and v-strongly with y € (0, }‘),/.L =
v=1,28={B:|B~Bl2 <R}, R=K[|B*|2, and k= 3,

Lemma 6. With the same notations as in Lemma[3] for each
B € A, the j-the coordinate of Vg;(B:B), i.e., Vq(B:B)
satisfies the following inequality

E,(V,q(B:B))* < O(max{(||B*|3+0)*.d|IB*[3})-

Also, for fixed j € [d], each V jg;(B; B) is independent with
others for i € [n].

Theorem 6. With the same notations as in Lemma [5] in
Algorithmassume that ||B° — B*[]» < é”ﬁ*”z and n is
large enough so that

d* max{(||B*[3 +0*).d|B* ||2}\/10g5103;
ellB*l3

Moreover, if take 7 = O(logn) and 11 = O(1), then we have,
with probability at least 1 — &,

d[|B* 1210z § \/max{|| 13+ 02,d| (13}

s )
(21)

where the O-term and Q-term omit logarithmic factors.

1B —B*|l2 < O(

Remark 4. If we assume that ||*|| and G = O(1), then the

error in is upper bounded by O( r) which has an

additional factor of v/d compared with the bound in l)
for GMM. We note that this is the first statistical result for
MRM in the DP model.

6 EXPERIMENTS

In this section, we evaluate the performance of Algorithm [Z]
on three canonical models: GMM, MRM, and RMC. Since
in the paper we mainly focus on the statistical setting and
its theoretical behaviors, we evaluate our algorithm on both
the synthetic data and the real world datasetsﬂ ADULT,
IPUMS-BR and IPUMS-US. Note that due to space limit,
we refer readers to Appendix |J| for the experimental settings
and more experimental results.

Baseline Methods We compare our approach against two
baseline algorithms. One is the Gradient EM algorithm [Bal{
akrishnan et al., 2017b]], namely, EM, as our non-private
baseline method. The other is clipped DP Gradient EM (Al-
gorithm [T), namely, clipped, as our private baseline method.
As we mentioned previously, previous DP EM method in
[Park et al.l 2017] needs strong assumptions on the model
and the data itself to ensure DP property, which do not hold
for our models. Thus we can not compare with their method.

Experimental Results Firstly, we will show that the per-
formance of Algorithm|[I]is heavily affected by the clipping
threshold C. As shown in Figure[l]} we conduct the algorithm
on three canonical models with fixed data size n, dimension
data d, and privacy budget €. If C is set to be a small value
(e.g., 0.1), it significantly reduces the adding noise in each
iteration but at the same time it leads much information loss
in gradient estimation. Conversely, if C is set too high (e.g.,
5 or 10), the noise variance becomes high, resulting in intro-
ducing too much noise to the estimation. Thus, selecting the
optimal C is quite difficult since too large or too small values
of C has a negative effect on the performance of Algorithm|[T]
Even for C = 1 that achieves lowest estimation error among
other threshold values, the estimation error does not decay
as the number of iterations increases, whereas under the
same privacy guarantee, our proposed algorithm achieves
the same convergence behavior as EM, and thoroughly out-
performs Algorithm|[I] For fair comparison, we fixed C = 1
for Algorithm I]in the following experiments.

In Figure 2] 3] and [} we test how privacy budget €, data
dimension d and data size n affect the estimation error
IIB — B*||2 of all algorithms on three canonical models over
iteration . We can see that the estimation error of our pro-
posed algorithm in each of the three models decreases when
€ increases, d decreases or n increases, which are consistent
with our theoretical results. In these figures, our algorithm
exhibits nearly the same convergence behavior as the non-
private baseline method and outperforms Algorithm 1.

We further present the estimation error of different algo-
rithms on GMM model over three real world datasets, as
shown in Figure[5] We can observe that our proposed algo-
rithm still outperforms the baseline algorithms under differ-
ent privacy budgets.

3http://archive.ics.uci.edu/ml/datasets/Adult, http:
/finternational.ipums.org
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A IMPLICATION TO LINEAR
REGRESSION WITH MISSING
COVARIATES

Lemma 7 ([|Balakrishnan et al., 2017b, Y1 and Carama+
nis, 2015]). If @ <rand p, < m, where r is a
constant denoting the required maximum signal-to-noise
ratio (SNR) and b = r2(1 + k)? for some constant k € (0, 1),
then function Q(-;-) of the linear regression with missing
covariates has the properties of self-consistent, Lipschitz-
Gradient-2(y, %), u-smoothness and v-strongly with

b+ pu(1+2b+20%)
B 1+b
B ={B:|IB—B"l2 <R}, where R =k|B"[]>.

<l,u=v=1,

We can show the following the second-order moment bound

for Vq(B,B)-

Lemma 8. With the same assumptions as in Lemma([7} for
each B € Zand j € [d], V,q(B;B) satisfies

E(Vjq(B:B))* < O((Vd|B* |2+ 0> +IB*I3)).

Also, for fixed j € [d], each V;q;(B:B), where i € [n], is
independent with others.

(22)

Combining with Lemma[7] [§]and Theorem 4] we have the
following statistical guarantee for RMC.

Theorem 7. With the same notations as in Lemmal[7] in Al-
gorlthmlassume 18O —B*|l2 < 2||[3 |l2, n is large enough
so that

d(Vd||B* |+ +]||3)°/log §log §
BT )=

Moreover, if we take T = O(logn) and 1 = O(1), then we
have, with probability at least 1 — {,

1B = B[l <
0~(d\4/10g%10g%||B*||2(\/3||ﬁ*||2+02 + HB*lI%))

\Vné
where the O, Q terms omit logarithmic and other factors.
Note that unlike the previous two models, we assume here

that SNR is upper bounded by some constant which is un-
avoidable as pointed out in [Loh and Wainwright, [2011]].

B PRELIMINARIES

First, we will we recall some definitions and lemmas on the
sub-exponential and sub-Gaussian random variables. See
[Vershynin, |2010] for details.

11

Definition 7. For a sub-exponential random vector X, its
sub-exponential norm || X ||y, is defined as

_ 1
X[y, =supp~" (EIX|7)7.
p=1

Definition 8 (£-sub-exponential). A random variable X
with mean E(X) is &-sub-exponential for & > 0 if for all

] < & E{exp(r[X —E(X)])} < exp(51).

Lemma 9. Let X be a sub-exponential random variable,
then there are absolute constants C, ¢ > 0, such that when

U
Elexp(tX)] < exp(CE||X|3,,)-

Lemma 10. From Definition[7} [§]we can see that for a zero-
mean sub-exponential random variable X, it second-order
moment is bounded, i.e., EX* < O(|[X|[3, )-

Lemma 11 (Bernstein’s inequality). Let X,---,X, be n
i.i.d realizations of v-sub-exponential random variable X
with mean p. Then,

2t

1 n
-V Xxi—ul>n< —nmin(——. —)).
Pr(|n ;X, K| >1) <2exp(—nmin( 1)2,21)))

Definition 9. A random variable X is sub-Gaussian with
variance o2 if for all 7 > 0, the following holds
2
Pr(| X —EX|>1) <2 ——).
r(IX —BX]| > 1) < 2exp(—5 )
Definition 10. For a sub-Gaussian random variable X, its
sub-Gaussian norm || X ||y, is defined as

_1 1
X1y, = supp~2(E[X|") 7.
p>1

Lemma 12. If X is sub-Gaussian or sub-exponential, then
1X = EX[ly, <2 X]ly, or [[X —EX[|y, < 2[X][ly, holds,
respectively.

Lemma 13. For two sub-Gaussian random variables X;, X5,
Xj - X, is a sub-exponential random variable with

1X1 - Xa |y, < Cmax{[[X; 13, [ X213, }-

Lemma 14. Let X;,X>,- -+, X} be k independent zero-mean
sub-Gaussian random variables, and X = Zk X;. Then,
X is sub-Gaussian with ||X||%,,2 < C): 1 11X ||2 for some
absolute constant C > 0.

Next, we provide some symmetrization results of random
variables, which will be used in our proofs. See [Boucheron
et al.,[2013] for details.



Lemma 15. Lety;,y;,---,y, be the n independent realiza-
tions of the random vector Y € %/, and .% be a function class
defined on #%'. For any increasing convex function ¢(-), the
following holds

E{¢[sup IZf yi) —E(f(Y))[]} <E{¢[sup IZ& yi)l
feF = feF =
where €1, - -, €, are i.i.d Rademacher random variables that

are independent of yy,- -+, y,.

Lemma 16. Letyy,---,y, be n independent realization of
the random vector Z € & and .% be a function class defined
on Z.If Lipschitz functions {¢;(-) }/_, satisfy the following

forallv,v' € R
() <Lv—|

|9i(v) —

and ¢;(0) = 0, then for any increasing convex function ¢ (-),
the following holds

E{¢]| sup Z&dh

feFi=

I} <E{¢ ZILSUPZ& oD},

feF i=

where g1, -+ , &, are i.i.d Rademacher random variables that
are independent of yi,---,y,.

C IMPLICATION FOR LATENT
VARIABLE MODELS

Gaussian Mixture Model We have

Va(B:B) =[2wp(y)—1]-y

where wg(y) =

- B, (23)

1
1+exp(—(B.y)/0?)"

Mixture of Regression Model In this case, we have

Va(B:B) = (2wp(x,y) = 1)-y-x—xx" -, (24
where wg (x,y) = W.
Linear Regression with Missing Covariates In this
case, we have
Vq(B:B) =y -mp(x.y) — Kg(x™.y)B,  (25)

where the functions mg(x°™,y) € R? and Kp(x**,y) €
R4*4 are defined as:

y—(ﬁ,z®x>
o2 +|[(1-2) © B3

mp(xObS,y)=z®x+ (I1-2)©B (26)

and
Kg (x"bs,y) = diag(1 —z) +mg (XObsay) : [mB (XObS,y)]T
—[(1=2) ©mg(x*,y)]- [(1 —2) ©mp (x>, 0)]",  (27)

where vector z € R? is defined as z ;= 1 if x; is observed
and z; = 0 is x; is missing, and © denotes the Hadamard
product of matrices.
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D EXPLICIT FORM OF (12)

We first define the following notations:

2— 2
V.= u7v+ — V2+a
b b
F_o:=®(—V_),F :=®(-V,;)
V2 v?
E_:=exp(— > ), Eq i=exp(— %)

where ® denotes the CDF of the standard Gaussian distribu-
tion. Then

Cla,b)=Ti+ T+ +Ts,
where

2V2

Tl: 3 ( —F+)
&3

B=—(a-)(F-+F)

b a?
I3:= \/TTI(I_E)(IQ_E*)

ab2

b’ W\g 2
Ts = —— ((24+V~ 24+V])E
N7 (( JE- —( JE+).

E PROOF OF THE IMPROVED
METHOD

Proof of Theorem2]. Let Z(IR) denote all the probability
measures on R, with an appropriate o-field tacitly assumed.
Consider any two measures v,vg € Z(R),and h: R— R a
vo-measurable function. By [Catoni, 2004, it is proved that
a Legendre transform of the mapping v — K(v,vy) takes the
form of a cumulant generating function, namely

dV() )

sup /h Ydv(u log/exp
(28)

where the supremum is taken over v € &(R). Following
[[Catoni and Giulini, 2017]] here we use the Kullback diver-
gence for the Legendre transform of the mapping, so we
define

VV()

g
K(v,vo) = / 1og(d—vvo)dv (29)

iff vo < v, and K(v,vg) = +oo otherwise.

This identity is a technical tool and the choice of 4 and v
are parameters that can be adjusted to fit the application.
In actually setting these parameters, we will follow the
technique given by [Catoni and Giulini, [2017]], which is
later adapted by [Holland, |2019]. Note the term

Xi + MiX;
S

9(

)



depends on two terms, namely the data x; and the artificial
noise 7; (if we fix s). Thus, for convenience we denote

).

By the definition of ¢ we can see that f : R* — R is mea-
surable and bounded. Next, we denote that

xX+nNx
s

f(n,x):=¢(

n

Y f(n.x) —c(n),

i=1

h(n)

where c(€) is a term to be determined shortly. Take k(1)
into (28) we have

B:=sup /h Ydv(u) — K(v,vo))
:log/expz f(n,x;)—

Taking the exponential of this B and then taking expectation
with respect to the sample, we have

E/ expexzplf n, xl)))v(n)

-/

The first equality comes from simple log/exp manipulations,
and the second equality from taking the integration over
the sample inside the integration with respect to v, valid via
Fubini’s theorem. By setting

n))dv(n),

Eexp(B

I 1I[‘Eexp n x,)))v( )
exp(c

c(n) = nlogEexp(f(1,x)).

With this preparation done, we can start on the high-
probability upper bound of interest:

Pwy%@:mme%>
— El(exp(B)C > 1)
—<Eexp(B){ = ¢,

where the last equality is due to Eexp(B) = 1 by setting
c(n) =nlogEf(n,x). Note that since our setting of ¢(n)
is such that ¢(+) is v-measurable (via the measurability of
f), the resulting 4 is indeed measurable w.r.t v. Thus by the
definition of B we have with probability at least 1 — {

sup /h Ydv(u

Take the implicit form of B via #(1) and ¢(n
by n form both side we have

1 n
2 | L)

K(v,v)) < log

x| —

and divide

~—

< / logEexp(£(n,x))dv(n)

K(v,vo) + log% 30)
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It is notable that by definition £ in satisfies
s n
=2 o 2= [ Y snxoivin)

K(v,v0) +slog }
Ss/logEexP(f(mx))dV(n)JrS(VVo)SOgc'

xl + nl-xl

n
O

In the following we will bound the term of
intlogEexp(f(n,x))dv(n) and K(v,vp). Starting with the
first term, recall the definition of the truncation function
¢(-) in (9) we can it satisfies that for all u € R

2 2

“log(1—u+ L )< ¢()<log(l+u+%). 31

Thus we have

[1ogEf(m.x)av(m)

) 1)

:/logEeXP(¢(
(1+mEx  (1+n)%Ex?
g/log(l—&- . 732

X 2 )C2
/((1+Sn)E +(1+;7S)ZIE1 ()

)dv(n)

<

2

Ex Ex
= *(1 +Enn)+ﬁEn(1 +1)?

]ExEx2 1

22(1+B)

Where the last equality is due to 7 ~ .47(0, %)

(32)

For term K (v, vg), it is critical to select an appropriate mea-
sure v to easily calculate the KL-divergence. Here we set

vy ~ A (1, ) In this case we have
« u— 2 u2 u2
o (1 —2u 2
- /:o w zﬂnexp(—ﬁ?)du
_B a3

5
Thus, combining with (32) and (33) we have with probability
atleast 1 — ¢
Ex? 1
2 <Ex+ —(
B ¢

2s
Thus, by the definition of <7(D) and the concentration
bound of Gaussian distribution we have with probability

atleast 1 —2¢,
slog%,B slogé,/log%
P o ). (35)

s B

+1)+ - ( +log — ) 34)

T

sB

o/ (D) —Ex <



Next,we will get a lower bound of </ (D) — Ex. The proof

is quite similar as in the above proof. The main difference

is here we set

xX+nx
s

f(m,%) = —o( )-

Thus we have
_s i /
n :

<s / logEexp(f(1,x))dv(n) +

-xl + nl-xl

=2 [ X rnvpastm)

sK(v,vo)+slog%
n

sK (v,

2 v(n) +

< s/logEeXp(—¢(

By (31) we have

n

< s [logEexp(—¢ (1 ))dv(m) +

2 .X2
<ol [T gy 4 [ gy

sK(v,vp) +slog%
+ P —

n
Ex® 1 s B 1
<- - (= (= -).
< —Ex+ F (ﬁ+l)+n(2+logg)

Thus we have

1 1 [1.o 1

t slogzB slogzy/logs

oLy ST T ). (36)
sB n en

In total we have with probability at least 1 —4¢,

Ex— o/ (D) <

slogtp  slogt,/log L
[Ex— o/ (D)| £ O(5+ ——+——2—2). 37)

B
We can get the proof by setting f = log% and s =
N
logélog]/4 % :

F EXTENDING TO LOCAL DP MODEL

The most important advantage of our new mechanism is it
could be easily extended to the local DP model. We have
the following result:

Theorem 8. Let x;,x;,- -+ ,x, be i.i.d. samples from distri-
bution x ~ u. Assume that there is some known upper bound
on the second-order moment, i.e., ]E“)c2 < 1. Consider the
following the local DP mechanism:

s

and the coordinator (server) output <7 (D) =
we can see the whole algorithm is (&g, 6)-

(38)

1 %;. Then
DP Moreover,

14

vo)+slog%

sK(v,vo) +slog %

for a given failure probability £, if set § = logé and

s= %, then with probability at least 1 — {, <7 (D)
log z log'/* 5

satisfies

Tlogl/zélog%
\/ne

Proof of Theorem[8l The proof of (g,8) is just followed
by Gaussian mechanism and here we omit it. For the esti-
mation error, it is notable that <7 (D) is equivalent to

|/(D) — Ex| < O( ) (9)

2 1
s“log <
A(D)=£+2,Z~ N (0,0%),6° = 023

). (40)

n

Thus, by the same idea as in the proof of Theorem [3] we can
see that we have

. slog%ﬁ slog% log 5
Ex—.o/(D)| < .41
B () <0l + e+ R

B
We can get the result by setting f = logé and s =
Vet 0

log % 10g1/4 % ’

G COMPARING WITH PREVIOUS
RESULTS

We can see the main idea of our algorithm is motivated by
a result of estimating the mean of a d-dimensional heavy-
tailed distributions in DP model. It is notable that recently
[Kamath et al.,|2019]] and [Brunel and Avella-Medina, 2020]]
also studied estimating the mean of heavy-tailed distribu-
tions differentially privately. In this section, we will provide
a detailed comparison with these work.

[Brunel and Avella-Medina, [2020] derived concentration
inequalities for differentially private median and mean esti-
mators building on the Propose-test-release (PTR) mecha-
nism. Specifically, for the 1-dimensional mean estimation
problem, they showed that if the data samples sampled from
some distribution with bounded third-order moment, then
there is an (g,8)-DP algorithm whose output M(X) sat-

1

isfies [M(D) — E(x)|> < O(M) with probability at
least 1 — &’. We can see our result in Theorem [2]is much
more better than theirs. Moreover we can see in Theorem
[2) we just need the bounded second-order moment assump-
tion while [Brunel and Avella-Medina! [[2020] needs bounded
third-order moment. Moreover, there is no experimental
study of their algorithm. Thus, from this view, our method
is better than theirs.

Recently, |[Kamath et al.| [2019] studied the private mean
estimation problem under finite O-th order moment assump-
tion with 8 € [2,e0). Specifically, if the data distribution



only has finite second-order moment, then they showed
that if || E(x)||>» < R for some known constant R, then there
is an (€,8)-DP algorithm whose output M(X) satisfies

~ 1
IM(D) — E(x)[3 < 0(“%5) with probability at least 0.7
(see Theorem 4.7 in|[Kamath et al.|[2019] for details). Comb-

ing with this result and our proofs we can get an improved

1/d‘L’lognlog%
\/ Bné

Thus, from this perspective, our bounds are larger. However,
there are one critical issue that forbid using the result of [Ka{
math et al., [ 2019]]; That is, we can see that these two bounds
hold with probability at least 1 — 0.7 x T, where T is the
iteration number, and 7 = O(logn) in our algorithm. That is
when in the large scale case or when the condition number
g is large, the probability of success will be closed to or
even less than zero, which is meaningless. Compared to this,
our results hold with probability 1 — &' for any 6’ € (0,1).
Moreover, the algorithm in [Kamath et al.l [2019]] is quite
complicated and impractical, and it is unclear whether we
can extend their method to the local DP model. Thus, our
method is more practical and more general.

upper bound of ) (we omit the proof here).

H OTHER OMITTED PROOFS

Proof of Theorem[Il Note that by (23)), we have

2 .
[+exp(—(B,y)/o2)

W.Lo.g, we assume that 8 = (1,0,---,0)” and ¢ = 1 in the
GMM model. Then, we can see that for each constant ¢ > 0,
if

Va(B;B) = -B.

y
||§||2 >c+| B2

(B,y) >1n2
y>0

and denote the set of y satisfying the above assumptions as
7, we have

1Vq(B:B)ll2 = 15112~ 1Bl = .

The above assumptions hold if y (In2 +
1,3s,a3,d4, - ,a4), where s > ¢ and as,---,a; > O.
We can easily see that P[y € .’] > 0 since y follows a
mixture of Gaussian distributions. O

Proof of Theorem[3 We first give the definition of zCDP
in [Bun and Steinkel 2016].

Definition 11. A randomized algorithm o7 : 27" — % is
p-zero Concentrated Differentially Private (zCDP) if for all
neighboring datasets D ~ D" and all & € (1,0),

Do (</ (D) (D)) < pa,
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where Dy (P||Q) = ﬁlogExwp[(%)“’l] denotes the
Rényi divergence of order .

We first convert (€, 6)-DP to p-zCDP by using the following
lemma

Lemma 17 ([Bun and Steinke), 2016]]). Let M : 27" —
% be a randomized algorithm. If M is p-zCDP, it is

(p +2\/plog%,6)-DP for all 6 > 0.

Thus, it suffices to show that Algorithm is & =
( \/ e+logt —
shows that adding some Gaussian noise will preserve zCDP.

\/ log%)z—zCDP. The following lemma

Lemma 18. Given a function ¢ : 2" — RP?, the Gaussian
Mechanism is defined as: .#(D,q,€) = q(D) +Y, where
Y is drawn from a Gaussian Distribution .4(0,02I,) is
A3

??-ZCDP. Ay(gq) is the £-sensitivity of the function ¢, i.e.,

Aa(q) = supp.p [19(D) — (D) ]2,

By Lemmawe know Az(g;’l (B~1)) = %% By simple
calculation we can show that in each itergtztion and each
coordinate, outputting g‘j_1 (B'~") will be £--zCDP. Thus
by the composition property of zZCDP, we know that it is
&2-zCDP. O

Proof of Theoremdl Consider 7-th iteration, under the as-
sumption that B'~! € 2 we have

IB" = B2 = 1B~ +nVQu(B'™") — B*[l2
<|B " +nVo(B B ) — B2

+IIVOu (B = VOB B2 (42)
We first bound the first term of ({@2).
1B +nVo(B LB ) — B2
< B +nVO(B T BY) ~ B2
+nVO(B' BT VOB T B (43)

We then consider the first term of (@3). We note that the
self-consistent property in Definition [[|implies that

B* :argm;XQ(B;ﬁ*), (44)

which means that B* is a maximizer of Q(f; ). Thus, the
proof follows from the convergence rate of the strongly
convex and smooth functions Q(f3; f*) in [Nesterov, [2013].

For the step size n = o We have

B 40V B =B < (B! B
(45)



Thus, by the Lipschitz-Gradient-2(y, %) condition, we get
the following of (#3))

1B + VOB B ) — B2
< B+ 0V B — B
+n[IVO(B": ) — VOB BY) s
< BB =By - B

u+v
= (122 Ty g1 g 46)
u+v
where the the last inequality is due to taking n = ﬁ

Next we bound the second term of (42)). For convenience we
denote the first sum of (i.e., the robust mean estimator )
as g;’l(ﬁ’_l). So we have

IWQ (B =V B3

Z BT —EV,q(B ) (47)

> (&7 (B ~EV,q(B )

MQ

d
~1p2
L1z
j=1
(48)

The first equality is due to Assumption [I] For the second
term of (48), by the high probability concentration bound of
Gaussian random variable we have for fixed j with probabil-

~.
Il
-

. ¢ 1 2 STdTlog
ity atleast 1 — 3, |Z;'[* < —; B . Thus with probability
at least 1 —  we have

87d*T log %

d
|Zt‘71|2 S _
j; J 9Bné
For the first term of (@8), by Lemma [I] and taking
¢ = g, we have for a fixed j € [d], (&} HB=1 —

EVq(B'~1:B1))* <O
least 1 — §, we have

tlog %
——=). Thus, with probability at

drlog%)

(&7 (B —EVq(B B < Of

HM&

n

Hence, we have, with probability at least 1 — 2, for some
constant Cp

d,/’L'Tlog%
Vo, (B —vo(B g, < C .
VO (B ) =VO(B™ B )2 <G B
(49)

Plugging (9) and (6) into (#2), we have, with probability
1 —2¢ and for some constant C3,

1B = B"l2 <(1— )||l3’ L= B2
d/tTlog4
+C3 2 ° (50)
u+v v/ Bné
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Next, we will show that when 7 is large enough, if || —
B*|l> < & then ||B" — B*||> < £ holds (and thus € ) for
all 7 € [T] if holds for all ¢ € [T'] (and this hold with
probability at least 1 —27T°().

We will use induction. When ¢ = 1, by (50) we have

1B = B*l2
) e
v—Y 0 * ¢
S =2—)[IB" =B [l2+Cs : =
HA+v p+v  \/Bné
d
v—7y R 2 d TT]OgZ
<(1- )5 +GC3 : —.
p+v'2 H+v  \/Bné
d,/rTlog
IfC3“iv-T§C 25+ -5, then we can see that || B! —

B*|> < &. This holds if

1 2d2’CT10g%
v—Yy R2f3E

C4( <n

for some constant Cy.

Next, we will assume that (50 . ) holds forallr € [T] and B €

2 for all t € [T]. For convenience, we denotel—1—2; L.
By (50), we have
1B~ B*Il2
V=Y\T 1RO _ g
<(1-22-% -
<(-22 0718 - p
) d,/‘L’Tlog%
+C(1+1+1%4--) : -
u+v \/PBné
/ d
v—y TR 1 2 d TTlOgZ
<2y L2 TV
,LL+V 2 1—1 [J+V Bng
/ d
v—7 R 1 d ‘L’Tlogz
=(1=2-—)" 5 +0(— —)-
u+v’ 2 v—7y \/M

Taking T = O(‘v‘%”; log %), we have, with probability at least
1-2T¢,

e dvmg”l"gg |

Since € = \/log% +&— \/log %, by using the Taylor series
of the function v/x+ 1 — /x, we have & = O( F) Thus,
log 5

we have the proof by taking § = 2= O

Proof of Lemmaldl To prove Lemmafd] we need a stronger
lemma.



Lemma 19. The j-the coordinate of Vg(f;f) is &-sub-

exponential with
§=C/IlIB|a+0o?,

where Cj is some absolute constant. Also, for fixed j € [d],
each V;q;(B; ), where i € [n], is independent with others.

(5D

If Lemma 19| holds, then by Lemma [0 we can get Lemma
%l O

Proof of Lemma[I9 From it is oblivious that each
Viqi(B;B), where i € [n], j € [d], is independent with oth-
ers. Next, we prove the property of sub-exponential for each
coordinate.

Note that

Via(B:B)) = 2wp(y) — 1ly; — Bjs

and
EyV;q(B;B)) =Ey(2wg(Y)Y; —Y;) — B;.

By the symmetrization lemma in Lemma|[T5] we have the
following for any > 0

E{exp(t|[V,q(B:B) —EV;q(B:B)])}
<Efexp(t|e[2wp(y) — lly;))},  (52)

where € is a Rademacher random variable.

Next, we use Lemmal[16|with f(y;) = y;,.# = {f}. ¢(v) =
[2wg(y) —1]v and ¢ (v) = exp(u-v). It is easy to see that ¢
is 1-Lipschitz. Thus, by Lemma[T6| we have

E{exp(rle[2wp(y) —1]y,1)} < E{exp[2]ey,[]}.  (53)

By the formulation of the model, we have y; = zﬁj* +
vj, where z is a Rademacher random variable and v; ~
A (0,02). It is easy to see that y; is sub-Gaussian and

Iillye =11z B +villys < €3/ llz- Byl + v,

<C\/IBjP+o% (54

for some absolute constants C,C’, where the last inequality
is due to the facts that ||z; B ||y, <[B;|and [[vi ]y, < "2
for some C” > 0.

Since |ey;| = |y;|. l&yilly, = [ljlly, and E(ey;) = 0, by
Lemma 5.5 in [Vershynin, 2010] we have that for any
there exists a constant C*) > 0 such that

E{exp(u’-€-y;)} < exp(u?-CY - (|B5+06%)). (55)
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Thus, for any # > 0 we get
E{exp(2t-|e-yj)} < 2exp(r*-C¥) - (|B5 +0%)) (56)

for some constant C%), Therefore, in total we have the fol-
lowing for some constant C(®) > 0

E{exp(?|[V;q(B;B) —EV;q(B;B)])}
<exp(t*-C9) - (|B3+0?)) <exp(*-C9)- (| B*||12+6?)).
(57)

Combining this with Lemma|l2]and the definition, we know
that V;q(B;B) is O(\/||B*||2 + 02)-sub-exponential.  [J

Proof of Lemmal6l Just as in the proof of Lemma[d] we
will show that V ;q(; B) is sub-exponential instead.

Lemma 20. For each B € 4, the j-the coordinate of
Vq(B;B) is &-sub-exponential with
& = Cmax{|[B*|3+ 07,1, Vd||f*||2},

where C > 0 is some absolute constant. Also, for fixed
Jj € [d], each Vq;(B;B), where i € [n], is independent with
others.

(58)

Proof of Lemma[20] From it is oblivious that for fixed
Jj € [d], each Vq;(B;B), where i € [n], is independent with
others. Next, we prove the property of sub-exponential.

Note that EV;q(B;B) = E2wg(x,y)y - x; — B;. Thus, we
have

Via(B;B)—EV;q(B:B) =2wg(x,y)yx; — E[]2wg (x,y)yx;]

A
+ Pl B—Blj— yxj . (59)
—_— N~
B c
For term A and any ¢ > 0, we have
E{exp(t|A])} < E{explt[2ewp (x,y)yx;|]}- (60)

Using Lemma on f(yx;) =yxj, & = f, ¢i(v)
2wg(x,y)v and ¢ (v) = exp(uv), we have

E{explt|2ewp (x,y)yx;|] < Efexp[drleyx[]}.  (61)

Note that since y = z(B*,x) +v and |[|z(B*,x)|y, =
1{B*,x)|ly, < C||B*||2 and ||v||y, < C'o for some constants
C,C'>0,by Lemmawe know that there exists a constant
C" > 0 such that

¥lly, < C"\/11B*3 + 0>

Thus, by Lemma[T3]we have

(62)

Iy, < max{C"(||B*[3+07),C""}
< Cqmax{||B*|3+ 0% 1}. (63)



For term B, we have

d
Eexplt|B|]} = E{explr] ) xjxBe — Bjll},
k=1
where xj,x; ~ JV(O, 1). Now, by Lemma we have
||xjxkﬁk||l,,] < |Bi|C® for some constant C©

we get | Ty xj5Billy, < OBl

Also, we know that ||B||; < v/d||B||>. Furthermore, we

have [|Bl2 < [[B*[l2+ [B* — Bll2 < O([|B*[|2). since B €
% (by assumption). From Lemma [13] we get ||B||y, <

(©)\/d||B*||» with some constant C(®) > 0.

(64)

Thus, we know that there exist some constants C (M > 0 and
C®) > 0 such that

IVia(B:B) —EVq(B:B)lly,
<D max{||B* |3+ 62 1} +C®Vd| B
< O max{||B* |3+ 0%, 1,Vd||B*||2}.

This means that V;q(B;B)
62,1,7/d||B*||2})-sub-exponential.

is
O
O
Proof of Lemma[8l Just as in the proof of Lemma 4] we

will show that V jg(f; ) is sub-exponential instead.

Lemma 21. For each f € % and j € [d] , V,q(B;p) is
&-sub-exponential with

E=Cl(14k)(1+kr)*Vd|| B2
+max{(1+kr)%, 6% +|B*[3}]
= O(Vd||B*|2+ o>+ IB7]3)

for some constant C > 0. Also, for fixed j € [d], each
Viqi(B:B), where i € [n], is independent with others.

(65)

O

Proof of Lemma[21] From (23] it is oblivious that for fixed
Jj € [d), each Vq;(B;B), where i € [n], is independent with
others. Next, we prove the property of sub-exponential.

For simplicity, we use notations i = mg(x°™,y), m =

B(x°*,y), K = Kg(x9™,y), and K = Kg(x°™,y). Then, we
have

Vaq(B:B) —EVq(B: B) = mg(x°™,y)y — Elmg (x°™,y)y]
. A
+ (Kp (x*™,y) —EK3 (x**,y)) B (66)

> 0. Thus,

O(max{||B*[3 +
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For the j-th coordinate of A, we have
Aj=rm;y—E[m;y]. (67)

We note that 77; is a zero-mean sub-Gaussian random vari-
able with |||y, < C(1+kr) (see Lemma B.3 in [Wang
et al.,2015])

Lemma 22. Under the assumption of Lemma 6, for each
Jj € [d], mj is sub-Gaussian with mean zero and |77y, <
C(1+4kr).

Thus, by Lemma[T3]we have

_ = 112 2
1y, < Cmax{{[m;l[y,, l[y[ly, }

< C'max{(1+kr)*, 0%+ B*[3}, (68)
where the last inequality is due to the fact that y = (*, x) +v
Thus, [|yl[3, < C3([[{B*,x) ]I}, + [IvI[3,,) for some Cs.

For term B, we have
) d d
Ki=(1—zj)Bi+ Y mjmBe— Y [(1—zj)mj][(1 — zi)mg] B
T k=1 k=1
D
(69)

For term C, we have the following (by Example 5.8 in
[Vershynin, [2010])

11 =2)Billys < 1B1 < 1Bl < (1+K)V5B7lo- (70)
For term D, by Lemma[22] and [T3| we have
d d
1Y i Belly, < Z | Bl 17|y,
=1
d
Z|ﬁk\c2 1+kr)* < Ca(1+kr)?|Bll1. (T1)

Since B € %, we get ||B|li < Vd||Bll2 < (1+k)Vd|B*|2.

Thus, we have

d
1Y jiBilly, < Ca/s(1+kr)?[IB 2. (72)
k=1
For term E, since 1 —z € [0, 1], we have ||(1 —z;)m||y, <
|l ]|y, < C(1+kr). Hence, by Lemmawe get
d
1Y 10 = 2)m][(1 =z Belly,
k=1
d
< Y BT =2 (1 = 2]y,
k=1
d
< Y IBC(+kr)* < Co(1 +kr)* V5[ B2 (73)
k=1



This gives us

IRllyy < Crv/s(L+R)(L+kr)? (B[l (74)
By Lemma(T2] we get
IVia(B:B) —EVq(B:B) Iy <2[IV,a(B:B)llv,
< G[(1+K)(1+kr)> /5] B*2
+max{(1+kr)>, 0> +[|B*[3}].  (75)
O

I STATISTICAL GUARANTEES OF DP
EXPECTATION MAXIMIZATION
ALGORITHM

Motivated by idea of the Differentially Private version of
Gradient EM algorithm in the previous section, in this sec-
tion, we will propose a DP variant of EM algorithm.

Recall that compared with the Gradient EM algorithm, the
main difference in EM algorithm is that, in each iteration, we
will update the parameter as "' = argmaxgcq Qu(B: B"),
where the Q,-function is in @ Thus, to design a DP variant,
we need to post-process the parameter f/+! via the private
1-dimensional mean estimation of heavy-tailed distribution.
Just as the way we post-process the Gradient in Algorithm
we wish to post-process each coordinate of B! to make
it DP. However, unlike the Gradient EM algorithm where
the VQ,(B;B’) can be written as a sum of n independent
components +¥,_; Vg;(B; '), B! in the EM algorithm
may not be written as n independent components (see the
Examples below), or even there is no explicit form of f/*!.
Thus, compared with the Assumption[I] we need addition
assumptions on the form of /™! = argmaxgcq 0. (B;B').
which may not hold for some canonical models.

Assumption 2. We assume that for a fixed ' € 4, the
optimal solution M, (B’) = argmaxgcq On(B; ') satisfies
M,(B') = 1y, f:(B'), where fi(-) is a function of y;.
Moreover, we assume that for each pair i £ i/, f;(B’), f#(B’)
are independent. For any fixed j € d, the j-th coordi-
nate of f(f3) E]has bounded second order moment, i.e.,
E(f;(B))? < 7. We also assume that function Q(;-) in
is self-consistent, Lipschitz-Gradient-2(y, %), v-strongly
concave over some set Z.

Note that compared with Assumption |1} Assumption [2|does
not need Q to be smooth. However, it needs some unnatural
assumptions in the form of M,(B’). To show that these
assumptions are strong (especially the condition that f;, fy
are independent for each pair i # i), in the following, we
will check the three canonical models in the previous section
to see whether Assumption [2holds.

4We denote function f(-) as the function for general y.
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Gaussian Mixture Model For GMM in (@), the Q func-
tion can be written as

Y. () i — B3 + 11— ()i +B1B).

1
On( -
2n =

where wg(y) = Thus, for M,(B') =

1
1+exp(—(B.y)/0?)"
argmaxgcpas On(B; B’) we have

2 & 1 &
Mn(ﬁ/):;ZW )Yi—ﬁzyh
i=1 i=1

Thus \
—a L JiP

for fi(B") = 2wp: (vi)yi — yi and for each i € [n], f; is inde-
pendent with others. Later, combing with Lemma 3| we will
show GMM satisfies Assumption 2]

:\H

Mixture of Regressions Model For MRM in (E]) the O,
function can be written as

0u(B:B') = - (—wp (i) (= {1 )P

+ 1= wpr (i, y)] 0+ (i, B))?),

where wg (x’y) = Thus, for MH(BI) =

1
1t+exp(—y(Bx)/0°)"

argmaxgcps On(B; B’) we have

1 & _ 1 LU
= (=Y xix] )7 (= Y [2wpr (xi,3i) — 1yixs).-
iz niS
Thus M, (B') = Ly, fi(B') for fi(B') = (L ¥7 xixD) "L
[2Wﬁ/(xuy,) 1]yix;. However, we can see that due to the

term of (1¥7  xxT)~!, for each i € [n], f; is dependent
with others Thus, MRM does not satisfy Assumption

Linear Regression with Missing Covariates For RMC
in (@), the 0, function can be written as

01(B:B) =, YoviBTmy (v~ 3. ¥ BT (6 0B

where the functions mg (x°*,y), K (x°*,y) are in
(26) and (@7), respectively. Thus, for M,(B") =
argmaxgcpas On(B; B’) we have

1 n
(ﬁ/):(ﬁzl{ﬁ'( ayl Zylmﬁ’ 7yl
=1
Thus  M,(B') = i fiB)  for  fi(B') =
(S X0 Kpr (%, yi)) ™! (ylmﬁ’( (’b‘,yi)) However, we

can see that due to the term of (1 Y7 1 Kpr (x5, y;)) ™!, for
each i € [n], f; is dependent with others Thus, RMC does
not satisfy Assumption



From the previous models, we can see that two of them do
not satisfy the condition of f; is independent with others.
We note that this assumption is necessary for our analy-
sis of statistical guarantees, since we will use the private
1-dimensional mean estimator, which needs the i.i.d assump-
tion on the samples. Thus, from this point of view, we can
see that our DP Gradient EM algorithm needs to be pre-
sented before the DP EM algorithm.

I.1 DP EM ALGORITHM

Next we will detail our DP EM algorithm and provide its
statistical guarantee under Assumption [2| see Algorithm
[ for details. The key idea is that in each iteration, in-
stead of post-processing the j-th coordinate of the gradient
Vgi(B'~',B'1), we will post-process j-th coordinate of
the term f;(B'~1), i.e., fi;(B'") via the previous private
1-dimension mean estimator. We can easily show Algorithm

Blis (g, 8)-DP.

Theorem 9 (Privacy guarantee). For any 0 < €, < 1, Al-
gorithm2]is (&, §)-DP.

Proof. The proof is almost the same as that of Theorem [3}
we thus omit it here. O

As in Theorem E} in the following, we will show the statis-
tical guarantee for the models under the Assumption [2] if
the initial parameter B° is close enough to the underlying
parameter 3*.

Theorem 10 (Statistical guarantee of Algorithm[3). Let the
parameter set ZZ = {f : ||B — B*||» < R} for R = «||f*||2
for some constant x € (0,1). Assume that Assumption
holds for parameters y, %, v, T satisfying the condition of
1 —2% € (0,1). Also, assume that ||[8° — B*|, < &, nis

large enough so that
_ v +/log % log %

Q
(( v—y eR?
Then with probability at least 1 — §, we have for all 7 € [T],

d*tT
)2 (77)

) <n.

B! € A. If it holds and if we take T = O(ﬁlogn), then
we have
; y M d{‘/log%logé\/f
IB" —B*l. < O(R 3 ), (78)
(=7 Vne

where the O-term and Q-term omit logd, logn and other
factors.

Proof of Theorem[I0l For each iteration we denote
M(B'~!) = argmax Q(B; B~ '), by the strongly concavity
of Q(B;B*) we have
(VOM(B'™"):B*) = VO(B*: B*).M(B'™") —B*)
> vl|M(B") B3

20

On the other hand, by the Lipschitz-Gradient condition and
the assumption of M(B'~1), B'~! € &, we have

(VOM(B'™1): ")~ VoM(B"):p 1), B —M(B"))
<HIB =B IlIB = MB 2.

Also by the optimality of M(B'~!) we have

(VOM(B'~1):B*) = VO(B*:B*),M(B"~") — B*)
< (VOM(B'™); )~ VOM(B"): "), B"~M(B)).

Thus, we have

vIM(B) = BIE < 7IIB = B [l2ll2B — M(B )]

That is, [M(B'~") — B*[|2 < Z|| B! — B*|2. Next, we will
bound the term of ||B" — M (B~ 1)||,.

Under the assumption that f; is independent with others, just
as almost the same as in @7)-@9) via Lemma 2] we have
that with probability at least 1 — C,

) d,/tTlog4
18— M(B") 2= f(ﬁ”)—M(ﬁ”)||2<0(\/\/;)'

Thus, we have with probability at least 1 — §

d,/‘L'Tlog%
\/pné )

Since we need to make 3’ € 4, this will be true under the
assumption that

1B =Bl < LB =Bl +0f

d ’L’Tlog%
Pné
If this holds, then we have with probability at least 1 — T

Yor v dq/‘L'Tlog%

t *
- 2 < (= R+0 )
I8~ Bl < () R+ 01 =)

), we have the

)< TR
v

o(

i

(e}

Taking T = O(;* logn) and & = O( 18
og

5
result. U
Comparing with Theorem [I0] and Theorem [ if we omit
other factors instead of n,d, €, 5, we can see that the two
error bounds are asymptotically the same.

In the following we will apply our general framework to the
GMM model in (). Just the same as in Theorem [5] we will
first show that f;(f) has a bounded second order moment.

Lemma 23. Consider the function f(-) in GMM. Then, for
each j € [d] we have

Ef;(B) < O(|B*||% + o?).



Algorithm 3 DP EM Algorithm

Input: D = {y;}"_, C R, privacy parameters €,8, Q(-;-) and its fi(-) in Assumptlon' 1n1t1al parameter B° € %, © which
satisfies Assumptlonl 2| the number of iterations T (to be specified later), and failure probability &.

) _ _ Ve p _
.Lete—\/logg—l—s—\/logg,s—ﬂ:gf%,ﬁ— logZ.

2: fort=1,2,--- . T do
3: For each j € [d], calculate the robust estimator by - and add Gaussian noise, that is

n 2 (Bt—1 3 (B-1 LA - (RE—1 - (RE—1
R YR A& P T NTAAT) B
i—1 i=1 s

where f; j(B'!) is the j-th coordinate of £;(8'~!) and z- '~ #(0,6?%) with 62 = lgﬁ’f;ng = ;’ZdﬁTfé.

4: Letvectorf([i’ 1)€Rdtodenotef(ﬁ’ 1) ( (ﬁz 1) (ﬁt 1)7, 7gd 1([3:—1))_
5: Update B/ = f(B'~1).
6: end for

Proof of Lemma[23. To prove Lemma 23] we need a By the formulation of the model, we have y; = zf; +
stronger lemma. vj, where z is a Rademacher random variable and v; ~

) ) A (0,02). Itis easy to see that y; is sub-Gaussian and
Lemma 24. The j-the coordinate of f(f) is &-sub-

exponential with

1yillys = llz- B +villy, <C- \/HZ Bill, + [1v;115,

— *||2 2
&=Ciy/IB*2+ 02, (79) <c\/IBip+o? (82

where Cj is some absolute constant. Also, for fixed j € [d],

each f;;(B), where i € [n], is independent with others. for some absolute constants C,C’, where the last inequality

is due to the facts that ||z;B; ||y, <|B;|and ||vi |y, < C"c?
If Lemma[24]holds, then by Lemma[I0]we can get Lemma  for some C” > 0.
23l O

Since ley;| = Iy, l€v;llys = ly/llys and E(ey;) = 0, by
Lemma 5.5 in [Vershynin, 2010] we have that for any
Proof of Lemma[24] The proof is almost the same as that  (are exists a constant C@ > 0 such that
of Lemma [

It is oblivious that each f;(f8), where i € [n], is independent E{exp(u'-€-y))} < exp(u?-Ct. (1B |3 +0%).  (83)
with others. Next, we prove the property of sub-exponential

for each coordinate. Thus, for any 7 > 0 we get

Note that

£(B) = [2ws () — 1]y}, ]E{exp(2t~‘£~yj|)}Szexp(IZ.C(S).(mﬁJro.Z)) (84)

and for some constant C%), Therefore, in total we have the fol-
Ey fi(B) = Ey2wg (Y)Y; - Y;). lowing for some constant C®) > 0
By the symmetrization lemma in Lemma|[I5] we have the E{exp(t|[f;(B) —Ef;(B )]|)} < exp(t .C(6 (|ﬁ|2+6 )
following for any > 0 )
<exp(®-CO - (|72 +0%). (85)
Eexp(t][;(B) ~Ef; (B)])} < Efexp(r|el2ws ()~ 1]y, )},
) ) (80) Combining this with Lemma|l2|and the definition, we know
where € is a Rademacher random variable. that f;(B) is O(/||B*]|2 + 62)-sub-exponential. N

Next, we use Lemmal[l6|with f(y;) = y;, . = {f}, ¢(v) =

[2wg(y) — 1]v and ¢ (v) = exp(u-v). It is easy to see that ¢

is 1-Lipschitz. Thus, by Lemma[T6] we have Thus, combining with Lemma [3] Lemma[23]and Theorem
[I0] we have asymptotically the same result as in Theorem [3

E{exp(t|e[2wg(y) — 1]y;|)} <E{exp[2t|ey;|]}. (81)  We omit the details here.
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J ADDITIONAL EXPERIMENTS

Experimental Settings in Section [ For each of these
models, we generate synthesized datasets according to the
underlying distribution. We also utilize || — %> to mea-
sure the estimation error. Instead of choosing the initial
parameter B that is close to the optimal one, we consider
random initialization. As we will see later, even if we select
random initial parameter, the performance of our private esti-
mator is good enough. We set signal-to-noise ratio Hﬁ% =3.
For the privacy parameters, we choose € = {0.2,0.5,1}
and 6 = % We also conduct experiments on three real
world datasets: ADULT, IPUMS-BR and IPUMS-US. The
ADULT dataset includes of 48,842 data samples. The target
is to predict whether the annual income is more than $50k
or not. The [IPUMS-BR and IPUMS-US are from IPUMS-
International, which include 38,000 and 40,000 data sam-
ples of census microdata. The goal is to predict whether the
monthly income of an individual is above $300 or not. To
fit the real dataset into the GMM (Iz_f[) we process the data
as following. First, based the target we divide the whole
dataset into two clusters and take the same amount of data
record for each cluster, and then for each part we calculate
the covariance matrix and its maximal eigenvalue. Then we
take the maximal one as the o in (E]} To get the B*, we
first calculate the mean of each cluster, then we calculate
their midpoint. Next we transit all the data records along
this midpoint. After transition, the mean a cluster will be
the B*. More Experiments In Figure[6] [7]and[8] we set
T = 22 and compute the estimation error on 8 := 7. We
plot ||B — B*||2 of all algorithm on three canonical models
over data size n, data dimension d and privacy budget €.
As we can see from these figures, our proposed algorithm
(Algorithm 2) on the three canonical models significantly
outperforms the clipped algorithm (Algorithm [T)).

In Figure [9]and [T0] we compare DP EM (Algorithm 3)) with
DP Gradient EM and the original EM algorithm on GMM.
We can see that DP Gradient EM has lower error compared
with DP EM in all the cases.
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Figure 6: Estimation error of GMM w.r.t privacy budget £, data dimension d and data size n (we set 8 := BT with T = 22)
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Figure 7: Estimation error of MRM w.r.t privacy budget &, data dimension d and data size n (we set 8 := BT with T = 22)
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Figure 8: Estimation error of RMC w.r.t privacy budget &, data dimension d and data size n (we set 8 := BT with T = 22)
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Figure 9: Estimation error of GMM w.r.t privacy budget €, data dimension d and data size n (we set B := BT with T = 5)
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