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Abstract

In this paper, we propose a uniformly dithered 1-bit quantization scheme for high-
dimensional statistical estimation. The scheme contains truncation, dithering, and quan-
tization as typical steps. As canonical examples, the quantization scheme is applied to
the estimation problems of sparse covariance matrix estimation, sparse linear regression
(i.e., compressed sensing), and matrix completion. We study both sub-Gaussian and
heavy-tailed regimes, where the underlying distribution of heavy-tailed data is assumed
to have bounded moments of some order. We propose new estimators based on 1-bit
quantized data. In sub-Gaussian regime, our estimators achieve minimax rates up to
logarithmic factors, indicating that our quantization scheme costs very little. In heavy-
tailed regime, while the rates of our estimators become essentially slower, these results
are either the first ones in an 1-bit quantized and heavy-tailed setting, or already im-
prove on existing comparable results from some respect. Under the observations in our
setting, the rates are almost tight in compressed sensing and matrix completion. Our
1-bit compressed sensing results feature general sensing vector that is sub-Gaussian or
even heavy-tailed. We also first investigate a novel setting where both the covariate and
response are quantized. In addition, our approach to 1-bit matrix completion does not
rely on likelihood and represent the first method robust to pre-quantization noise with
unknown distribution. Experimental results on synthetic data are presented to support
our theoretical analysis.
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1 Introduction

1-bit quantization of signals or data recently has received much attention in both signal pro-
cessing and machine learning communities. In some signal processing problems, power con-
sumption, manufacturing cost and chip area of analog-to-digital devices grow exponentially
with their resolution [59]. Thus, it is impractical and infeasible to use high-precision data or
signals. Alternatively, it was proposed to use low-resolution, specifically 1-bit quantization,
see for instance [4, 33, 36, 58, 69, 83]. Note that, generally speaking, the quantization itself
that maps an analog signal into digital representation of a finite dictionary is an inevitable
process in digital signal processing [50, 51]. Besides, in many distributed machine learning or
federated learning scenarios, multiple parties transmit information among themselves. The
communication cost can be prohibitive for distributed algorithms where each party only has a
low-power and low-bandwidth device such as a mobile device [65]. To address the bottleneck
of communication cost, recent works have studied how to send a small number or even one bit
per entry for such distributed machine learning applications [3, 8, 85, 92].

Because of the pratical interest of 1-bit quantization in many applications, recent years
have witnessed increasing literature on high-dimensional statistical estimation from merely
binary (1-bit) data, which we sometimes refer to as 1-bit estimation. Existing works tried
to understand the interplay between recovery procedures and 1-bit quantization in some pro-
totypical estimation problems, including compressed sensing1 (e.g., [37, 40, 55, 74, 76, 89]) and
matrix completion (e.g., [10,23,34,61,67]). The main goal in this area is to design quantization
scheme for observed data, and of course, one hopes that accurate estimate can be obtained
from the quantized data produced by the scheme. Very recently, covariance matrix estimation
was also studied under 1-bit quantization by Dirksen et al. [38]; they proposed to collect 2
bits per entry for each sample by using a dithered 1-bit quantizer, and also, they developed a
covariance matrix estimator that enjoys near optimal operator norm error.

We believe, however, these theoretical results are still highly insufficient and the current
understanding on 1-bit estimation remains incomplete. For instance, almost all existing results
heavily rely on sub-Gaussianity of the underlying distribution. While many modern datasets
exhibit heavy-tailed behaviour, the 1-bit quantization of heavy-tailed data is yet to investigate.
Besides, a limitation of prior results for 1-bit matrix completion is that they cannot tolerate
unknown pre-quantization noise, as they require construction of likelihood. We also point
out that the recent results for 1-bit covariance estimation in [40] are restricted to the low-
dimensional regime.

The main goal of this paper is to promote the understanding on 1-bit estimation. Specifi-
cally, we study three fundamental high-dimensional statistical estimation problems based on
data that are quantized to one bit. The quantization scheme include the typical steps of trun-
cation, dithering, and quantization (note that truncation is for heavy-tailed data only), see
Section 1.2 for detailed discussions. We present extensive theoretical results on sparse covari-
ance matrix estimation, sparse linear regression, and low-rank matrix completion, under both
sub-Gaussian data and heavy-tailed data. Here, the underlying distribution of heavy-tailed
data is only assumed to have bounded moments of some order, as opposed to the conventional
sub-Gaussian assumption. Our estimators in sub-Gaussian regime have remarkable statistical
properties, i.e., they achieve near minimax rates (up to some logarithmic factors). In the heavy-

1This is also referred to as sparse linear regression in statistics. In this work we will adopt more statistical
conventions — we term sensing vector and (compressive) measurement as covariate and response, respectively.
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tailed regime, our estimators can still deliver a faithful estimation under a high-dimensional
scaling; while the error rates are essentially slower than the minimax ones because of a bias-
and-variance trade-off. However, to our best knowledge, these are the first high-dimensional
statistical results under such two-fold predicament, i.e., heavy-tailed distribution that breaks
the robustness, and 1-bit quantization that loses data information. For compressed sensing
and matrix completion, we prove that the rates are nearly tight if the data are quantized
under the proposed scheme and selected parameters. Here we summarize our key results and
contributions as follows (For simplicity we only consider parameters n, d, s (or r), q and omit
the others).

• In Section 2, for some zero-mean d-dimensional random vector X , we study the problem
of estimating its covariance matrix Σ∗ = E

(
XXT

)
= [σ∗

ij ], where Σ∗ has the approx-

imate column-wise sparsity structure, i.e., supj∈[d]
∑d

i=1 |σ∗
ij |q ≤ s for some 0 ≤ q < 1

and s > 0. Denote the full data that are i.i.d. copies of X by X1, ..., Xn. For sub-
Gaussian X , we i.i.d. sample the dithering noise vector {Γk1,Γk2 : k ∈ [n]} that are
uniformly distributed on [−γ, γ]d, and then dither and quantize each Xk to binary data
sign(Xk + Γk1), sign(Xk + Γk2). Based on these binary data, we propose a thresholding

estimator Σ̂, see (2.4) and (2.18). Although only two bits are collected per entry, we
show a near optimal minimax rate

‖Σ̂−Σ∗‖op . s logn
( log d

n

)(1−q)/2
.

For heavy-tailed X assumed to have bounded fourth moment, we first element-wisely
truncate the full sample Xk to be X̃k := sign(Xk) min{|Xk|, η} (element-wise operation).

Then similar to sub-Gaussian data, we deal with X̃k by dithering and quantization. Our
estimator possesses an estimation error bound for operator norm error

‖Σ̂−Σ∗‖op . s
( log d

n

)(1−q)/4
.

• In Section 3, we study sparse linear regression Yk = XT
k Θ∗ + ǫk, k ∈ [n] where the

desired signal Θ∗ = [θ∗i ] ∈ R
d satisfies

∑d
i=1 |θ∗i |q ≤ s for some 0 ≤ q < 1 and s > 0,

the covariate Xk and the additive noise ǫk can be either sub-Gaussian or heavy-tailed.
Given the full data {(Xk, Yk) : k ∈ [n]}, we first study a novel setting where both Xk and
Yk are quantized to binary data2. The covariate Xk is quantized by exactly the same
method as Section 2. For sub-Gaussian Xk and ǫk, the response Yk is quantized to be
sign(Yk+Λk) with Λk uniformly distributed on [−γ, γ]. When Xk and ǫk are heavy-tailed

(with bounded fourth moment), we truncate Yk to be Ỹk and then similarly apply the

dithered quantization to Ỹk. The estimation relies on the 1-bit sparse covariance matrix
estimator Σ̂ developed in Section 2. To deal with the lack of positive semi-definiteness,
we assume ΣXX = EXkX

T
k has column-wise sparsity, which accommodates the conven-

tional isotropic condition (i.e., ΣXX = Id) used in compressed sensing. We formulate
the recovery as a convex programming problem with objective function combining a
generalized quadratic loss and an ℓ1 regularizer, see (3.17). In sub-Gaussian case, we

2The novelty here is that the covariate Xk is quantized, while all prior works on quantized compressed
sensing only considered the quantization of Yk (we refer to the survey [37]).

3



show our estimator Θ̂ could achieve a near optimal minimax rate of

‖Θ̂ − Θ∗‖2 .
√
s
(

logn

√
log d

n

)1−q/2
.

In heavy-tailed case, our estimator possesses the error rate

‖Θ̂ − Θ∗‖2 .
√
s
( log d

n

)(1−q/2)/4
.

Besides the first results for this new setting, we also revisit the canonical 1-bit compressed
sensing problem where we quantize Yk in a same manner but have full knowledge of Xk.
We estimate Θ∗ via analogous convex programming problems, see (3.24) and (3.28). In
sub-Gaussian regime, our estimator achieves a near optimal minimax rate

‖Θ̂ − Θ∗‖2 .
√
s
(√ log d logn

n

)1−q/2
.

In heavy-tailed regime, our estimator still enjoys an error bound

‖Θ̂ − Θ∗‖2 .
√
s
( log d

n

)(1−q/2)/3
,

which is almost tight for the specific estimation problem where the 1-bit observation is
produced by our scheme with the specified parameters (Theorem 11). As it turns out,
these two results embrace some improvements on existing ones (e.g., recovery via convex
programming, faster error rate), see a detailed comparison in Appendix D.

• In Section 4, we study the problem of low-rank matrix completion Yk = 〈Xk,Θ
∗〉 + ǫk,

where the desired d × d matrix Θ∗ with singular values σ1(Θ
∗) ≥ ... ≥ σd(Θ

∗) is
(approximately) low-rank

∑d
k=1 σk(Θ

∗)q ≤ r for some 0 ≤ q < 1 and r > 0. The
covariate Xk is uniformly distributed on {eieTj : i, j ∈ [d]} where ei is the i-th column
of the Id, ǫk is sub-Gaussian or heavy-tailed noise. Given the full data {(Xk, Yk)}, we
quantize Yk to one bit by the same process as 1-bit compressed sensing in Section 3. Our
estimator Θ̂ is given by minimizing an objective functions constituted of a generalized
quadratic loss and a nuclear norm penalty, see (4.6). If ǫk is sub-Gaussian, we show that

Θ̂ achieves a near optimal minimax rate

‖Θ̂−Θ∗‖2F
d2

. rd−q
(

logn
d log d

n

)1−q/2
,

If ǫk is heavy-tailed with bounded second moment, we show the recovery guarantee

‖Θ̂−Θ∗‖2F
d2

. rd−q
(d log d

n

)1/2−q/4
,

which is almost tight if one only has access to the 1-bit observation produced by our
quantization scheme with the chosen parameters (Theorem 14). We emphasize that our
approach is totally different from the existing method for 1-bit matrix completion, i.e.,
based on maximizing a likelihood function. Our essential advantage is that our method
can handle unknown pre-quantization random noise that can even be heavy-tailed. See
more discussions in Appendix D.
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The rest of the paper is structured as follows. In the remainder of Section 1 we introduce the
notation, propose the 1-bit quantization scheme, and provide some intuitions for our results
(i.e., near optimality in sub-Gaussian case, and the rate degradation in heavy-tailed case).
Our main results for three estimation problems are presented in Sections 2-4; In Section 5
we provide an overview of the proofs and the main techniques; In Section 6, we present
experimental results to corroborate our theories; We finally give some concluding remarks in
Section 7. The complete proofs are provided in Appendices A-C. Also, a comparison between
this work and the literature is given in Appendix D (review of related work is provided there to
avoid a lengthy beginning), while details of the numerical simulations are deferred to Appendix
E.

1.1 Notations and Preliminaries

As general principles, lowercase letters (e.g., s, r) represent scalars, capital letters (e.g., X , Y )
represent vectors, and capital bold letters (e.g., X,Θ) represent matrices. Some exceptions are
that we use capital letter Y, Yk to denote the responses, Λ,Λk to denote the dithering noise for
Y, Yk, and Xk,i for the i-th entry of Xk. Notations marked by ∗ denote the desired underlying

signals, e.g., Σ∗,Θ∗,Θ∗, while those with a hat denote our estimators, e.g., Σ̂, Θ̂, Θ̂.
We first introduce different vector or matrix norms. Let [N ] = {1, 2, ..., N}. For a vector

X = [xi] ∈ R
d, the ℓ1 norm, ℓ2 norm and max norm are given by ‖X‖1 =

∑d
i=1 |xi|, ‖X‖2 =

(
∑d

i=1 |xi|2)1/2, ‖X‖max = maxi∈[d] |xi|, respectively. Note that we also use ‖X‖0 to denote the
number of non-zero entries in X . For a matrix X = [xij ] ∈ R

d×d, the operator norm, Frobenius

norm and max norm are defined as ‖X‖op = sup‖V ‖2=1 ‖XV ‖2, ‖X‖F = (
∑d

i=1

∑d
j=1 x

2
ij)

1/2,
‖X‖max = max1≤i,j≤d |xij |. Assume the singular values are σ1(X) ≥ σ2(X) ≥ ... ≥ σd(X),

then the nuclear norm ‖X‖nu =
∑d

i=1 σi(X) serves as the counterpart of the ℓ1 norm of vectors.
Given A = [α1, ..., αd] ∈ R

d×d, we use vec(·) to vectorize A in a column-wise manner, i.e.,
vec(A) = [αT1 , α

T
2 , ..., α

T
d ]T , while the inverse of vec(·) is denoted by mat(·). Assume B ∈ R

d×d,
then the inner product in R

d×d is defined as 〈A,B〉 = Tr(ATB) = vec(A)Tvec(B).
Throughout the paper, we use n to denote the number of samples in data, while d the

ambient dimension of the problem. Expectation and probability are denoted by E(·), P(·)
respectively. For a specific event E, 1(E) stands for the corresponding indicator function, i.e.,
1(E) = 1 if E happens, 1(E) = 0 otherwise. We work with quite a lot of parameters arising
in several signal processing steps. To avoid confusion of constants, we use {D1, D2, D3, ...} to
denote constants whose values may vary from line to line, while {C1, C2, C3, ...} would only be
used once to set a specific parameter, see (2.6), (2.9) for example.

We adopt standard asymptotic notations that omits absolute constants. Specifically, we
use B1 . B2 or B1 = O(B2) to abbreviate the fact that B1 ≤ CB2 for some absolute constant
C. Similarly, we write B1 & B2 or alternatively B1 = Ω(B2) if B1 ≥ CB2 for some C > 0. If
both B1 = O(B2) and B1 = Ω(B2) hold, i.e., B1 equals B2 up to constants, we write B1 ≍ B2.

The function sign(·) extracts the sign of a real number x, i.e., sign(x) = 1 if x ≥ 0,
sign(x) = −1 if x < 0. Hard thresholding operator with threshold ζ is defined by Tζ(x) =
x1(|x| ≥ ζ). Both sign(·) and Tζ(·) operate on vectors or matrices element-wisely.

To broaden the range of our readers, we give some preliminaries on sub-Gaussian random
variable or concentration inequality as follows.

Definition 1. Given a real random variable X ∈ R, its sub-Gaussian norm ‖X‖ψ2
, sub-
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exponential norm ‖X‖ψ1
are defined as

‖X‖ψ2
= inf

{
t > 0 : E exp

(X2

t2

)
≤ 2

}
, ‖X‖ψ1

= inf
{
t > 0 : E exp

( |X|
t

)
≤ 2

}
. (1.1)

X is said to be sub-Gaussian if ‖X‖ψ2
≤ ∞.

Definition 2. Given a real random vector X ∈ R
d, the sub-Gaussian norm is defined as

‖X‖ψ2
= sup‖V ‖2=1 ‖V TX‖ψ2

. X is said to be sub-Gaussian if ‖X‖ψ2
≤ ∞.

For X, Y ∈ R we note a useful relation (see [93, Lemma 2.7.7])

‖XY ‖ψ2
≤ ‖X‖ψ1

‖Y ‖ψ1
. (1.2)

Sub-Gaussian variable X has properties similar to the Gaussian one, such as light proba-
bility tail and bounded moment constraint.

Proposition 1. (Proposition 2.5.2, [93]). Assume random variable X is sub-Gaussian, then
for absolute constants D1, D2 we have:

(a) For any t > 0, P
(
|X| ≥ t

)
≤ 2 exp

(
− D1t2

‖X‖2ψ2

)
.

(b) For any p ≥ 1,
(
E|X|p

)1/p ≤ D2‖X‖ψ2

√
p.

Proposition 2. (Proposition 2.6.1, [93]). Let X1, ..., XN be independent, zero-mean, sub-

Gaussian random variables, then for some absolute constant D1 we have
∥∥∑N

k=1Xk

∥∥2

ψ2
≤

D1

∑N
k=1 ‖Xk‖2ψ2

.

For concentration results, we only introduce Hoeffding’s inequality and Bernstein’s in-
equality. Several other concentration inequalities (e.g., Matrix Bernstein’s inequality) would
be properly referred to the sources when they are invoked in the proof.

Proposition 3. (Hoeffding’s inequality, [82, Theorem 1.9]). Let X1, ..., Xn be independent,
bounded random variables satisfying Xi ∈ [ai, bi], then for any t > 0 it holds that

P

(∣∣∣ 1

n

n∑

k=1

(Xk −EXk)
∣∣∣ ≥ t

)
≤ 2 exp

(
− 2n2t2∑n

i=1(bi − ai)2

)
. (1.3)

Proposition 4. (Bernstein’s inequality, [93, Theorem 2.8.1]). Let X1, ..., XN be independent
random variables, then for any t > 0 and for some absolute constant D1 we have

P

(∣∣
N∑

k=1

(Xk −EXk)
∣∣ ≥ t

)
≤ 2 exp

(
−D1 min

{ t2
∑N

k=1 ‖Xk‖2ψ1

,
t

maxk∈[N ] ‖Xk‖ψ1

})
. (1.4)

Although sub-Gaussian data has exciting statistical properties like similar tail bounds as
Gaussian distribution, data in some real problems may have much heavier tail, to name a few,
data in economics and finance [54], biomedical data [13,96], noise in signal processing [88,95],
and even signal itself [2, 66, 68]. Therefore, we will also consider the 1-bit quantization of
heavy-tailed data. We use bounded moment of some order to capture the heavy-tailedness,
i.e., E|X|l ≤M for some l > 0. Note that this is a widely used definition [44,45,53,57,87,95,99].
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1.2 1-bit Quantization Scheme

Truncation, dithering and quantization are three typical signal processing steps in our work.
We summarize our 1-bit quantization scheme as follows:

1. Truncation. The truncation step will only be used to heavy-tailed data. Specifically,
we first specify a threshold η > 0, then the truncation step shrinks a scalar x to be
sign(x) min{|x|, η}, and hence x with magnitude smaller than η remains unchanged in
truncation. Vectors are truncated element-wisely. Notations marked by tilde are used
exclusively to denote truncated data, for example, X̃k and Ỹk.

2. Dithering. The dithering step is applied to all the data that we plan to quantize to
1 bit. For E ⊂ R

m, we use X ∼ uni(E) to state that X obeys uniform distribution
on E. In sub-Gaussian case we dither the covariate Xk and response Yk by uniformly
distributed noise. Note that we need to sample two bits per entry for Xk (the covariate
in sparse linear regression). Thus, we draw Γk1,Γk2 ∼ uni([−γ, γ]d) and dither Xk to be
Xk + Γk1, Xk + Γk2. We only need 1-bit information for each response Yk, so we sample
Λk ∼ uni([−γ, γ]) and obtain the dithered response Yk + Λk. In heavy-tailed case Xk

and Yk are substituted with the truncated data X̃k and Ỹk.

3. Quantization. In quantization step we simply apply sign(·) to the dithered data, and
notations marked by a dot (e.g., Ẏk, Ẋk1, Ẋk2) exclusively represent the 1-bit quantized
data. More precisely, we have Ẏk = sign(Yk + Λk), Ẋkj = sign(Xk + Γkj), j = 1, 2

for sub-Gaussian Xk, Yk, and Ẏk = sign(Ỹk + Λk), Ẋkj = sign(X̃k + Γkj), j = 1, 2 for
heavy-tailed X and Y .

1.3 Intuition and Heuristic

Here we illustrate the intuition of our results before proceeding to details. Readers familiar
with the 1-bit quantization with uniform dithering noise can directly skip this part.

Specifically, we will heuristically analyse a multi-bit matrix completion setting to illustrate
the the reason why our estimators could achieve near optimal minimax rates in sub-Gaussian
regime. In fact, the idea of the whole paper stems from two simple observations, which are
given in the following two lemmas. We mention that Corollary 1 motivates [38] to estimate
E(XY ) and hence an unstructured covariance matrix via binary data, while Lemma 1 is
its more elementary version and enlightens the estimators in our work. For instance, while
full observations are not available, our loss function in matrix completion is constructed by
substituting the full data Yk in the empirical ℓ2 loss with the 1-bit surrogate γ · Ẏk (see (4.6)).
This idea comes from Lemma 1.

Lemma 1. Let X,Λ be two independent random variables satisfying |X| ≤ B, Λ ∼ uni
(
[−γ, γ]

)

where γ ≥ B, then we have E
[
γ · sign(X + Λ)

]
= EX.

Corollary 1. (Lemma 16 in [38]). Let X, Y be bounded random variables satisfying |X| ≤ B,
|Y | ≤ B, Λ1,Λ2 are i.i.d. uniformly distributed on [−γ, γ], γ ≥ B, and Λ1,Λ2 are independent
of X, Y. Then we have E

[
γ2 · sign(X + Λ1) · sign(Y + Λ2)

]
= EXY .

Next, by informal arguments, we heuristically compare full-data-based matrix completion
and quantized matrix completion where one can sample finitely many bits from each Yk (we

7



refer it as multi-bit matrix completion). This comparison can provide some insights of why
our estimators can achieve a near optimal minimax rate in sub-Gaussian regime.

We consider a full-data sample of size n from matrix completion (4.1) and denote it by

Dfull =
{

(X1, Y1), ..., (Xn, Yn)
}
.

For some positive integer f(n) we i.i.d. draw {Λkj : j ∈ [f(n)]} from uni
(
[−γ, γ]

)
, and sample

f(n) bits from each Yk by the proposed dithered quantization, that is, {Ẏkj := sign(Yk + Λkj) :
j ∈ [f(n)]}. This quantization process yields the sample containing n·f(n) binary observations

Dmult =
{

(Xk, Ẏkj) : k ∈ [n], j ∈ [f(n)]
}
.

Interestingly, from Dmult one can build a dataset with size n as

Dappr =



(Xk, Yk,appr) : Yk,appr =

1

f(n)

∑

j∈[f(n)]
γ · Ẏkj, k ∈ [n]



 .

We aim to reveal that the above three samples are comparably informative for the estimation.
For simplicity we assume ‖ǫk‖ψ2

= O(1), ‖Yk‖ψ2
= O(1), then with probability at least

1 − O(n−Ω(1)) we have maxk |Yk| = O(
√

log n) (see [82, Theorem 1.14]). Thus, we can choose
γ = Poly(logn)3 to guarantee γ > maxk |Yk| with high probability. We proceed the analysis
on this event. Define ǫk,appr := Yk,appr − Yk, equivalently we can write

Yk,appr = Yk + ǫk,appr =
〈
Xk,Θ

∗

〉
+ ǫk + ǫk,appr. (1.5)

For ǫk,appr, Lemma 1 gives EΛkj(γ · Ẏkj) = Yk and hence Eǫk,appr = 0. Moreover, conditioned
on Yk, ǫk,appr is the mean of f(n) zero-mean, independent random variables lying in [−γ −
Yk, γ − Yk]. Thus, Proposition 2 and Hoeffding’s Lemma (see Lemma 1.8, [82]) give

‖ǫk,appr‖ψ2
= O

( γ√
f(n)

)
. (1.6)

Therefore, ‖ǫk,appr‖ψ2
= O

(
1
)

as long as f(n) dominates γ2, while f(n) = Poly(logn) would
suffice due to γ = Poly(logn). In conclusion, Dmult containing n · Poly(log n) binary data can
generate the sample Dappr of size n, where each Yk,appr can be viewed as a full observation from
(1.5). Moreover, since ‖ǫk‖ψ2

= ‖ǫk,appr‖ψ2
= O(1), (1.5) is almost equivalent to the original

model (4.1). This reveals Dappr, and hence Dappr with n · Poly(logn) binary observations,
are comparable to Dfull with n full observations. Furthermore, this indicates the inessential
logarithmic degradation of recovery error after 1-bit quantization.

Note that similar heuristics can be found in sub-Gaussian regime of (sparse) covariance
matrix estimation and sparse linear regression. Of course, such multi-bit heuristic deviates
from the 1-bit setting where we collect only 1 bit from each Yk (see the following graphical
illustration). But since f(n) := Poly(logn) is negligible compared with n, one may tend to
believe Dmult and D1bit = {Ẏk := sign(Yk + Λk) : k ∈ [n · f(n)]} are comparable. From this
perspective, the near-optimal rates in sub-Gaussian regime are merely matter of courses.

3Here Poly(log n) denotes any term T satisfying T = O([log n]m) for some positive integer m.

8



(A heuristic multi-bit setting) (The 1-bit setting)

...

...

...

...

Ẏ11 Y1 Ẏ1

Ẏ12 Y2 Ẏ2

Y1
... Y1,appr

...
...

Ẏ1f(n) Yf(n) Ẏf(n)

Ẏn1 Y(n−1)f(n)+1 Ẏ(n−1)f(n)+1

Ẏn2 Y(n−1)f(n)+2 Ẏ(n−1)f(n)+2

Yn
... Yn,appr

...
...

Ẏnf(n) Ynf(n) Ẏnf(n)

(Dfull) (Dmult) (Dappr) (D1bit)

However, in heavy-tailed regime the story becomes totally different. Specifically, γ =
Poly(log n) will no longer guarantee γ > maxk |Yk| with high probability. When this vital
condition fails, the dithering becomes invalid for responses with absolute value larger than
γ. Indeed, for these measurements the proposed dithered quantization reduces to a direct
collection of the sign, while under such direct quantization we even lose the well-posedness of
the problem (e.g., matrix completion, see [34]) or the possibility of full signal reconstruction
(e.g., 1-bit compressed sensing, see [75]).

To resolve the issue, we truncate the heavy-tailed data according to some threshold η,
which produces data bounded by η. Then we can treat the truncated data as sub-Gaussian
data and use dithering noise drawn from uni

(
[−γ, γ]

)
with γ > η. It is not hard to see that

η represents the data bias introduced in truncation. More precisely, smaller η corresponds to
larger bias. Because of Hoeffding’s Lemma, γ is positively related to data variance. Definitely,
for estimation or signal recovery we prefer data with small bias (i.e., big η) and small variance
(i.e., small γ). But, note that we also need γ > η to enforce the effectiveness of dithering.
Thus, a trade-off between bias and variance is needed. We comment that, making an optimal
balance between bias and variance leads to our error rates in heavy-tailed regime. See Example
1 in Section 5 for instance.

2 Sparse Covariance Matrix Estimation

We start from the problem of estimating a sparse covariance matrix. Let X ∈ R
d be a random

vector with zero mean, the i.i.d. realizations Xk are quantized to 1-bit data (Ẋk1, Ẋk2), and
we aim to estimate the underlying covariance matrix Σ∗ = EXXT based on the quantized
data.

We first ideally assume the underlying d-dimensional random vector X has entries bounded
by γ, then Corollary 1 delivers that E

[
γ2 · Ẋk1Ẋ

T
k2

]
= EXXT = Σ∗, which is just the desired

covariance matrix. Besides, the concentration of γ2 · Ẋk1Ẋ
T
k2 should be fast due to bound-

edness, see Hoeffding’s inequality in Proposition 3. Combining the two observations, [38]
proposed a covariance matrix estimator as an empirical version of E

[
γ2 · Ẋk1Ẋ

T
k2

]
, followed by

9



symmetrization:

Σ̆ =
γ2

2n

n∑

k=1

[
Ẋk1Ẋ

T
k2 + Ẋk2Ẋ

T
k1

]
. (2.1)

For sub-Gaussian Xk, this estimator achieves a near minimax rate (compared with full data
setting in [19])

‖Σ̆−Σ∗‖op . log n

√
d log d

n
. (2.2)

Here, we point out that sampling two bits (rather than one bit) per entry is merely for
estimating the diagonal entries of Σ∗, since the 1-bit version of (2.1),

Σ̆1bit =
γ2

n

n∑

k=1

Ẋk1Ẋ
T
k1,

always gives γ2 in the diagonal and hence fails to recover the diagonal of the covariance matrix.
It is evident that (2.2) requires at least n & d to provide a non-trivial error bound. Actu-

ally it has been reported that even the sample covariance matrix
∑

kXkX
T
k /n has extremely

poor performance under high dimensional scaling where d ≥ n [56], not to mention (2.1).
On the other hand, high-dimensional databases are undoubtedly becoming ubiquitous in ge-
nomics, biomedical, imaging, tomography, finance and so forth, while covariance matrix plays
a fundamental role in the analysis of these databases.

To address the high-dimensional issue, extra structures are necessary to reduce the intrinsic
problem dimensionality. For covariance matrix we usually have sparsity as prior knowledge,
especially in the situation where dependencies among different features are weak, for instance,
the Genomics data [41], functional data drawn from underlying curves [79]. A precise formu-
lation of the sparse structure is provided in Assumption 1.

Assumption 1. (Approximate column-wise sparsity). For a specific 0 ≤ q < 1, the columns
of covariance matrix Σ∗ = [σ∗

ij ] are approximately sparse in the sense that

sup
j∈[d]

d∑

i=1

|σ∗
ij |q ≤ s (2.3)

In literature there are two mainstreams to incorporate sparsity into covariance matrix
estimation, namely penalized likelihood method [12, 84] and a thresholding method [11, 18,
20, 22, 42]. Thresholding method refers to the direct regularizer that element-wisely hard
thresholding the sample covariance matrix, i.e., Tζ(

∑n
k=1XkX

T
k /n), which promotes sparsity

intuitively. With suitable threshold ζ , Cai and Zhou [21] showed Tζ(
∑n

k=1XkX
T
k /n) could

achieve minimax rate under operator norm over the class of column-wisely sparse covariance
matrices (Assumption 1). Motivated by previous work, we propose to hard thresholding Σ̆ in

(2.1) to obtain a high-dimensional estimator Σ̂ = [σ̂ij ] given by

Σ̂ = TζΣ̆. (2.4)

The statistical rates of Σ̂ under both max norm and operator norm are established in what
follows.
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2.1 Sub-Gaussian Data

Assume Xk = [Xk,1, Xk,2, ..., Xk,d] are i.i.d. sampled from a random vector X ∈ R
d with

zero-mean sub-Gaussian components. In particular, we assume

EXk = 0, ‖Xk,i‖ψ2
≤ σ, ∀i ∈ [d]. (2.5)

From (2.4), Σ̆ = [σ̆ij ] serves as an intermediate estimator to construct Σ̂, hence we first provide

an element-wise error bound of Σ̆ in Theorem 1.

Theorem 1. Assume (2.5) holds. For specific δ ≥ 1 we assume n > 2δ log d. For some
sufficiently large constant C1 we set the dithering scale γ as

γ = C1σ

√
log

( n

2δ log d

)
(2.6)

and assume γ > σ. Then for Σ̆ = [σ̆ij ] we have

P

(
|σ̆ij − σ∗

ij | . σ2 log n

√
δ log d

n

)
≥ 1 − 2d−δ (2.7)

for i, j ∈ [d]. Moreover, we have the error bound for max norm

P

(
‖Σ̆−Σ∗‖max . σ2 log n

√
δ log d

n

)
≥ 1 − 2d2−δ. (2.8)

Recall that our estimator is obtained by hard thresholding Σ̆. The next Theorem shows
that with suitable threshold ζ , the hard thresholding even brings a tighter statistical bound
for element-wise error.

Theorem 2. Assume (2.5) holds, δ ≥ 1 is the same as Theorem 1, and the dithering scale γ
is given as (2.6) with some C1. Then we choose the threshold ζ by

ζ = C2σ
2 log n

√
δ log d

n
, (2.9)

where C2 is a sufficiently large constant. Then for any i, j ∈ [d] we have

P

(
|σ̂ij − σ∗

ij | . min
{
|σ∗
ij|, σ2 logn

√
δ log d

n

})
≥ 1 − 2d−δ. (2.10)

By combining (2.10) and Assumption 1, we are in a position to establish the rate of

Σ̂ under operator norm. Specifically, we prove that our 1-bit estimator achieves a rate

O
(
s((logn)2 log d

n
)(1−q)/2

)
, which almost matches the minimax rate O

(
s
(
log d
n

)(1−q)/2 )
proved

in [21, Theorem 2]. Note that the estimator based on full data in [21] achieves the minimax
rate. From this perspective, the 1-bit quantization only introduces minor information loss to
the learning process, i.e., a logarithmic factor. Thus, by using our method, one can embrace
the privileges of 1-bit data and accurate covariance matrix estimation simultaneously.
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Theorem 3. Assume Assumption 1, (2.5) hold, δ is the same as Theorem 1, 2 (set δ ≥ 4),
and the dithering scale γ, the threshold ζ are respectively given by (2.6), (2.9) with some
C1, C2. Besides, assume δ log d(logn)2/n is sufficiently small. Let p = δ/4, we have

(
E‖Σ̂−Σ∗‖pop

)1/p

. s
(
σ2 logn

√
δ log d

n

)1−q
. (2.11)

Moreover, the probability tail of operator norm error is bounded as

P

(
‖Σ̂−Σ∗‖op . s

[
σ2 log n

√
δ log d

n

]1−q)
≥ 1 − exp(−δ). (2.12)

Remark 1. We point out that the proof of Theorem 3 may be of independent technical interest,
especially the probabilistic inequality (2.12) that seems quite new in the literature. In fact, only
the upper bound for the second moment (i.e., p=2 and δ = 8 in (2.11)) is obtained in literature
(e.g., [21, Theorem 3]), and by Markov inequality this can only give a probability term 1− 1

δ1−q

in (2.12). Here, by contrast, we derive a much better probabilistic term 1− exp(−δ). The key
idea is to adaptively bound the Ω(δ)-th moment rather than a specific second moment, which
gives (2.11). It is straightfoward to apply this method to the traditional full-data thrsholding
estimator and gain some improvement on prior results.

To guarantee positive semi-definiteness, we introduce a trick developed in literature. Let
the eigenvalue decomposition of Σ̂ be

∑d
i=1 λi(Σ̂)viv

T
i , we remove the components correspond-

ing to negative eigenvalues and obtain the positive part Σ̂+ =
∑d

i=1 max(λi(Σ̂), 0)viv
T
i . It is

not hard to show that ‖Σ̂+ − Σ∗‖op ≤ 2‖Σ̂− Σ∗‖op. Thus, Σ̂+ retains the operator norm

rate of Σ̂. However, removing the negative components may destroy the element-wise error
or the sparse pattern of Σ̂, see [78].

Besides, it is worth noting that we present Theorem 3 under operator norm by convention,
but both (2.11) and (2.12) are applicable to the larger norm ‖X‖1,∞ = supj

∑
i |xij|, see an

initial step in the proof (A.6).

2.2 Heavy-tailed Data

Let Xk = [Xk,1, ..., Xk,d]
T be i.i.d. drawn from the random vector X ∈ R

d, in this part we
consider zero-mean, heavy-tailed X assumed to have bounded fourth moments

EXk = 0,E|Xk,i|4 ≤M, ∀ i ∈ [d]. (2.13)

Note that this offers great relaxation compared to sub-Gaussian random variable and encom-
passes more distributions such as t-distribution, log-normal distribution.

Compared with the light tail in Proposition 1(a), X satisfying (2.13) can have a much
heavier tail, and so overlarge data appear more frequently. This is problematic because our
dithering noise has finite scale γ, hence the dithering is invalid for data with magnitude larger
than γ. More precisely, this issue can be formulated as

sign(Xk,i + Γkj,i) = sign(Xk,i), if |Xk,i| > γ.

12



Therefore, for those entries larger than γ, our signal processing reduces to a direct quantization
without dithering noise, which is known to introduce great loss of information.

To deal with the issue, we first truncate the data larger than a specified threshold η and
obtain the truncated data X̃k bounded by η, which is of the spirit to introduce some biases for
variance reduction. Now that the truncated data are bounded, we similarly dither them by
uniform noise, and then quantize to Ẋkj = sign(X̃kj+Γkj), j = 1, 2, where Γkj ∼ uni([−γ, γ]d).
Motivated by Corollary 1, we propose an intermediate estimator

Σ̆ =
γ2

2n

n∑

k=1

[
Ẋk1Ẋ

T
k2 + Ẋk2Ẋ

T
k1

]
, (2.14)

which extends (2.1) to heavy-tailed data. Element-wise error for Σ̆ is given in Theorem 4.

Theorem 4. Assume (2.13) holds. For some fixed δ ≥ 1 and C3, C4 (C4 > C3), we set the
truncation parameter η and the dithering scale γ by





η = C3M
1/4

( n

δ log d

)1/8

γ = C4M
1/4

( n

δ log d

)1/8 , (2.15)

Then for Σ̆ = [σ̆ij ] given in (2.14), we have

P

(
|σ̆ij − σ∗

ij | .
√
M

[δ log d

n

]1/4)
≥ 1 − 2dδ. (2.16)

Moreover, we have the error bound under max norm

P

(
‖Σ̆−Σ∗‖max .

√
M

[δ log d

n

]1/4)
≥ 1 − 2d2−δ. (2.17)

Parallel to the sub-Gaussian regime, we use an additional hard thresholding step to promote
sparsity. That is, based on the intermediate estimator Σ̆ in (2.14), we choose some suitable
thresholding parameter ζ and define the estimator

Σ̂ = TζΣ̆. (2.18)

We show the element-wise and operator norm statistical rates in Theorem 5, Theorem 6.

Theorem 5. Assume (2.13) holds, δ is the same as Theorem 4, and the truncation threshold
η and the dithering scale γ are set as (2.15) with some C3, C4. Then we set the threshold ζ in
(2.18) by

ζ = C5

√
M

(δ log d

n

)1/4

(2.19)

where C5 is a sufficiently large constant. Then for any i, j ∈ [d] we have

P

(
|σ̂ij − σ∗

ij | . min
{
|σ∗
ij|,

√
M

[δ log d

n

]1/4})
≥ 1 − 2d−δ. (2.20)
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Theorem 6. Assume Assumption 1, (2.13) hold, δ is fixed and the same as Theorem 4, 5
(set δ ≥ 4), the truncation threshold η, the dithering scale γ, the threshold ζ are set as (2.15),
(2.19) for some specified C3, C4, C5. Besides, assume that δ log d/n is sufficiently small. Let
p = δ/4, then we have the bound for the moment of order p

(
E‖Σ̂−Σ∗‖pop

)1/p

. sM (1−q)/2
[δ log d

n

](1−q)/4
. (2.21)

Moreover, we bound the probability tail of operator norm error

P

(
‖Σ̂−Σ∗‖op . sM (1−q)/2

[δ log d

n

](1−q)/4)
≥ 1 − exp(−δ). (2.22)

3 Sparse Linear Regression

We intend to establish our results for sparse linear regression (Section 3) and low-rank ma-
trix completion (Section 4) under the unified framework of trace regression, which should be
established first. Trace regression with Θ∗ ∈ R

d×d as desired signal is formulated as

Yk =
〈
Xk,Θ

∗
〉

+ ǫk, (3.1)

where Xk ∈ R
d×d is covariate, ǫk is additive noise. To handle high-dimensional scaling, Θ∗ is

assumed to be (approximately) low-rank (e.g., [45, 70, 71])

d∑

k=1

|σk(Θ∗)|q ≤ r, for some 0 ≤ q < 1, (3.2)

where σ1(Θ
∗) ≥ σ2(Θ

∗) ≥ ... ≥ σd(Θ
∗) are the singular values of Θ∗. For this low-rank trace

regression problem, a standard approach to estimate or reconstruct Θ∗ is via the M-estimator
(e.g., [72])

Θ̂ ∈ arg min
Θ∈S

L(Θ) + λ‖Θ‖nu, (3.3)

where L(Θ) is a loss function that requires Θ̂ to fit the data {(Xk, Yk)}, ‖Θ‖nu is the penalty
that promotes low-rankness. In [70] Negahban and Wainwright first established a general
framework to obtain convergence rate for trace regression when L(Θ) is a quadratic loss, and
then many subsequent papers developed and extended the theoretical framework, to name
a few, negative log-likelihood loss function [43], other estimation problems such as matrix
completion with sparse corruption [62] and sparse high-dimensional time series [6], extension
to quaternion field [28]. For data fitting term L(Θ), a standard quadratic loss (i.e., ℓ2 loss)
based on full data is

L(Θ) =
1

2n

n∑

k=1

|Yk − 〈Xk,Θ〉 |2 =
1

2
vec(Θ)TΣXXvec(Θ) − 〈ΣYX ,Θ〉 + constant,

where ΣXX =
∑n

k=1 vec(Xk)vec(Xk)T/n, ΣYX =
∑n

k=1 YkXk/n. However, this standard
quadratic loss does not directly apply to our setting where full data are not available. In order
to introduce some flexibility, we consider a generalized quadratic loss

L(Θ) =
1

2
vec(Θ)TQvec(Θ) − 〈B,Θ〉 , (3.4)
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where Q ∈ R
d2×d2 is symmetric, B ∈ R

d×d. We present a framework for trace regression in
Lemma 2. Note that [45, Theorem 1] is only for Q, B in (3.4) being the (truncated) sample
covariance, hence Lemma 2 can be viewed as its extension to more general Q, B that suffices
for our needs. Besides, our version is refined to be more technically amenable since a useful
relation (3.6) is established even without the restricted strong convexity (3.7). One shall see
that (3.6) can simplify the proofs of Theorems 9, 10, 12, 13.

Lemma 2. Consider trace regression (3.1) with (approximate) low-rankness (3.2), the es-
timator is given by (3.3) where the loss function is a generalized quadratic loss (3.4). Let

∆̂ = Θ̂−Θ∗. If Q is positive semi-definite, and λ satisfies

λ ≥ 2‖mat(Q · vec(Θ∗)) −B‖op, (3.5)

then it holds that

‖∆̂‖nu ≤ 10r
1

2−q ‖∆̂‖
2−2q
2−q

F . (3.6)

Moreover, if the restricted strong convexity (RSC) holds, i.e., there exists κ > 0 such that

vec(∆̂)TQvec(∆̂) ≥ κ‖∆̂‖2F, (3.7)

then we have the convergence rate for Frobenius norm and nuclear norm

‖∆̂‖F ≤ 30
√
r
(λ
κ

)1−q/2
and ‖∆̂‖nu ≤ 300r

(λ
κ

)1−q
. (3.8)

With the preliminary of trace regression we now go into sparse linear regression

Yk = XT
k Θ∗ + ǫk, (3.9)

where Θ∗ ∈ R
d is the desired signal, Xk is the covariate (or sensing vector), ǫk is noise

independent of Xk. In addition, Θ∗ is approximately sparse.

Assumption 2. (Approximate sparsity on vector) For a specific 0 ≤ q < 1, the desired signal
Θ∗ = [θ∗1, ..., θ

∗
d]
T satisfies

d∑

i=1

|θ∗i |q ≤ s. (3.10)

It is not hard to see that (3.9), (3.10) are encompassed by (3.1), (3.2) if Xk,Θ
∗ are diagonal,

i.e., Xk = diag(Xk), Θ
∗ = diag(Θ∗), so we consider analogue of (3.3) as the estimator. The

first issue is the choice of loss function since the existing methods are invalid: we can neither
use the quadratic loss as [45,70] without full data, nor the negative log-likelihood as [43] due to
the noise ǫk with unknown distribution. Instead, we resort to a generalized quadratic loss given
in (3.4) to proceed. For sparse linear regression, particularly, we let L(Θ) = 1

2
ΘTQΘ − BTΘ

where Q ∈ R
d×d is symmetric, B ∈ R

d. Thus, our estimator is given by

Θ̂ ∈ arg min
Θ∈Rd

1

2
ΘTQΘ − BTΘ + λ‖Θ‖1. (3.11)

Lemma 2 implies the following Corollary.
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Corollary 2. Consider linear regression (3.9) with (approximate) sparsity (3.10), the esti-

mator Θ̂ is given by (3.11). Let ∆̂ = Θ̂ − Θ∗. If Q is positive semi-definite, λ satisfies

λ ≥ 2‖QΘ∗ − B‖max, (3.12)

then it holds that

‖∆̂‖1 ≤ 10s
1

2−q ‖∆̂‖
2−2q
2−q

2 . (3.13)

Moreover, if for some κ > 0 we have the restricted strong convexity

∆̂TQ∆̂ ≥ κ‖∆̂‖22, (3.14)

then we have the error bound for ℓ2 and ℓ1 norm

‖∆̂‖2 ≤ 30
√
s
(λ
κ

)1−q/2
and ‖∆̂‖1 ≤ 300s

(λ
κ

)1−q
(3.15)

It remains to properly specify Q, B in (3.11). Note that the expected quadratic risk is
given by

E|Yk −XT
k Θ|2 = ΘT

E(XkX
T
k )Θ − (E(YkXk))

TΘ + constant,

thus a general guideline to choose Q, B is that Q should be close to the covariance matrix of
Xk, and B should well approximate the covariance E(YkXk). Naturally, based on 1-bit data

we can still use Σ̂ in (2.4) or Σ̆ in (2.1) as Q. Nevertheless, the issue is that they may not be
positive semi-definite, while the positive semi-definiteness of Q is an indispensable condition
in Corollary 2. To resolve the issue, we assume ΣXX = EXkX

T
k is column-wisely sparse. We

defer an illustration of this assumption to Remark 2.

Assumption 3. X1, ..., Xn are i.i.d. drawn from a zero-mean random vector with covariance
matrix ΣXX = EXkX

T
k = [σij ] satisfying Assumption 1 under parameter (0, s0), i.e., the

number of non-zero elements in each column is less than s0. Besides, ΣXX is positive definite,
and for some absolute constant κ0 > 0 it satisfies λmin(ΣXX) ≥ 2κ0.

Under Assumption 3, our estimator Σ̂ defined in (2.4) for sub-Gaussian data, or (2.18) for

heavy-tailed data, is positive definite with high probability. Thus, we set Q = Σ̂ in (3.11).
Note that E(YkXk) is also covariance, enlightened by Corollary 1, we similarly set

Σ̂Y X =
1

n

n∑

k=1

γ2 · ẎkẊk1. (3.16)

Now we have specified our estimator as

Θ̂ ∈ arg min
Θ∈Rd

1

2
ΘT Σ̂Θ − Σ̂T

Y XΘ + λ‖Θ‖1. (3.17)
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3.1 Sub-Gaussian Data

We assume the sub-Gaussian, zero-mean covariate and sub-Gaussian noise satisfying ‖Xk‖ψ2
≤

σ1, ‖ǫk‖ψ2
≤ σ2, and ‖Θ∗‖2 ≤ R = O(1). In this setting, we have ‖Yk‖ψ2

≤ ‖XT
k Θ∗‖ψ2

+
‖ǫk‖ψ2

≤ ‖Θ∗‖2‖Xk‖ψ2
+ ‖ǫk‖ψ2

= O(max{σ1, σ2}). To lighten notations without losing gen-
erality, we assume for some σ > 0

max
{
‖Xk‖ψ2

, ‖Yk‖ψ2

}
≤ σ (3.18)

and use the uniform noise with the same dithering scale γ to dither Xk and Yk before 1-
bit quantization. More precisely, we choose dithering noise Γk1,Γk2 ∼ uni([−γ, γ]d),Λk ∼
uni([−γ, γ]) with γ in (2.6), then we obtain the 1-bit data (Ẋk1, Ẋk2, Ẏk).

We mention that our result directly extends to more general setting where ‖Xk‖ψ2
, ‖Yk‖ψ2

may vary a lot. Indeed, we can adaptively choose dithering scale according to ‖Xk‖ψ2
and

‖Yk‖ψ2
, for instance, Γk1,Γk2 ∼ uni([−γX , γX]d), Λk ∼ uni([γY , γY ]). In our numerical simula-

tions, we also applied different dithering scales to Xk and Yk to improve the recovery.
In Theorem 7 we will give the near minimax statistical rate for the estimator Θ̂. The idea is

to invoke Corollary 2, and this requires (3.12) and (3.14). To properly set λ to confirm (3.12),

it suffices to bound ‖Σ̂Θ∗ − Σ̂Y X‖max from above. Combining Assumption 3 and results in
Section 2, we can show (3.14) holds with high probability.

Theorem 7. Assume (3.9), Assumption 2, (3.18) hold, ‖Θ∗‖2 ≤ R for some absolute constant
R, and Assumption 3 holds for some fixed integer s0. Before the quantization we dither the
data with γ in (2.6). We consider Θ̂ given by (3.17) where Σ̂, Σ̂Y X are respectively set as
(2.4), (3.16), and ζ is given by (2.9). Moreover, we choose λ by

λ = C6 logn

√
δ log d

n
(3.19)

with sufficiently large C6. Let ∆̂ = Θ̂ − Θ∗. When (log n)2 log d
n

is sufficiently small, with
probability at least 1 − exp(−δ) − 2d2−δ, we have





‖∆̂‖2 .
√
s
(
σ2 logn

√
δ log d

n

)1−q/2

‖∆̂‖1 . s
(
σ2 log n

√
δ log d

n

)1−q
. (3.20)

Remark 2. Compared to the sample covariance
∑n

k=1X
T
k Xk/n, the proposed 1-bit covariance

matrix estimator Σ̂ lacks positive semi-definiteness. We address the issue by assuming column-
wise sparsity of ΣXX , which together with λmin(ΣXX) = Ω(1) can provide positive definiteness
under high-dimensional scaling. This assumption is also used in [98] to resolve the same issue.
As an example, this accommodates isotropic sensing vectors that is conventionally adopted in
compressed sensing literature [25,40,77]. In addition, we have removed this (a bit uncommon)
assumption in our subsequent work [30].
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3.2 Heavy-tailed Data

We then switch to the heavy-tailed case where Xk and ǫk are only assumed to possess bounded
4-th moment. We consider the scaling of the desired signal as ‖Θ∗‖2 ≤ R = O(1). Moreover,
we assume E|V TXk|4 ≤ M1 for any V ∈ R

d, ‖V ‖2 ≤ 1, and E|ǫk|4 ≤ M2. Then we have the
fourth moment of Yk is also bounded by O

(
R4M1 + M2

)
. To lighten the notation without

losing generality, we assume the same upper bound M for covariate and response:

max
{

sup
‖V ‖2≤1

E|V TXk|4,E|Yk|4
}
≤M, (3.21)

which allows us to use the same truncation parameter η and dithering scale γ for Xk and Yk.
Similar to the same comment for sub-Gaussian case, if the fourth moment of Xk and Yk

have different scales, our method still works under different truncation parameters (ηX , ηY )
and dithering parameters (γX , γY ). Moreover, it is straightforward to adapt our method to the
mixing case studied in [45] where Xk is sub-Gaussian but ǫk (and hence Yk) is heavy-tailed. In
this mixing setting, only the responses are treated as heavy-tailed data and truncated before
dithering.

Theorem 8. Assume (3.9), Assumption 2, (3.21) hold, ‖Θ∗‖2 ≤ R for some absolute constant
R, and Assumption 3 holds for some fixed integer s0. By setting η, γ as (2.15) such that γ > η,

we first truncate (Xk, Yk) element-wisely to (X̃k, Ỹk) with parameter η, then dither the truncated
data with uniform noise on [−γ, γ] and quantize the data to (Ẋk1, Ẋk2, Ẏk) finally. We consider

Θ̂ in (3.17) where Σ̂ is given in (2.18) with ζ set as (2.19), Σ̂Y X is given in (3.16). Moreover,
we choose

λ = C7

√
M

(δ log d

n

)1/4

(3.22)

with sufficiently large C7. Let ∆̂ = Θ̂−Θ∗. When log d/n is sufficiently small, with probability
at least 1 − exp(−δ) − 2d2−d, we have





‖∆̂‖2 .
√
sM1/2−q/4

(δ log d

n

)1/4−q/8

‖∆̂‖1 . sM (1−q)/2
(δ log d

n

)(1−q)/4 . (3.23)

We emphasize that our method does not rely on the full knowledge of ΣXX ; indeed, our
method applies as long as ΣXX satisfies Assumption 3. Note that when ΣXX is known as a
priori, we can directly set Q = ΣXX in (3.11), and the same error rates can be obtained by
the similar techniques.

3.3 1-bit Compressed Sensing

We just studied sparse linear regression based on the 1-bit quantized covariates and responses
(Ẋk1, Ẋk2, Ẏk), while the only related problem studied in existing works is 1-bit compressed
sensing (1-bit CS). In 1-bit CS, one considers the same linear model (3.9) and wants to estimate
the sparse underlying signal Θ∗ based on (Xk, Ẏk), where Xk denotes the full covariate, and
Ẏk ∈ {−1, 1} is the 1-bit quantized version of the response Yk. In particular, earlier works
mainly studied a direct quantization with Ẏk = sign(XTΘ∗) (see, e.g., [15, 55, 74, 75]), while
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recent works (e.g., [5, 39, 40, 63, 89]) began to consider dithered quantization that are more
relevant to our work, i.e., Ẏk = sign(XTΘ∗ + Λ) for some dithering noise Λ. Specifically,
by the additional dithering step, these works overcome several limitations and present better
results. For instance, full reconstruction with norm [63], exponentially-decaying error rate [5],
and extension to non-Gaussian sensing vectors [39, 40, 89].

Since one still has full knowledge on Xk in 1-bit CS, our problem setting is novel and
evidently more tricky. From a practical viewpoint, due to the binary covariate, the storage
and communication costs are further lowered in our method. Technically, the key element that
allows quantization of covariate is the new 1-bit sparse covariance matrix estimator developed
in Section 2. To facilitate presentation and future study, we term this new setting as 1-bit
quantized-covariate compressed sensing (1-bit QC-CS) to distinguish with the canonical 1-bit
CS.

Note that it is unfair to compare our Theorem 7, 8 with existing results for 1-bit CS.
To see the contributions of this paper more explicitly, we analogously establish results for
1-bit CS where full-precision Xk are available, under both sub-Gaussian and heavy-tailed
regimes. Similar to (3.17), we formulate the estimation as a convex programming problem,

but substitute Σ̂ in (3.17) with the sample covariance matrix Σ̂XX =
∑n

k=1XkX
T
k /n for sub-

Gaussian Xk, or the truncated sample covariance matrix Σ̂X̃X̃ =
∑n

k=1 X̃kX̃
T
k /n for heavy-

tailed Xk. Here, for heavy-tailed case, we truncate Xk element-wisely, but we distinguish the
truncation threshold of Xk, Yk by different notations ηX , ηY and they are set to be different
values. More precisely, the i-th entry of X̃k is given by X̃k,i = sign(Xk,i) min{|Xk,i|, ηX}, while

before the dithered quantization, Yk is truncated to be Ỹk = sign(Yk) min{|Yk|, ηY }.
Although the results are similarly established by the framework of trace regression, we feel

obliged to note some differences. Let us consider the sub-Gaussian regime for illustration.
Firstly, the column-wise sparsity of ΣXX in Assumption 3, whose main aim is to guarantee
positive semi-definiteness of the 1-bit covariance matrix estimator Σ̂, can now be removed as
Σ̂XX is automatically positive semi-definite. But on the other hand, without this assumption,
we no longer have a dimension-free upper bound on ‖Σ̂XX −ΣXX‖op, hence the proof cannot

proceed to (B.11). Indeed, we only have dimension-free upper bound on ‖Σ̂XX − ΣXX‖max.
In heavy-tailed case we hence impose a stronger scaling ‖Θ∗‖1 ≤ R, (which is also used in
the heavy-tailed case of sparse linear regression in [45, Lemma 1(b)]). In addition, we need to
establish the restricted strong convexity (3.7) in Lemma 2 via some additional technicalities.

In the next two theorems we present our results on 1-bit CS, which are directly comparable
to the prior results of 1-bit CS. To facilitate the flow of our presentation, a detailed comparison
is postponed to Appendix D. One shall see that, the following two results improve on existing
ones from some respect.

Theorem 9. (1-bit CS with sub-Gaussian data). Assume (3.9), Assumption 2 hold, ‖Xk‖ψ2
≤

σ1, ‖ǫk‖ψ2
≤ σ2, ‖Θ∗‖2 ≤ R with absolute constants σ1, σ2, R. For the zero-mean covariate

Xk, define the covariance matrix ΣXX = EXkX
T
k and we assume λmin(ΣXX) ≥ 2κ0 for

some absolute constant κ0 > 0. We quantize Yk to be Ẏk = sign(Yk + Λk) with Λk uniformly
distributed on [−γ, γ], and we set γ = C ′

8

√
log n for sufficiently large C ′

8. The estimation is
formulated as a convex programming problem

Θ̂ ∈ arg min
Θ∈Rd

1

2
ΘT Σ̂XXΘ − Σ̂T

Y XΘ + λ‖Θ‖1. (3.24)
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Moreover, we set Σ̂XX , Σ̂T
Y X and λ in (3.24) as

Σ̂XX =
1

n

n∑

k=1

XkX
T
k , Σ̂Y X =

1

n

n∑

k=1

γ · ẎKXk, λ = C8

√
δ log d logn

n
(3.25)

with some sufficiently large C8. Let ∆̂ = Θ̂−Θ∗, then when s
(
δ log d
n

)1−q/2
is sufficiently small,

with probability at least 1 − 7d2−δ, we have





‖∆̂‖2 .
√
s
(√δ log d logn

n

)1−q/2

‖∆̂‖1 . s
(√δ log d logn

n

)1−q
. (3.26)

By taking advantage of the full covariate, in heavy-tailed regime of 1-bit CS we show the

ℓ2 norm error rate O
(
s2/3

(
log d
n

)1/3−q/6)
, which is faster than the corresponding rate for 1-bit

QC-CS in Theorem 8.

Theorem 10. (1-bit CS with heavy-tailed data). Assume (3.9), Assumption 2, (3.21) hold
(M in (3.21) is an absolute constant), ‖Θ∗‖1 ≤ R for some absolute constant R. For the zero-
mean covariate Xk we let ΣXX = EXkX

T
k and assume λmin(ΣXX) ≥ 2κ0 for some absolute

constant κ0 > 0. We element-wisely truncate Xk to be X̃k with threshold ηX , and truncate
Yk to be Ỹk with threshold ηY . Then, Ỹk is dithered and quantized to be Ẏk = sign(Ỹk + Λk)
with Λk uniformly distributed on [−γ, γ]. For specific δ > 0, we set these signal processing
parameters as

ηX = C9

( n

δ log d

) 1
4

, ηY = C10

( n

δ log d

) 1
6

, γ = C11

( n

δ log d

) 1
6

, (3.27)

where C11 > C10 to give γ > ηY . The estimation is formulated as a convex programming
problem

Θ̂ ∈ arg min
Θ∈Rd

1

2
ΘT Σ̂X̃X̃Θ − Σ̂T

Y XΘ + λ‖Θ‖1. (3.28)

Moreover, we set Σ̂X̃X̃ , Σ̂Y X and λ in (3.28) as

Σ̂X̃X̃ =
1

n

n∑

k=1

X̃kX̃
T
k , Σ̂Y X =

1

n

n∑

k=1

γ · ẎkX̃k, λ = C12

(δ log d

n

)1/3

(3.29)

with some sufficiently large C12. Let ∆̂ = Θ̂−Θ∗. Under sufficiently small s2
(
δ log d
n

)1−q/2
, and

we further assume s
(
δ log d
n

) 1
2
− q

3 = O(1) for q ∈ (0, 1), then with probability at least 1−O(d2−
√
δ),

we have 


‖∆̂‖2 .

√
s
(δ log d

n

) 1−q/2
3

‖∆̂‖1 . s
(δ log d

n

) 1−q
3

. (3.30)
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We conclude this section by deriving an information-theoretic lower bound regarding The-
orem 10. To be concise we only deal with exactly sparse Θ∗, i.e., s-sparse Θ∗. As Theorem 10
we consider the set of parameters

K (s, R) =
{

Θ ∈ R
d : ‖Θ‖0 ≤ s, ‖Θ‖1 ≤ R

}
. (3.31)

Theorem 11. Given n, d, s, R and covariates {Xk : k ∈ [n]}, and assume s ≤ d
8
. For some

underlying Θ ∈ K (s, R), we suppose the responses (Ẏk)
n
k=1 are obtained as in Theorem 10, i.e.,

truncation, dithering and quantization with parameters in (3.29), and we assume ηY < 8
9
γ.

Consider any algorithm which, for any underlying Θ ∈ K (s, R), takes {Xk : k ∈ [n]} and the

corresponding (Ẏk)
n
k=1 as input and returns Θ̂. If n & K−1

u

(
s
R

)3
log d

2s
, and

∑n
k=1 |XT

k V |2 ≤
nKu‖V ‖22 holds for some Ku and for all 2s-sparse V ∈ R

d, then there exists Θ0 ∈ K (s, R)
such that with probability at least 3

4
,

‖Θ̂ − Θ0‖2 ≥
( log d

2s

log d

) 1
6

√
s

Ku

( log d
2s

n

)1/3

. (3.32)

The proof follows similar courses as in [80, Theorem 1], while the main difference is on
bounding the Kullback–Leibler divergence because of the 1-bit observation Ẏk. The conditions
are quite benign:

∑n
k=1 |XT

k V |2 ≤ nKu‖V ‖22 for 2s-sparse V is satisfied by a large class of
random Xk with bounded or logarithmic Ku (e.g., i.i.d., sub-Gaussian or sub-exponential Xk);

n ≥ K−1
u

(
s
R

)3
log d

2s
is in the interesting high-dimensional scaling and assumed to guarantee

the packing set is a subset of K (s, R). Note that the lower bound matches our upper bound for
ℓ2 error in Theorem 10, up to logarithmic factors and the parameter Ku. Thus, for estimation
of Θ∗ from the observed data (Xk, Ẏk), the rate in Theorem 10 is almost tight, and significantly
faster rate is not achievable without changing the process of producing Ẏk.

In the proof, the key point that lifts the regular lower bound Ω̃(
√
s√
n
) to Ω̃(

√
s

n1/3 ) is our choice

of dithering scale (i.e., γ ≍
(

n
log d

)1/6
). Note that it is essentially larger than γ ≍ √

log n used

in the sub-Gaussian case (Theorem 9). Such a larger dithering scale can be understood as the
price we pay for dealing with heavy-tailed noise.

4 Low-rank Matrix Completion

Matrix completion refers to the problem of recovering a low-rank matrix with incomplete ob-
servations of the entries, which is motivated by recommendation system, system identification,
quantum state tomography, image inpainting, and many others, see [7,28,31,32,35,46,52] for
instance. The literature can be roughly divided into two lines, exact recovery and approximate
recovery (i.e., statistical estimation). To establish exact recovery guarantee, the underlying
matrix is required to satisfy a quite stringent incoherence condition proposed and developed
in [24, 26, 27, 81]. By contrast, it was shown that matrix with low spikiness could be well
approximated (or estimated) under much more relaxed condition [60, 64, 71]. This Section is
intended to study the estimation problem of matrix completion via the binary data produced
by our 1-bit quantization scheme. For simplicity we consider square matrix and formulate the
model as

Yk = 〈Xk,Θ
∗〉 + ǫk (4.1)
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where Θ∗ is the underlying low-rank data matrix of interest, Xk distributed on {eieTj : i, j ∈
[d]} is the sampler that extracts one entry of Θ∗, Yk is the k-th observation corrupted by noise
ǫk independent of Xk. We consider a random, uniform sampling scheme

X1, ...,Xn are i.i.d. uniformly distributed on {eieTj : i ∈ [d], j ∈ [d]}, (4.2)

but we mention that the results can be directly adapted to non-uniform sampling scheme,
see [60]. To embrace more real applications, Θ∗ is assumed to be approximately low-rank [71].

Assumption 4. (Approximate low-rankness on matrix). Let σ1(Θ
∗) ≥ ... ≥ σd(Θ

∗) be
singular values of Θ∗, 0 ≤ q < 1. For some r > 0 it holds that

d∑

k=1

σk(Θ
∗)q ≤ r. (4.3)

Since Xk only has d2 values, we can use ⌈2 log2 d⌉ bits to encode Xk without losing any
information. Therefore, we only quantize Yk to binary data Ẏk and study the estimation via
(Xk, Ẏk). Similar to our prior developments, we use a generalized quadratic loss (3.4) with
Q,B specified to be

Q =
1

n

n∑

k=1

vec(Xk)vec(Xk)T , B =
1

n

n∑

k=1

γ · ẎkXk. (4.4)

The spikiness of Θ∗ is defined as d‖Θ∗‖max

‖Θ∗‖F in [71], and note that completing a matrix with

high spikiness (close to d) is an ill-posed problem per se [35]. Besides the spikiness, a similar
but more straightforward assumption is a max-norm constraint (e.g., [23,28,34,60]). Here, we
adopt this more straightforward condition and assume

‖Θ∗‖max ≤ α∗. (4.5)

Substitute (4.4), (3.4) into (3.3), together with the max-norm constraint (4.5), we now define
our estimator via the following convex programming problem

Θ̂ ∈ arg min
‖Θ‖max≤α∗

1

2
vec(Θ)TQvec(Θ) − 〈B,Θ〉 + λ‖Θ‖nu

= arg min
‖Θ‖max≤α∗

1

2n

n∑

k=1

(〈
Xk,Θ

〉
− γ · Ẏk

)2
+ λ‖Θ‖nu

(4.6)

Compared with the program (3.17) involving Σ̂ used in sparse linear regression, (4.6) is more
intuitive since we simply replace the full observation Yk in a standard quadratic loss with its
1-bit surrogate γ · Ẏk. Such choice can be readily explained by Lemma 1.

Applying Lemma 2 to the problem set-up of low-rank matrix completion directly gives the
following Corollary 3.

Corollary 3. Consider (4.1) under random sampling (4.2), Θ∗ satisfies Assumption 4 and

(4.5). Consider Θ̂ in (4.6). Let ∆̂ = Θ̂−Θ∗. If

λ ≥ 2
∥∥1

n

n∑

k=1

[
〈Xk,Θ

∗〉 − γ · Ẏk
]
Xk

∥∥
op
, (4.7)
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then it holds that

‖∆̂‖nu ≤ 10r
1

2−q ‖∆̂‖
2−2q
2−q

F . (4.8)

Moreover, if the RSC holds, i.e., for some κ > 0

1

n

n∑

k=1

|
〈
Xk, ∆̂

〉
|2 ≥ κ‖∆̂‖2F, (4.9)

then we have

‖∆̂‖F ≤ 30
√
r
(λ
κ

)1−q/2
and ‖∆̂‖nu ≤ 300r

(λ
κ

)1−q
. (4.10)

4.1 Sub-Gaussian noise

We first consider sub-Gaussian noise ǫk satisfying

Eǫk = 0, ‖ǫk‖ψ2
≤ σ. (4.11)

To invoke Corollary 3 and obtain the statistical rate, we need to choose suitable λ that
guarantees (4.7) with high probability. Thus, we upper bound the right hand side of (4.7)
first.

Lemma 3. Consider (4.1) under sampling scheme (4.2), max-norm constraint (4.5), and
sub-Gaussian noise assumption (4.11). For a specific δ > 1, we choose the dithering noise
scale γ by

γ = C13 max{α∗, σ}
√

log
( n

δd log(2d)

)
(4.12)

with some sufficiently large C13 such that γ ≥ 2 max{α∗, σ}. If δd log d
n

is sufficiently small, we
have

∥∥ 1

n

n∑

k=1

[
〈Xk,Θ

∗〉 − γ · Ẏk
]
Xk

∥∥
op

. max{α∗, σ}
√

log n
δ log d

nd
(4.13)

with probability higher than 1 − 2d1−δ.

It remains to consider (4.9). To lighten the notation we use X = (X1, ...,Xn) to denote
the observed positions and define FX (Θ) = n−1

∑n
k=1 |

〈
Xk,Θ

〉
|2. It is known that FX (Θ) ≥

κ‖∆̂‖2F may not always hold under high-dimensional scaling and the special covariate (4.2). In
this case, one often needs to establish (4.9) with a relaxed (tolerance) term [72, Definition 2].
To this end, Negahban and Wainwright first established such relaxed RSC over a constraint
set in [71, Theorem 1]. Later, in [60, Lemma 12], Klopp considered a different constraint set
and provided a refined proof, but only for the exact low-rank setting, i.e., q = 0 in Assumption
4. More recently, in [28, Lemma 5], Chen and Ng considered a constraint set depending on
q ∈ [0, 1) and extended the proof in [60] to approximate low-rank regime. As a consequence,
a simpler and much shorter proof for the error bound in [71] could be obtained, see more
discussions in [28]. Here we show the relaxed RSC over the constraint set defined in [28], see
C(ψ) in (4.14).
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Lemma 4. For a specific δ and sufficiently large ψ, we consider the constraint set

C(ψ) =
{
Θ ∈ R

d×d :‖Θ‖max ≤ 2α∗, ‖Θ‖nu ≤ 10r
1

2−q ‖Θ‖
2−2q
2−q

F ,

‖Θ‖2F ≥ (α∗d)2
√
ψδ log(2d)

n

}
.

(4.14)

Then there exists some absolute constant κ ∈ (0, 1), such that with probability at least 1− d−δ,
it holds that

FX (Θ) ≥ κd−2‖Θ‖2F − T0, ∀Θ ∈ C(ψ), (4.15)

where the relaxation term T0 is given by

T0 =
r

(2 − q)dq

(
240α∗

√
d log(2d)

n

)2−q
. (4.16)

We are now ready to derive the statistical bound of the estimation error ∆̂ = Θ̂−Θ∗. The
main idea is parallel to previous works [28,60,71], i.e., to discuss whether ∆̂ belongs to C(ψ).
Note that this only hinges on the third constraint in (4.14), since the first two constraints are

automatically satisfied by ∆̂, see (4.5) and (4.8).

Theorem 12. Under the setting of Lemma 3, assume Θ∗ satisfies Assumption 4, we consider
the estimator Θ̂ defined in (4.6). Moreover, we set λ by

λ = C14 max{α∗, σ}
√

log n
δ log d

nd
(4.17)

with sufficiently large C14, assume δd log d
n

is sufficiently small, r & dq, n . d2 log(2d), then
with probability higher than 1 − 3d1−δ, we have





‖∆̂‖2F/d2 . rd−q
(

max{(α∗)2, σ2} logn
δd log d

n

)1−q/2

‖∆̂‖nu/d . rd−q
(

max{α∗, σ}
√

log n
δd log d

n

)1−q
.

(4.18)

Remark 3. Under a specific scaling ‖Θ∗‖F = 1, Xk = d · eieTj adopted in [45,71], our bound

for the mean square error d−2‖∆̂‖2F is equivalent to

‖∆̂‖2F . r
(

max{α(Θ∗)2, σ2}d log d logn

n

)1−q/2
,

where α(Θ∗) = d‖Θ∗‖max

‖Θ∗‖F ∈ [1, d] is the spikiness of the desiredΘ∗. Compared with the full-data-

based estimator in [71] that achieves near minimax rate [71, Theorem 3], our 1-bit estimator
only degrades by a minor factor logn, hence is also near minimax. It is quite striking that the
underlying matrix can be recovered fairly well from merely 1-bit observation.
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4.2 Heavy-tailed noise

The heavy-tailed noise is assumed to have bounded second moment in this part, i.e.,

Eǫk = 0, E|ǫk|2 ≤M. (4.19)

Note that the 1-bit response Ẏk is obtained with the truncation step before the dithered
quantization — Yk is first truncated to be Ỹk = sign(Yk) min{|Yk|, η}, then dithered and

quantized to Ẏk = sign(Ỹk + Λk) where Λk ∼ uni([−γ, γ]). To invoke Corollary 3, we first
upper bound the right hand side of (4.7).

Lemma 5. Consider (4.1) under sampling scheme (4.2), max-norm constraint (4.5), and
heavy-tailed noise assumption (4.19). For a specific δ > 1, we set the truncation threshold η,
dithering scale γ as 




η = C15 max{α∗,
√
M}

( n

δd log d

)1/4

γ = C16 max{α∗,
√
M}

( n

δd log d

)1/4 , (4.20)

where C16 > C15, γ > 2 max{α∗,
√
M}. If δd log d

n
is sufficiently small, we have

∥∥ 1

n

n∑

k=1

[
〈Xk,Θ

∗〉 − γ · Ẏk
]
Xk

∥∥
op

. max{α∗,
√
M}

(δ log d

nd3

)1/4

(4.21)

with probability higher than 1 − 2d1−δ.

Parallel to proof of Theorem 12, a discussion on whether ∆̂ ∈ C(ψ) unfolds some key
relations that further lead to the desired error bounds. The result is given in Theorem 13.

Theorem 13. Under the setting of Lemma 5, assume Θ∗ satisfies Assumption 4, we consider
the estimator Θ̂ defined in (4.6). Moreover, we set λ as

λ = C17 max{α∗,
√
M}

(δ log d

nd3

)1/4

(4.22)

with sufficiently large C17. Assume δd log d
n

is sufficiently small, r & dq, then with probability at
least 1 − 3d1−δ, we have




‖∆̂‖2F/d2 . rd−q

(
max{(α∗)2,M}

√
δd log d

n

)1−q/2

‖∆̂‖nu/d . rd−q
(

max{α∗,
√
M}

(δd log d

n

)1/4)1−q . (4.23)

The result is consistent with previous two estimation problems — the error rates become
essentially slower in the 1-bit heavy-tailed case. Similarly, this is the outcome of a bias-and-
variance trade-off.

To shed some light on the fundamental difficulty of estimating Θ∗ from (Xk, Ẏk), we derive
an information-theoretic lower bound in the following. Specifically, we consider the exact low-
rank case (q = 0) with the set of parameters

K (r, α∗) =
{
Θ ∈ R

d×d : rank(Θ) ≤ r, ‖Θ‖max ≤ α∗}. (4.24)
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Theorem 14. Given n, d, r, α∗. For some underlying Θ ∈ K (r, α∗), we suppose the data
(Xk, Ẏk)

n
k=1 are generated as in Theorem 13, i.e., truncation, dithering and quantization with

parameters (4.20), and we assume γ > η > α∗. Consider any algorithm which, for any

underlying Θ ∈ K (r, α∗), takes the corresponding (Xk, Ẏk)
n
k=1 as input and returns Θ̂. Then

for some absolute constants D1, D2, there exists Θ0 ∈ K (r, α∗) such that with probability at
least 3

4
,

‖Θ̂−Θ0‖2F/d2 ≥ min
{
D1α

∗, D2((α
∗)2 +M)r

√
d

n log d

}
. (4.25)

In the above lower bound, of primary interest is the second term — it dominates the first
term in the regular scaling n & r2d, and nearly matches the upper bound of Theorem 13
under q = 0, up to a factor of log d. Recall that the error rate in Theorem 13 suffers from
essential degradation compared to the sub-Gaussian case. While the lower bound indicates
that, if one only has access to (Xk, Ẏk)

n
k=1 (produced by our quantization scheme with the

chosen parameters), the upper bound is indeed almost tight. In other words, there exists no
estimator as a function of (Xk, Ẏk)

n
k=1 that could achieve error rate significantly faster than

Θ̂ in Theorem 13.
The proof of Theorem 14 is information-theoretic and inspired by [34, Theorem 3], but

requires some modifications because of different parameter sets and sampling schemes. Simi-
larly to Theorem 11, the lifted lower bound mainly stems from the dithering scale (4.20) that
is larger than the sub-Gaussian counterpart (4.12).

To close this section, we point out that our method for 1-bit matrix completion is new
and essentially different from the existing likelihood approach (see, e.g., [23, 34]). Notably,
our method can deal with unknown pre-quantization noise ǫk that can be sub-Gaussian or
heavy-tailed; note that such unknown noise precludes the standard likelihood approach. A
review of prior works and more detailed comparison can be found in Appendix D.

5 An Overview of the Techniques

While deferring all the proofs to appendices, we provide an overview of the techniques used in
this work. We focus on the derivation of upper bounds. We detail the sub-Gaussian regime,
and use concrete example for heavy-tailed case to illustrate that the same technicalities can
derive the presented results with an optimal choice of parameters. Finally, we compare our
work with [45] to illustrate the main technical reason why 1-bit quantization of heavy-tailed
data leads to rate degradation.

5.1 Sub-Gaussian Case

For sparse covariance matrix estimation, the element-wise error rate of Σ̆ in Theorem 1 is a
fundamental element. Unlike the full data case where E

(
Xk,iXk,j

)
= σ∗

ij , Eσ̆ij = σ∗
ij may not

hold due to the possibility of |Xk,i| > γ. Thus, we first divide the element-wise error into a
concentration term R1 and a bias term R2

|σ̆ij − σ∗
ij | ≤ |σ̆ij −Eσ̆ij | + |Eσ̆ij − σ∗

ij | := R1 +R2.
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Since the quantized data is bounded, a fast concentration rate for R1 is guaranteed by Ho-
effding’s inequality, while R2 can be controlled by standard arguments. We strike a bal-

ance between R1, R2 by setting γ = O
(√

log
(

n
log d

))
, then the concentration term R1 =

O
(√ log d(log n)2

n

)
dominates the error, hence the error bound only degrades by a factor logn

compared with O
(√

log d
n

)
for the full-data sample covariance matrix.

Recall that our estimator Σ̂ is defined by element-wisely hard thresholding Σ̆, and the
procedures to show operator norm error rate of Σ̂ are parallel to corresponding results for
the full-data-based hard thresholding estimator Tζ

(∑n
k=1XkX

T
k /n

)
in [20]. In brief, some

discussions unfold the element-wise rate |σ̂ij − σ∗
ij | = O

(
min{|σ∗

ij|,
√

log d(log n)2

n
}
)
, which is

tighter than the bound for |σ̆ij − σ∗
ij |. This tighter rate, together with the sparsity, can yield

a dimension-free bound for the dominating term of operator norm error. Despite a similar
proof strategy, we need more involved analyses to deal with some new challenges from the
data quantization. These additional efforts, for example, can be seen in the treatment of R2

(A.8).
For sparse linear regression (including 1-bit QC-CS, 1-bit CS) and matrix completion, we

derive the error rates for each problem based on Lemma 2, a framework of trace regression.
Compared with the key lemma (Theorem 1) in [45] , we present Lemma 2 in a more general
form that accommodates generalized quadratic loss (3.4), and the purpose is that more flexible
Q, B constructed from the binary data can be used. The advantage of using such framework
is a rather clear proof roadmap constituted by two steps:

• Step 1. Bound ‖mat(Q ·vec(Θ∗))−B‖op from above and choose λ that guarantee (3.5);

• Step 2. Establish the restricted strong convexity (3.7), and invoke (3.8) to obtain the
error rate.

We first discuss Step 1. In sparse linear regression we need λ ≥ 2‖QΘ∗ − B‖max with
some Q, B approximating ΣXX = EXkX

T
k , ΣY X = EYkXk, respectively. Thus, by noting

ΣXXΘ∗ = ΣY X it can be divided as two approximation error terms

‖QΘ∗ − B‖max ≤ ‖(Q−ΣXX)Θ∗‖max︸ ︷︷ ︸
approximation term I

+ ‖B − ΣY X‖max︸ ︷︷ ︸
approximation term II

.

One possibility to control the approximation error term is via existing results. For instance,
in 1-bit QC-CS we set Q to be the proposed sparse covariance matrix estimator Σ̂. Thus,
the bound of term I follows from results in Section 2 (see, e.g., (B.11)). On the other hand,
we can also adopt a standard strategy of bounding the concentration error and the deviation
(i.e., bias). For example, we can divide term II into (see, e.g., R2, R3 in (B.20))

‖B − ΣY X‖max ≤ ‖B −EB‖max︸ ︷︷ ︸
concentration term II.1

+ ‖E
(
B − YkXk

)
‖max︸ ︷︷ ︸

bias term II.2

.

For matrix completion the methodology is similar, see (C.1) for example. We apply various
concentration inequalities to bound the concentration terms, to name a few, Bernstein’s in-
equality (B.16), (B.17), matrix Bernstein’s inequality (C.2). In contrast, more standard tools
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like Cauchy-Schwarz, Markov’s inequality can upper bound bias terms. Let λfull denote the op-
timal choice of λ in the full-data settings (see, e.g., [28,45,70,71]). As it comes out, in the sub-
Gaussian regime of our 1-bit setting, one can always strike an almost perfect balance among
all the terms such that λ = Poly(logn) · λfull can guarantee λ ≥ 2‖mat(Q · vec(Θ∗)) −B‖op
(3.5).

Step 2 concerns the restricted strong convexity of Q with regard to ∆̂. Note that this
mainly hinges on the covariate. Thus, in 1-bit CS and matrix completion where full covari-
ate is available, we can directly borrow existing results from the full-data settings with no
quantization [28,45]. For 1-bit QC-CS with quantized Xk, the desired RSC property straight-

forwardly follows from ΣXX ’s sparsity and the resulting dimension-free bound of ‖Σ̂−ΣXX‖op.
Finally, we apply (3.8) to obtain the error rates. Since λ = Poly(logn) ·λfull suffices for Step 1,
under the dithered 1-bit quantization scheme, the error rate at worst degrades by logarithmic
factor.

5.2 Heavy-tailed Case

In heavy-tailed regime we introduce truncation parameter η and require γ > η. The strategies
and technical tools for the proofs are almost the same as sub-Gaussian regime, while the
difference is that we can no longer strike a perfect balance among all terms. We briefly give
an example to demonstrate the proofs.

Example 1. (Theorem 10.) To our best knowledge, Theorem 10 presents the first com-
putationally efficient method for 1-bit CS with heavy-tailed sensing vectors, and the rate

O
(√

s
3
√

log d
n

)
(for s-sparse Θ∗) is still faster than the convex approach in [40] that is only for

sub-Gaussian regime. Let us start from Step 1 and first decompose ‖Σ̂X̃X̃Θ∗ − Σ̂Y X‖max into
four terms (see notations given in (3.29))

‖Σ̂X̃X̃Θ∗ − Σ̂Y X‖max ≤ ‖(Σ̂X̃X̃ −ΣXX)Θ∗‖max + ‖Σ̂Y X − ΣY X‖max := I + II

≤
∥∥(Σ̂X̃X̃ −EX̃kX̃

T
k )Θ∗∥∥

max︸ ︷︷ ︸
concentration term I.1

+
∥∥
E

(
XkX

T
k − X̃kX̃

T
k

)
Θ∗∥∥

max︸ ︷︷ ︸
bias term I.2

+
∥∥Σ̂Y X −E(γ · ẎkX̃k)

∥∥
max︸ ︷︷ ︸

concentration term II.1

+
∥∥
E

(
γ · ẎkX̃k − YkXk

)∥∥
max︸ ︷︷ ︸

bias term II.2

.

For two concentration terms, Bernstein’s inequality gives I.1 = O
(√

log d
n

+ η2X
log d
n

)
and II.1 =

O
(
γ
√

log d
n

+ γ·ηX ·log d
n

)
with probability 1 − d−Ω(1). For two bias terms, some probability

arguments and bounded 4-th moment can yield I.2 = O
(

1
η2X

)
and II.2 = O

(
1
η2Y

+ 1
η2X

)
. Recall

that the heavy-tailed Yk would be quantized to 1-bit, and we require γ > ηY . To achieve

an optimal trade-off among ηX , ηY , γ, we set ηX ≍
(

n
log d

)1/4
, ηY , γ ≍

(
n

log d

)1/6
, which gives

an overall upper bound ‖Σ̂X̃X̃Θ∗ − Σ̂Y X‖max = O
( 3
√

log d
n

)
. Hence, λ ≍ 3

√
log d
n

suffices for

λ ≥ 2‖Σ̂X̃X̃Θ∗ − Σ̂Y X‖max.

For Step 2, since the truncated sample covariance matrix Σ̂X̃X̃ also serves as a plug-in
estimator for sparse linear regression in [45], we can directly borrow their Lemma 2(b). It

should be pointed out that if we treat X̃k as data bounded by ηX and deal with I.1, II.1 via

28



Hoeffding’s inequality, we can only establish an essentially slower error rate. By contrast,
Bernstein’s inequality enables us to make full use of Xk’s bounded 4-th moment and derive
tighter bound. △

5.3 Comparison With the Heavy-tailed Full-data Case

Finally, we compare the heavy-tailed, full-data setting in [45] and our heavy-tailed, 1-bit
quantized setting, to explain the main technical reason why near optimal rates are derived
in [45], but ours are essentially slower. The key difference is on the effectiveness of the original
moment constraint. Because the truncated data admits the same moment constraint as the
original data (e.g., E|Ỹk|4 ≤ E|Yk|4 ≤M), [45] can use (matrix) Bernstein’s inequality to deal

with the concentration term. Nevertheless, quantizing Ỹk to its 1-bit surrogate γẎk ruins the
moment constraint since E|γ · Ẏk|4 = γ4. As a consequent, we can only derive a looser bound
for the concentration term.

We use sparse linear regression as a concrete example for illustration.

Example 2. (sparse linear regression in [45] and this work.) In the proof of [45, Lemma 1],

Bernstein’s inequality is used to deal with the concentration term ‖ 1
n

∑n
k=1 ỸkX̃k−EỸkX̃k‖max.

Thanks to the moment constraints of X̃k, Ỹk, they can show

∥∥ 1

n

n∑

k=1

ỸkX̃k −EỸkX̃k

∥∥
max

= O
(
√

log d

n
+
ηXηY log d

n

)
(5.1)

with high probability. By contrast, in our Theorem 10 for 1-bit CS, the corresponding term is
the concentration term II.1 in Example 1. Since γ · Ẏk fails to inherit the moment constraint
from Yk, the same Bernstein’s inequality only delivers (see (B.21), (B.22))

∥∥ 1

n

n∑

k=1

γ · ẎkX̃k −Eγ · ẎkX̃k

∥∥
max

= O
(
γ
(
√

log d

n
+
ηX log d

n

))
(5.2)

with probability 1−d−Ω(1), which is worse since γ becomes a common factor. Furthermore, in
our Theorem 8 for 1-bit QC-CS the corresponding concentration term is ‖γ2

n

∑n
k=1 ẎkẊk−Eγ2 ·

ẎkẊk‖max. Note that both covariate and response are quantized and hence lose the moment
constraint. Thus, we directly invoke Hoeffding’s inequality and obtain (see (B.14), (A.12))

∥∥γ
2

n

n∑

k=1

ẎkẊk −Eγ2 · ẎkẊk

∥∥
max

= O
(
γ2
√

log d

n

)
(5.3)

where γ2 appears as a leading multiplicative factor. It shall be clear that γ or γ2 appearing

as a multiplicative factor of
√

log d
n

leads to essential degradation. △

6 Experimental Results

In this section we present experimental results on synthetic data that can corroborate and
demonstrate our theories. To facilitate the presentation flow, the simulation details and the
algorithms are provided in Appendix E.
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6.1 Sparse Covariance Matrix Estimation

In our simulation Σ∗ has exactly s-sparse columns. In sub-Gaussian regime, with high prob-
ability Theorem 3 provides the error bound

‖Σ̂−Σ∗‖op . s

√
(log n)2 log d

n
. (6.1)

Thus, the operator norm error is expected to only logarithmically depends on the ambient
dimension d, while essentially depend on the the sparsity s (that can be viewed as the intrinsic
dimension of the problem). We draw Xk from multivariate Gaussian distribution to verify the
theory. Specifically, we try (d, s) = (2500, 3), (2700, 3), (2900, 3), (2700, 9), and test the sample
size n = 900 : 300 : 2700 for each (d, s). The log-log error curves for all (d, s) are plotted on
the left of Figure 1, with the theoretical curve O

(
logn√
n

)
also provided for comparison of the

error rate. Clearly, the curves with different dimension d but the same sparsity s are almost
coincident, which confirms the inessential dependency on d for the error. On the other hand,
the estimation error depends on s non-trivially since the curve of s = 9 is obviously higher.
Moreover, the experimental curves are roughly parallel to the theoretical one, confirming a
near optimal decreasing rate of n−1/2.

In heavy-tailed regime, for Σ∗ with s-sparse columns Theorem 6 guarantees

‖Σ̂−Σ∗‖op . s
( log d

n

)1/4

. (6.2)

The relation between estimation error and parameters s, d are similar to (6.1), while the con-
vergence rate becomes slower. In our simulations, heavy-tailed data are drawn from Student’s
t distribution. We test (d, s) = (2200, 3), (2400, 3), (2600, 3), (2400, 9) under sample size
n = 900 : 300 : 2400. We report the results in the right figure of Figure 1. Consistent with the
error bound, three curves with same s but different d are fairly close, while larger s (s = 9)
leads to essentially larger error. Although our theoretical rate O

(
n−1/4

)
does not match the

optimal rate in the classical setting, these curves seem well aligned with the theoretical curve.
Furthermore, we test (d, s) = (2400, 9) with the truncation step removed and then show the
error curve with legend “no truncation”. One shall see the estimation error becomes worse
without truncation. Therefore, truncation is not merely of technical importance, but can
indeed lower the estimation error in heavy-tailed regime.

6.2 Sparse Linear Regression

1-bit quantized-covariate compressed sensing (1-bit QC-CS). In 1-bit QC-CS, both
covariate Xk and response Yk are quantized to 1-bit. Note that we use exactly sparse Θ∗,
hence in sub-Gaussian regime Theorem 6 delivers the guarantee

‖Θ̂ − Θ∗‖2 . log n

√
s log d

n
, (6.3)

while for heavy-tailed regime the error bound in Theorem 7 reads as

‖Θ̂ − Θ∗‖2 .
√
s
( log d

n

)1/4

. (6.4)
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Figure 1: Sparse covariance matrix estimation. Left: Sub-Gaussian; Right: Heavy-tailed.

With simulation details given in Appendix E, we try Θ∗ with (d, s) = (2400, 3), (2200, 6),
(2400, 6), (2600, 6) under n = 900 : 300 : 2400. The experimental results in sub-Gaussian
regime, heavy-tailed regime are shown as log-log curves on the left, the right of Figure 2, re-
spectively. We also plot the theoretical rates for comparison. To show the efficacy of truncation
in heavy-tailed regime, keeping other parameters unchanged, we test (d, s) = (2400, 3) without
truncation step. The errors are accordingly shown as a curve with legend “no quantization”.

The results corroborate the theory from several respects. Firstly, the curves with the same
s but different d are extremely close, while the errors under s = 6 are significantly larger than
s = 3. This verifies (6.4) and (6.7) that exhibit non-trivial dependence on the sparsity s but
only logarithmic dependence on the ambient dimension d. Secondly, since the experimental
curves are fairly aligned with the theoretical ones, the theoretical convergence rates (regarding
n) are verified. Moreover, comparing the curve of (d, s) = (2400, 3) and “no quantization” on
the right of Figure 2, shrinking heavy-tailed data indeed leads to more accurate estimation of
Θ∗.

1-bit compressed sensing (1-bit CS). Different from the novel setting of 1-bit QC-CS, in
1-bit CS one has full covariate Xk and only quantize Yk to 1-bit. Under s-sparse Θ∗, Theorem
9 gives the near minimax error bound for sub-Gaussian regime

‖Θ̂ − Θ∗‖2 .
√
s log d logn

n
, (6.5)

while Theorem 13 for heavy-tailed regime provides

‖Θ̂ − Θ∗‖2 .
√
s
( log d

n

) 1
3

. (6.6)

Under sample size n = 900 : 300 : 2400, we test (d, s) = (2400, 3), (2200, 9), (2400, 9), (2600, 9)
for sub-Gaussian case, while (d, s) = (2400, 3), (2200, 6), (2400, 6), (2600, 6) for heavy-tailed
case. For (d, s) = (2400, 3) with heavy-tailed data, we also conduct an independent simulation
with the truncation of Xk, Yk removed but other conditions unchanged. The log-log error
curves and the theoretical rates are plotted in Figure 3. The key implications of Figure 3 are
similar to those in Figure 2 and can support our theoretical error bounds (6.5), (6.6).
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Figure 2: 1-bit QC-CS. Left: Sub-Gaussian; Right: Heavy-tailed.
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Figure 3: 1-bit CS. Left: Sub-Gaussian; Right: Heavy-tailed.

6.3 Low-rank Matrix Completion

While the error bounds in Theorems 12-13 are stated under
‖∆̂‖2

F

d2
, we first adapt them to our

simulation (see Appendix E) where the underlying exactly low-rank matrices have comparable
spikiness α(Θ∗) and unit Frobenius norm, and the noise is moderate compared with the signal.
Specifically, under sub-Gaussian ǫk, we can translate MSE error bound in (4.18) into

‖Θ̂−Θ∗‖F .

√
rd log d logn

n
, (6.7)

and similarly for heavy-tailed case (4.23)

‖Θ̂−Θ∗‖F .
(r2d log d

n

)1/4

. (6.8)

To corroborate the theoretical error rates, we simulate the proposed 1-bit matrix completion
method using Θ∗ with (d, r) = (100, 1), (100, 2), (120, 2), under the sample size n = 6000 :
1000 : 10000. In heavy-tailed regime, we also try (d, r) = (120, 2) with the response truncation
step removed. The experimental results are plotted as log-log error curves in Figure 4.

Clearly, in both sub-Gaussian regime (left figure) and heavy-tailed regime (right figure),
the errors significantly increase when either r or d becomes larger. This corroborates the
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implications of (6.7), (6.8) that the estimation error essentially hinges on r and d. Moreover,
the experimental curves are well aligned with the theoretical curve, hence the theoretical error
rates are confirmed. Comparing two black curves of (d, r) = (120, 2) and “no quantization” in
the right figure, the truncation step seems do not bring notable improvement to the recovery of
Θ∗. This is perhaps because the the moderate noise 1

250
√
3
· t(ν = 3) is used in the simulation,

thus making the bias-and-variance trade-off less important. On the other hand, we believe a
more significant advantage of using the truncation step can be observed under severer noise.
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Figure 4: Low-rank matrix completion. Left: Sub-Gaussian; Right: Heavy-tailed.

7 Concluding Remarks

In this paper we propose a dithered 1-bit quantization scheme and apply it to the estimation
problems of sparse covariance matrix estimation, sparse linear regression and matrix com-
pletion. While adding a uniform dithering noise prior to quantization was already seen in
literature, our scheme involves a truncation step if the data are heavy-tailed. Under high-
dimensional scaling, our estimators from merely binary data can recover the underlying pa-
rameters fairly well. In sub-Gaussian regime, the proposed estimators achieve near minimax
rates. In heavy-tailed regime, the error rates become significantly slower because of a bias-
and-variance trade-off. However, these results either represent the first ones under 1-bit quan-
tization of heavy-tailed data, or already improve on prior results. Moreover, we also derive
nearly matching information-theoretic lower bounds for Theorem 10, 13 (heavy-tailed setting
of 1-bit compressed sensing, matrix completion), showing that the rates are actually almost
tight for estimation with the observed 1-bit data.

This work also provides new developments to each of the three estimation problems. Com-
pared to [38] that proposed the 1-bit covariance matrix estimator Σ̆, the results in Section 2
can be viewed as a two-fold extension, that is, extension to high-dimensional scaling (n < d)
and to heavy-tailed distribution. For sparse linear regression, we first propose and study a
novel complete quantization setting where both covariate and response are quantized to 1-bit
(Theorems 7-8). Corresponding results for 1-bit compressed sensing (1-bit CS) are also pre-
sented (Theorems 9-10). Compared with previous results on 1-bit CS, our sensing vector can
be sub-Gaussian or heavy-tailed, and other advantages include faster rate and convex recovery
program, see Appendix D. In Section 4, while all existing papers for 1-bit matrix completion
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(1-bit MC) are in essence based on maximum likelihood estimation, our novel method can
handle pre-quantization random noise with unknown distribution, see Appendix D.

We point out two open questions to close this work. The first one is concerned with the
slower error rates under the 1-bit quantization of heavy-tailed data. While they are nearly tight
in 1-bit CS and 1-bit MC from our binary observations (Theorems 11, 14), it is still possible
to design different (1-bit) quantization schemes for heavy-tailed data that allow faster rate.
The possibility includes changing parameters in our quantization scheme. In fact, the lifted
lower bounds in Theorems 11, 14 are mainly due to our choices of larger dithering scale. Such
choice is the price we pay for handling heavy-tailed data, but it is possible to achieve faster
rate by using smaller dithering scale (of course, deriving the faster rate in this case will rely
on sharper technical tool). We leave faster estimator in a heavy-tailed, 1-bit quantized case
as future work. Secondly, our results in Section 3 are non-uniform, meaning that the recovery
guarantee is valid for a fixed Θ∗. Note that in nonlinear compressed sensing uniform guarantee
is an important aspect and still eagerly pursued (see [29,30,49,97] for recent advances). Thus,
it would be a good direction to strengthen Theorems 7-10 to a uniform ones that guarantee
the recovery of all (approximately) sparse signals. For this direction, we conjecture that the
main technical difficulties will lie in the 1-bit quantization and the heavy-tailed data (we refer
to [30, Theorem 12] for a uniform recovery guarantee under uniformly quantized heavy-tailed
data).
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stationarity in heavy-tailed distributed signals. Signal Processing, 172:107514, 2020.

[67] Jean Lafond, Olga Klopp, Eric Moulines, and Joseph Salmon. Probabilistic low-rank ma-
trix completion on finite alphabets. Advances in Neural Information Processing Systems,
27, 2014.

[68] Ming Li, Wei Zhao, and Biao Chen. Heavy-tailed prediction error: A difficulty in pre-

38



dicting biomedical signals of noise type. Computational and Mathematical Methods in
Medicine, 2012, 2012.

[69] Jianhua Mo and Robert W Heath. Limited feedback in single and multi-user mimo sys-
tems with finite-bit adcs. IEEE Transactions on Wireless Communications, 17(5):3284–
3297, 2018.

[70] Sahand Negahban and Martin J Wainwright. Estimation of (near) low-rank matrices with
noise and high-dimensional scaling. The Annals of Statistics, pages 1069–1097, 2011.

[71] Sahand Negahban and Martin J Wainwright. Restricted strong convexity and weighted
matrix completion: Optimal bounds with noise. The Journal of Machine Learning Re-
search, 13(1):1665–1697, 2012.

[72] Sahand N Negahban, Pradeep Ravikumar, Martin J Wainwright, and Bin Yu. A unified
framework for high-dimensional analysis of m-estimators with decomposable regularizers.
Statistical science, 27(4):538–557, 2012.

[73] Renkun Ni and Quanquan Gu. Optimal statistical and computational rates for one bit
matrix completion. In Artificial Intelligence and Statistics, pages 426–434. PMLR, 2016.

[74] Yaniv Plan and Roman Vershynin. Robust 1-bit compressed sensing and sparse logistic
regression: A convex programming approach. IEEE Transactions on Information Theory,
59(1):482–494, 2012.

[75] Yaniv Plan and Roman Vershynin. One-bit compressed sensing by linear programming.
Communications on Pure and Applied Mathematics, 66(8):1275–1297, 2013.

[76] Yaniv Plan and Roman Vershynin. The generalized lasso with non-linear observations.
IEEE Transactions on information theory, 62(3):1528–1537, 2016.

[77] Yaniv Plan, Roman Vershynin, and Elena Yudovina. High-dimensional estimation with
geometric constraints. Information and Inference: A Journal of the IMA, 6(1):1–40, 2017.

[78] Mohsen Pourahmadi. High-dimensional covariance estimation: with high-dimensional
data, volume 882. John Wiley & Sons, 2013.

[79] Jim O Ramsey and Bernard W Silverman. Functional data analysis. Springer Series in
Statistics, New York: Springer Verlag, 2005.

[80] Garvesh Raskutti, Martin J Wainwright, and Bin Yu. Minimax rates of estimation for
high-dimensional linear regression over ℓq-balls. IEEE transactions on information theory,
57(10):6976–6994, 2011.

[81] Benjamin Recht. A simpler approach to matrix completion. Journal of Machine Learning
Research, 12(12), 2011.

[82] Phillippe Rigollet and Jan-Christian Hütter. High dimensional statistics. Lecture notes
for course 18S997, 813:814, 2015.

[83] Kilian Roth, Jawad Munir, Amine Mezghani, and Josef A Nossek. Covariance based

39



signal parameter estimation of coarse quantized signals. In 2015 IEEE International
Conference on Digital Signal Processing (DSP), pages 19–23. IEEE, 2015.
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A Proofs: Sparse Covariance Matrix Estimation

Proof of Lemma 1. Since X and Λ are independent, we have

E

[
γ · sign(X + Λ)

]
= EXEΛ

[
γ · sign(X + Λ)

]
= EX

[
γ ·P(Λ ≥ −X) + (−γ) ·P(Λ < −X)

]

= EX

[
γ ·

(γ +X

2γ
− γ −X

2γ

)]
= EX.

note that the third equal sign relies on γ ≥ B. �

Proof of Corollary 1. Since Λ1 and Λ2 are i.i.d. uniformly distributed on [−γ, γ] and
independent of X, Y , then by using Lemma 1 we have

E

[
γ2 · sign(X + Λ1)sign(Y + Λ2)

]
= EX,YEΛ1

EΛ2

[
γ2 · sign(X + Λ1)sign(Y + Λ2)

]

= EX,Y

(
EΛ1

[
γ · sign(X + Λ1)

]
EΛ2

[
γ · sign(Y + Λ2)

])
= EXY,

the result follows. �

A.1 Sub-Gaussian Data

Proof of Theorem 1. For fixed i, j, triangle inequality yields

|σ̆ij − σ∗
ij | ≤ |σ̆ij −Eσ̆ij | + |Eσ̆ij − σ∗

ij | := R1 +R2. (A.1)

It suffices to bound R1, R2 from above.
Bound of R1. We introduce the element-wise notation of the quantized data as Ẋkj =

[Ẋkj,1, Ẋkj,2, ..., Ẋkj,d]
T , ∀ k ∈ [n], j ∈ [2], then by (2.1) σ̆ij = 1

n

∑n
k=1

γ2

2

[
Ẋk1,iẊk2,j+Ẋk2,iẊk1,j

]
.

Since
∣∣∣γ22

[
Ẋk1,iẊk2,j + Ẋk2,iẊk1,j

]∣∣∣ ≤ γ2, Hoeffding’s inequality (Proposition 3) yields

P(|σ̆ij −Eσ̆ij | ≥ t) ≤ 2 exp(−nt2/2γ4), ∀ t > 0.

We set t = γ2
√

2δ log d
n

and obtain

P

(
R1 ≥ γ2

√
2δ log d

n

)
≤ 2d−δ. (A.2)

Bound of R2. By Corollary 1 and some algebra, we have

R2 =
∣∣
E

(
γ2 · Ẋk1,iẊk2,j −Xk,iXk,j

)∣∣

=
∣∣∣E[γ2Ẋk1,iẊk2,j −Xk,iXk,j][1({|Xk,i| ≥ γ} ∪ {|Xk,j| > γ})]

∣∣∣
≤ E|Xk,iXk,j|1(|Xk,i| > γ) +E|Xk,iXk,j|1(|Xk,j| > γ) := R21 +R22.
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Note that R21, R22 can be bounded likewise, thus we only show the upper bound of R21. We
use Cauchy-Schwarz inequality, and then Proposition 1, it yields

R21 ≤
√
E|Xk,iXk,j|2 ·

√
P(|Xk,i| > γ) ≤

√
1

2
E(|Xk,i|4 + |Xk,j|4) ·

√
P(|Xk,i| > γ)

.
√
σ4 ·

√
exp

(
− D1γ2

σ2

)
≤ σ2 exp

(
− D1γ

2

2σ2

)
.

We further plug in (2.6) and assume C1 is sufficiently large such that D1C
2
1 ≥ 1, it delivers

R21 . σ2
√

2δ log d
n

. Therefore, we conclude that

R2 = |Eσ̆ij − σ∗
ij | . σ2

√
2δ log d

n
. (A.3)

Combining (A.2) and (A.3) we derive P
(
|σ̆ij − σ∗

ij | . γ2
√

δ log d
n

)
≥ 1 − 2dδ. With no loss

of generality, we can assume 2δ log d > e, then γ2 . σ2 log n, then (2.7) follows. It is not hard
to see that (2.8) follows from (2.7) via a union bound. �

Proof of Theorem 2. Since γ has been specified with some C1, from Theorem 1 we know
there exists an absolute constant D1 such that

P

(
|σ̆ij − σ∗

ij | ≤ D1σ
2 log n

√
δ log d

n

)
≥ 1 − 2d−δ. (A.4)

Assume C2 is sufficiently large such that C2 > D1. We first rule out 2d−δ probability and

assume |σ̆ij − σ∗
ij | ≤ D1σ

2 logn
√

δ log d
n

. Recall that σ̂ij = Tζ(σ̆ij), we analyse two cases.

Case 1. |σ̆ij| < ζ , then by definition we have σ̂ij = 0, hence |σ̂ij − σ∗
ij | = |σ∗

ij| ≤ |σ∗
ij |. Besides,

by triangle inequality we have |σ∗
ij | ≤ |σ∗

ij − σ̆ij | + |σ̆ij | ≤ (D1 + C2)σ
2 logn

√
δ log d
n
, hence we

have

|σ̂ij − σ∗
ij | ≤ (D1 + C2 + 1) min

{
|σ∗
ij |, σ2 log n

√
δ log d

n

}
.

Case 2. |σ̆ij | ≥ ζ , then we have σ̂ij = σ̆ij , hence |σ̂ij − σ∗
ij | = |σ̆ij − σ∗

ij | ≤ D1σ
2 log n

√
δ log d
n

.

Moreover, since C2 > D1, we have |σ∗
ij | ≥ |σ̆ij | − |σ̆ij − σ∗

ij | ≥ (C2 −D1)σ
2 logn

√
δ log d
n
, which

implies that σ2 logn
√

δ log d
n

≤ 1
C2−D1

|σ∗
ij|, hence we have |σ̂ij − σ∗

ij | ≤ D1

C2−D1
|σ∗
ij |. By putting

pieces together we obtain

|σ̂ij − σ∗
ij | ≤

(
D1 +

D1

C2 −D1

)
min

{
|σ∗
ij |, σ2 logn

√
δ log d

n

}
.

Combining two cases leads to (2.10), hence the proof is concluded. �

Proof of Theorem 3. Since γ and ζ are properly set with some C1, C2, by Theorem 2, (2.10)
holds with some absolute constant D1 hidden behind “.”. For convenience we define

Aij =
{
|σ̂ij − σ∗

ij | ≤ D1 min{|σ∗
ij|, σ2 logn

√
δ log d

n
}
}
. (A.5)
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Let A c
ij be its complement, then we have P(A c

ij) ≤ 2d−δ. For d × d symmetric matrix A =
[α1, ..., αn] with columns αj , we have ‖A‖op ≤ supj∈[d] ‖αj‖1. Thus, some algebra gives

E‖Σ̂−Σ∗‖pop ≤ E

[
sup
j∈[d]

d∑

i=1

|σ̂ij − σ∗
ij |
]p

≤ E sup
j∈[d]

[ d∑

i=1

|σ̂ij − σ∗
ij |1(Aij) +

d∑

i=1

|σ̂ij − σ∗
ij |1(A c

ij)
]p

≤ 2pE sup
j∈[d]

[ d∑

i=1

|σ̂ij − σ∗
ij |1(Aij)

]p
+ 2pE sup

j∈[d]

[ d∑

i=1

|σ̂ij − σ∗
ij |1(A c

ij)
]p

:= R1 +R2,

(A.6)
Bound of R1. Let us first bound R1. By (2.3) and (A.5) we have

d∑

i=1

|σ̂ij − σ∗
ij |1(Aij) ≤

d∑

i=1

D1 min
{
|σ∗
ij|, σ2 logn

√
δ log d

n

}

≤
d∑

i=1

D1|σ∗
ij |q

(
σ2 log n

√
δ log d

n

)1−q
≤ D1s

(
σ2 log n

√
δ log d

n

)1−q
.

(A.7)

This further gives

R1 ≤
(

2D1s
[
σ2 logn

√
δ log d

n

]1−q)p
.

Bound of R2. Recall σ̂ij = Tζ σ̆ij , let T1 =
[∑d

i=1 |σ̂ij − σ∗
ij |1(A c

ij)
]p

, we have

T1 ≤
[ d∑

i=1

|σ∗
ij|1(A c

ij)1(|σ̆ij| < ζ) +
d∑

i=1

|σ̆ij −Eσ̆ij|1(A c
ij) +
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|Eσ̆ij − σ∗
ij |1(A c

ij)
]p

≤ (3d)p−1
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ij)1(|σ̆ij | < ζ) +

d∑

i=1

|σ̆ij −Eσ̆ij |p1(A c
ij) +
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|Eσ̆ij − σ∗
ij |p1(A c

ij)
]
.

Combining with the form of R2 yields

R2 ≤ 2pE

d∑

j=1

[ d∑

i=1

|σ̂ij − σ∗
ij |1(A c

ij)
]p

≤ 6pdp−1
(
E
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i,j
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ij |p1(A c

ij)1(|σ̆ij | < ζ)

+E
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)
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(
R21 +R22 +R23
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.

(A.8)

Let us deal with R21, R22, R23 separately.
Bound of R21. Suppose the event A

c
ij ∩ {|σ̆ij | < ζ} holds, then σ̂ij = 0, combining with

(A.5) we know |σ̂ij − σ∗
ij | = |σ∗

ij | > D1 min{|σ∗
ij |, σ2 log n

√
δ log d
n

}. Recall (A.3), we assume

|Eσ̆ij−σ∗
ij | ≤ D1,0σ

2
√

δ log d
n

for some constant D1,0. To avoid technical complication, we simply

assume D1, C2 are sufficiently large and satisfy D1 ≥ max{3C2, 3}, C2 ≥ max{D1,0, 10C2
1}.

Combining with (2.9) in Theorem 2, we have

|σ∗
ij | ≥ D1σ

2 log n

√
δ log d

n
≥ 3ζ > 3|σ̆ij | ≥ 3|σ∗

ij | − 3|σ∗
ij − σ̆ij |,
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which implies

|σ∗
ij − σ̆ij | ≥

2

3
|σ∗
ij | and ζ ≤ 1

3
|σ∗
ij|. (A.9)

Moreover, we have

|Eσ̆ij − σ∗
ij | ≤ D1,0σ

2

√
δ log d

n
≤ ζ ≤ 1

3
|σ∗
ij |.

Besides |σ∗
ij| ≥ 3ζ , based on |σ∗

ij − σ̆ij | ≥ 2
3
|σ∗
ij |, we use triangle inequality and obtain

2

3
|σ∗
ij | ≤ |σ∗

ij − σ̆ij | ≤ |σ̆ij −Eσ̆ij | + |Eσ̆ij − σ∗
ij | ≤ |σ̆ij −Eσ̆ij| +

1

3
|σ∗
ij |, (A.10)

which implies |σ̆ij −Eσ̆ij | ≥ 1
3
|σ∗
ij |. Therefore, we draw the conclusion that

A
c
ij ∩ {|σ̆ij | < ζ} =⇒ {|σ∗

ij | > 3ζ} ∩ {|σ̆ij −Eσ̆ij | ≥
1

3
|σ∗
ij |}.

Now we can invoke Hoeffding’s inequality (Proposition 3) and obtain

R21 =
∑
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|σ∗
ij|pE

[
1(A c
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]
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3
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(
− n|σ∗
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18γ4

)

Moreover, some calculus can verify supy≥0 y
p
2 exp(−y/36) ≤ (D2)

p(
√
p)p. Thus, we proceed as

R21 ≤ 2
∑

i,j

|σ∗
ij |p1(|σ∗

ij | > 3ζ) exp
(
− n|σ∗

ij |2
18γ4

)

= 2
( γ2√

n

)p∑

i,j

([n|σ∗
ij |2
γ4

] p
2

exp
[
− n|σ∗

ij |2
36γ4

])(
1(|σ∗

ij | > 3ζ) exp
[
− n|σ∗

ij |2
36γ4

])

≤ 2
( γ2√

n

)p(
sup
y≥0

y
p
2 exp

[
− y

36

])(
d2 exp

[
− nζ2

4γ4

])
,

Recall (2.6), (2.9) and that we assume C2 ≥ 10C2
1 , we have ζ ≥ 10C2

1σ
2 log n

√
δ log d
n

≥
10γ2

√
δ log d
n
, which delivers d2 exp(−nζ2

4γ4
) ≤ d2−25δ. We now put pieces together and obtain

R21 ≤ d2−25δ
(

2D2γ
2

√
p

n

)p
≤ d2−25δ

(
D3σ

2 logn

√
δ

n

)p
.

Bound of R22. By Cauchy-Schwarz inequality we have

R22 ≤
∑

i,j

√
E|σ̆ij −Eσ̆ij |2pP(A c

ij) ≤
∑

i,j

d−
δ
2

√
2E|σ̆ij −Eσ̆ij |2p.
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Recall σ̆ij = 1
n

∑n
k=1

γ2

2

[
Ẋk1,iẊk2,j + Ẋk2,iẊk1,j

]
with each summand lying between [−γ2

n
, γ

2

n
],

so by Hoeffding’s Lemma (e.g., Lemma 1.8 in [82]), σ̆ij − Eσ̆ij is the sum of n independent

random variable, and each variable has sub-Gaussian norm scaling O
(
γ2

n

)
. Thus, Proposition

2 gives ‖σ̆ij −Eσ̆ij‖ψ2
= O

(
γ2√
n

)
. Now we invoke Proposition 1(b) to obtain

R22 . d2−
δ
2

(
D4,0γ

2

√
p

n

)p
≤ d2−

δ
2

(
D4σ

2 logn

√
δ

n

)p
.

Bound of R23. Note that |Eσ̆ij − σ∗
ij | is constant, hence we use (A.3) and obtain

R23 ≤ |Eσ̆ij − σ∗
ij |p

∑

i,j

2d−δ ≤ 2d2−δ
(
D5σ

2

√
δ log d

n

)p
.

Now we are in a position to put everything together. By combining the upper bounds for

R2i, i = 1, 2, 3, we have R21 +R22 +R23 ≤ d2−
δ
2

(
D6σ

2 logn
√

δ log d
n

)p
. Substitute it into (A.8),

recall p = δ
4

and δ ≥ 4, we obtain

R2 ≤ d1−
δ
4

(
6D6σ

2 logn

√
δ log d

n

)p ≤
(
6D6σ

2 log n

√
δ log d

n

)p
.

This bound is dominated by the bound of R1 when δ log d(log n)2/n is sufficiently small (note
that conventionally one assumes s = Ω(1)). Thus, there exists absolute constant D7 such that

E‖Σ̂−Σ∗‖pop ≤
(
D7s

[
σ2 log n

√
δ log d

n

]1−q)p
,

which gives (2.11). We further invoke Markov inequality:

P

(
‖Σ̂−Σ∗‖op ≥ e4D7s

[
σ2 log n

√
δ log d

n

]1−q)

=P
(
‖Σ̂−Σ∗‖pop ≥

(
e4D7s

[
σ2 log n

√
δ log d

n

]1−q)p)
≤ exp(−4p) = exp(−δ),

(2.12) follows. Now the proof is concluded. �

A.2 Heavy-tailed Data

Proof of Theorem 4. Since γ > η ≥ |X̃k,i|, by using Corollary 1 we can “expect out” the
independent dithering noises Γk1,i,Γk2,j,

Eσ̆ij = E

(
γ2 · sign(X̃k,i + Γk1,i)sign(X̃k,j + Γk2,j)

)

=EX̃k,iX̃k,j

(
EΓk1,i

[
γ · sign(X̃k,i + Γk1,i)

])(
EΓk2,j

[
γ · sign(X̃k,j + Γk2,j)

])
= EX̃k,iX̃k,j.

Thus, by triangle inequality we have

|σ̆ij − σ∗
ij | ≤ |σ̆ij −Eσ̆ij | + |E(Xk,iXk,j − X̃k,iX̃k,j)| := R1 +R2. (A.11)
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Bound of R1. From σ̆ij =
∑n

k=1
γ2

2n
(Ẋk1,iẊk2,j + Ẋk1,jẊk2,i) we know σ̆ij is mean of n indepen-

dent random variables lying in [−γ2, γ2], then by Hoeffding’s inequality (Proposition 3) and
plug in the value of γ (2.15), we have

P(R1 ≥ t) ≤ 2 exp
(
− nt2

2γ4

)
= 2 exp

(
− t2

√
nδ log d

2C4
4M

)
, ∀t > 0. (A.12)

Setting t =
√

2MC2
4

(
δ log d
n

)1/4
yields P

(
R1 ≥

√
2C2

4

√
M

[
δ log d
n

]1/4) ≤ 2d−δ.

Bound of R2. Since the truncated version X̃k,i 6= Xk,i only when |Xk,i| > η, so

R2 ≤ E

[
|Xk,iXk,j − X̃k,iX̃k,j|(1({|Xk,i| > η} ∪ {|Xk,j| > η}))

]

= E

[
|Xk,iXk,j|1(|Xk,i| > η)

]
+E

[
|Xk,iXk,j|1(|Xk,j| > η)

]
:= R21 +R22.

By Cauchy-Schwarz inequality, we bound R21 by R21 ≤
√
E|Xk,iXk,j|2P(|Xk,i| > η), moreover,

we have E|Xk,iXk,j|2 ≤ E(|Xk,i|4 + |Xk,j|4)/2 ≤M . A direct application of Markov inequality

yields that P(|Xk,i| > η) ≤ E|Xk,i|4
η4

= M
η4
. Plug in the above two inequalities and the value of

η, we have R21 ≤ M
η2

=
√
M
C2

3

(
δ log d
n

)1/4
. Since R22 can be bounded likewise, it holds that

R2 = |E(Xk,iXk,j − X̃k,iX̃k,j)| ≤
2

C2
3

√
M

(δ log d

n

) 1
4

. (A.13)

Now we can put things together and obtain (2.16). Moreover, (2.17) follows from a union
bound, hence the proof is concluded. �

Proof of Theorem 5. The proof is parallel to that of Theorem 2. For some specified C3, C4,
by Theorem 4 there exists an absolute constant D1 such that

P

(
|σ̆ij − σ∗

ij | ≤ D1

√
M

[δ log d

n

] 1
4
)
≥ 1 − 2d−δ. (A.14)

We assume C5 > D1 and first rule out probability 2d−δ in (A.14), so we can proceed the proof

upon the event |σ̆ij − σ∗
ij | ≤ D1

√
M

[
δ log d
n

]1/4
. According to the threshold ζ we discuss two

cases.
Case 1. |σ̆ij | < ζ , then we have σ̂ij = 0, thus, |σ̂ij − σ∗

ij | = |σ∗
ij| ≤ |σ∗

ij|. Moreover, triangle

inequality gives |σ∗
ij| ≤ |σ∗

ij − σ̆ij | + |σ̆ij | ≤ (D1 + C5)
√
M

(
δ log d
n

) 1
4 , so we have

|σ̂ij − σ∗
ij | ≤ (D1 + C5 + 1) min

{
|σ∗
ij |,

√
M

[δ log d

n

] 1
4
}

Case 2. |σ̆ij | > ζ , then we have σ̂ij = σ̆ij , which leads to |σ̂ij − σ∗
ij | = |σ̆ij − σ∗

ij | ≤
D1

√
M

[
δ log d
n

]1/4
. Let us show it can also be bounded by |σ∗

ij|. A reverse triangle inequal-
ity gives

|σ∗
ij | ≥ |σ̆ij | − |σ̆ij − σ∗| > ζ − |σ̆ij − σ∗| ≥ (C5 −D1)

√
M

[δ log d

n

]1/4
,
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so we obtain
√
M

[
δ log d
n

]1/4 ≤ 1
C5−D1

|σ∗
ij |. Now we can draw the conclusion that

|σ̂ij − σ∗
ij | ≤ (D1 +

D1

C5 −D1
) min

{
|σ∗
ij |,

√
M

[δ log d

n

] 1
4
}
.

Combining two cases leads to (2.20), so we complete the proof. �

Proof of Theorem 6. Since η, γ, ζ are specified with some C3, C4, C5, by Theorem 5 there
exists absolute constant D1 such that (2.20) holds. We define the event

Aij =
{
|σ̂ij − σ∗

ij | ≤ D1 min{|σ∗
ij|,

√
M

[δ log d

n

] 1
4}
}
, (A.15)

then we have P(A c
ij) ≤ 2d−δ (Here, A c

ij denotes the complementary event). Now we can divide
the operator norm error according to Aij and A c

ij , it gives

E‖Σ̂−Σ∗‖pop ≤ E

[
sup
j∈[d]

d∑

i=1

|σ̂ij − σ∗
ij |
]p

≤ E sup
j∈[d]

[ d∑

i=1

|σ̂ij − σ∗
ij |1(Aij) +

d∑

i=1

|σ̂ij − σ∗
ij |1(A c

ij)
]p

≤ 2pE sup
j∈[d]

[ d∑

i=1

|σ̂ij − σ∗
ij |1(Aij)

]p
+ 2pE sup

j∈[d]

[ d∑

i=1

|σ̂ij − σ∗
ij |1(A c

ij)
]p

:= R1 +R2.

Bound of R1. By the sparsity (2.3) and (A.15), for any j ∈ [d] we have

d∑

i=1

|σ̂ij − σ∗
ij |1(Aij) ≤

d∑

i=1

D1 min
{
|σ∗
ij |,

√
M

[δ log d

n

] 1
4
}

≤
d∑

i=1

D1|σ∗
ij|q

(√
M

[δ log d

n

] 1
4
)1−q

≤ D1s
(√

M
[δ log d

n

] 1
4
)1−q

.

This leads to

R1 ≤
(

2D1sM
(1−q)/2(δ log d

n

)(1−q)/4)p
.

Bound of R2. Let T1 =
[∑d

i=1 |σ̂ij −σ∗
ij |1(A c

ij)
]p

. Recall that σ̂ij = Tζ σ̆ij , under A c
ij we divide

the problem into {|σ̆ij | < ζ} and {|σ̆ij| ≥ ζ}, then triangle inequality yields

T1 ≤
[ d∑

i=1

|σ∗
ij|1(A c

ij)1(|σ̆ij| < ζ) +

d∑

i=1

|σ̆ij −Eσ̆ij|1(A c
ij) +

d∑

i=1

|Eσ̆ij − σ∗
ij |1(A c

ij)
]p

≤ (3d)p−1
[ d∑

i=1

|σ∗
ij |p1(A c

ij)1(|σ̆ij | < ζ) +

d∑

i=1

|σ̆ij −Eσ̆ij |p1(A c
ij) +

d∑

i=1

|Eσ̆ij − σ∗
ij |p1(A c

ij)
]
.

Now we put it into the expression of R2 and obtain

R2 ≤ 2pE

d∑

j=1

[ d∑

i=1

|σ̂ij − σ∗
ij |1(A c

ij)
]p

≤ 6pdp−1
(
E

∑

i,j

|σ∗
ij |p1(A c

ij)1(|σ̆ij | < ζ)

+E

∑

i,j

|σ̆ij −Eσ̆ij |p1(A c
ij) +E

∑

i,j

|Eσ̆ij − σ∗
ij |p1(A c

ij)
)

:= 6pdp−1(R21 +R22 +R23).

(A.16)
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Bound of R21. Suppose the event A c
ij ∩ {|σ̆ij | < ζ} holds, then σ̂ij = 0, thus, (A.15) delivers

that |σ̂ij − σ∗
ij | = |σ∗

ij| > D1 min{|σ∗
ij |,

√
M

[
δ log d
n

]1/4}. With no loss of generality, we assume
D1 ≥ max{3C5, 3}, and C5 ≥ max{2/C2

3 , 4C
2
4}. Combining with (2.19), Theorem 5, we have

|σ∗
ij | ≥ D1

√
M

[δ log d

n

]1/4 ≥ 3ζ > 3|σ̆ij| ≥ 3|σ∗
ij| − 3|σ∗

ij − σ̆ij |,

which implies |σ∗
ij− σ̆ij | ≥ 2

3
|σ∗
ij | and ζ ≤ 1

3
|σ∗
ij |. Since η < γ, it always holds that Eσ̆ij−σ∗

ij =

E(Xk,iXk,j − X̃k,iX̃k,j). Combining (A.13), (2.19) gives

|Eσ̆ij − σ∗
ij | ≤

2

C2
3

√
M

[δ log d

n

]1/4
≤ C5

√
M

[δ log d

n

]1/4
≤ ζ ≤ 1

3
|σ∗
ij |.

We upper bound |σ∗
ij − σ̆ij | by triangle inequality and have

2

3
|σ∗
ij | ≤ |σ∗

ij − σ̆ij | ≤ |σ̆ij −Eσ̆ij| + |Eσ̆ij − σ∗
ij | ≤ |σ̆ij −Eσ̆ij | +

1

3
|σ∗
ij|,

which implies |σ̆ij −Eσ̆ij | ≥ 1
3
|σ∗
ij |. Therefore,

A
c
ij ∩ {|σ̆ij | < ζ} =⇒ {|σ∗

ij | > 3ζ} ∩ {|σ̆ij −Eσ̆ij | ≥
1

3
|σ∗
ij |},

so we can bound R21 via

R21 =
∑

i,j

|σ∗
ij |pE

[
1(A c

ij ∩ {|σ̆ij | < ζ})
]

≤
∑

i,j

|σ∗
ij|p1(|σ∗

ij | > 3ζ)P
(
|σ̆ij −Eσ̆ij | ≥

1

3
|σ∗
ij |
)
≤ 2

∑

i,j

|σ∗
ij|p1(|σ∗

ij | > 3ζ) exp
(
− n|σ∗

ij |2
18γ4

)

= 2
( γ2√

n

)p∑

i,j

([n|σ∗
ij |2
γ4

] p
2

exp
[
− n|σ∗

ij |2
36γ4

])(
1(|σ∗

ij | > 3ζ) exp
[
− n|σ∗

ij|2
36γ4

])

≤ 2
( γ2√

n

)p(
sup
y≥0

y
p
2 exp

[
− y

36

])(
d2 exp

[
− nζ2

4γ4

])
≤ 2

( γ2√
n

)p(
sup
y≥0

y
p
2 exp

[
− y

36

])
d2−4δ,

where the second inequality is from Hoeffding’s inequality (Proposition 3), while we plug in
γ, ζ and use C5 ≥ 4C2

4 in the last line. Some calculus show supy≥0 y
p/2 exp(−y/36) ≤ Dp

2p
p/2.

Then we plug in the above inequality and the value of γ (2.15), for some D3 we have

R21 ≤ d2−4δ
(

2D2γ
2

√
p

n

)p
≤ d2−4δ

(
D3

√
M

[ δ

n log d

] 1
4
)p

Bound of R22. This is the same as the corresponding part in the proof of Theorem 3. In brief,
we can show an upper bound of the same form, but with different value of γ2 (given in (2.15)):

R22 ≤ d2−
δ
2

(
D4,0γ

2

√
p

n

)p
≤ d2−

δ
2

(
D4

√
M

[ δ

n log d

] 1
4
)p
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Bound of R23. Note that |Eσ̆ij − σ∗
ij | = |E(X̃k,iX̃k,j − Xk,iXk,j)| is constant which has been

bounded in the proof of Theorem 4. In particular, (A.13) gives |Eσ̆ij−σ∗
ij | ≤ 2

C2
3

√
M

[
δ log d
n

]1/4
.

By combining with P(A c
ij) ≤ 2d−δ, we bound R23 via

R23 ≤ |Eσ̆ij − σ∗
ij |p

∑

i,j

2d−δ ≤ d2−δ
(
D5

√
M

[δ log d

n

] 1
4
)p
,

Now we are in a position to put things together. By combining the upper bounds for R2i, i =

1, 2, 3, we have R21 +R22 +R23 ≤ Dp
6d

2− δ
2Mp/2

[
δ log d
n

]p/4
. We further substitute it into (A.16),

and recall p = δ
4
, δ ≥ 4, we obtain

R2 ≤ d1−
δ
4

(
6D6

√
M

[δ log d

n

] 1
4
)p

≤
(

6D6

√
M

[δ log d

n

] 1
4
)p
.

When δ log d/n is small enough, this upper bound for R2 is smaller than the obtained bound
for R1. Thus, we know there exists absolute constant D7 such that

E‖Σ̂−Σ∗‖pop ≤
(
D7sM

(1−q)/2
[δ log d

n

](1−q)/4)p
,

(2.21) follows. We further use Markov inequality:

P

(
‖Σ̂−Σ∗‖op ≥ e4D7sM

(1−q)/2
[δ log d

n

](1−q)/4)

=P
(
‖Σ̂−Σ∗‖pop ≥

[
e4D7sM

(1−q)/2
[δ log d

n

](1−q)/4]p)
≤ exp(−4p) = exp(−δ),

this displays (2.22) and concludes the proof. �

B Proofs: Sparse Linear Regression

Proof of Lemma 2. The proof is obtained by modifying and combining Lemma 1 in [72]
and Theorem 1 in [45].

I. From the detinition of Θ̂ (3.3), we have

L(Θ̂) −L(Θ∗) ≤ λ‖Θ∗‖nu − λ‖Θ̂‖nu. (B.1)

By (3.4), some algebra delivers that

L(Θ̂)−L(Θ∗) =
1

2
vec(∆̂)TQvec(∆̂) −

〈
B, ∆̂

〉
+ vec(Θ∗)TQvec(∆̂)

=
1

2
vec(∆̂)TQvec(∆̂) +

〈
mat(Q · vec(Θ∗)) −B, ∆̂

〉
.

(B.2)

Since Q is positive semi-definite, combining with 〈A1,A2〉 ≤ ‖A1‖op‖A2‖nu, (3.5)

L(Θ̂) − L(Θ∗) ≥− ‖mat(Q · vec(Θ∗)) −B‖op‖∆̂‖nu ≥ −λ
2
‖∆̂‖nu. (B.3)
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II. Consider the SVD Θ∗ = UΣV T =
[
U1 U2

] [Σ11 0
0 Σ22

] [
V T

1

V T
2

]
,where U1,V1 ∈ R

d×z,U2,

V2 ∈ R
d×(d−z) is a partition of singular vectors, z ∈ {0, 1, ..., d} will be specified later. If z ≥ 1

we consider two linear subspaces of Rd×d defined as M = {U1A1V
∗

1 : A1 ∈ R
z×z} and

M =
{ [

U1 U2

] [A1 A2

A3 0

] [
V T

1

V T
2

]
: A1 ∈ R

z×z,A2 ∈ R
z×(d−z),A3 ∈ R

(d−z)×z
}
,

then let PM and PM denote the projection onto M and M respectively. Given a matrix

∆ ∈ R
d×d, assume that ∆ =

[
U1 U2

] [∆11 ∆12

∆21 ∆22

] [
V T

1

V T
2

]
, then PM and PM have the

explicit form

PM∆ = U1∆11V
T
1 and PM∆ =

[
U1 U2

] [∆11 ∆12

∆21 0

] [
V T

1

V T
2

]
.

Besides, let PM⊥∆ = ∆ − PM∆, PM⊥∆ = ∆ − PM∆. Note that the nuclear norm is

decomposable [72] with respect to the pair of subspaces (M,M) since for any ∆1,∆2 ∈ R
d×d,

it holds that
‖PM∆1 + PM⊥∆2‖nu = ‖PM∆1‖nu + ‖PM⊥∆2‖nu. (B.4)

By using PM and PM, we have ‖∆̂‖nu ≤ ‖PM∆̂‖nu + ‖PM⊥∆̂‖nu, plug in (B.3) and combine
with (B.1), we obtain

‖Θ̂‖nu − ‖Θ∗‖nu ≤ 1

2

[
‖PM∆̂‖nu + ‖PM⊥∆̂‖nu

]
. (B.5)

In the special case z = 0, we just let PM = PM = 0, it can be easily verified that (B.4), (B.5)
and what follow still hold.
III. In this part we derive (3.6). We calculate that

‖Θ̂‖nu − ‖Θ∗‖nu = ‖PMΘ∗ + PM⊥Θ∗ + PM∆̂ + PM⊥∆̂‖nu − ‖PMΘ∗ + PM⊥Θ∗‖nu
≥ ‖PMΘ∗‖nu + ‖PM⊥∆̂‖nu − ‖PM⊥Θ∗‖nu − ‖PM∆̂‖nu − ‖PMΘ∗‖nu − ‖PM⊥Θ∗‖nu
= ‖PM⊥∆̂‖nu − 2‖PM⊥Θ∗‖nu − ‖PM∆̂‖nu,

(B.6)

note that we use decomposability (B.4) and triangle inequality in the third line. By combining

(B.5), (B.6) we obtain ‖PM⊥∆̂‖nu ≤ 3‖PM∆̂‖nu + 4‖PM⊥Θ∗‖nu, it holds that

‖∆̂‖nu ≤ ‖PM⊥∆̂‖nu + ‖PM∆̂‖nu ≤ 4(‖PM∆̂‖nu + ‖PM⊥Θ∗‖nu). (B.7)

Assume the singular values of Θ∗ are σ1(Θ
∗) ≥ ... ≥ σd(Θ

∗). Instead of choosing z directly
we choose a threshold τ > 0 and then let z = max

{
{0} ∪ {w ∈ [d] : σw(Θ∗) ≥ τ}

}
. Since

rank(PM∆̂) ≤ 2z, we have ‖PM∆̂‖nu ≤
√

2z‖∆̂‖F. Moreover, by (3.2) we have

zτ q ≤
z∑

k=1

σk(Θ
∗)q ≤

d∑

k=1

σk(Θ
∗)q ≤ r,
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which implies z ≤ rτ−q. Therefore, we have ‖PM∆̂‖nu ≤
√

2rτ−q/2‖∆̂‖F. By simple algebra
we can bound the last term in (B.7) by

‖PM⊥Θ∗‖nu =

d∑

k=z+1

σk(Θ
∗) =

d∑

k=z+1

σk(Θ
∗)qσk(Θ

∗)1−q ≤ rτ 1−q.

By putting pieces together, we obtain

‖∆̂‖nu ≤ 4
(√

2rτ−
q
2‖∆̂‖F + rτ 1−q

)
, ∀τ > 0.

We only consider ∆̂ 6= 0, then we choose τ =
(

‖∆̂‖F√
r

)2/(2−q)
, then we obtain (3.6).

IV. Assume we have RSC (3.7), we derive the convergence rate. With RSC, from (B.2) we
have tighter estimation than (B.3):

L(Θ̂) − L(Θ∗) ≥ 1

2
κ‖∆̂‖2F − λ

2
‖∆̂‖nu.

On the other hand we have L(Θ̂) − L(Θ∗) ≤ λ‖∆̂‖nu from (B.1). By combining them we

obtain ‖∆̂‖nu ≥ κ
3λ
‖∆̂‖2F. Then plug in (3.6), the bound for Frobenius norm in (3.8) follows.

Again plug it into (3.6) we obtain the bound for nuclear norm. �

Proof of Corollary 2. (3.9) can be recast as a trace regression Yk = 〈Xk,tr,Θ
∗

tr〉 + ǫk,
where Xk,tr = diag(Xk), Θ

∗

tr = diag(Θ∗). Consider the convex set S = {Θ ∈ R
d×d : Θ =

diag(Θ), ‖Θ‖max ≤ R}, let Btr = diag(B), and Qtr ∈ R
d2×d2 is the matrix whose submatrix

constituted of the rows and columns with numbering in {1, d+ 2, 2d+ 3, ..., d2} is Q ∈ R
d×d,

and the rows and columns not in {1, d+2, 2d+3, ..., d2} are all zero. Obviously, Qtr is positive

semi-definite. It is not hard to see that Θ̂ defined by (3.11) is equivalent to finding the diagonal

matrix Θ̂tr via
Θ̂tr ∈ arg min

Θ∈S
L(Θ) + λ‖Θ‖nu,

where the loss function is given by L(Θ) = 1
2
vec(Θ)TQtrvec(Θ) − 〈Btr,Θ〉, and then let Θ̂

be the main diagonal of Θ̂tr. Then all the results follow by using Lemma 2. �

B.1 Sub-Gaussian Data

Proof of Theorem 7. To use Corollary 2 we only need to establish (3.12), (3.14).

I. We first show that when (log n)2 log d/n is sufficiently small, Σ̂ is positive definite with high
probability. By Assumption 3 and Theorem 3 we have

P

(
‖Σ̂−ΣXX‖op ≤ D1σ

2 log n

√
δ log d

n

)
≥ 1 − exp(−δ). (B.8)

Under sufficiently small (logn)2 log d/n we have ‖Σ̂−ΣXX‖op ≤ κ0 with probability higher
than 1 − exp(−δ). Use λmin(·) to denote the smallest eigenvalue for a symmetric matrix.
Combining with λmin(ΣXX) ≥ 2κ0 in Assumption 3, we obtain

λmin(Σ̂) ≥ λmin(ΣXX) − ‖Σ̂−ΣXX‖op ≥ κ0, (B.9)
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which implies that Σ̂ is positive definite, and (3.14) holds.

II. It remains to bound ‖Σ̂Θ∗ − Σ̂Y X‖max and show (3.12) holds with high probability. Let
ΣY X = EYkXk and first note that

ΣY X = E(YkXk) = E(XkX
T
k Θ∗ + ǫkXk) = E(XkX

T
k )Θ∗ = ΣXXΘ∗.

By repeating the proof of Theorem 1, we have the element-wise error for Σ̂Y X

P

(
‖Σ̂Y X − ΣY X‖max ≤ D2σ

2 logn

√
δ log d

n

)
≥ 1 − 2d1−δ. (B.10)

We now combine (B.8) and (B.10), it holds with probability higher than 1 − 2d1−δ − exp(−δ)
that

‖Σ̂Θ∗ − Σ̂Y X‖max ≤ ‖Σ̂Θ∗ −ΣXXΘ∗‖max + ‖ΣY X − Σ̂Y X‖max

≤‖Σ̂−ΣXX‖op‖Θ∗‖2 + ‖ΣY X − Σ̂Y X‖max ≤ (D1R +D2)σ
2 log n

√
δ log d

n
.

(B.11)

Thus, we can choose sufficiently large C6 in (3.19) such that C6 ≥ 2(D1R + D2), then (3.12)
holds with high probability. Now that (3.12) and (3.14) have been verified, Corollary 2 gives
(3.15). We further substitute (3.19) into (3.15) and conclude the proof. �

B.2 Heavy-tailed Data

Proof of Theorem 8. The proof is parallel to Theorem 7. By Assumption 3 and Theorem
6, we have the probability tail for operator norm deviation

P

(
‖Σ̂−ΣXX‖op ≤ D1

√
M

[δ log d

n

]1/4)
≥ 1 − exp(−δ), (B.12)

when log d/n is sufficiently small, we can assume ‖Σ̂−ΣXX‖op ≤ κ0 with probability higher
than 1 − exp(−δ). This, together with λmin(ΣXX) ≥ 2κ0 given in Assumption 3, gives

λmin(Σ̂) ≥ κ0 under the same probability. Thus, with high probability Σ̂ is positive defi-
nite and (3.14) holds.

It remains to establish (3.12) and apply Corollary 2. By repeating the proof of Theorem

4, we can show the max-norm error for Σ̂Y X to approximate ΣY X = EYkXk as

P

(
‖Σ̂Y X − ΣY X‖max ≤ D2

√
M

[δ log d

n

]1/4)
≥ 1 − 2d1−δ. (B.13)

Now we combine (B.12) and (B.13), with probability higher than 1−exp(−δ)−2d1−δ it yields

‖Σ̂Θ∗ − Σ̂Y X‖max ≤ ‖Σ̂Θ∗ −ΣXXΘ∗‖max + ‖ΣY X − Σ̂Y X‖max

≤‖Σ̂−ΣXX‖op‖Θ∗‖2 + ‖ΣY X − Σ̂Y X‖max ≤ (D1R +D2)
√
M

[δ log d

n

]1/4
.

(B.14)

Thus, in (3.22) we can choose sufficiently large C7 such that C7 ≥ 2(D2R+D1), then we verify

λ ≥ 2‖Σ̂Θ∗ − Σ̂Y X‖max. Now we can use (3.15) in Corollary 2 and plug in (3.22), the desired
error bounds follow. �
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B.3 1-bit Compressed Sensing

Proof of Theorem 9. We prove the error bound based on Corollary 2. Evidently, we need

to show setting λ = C8

√
δ log d logn

n
with sufficiently large C8 can guarantee λ ≥ 2‖Σ̂XXΘ∗ −

Σ̂Y X‖max. First we use triangle inequality to obtain

‖Σ̂XXΘ∗ − Σ̂Y X‖max =
∥∥ 1

n

n∑

k=1

XkX
T
k Θ∗ − 1

n

n∑

k=1

γ · ẎkXk

∥∥
max

=
∥∥ 1

n

n∑

k=1

(Yk − γ · Ẏk)Xk −
1

n

n∑

k=1

ǫkXk

∥∥
max

≤
∥∥ 1

n

n∑

k=1

(Yk − γ · Ẏk)Xk −E

[
(Yk − γ · Ẏk)Xk

]∥∥
max

+ ‖E
[
(Yk − γ · Ẏk)Xk

]
‖max

+ ‖ 1

n

n∑

k=1

ǫkXk‖max := R1 +R2 +R3,

(B.15)

where we use Yk = XT
k Θ∗ + ǫk in the second line.

Bound of R1. Note that ‖Xk‖ψ2
≤ σ1, ‖ǫk‖ψ2

≤ σ2, ‖Θ∗‖ ≤ R imply ‖Yk‖ψ2
= O(Rσ1 + σ2) =

O(1), (since we assume σ1, σ2, R are absolute constants). Thus, we have ‖Yk − γ · Ẏk‖ψ2
=

O(1 + γ). Denote the j-th entry of Xk by Xk,j, then Xk,j ≤ σ1. Hence, by (1.2) we obtain
‖(Yk−γ · Ẏk)Xk,j‖ψ1

≤ ‖Yk−γ · Ẏk‖ψ2
‖Xk,j‖ψ2

= O(1+γ). Therefore, by Bernstein’s inequality
in Proposition 4 we obtain

P

(∣∣ 1

n

n∑

k=1

(Yk − γ · Ẏk)Xk,j−E((Yk − γ · Ẏk)Xk,j)
∣∣ ≥ t

)

≤ 2 exp
(
−D1nmin{ t2

(1 + γ)2
,

t

1 + γ
}
)
, ∀t > 0.

(B.16)

Moreover, we use γ = C ′
8

√
log n and a union bound to obtain

P(R1 ≥ t) ≤ 2d exp
(
−D2nmin{ t2

logn
,

t√
logn

}
)
.

Thus, setting t = D3

√
δ logn log d

n
with large D3 yields R1 ≤ D3

√
δ logn log d

n
with probability at

least 1 − 2d1−δ.
Bound of R2. By Lemma 1 when |Yk| ≤ γ we have EΛk

(
γ · Ẏk

)
= Yk. Use this fact and

Cauchy-Schwarz inequality, we can first bound R2 from above as

R2 =
∥∥
E

(
Yk − γ · Ẏk

)
Xk

∥∥
max

=
∥∥
E

(
Yk − γ · Ẏk

)
Xk1

(
|Yk| > γ

)∥∥
max

≤ max
j∈[d]

E

(
|YkXk,j|1(|Yk| > γ)

)
≤ max

j∈[d]

√
E

[
|Yk|2|Xk,j|2

]√
P(|Yk| > γ)

≤ max
j∈[d]

√
1

2

(
E|Yk|4 +E|Xk,j|4

)
P(|Yk| > γ) . exp(−D4γ

2) = n−n4(C′
8)

2

,

where the last inequality follows from ‖Yk‖ψ2
, ‖Xk,j‖ψ2

= O(1), Proposition 1 and the choice

γ = C ′
8

√
logn. Thus, as long as C ′

8 is sufficiently large, we have R2 = O
(√

δ logn log d
n

)
.
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Bound of R3. For j ∈ [d], by (1.2) it is evident that ‖ǫkXk,j‖ψ1
≤ ‖ǫk‖ψ2

‖Xk,j‖ψ2
≤ σ1σ2 =

O(1). Thus, Bernstein’s inequality (Proposition 4) followed by a union bound gives

P

(
R3 ≥ t

)
≤ 2d exp

(
−D4,1nmin{t2, t}

)
, ∀ t > 0. (B.17)

We further set t =
√

δ log d
D4,1n

and obtain

P

(
R3 ≤

√
δ log d

D4,1n

)
≥ 1 − 2d1−δ.

By (2.6) we can assume σ < γ . σ
√

log n. Thus, by (B.15) and the upper bounds for
R1, R2, R3, with probability higher than 1 − 4d2−δ we have

‖Σ̂XXΘ∗ − Σ̂Y X‖max .

√
δ log n log d

n
.

Therefore, we can choose sufficiently large C8 in (3.25) to guarantee λ ≥ 2‖Σ̂XXΘ∗− Σ̂Y X‖max

holds with high probability. By Corollary 2, it already leads to (3.13), a relation that facilitates
the following discussions.

Now that (3.12) has been verified, we turn to consider the RSC (3.14). When δ log d
n

is
sufficiently small, combining with λmin(ΣXX) ≥ 2κ0, Lemma 2(a) in [45] gives

P

(
∆̂T Σ̂XX∆̂ ≥ κ0‖∆̂‖22 −

D5δ log d

n
‖∆̂‖21

)
≥ 1 − 3d1−δ.

This event, together with (3.13), implies

∆̂T Σ̂XX∆̂ ≥ κ0‖∆̂‖22 −D6 ·
δ log d

n
· s 2

2−q ‖∆̂‖
4−4q
2−q

2 . (B.18)

We proceed the proof upon the condition (B.18) and divide it into the following two cases.

Case 1. If D6 · δ log dn
· s 2

2−q ‖∆̂‖
4−4q
2−q

2 ≤ κ0
2
‖∆̂‖22, (B.18) gives the RSC (3.14) with κ = κ0

2
. Thus,

we can invoke (3.15) in Corollary 2 and then plug in the value of λ in (3.25). This displays
the desired error bounds.

Case 2. Otherwise, it holds that

D6 ·
δ log d

n
· s 2

2−q ‖∆̂‖
4−4q
2−q

2 ≥ κ0
2
‖∆̂‖22. (B.19)

With no loss of generality, we assume ∆̂ 6= 0. Under the scaling that
√
s
(√

δ log d
n

)1−q/2
is

sufficiently small we have q ∈ (0, 1) (Since when q = 0, D6 · δ log dn
· s 2

2−q < κ0
2

together with

(B.19) gives ∆̂ = 0). Again use sufficiently small
√
s
(√

δ log d
n

)1−q/2
, (B.19) delivers

‖∆̂‖2 .
[√

s
(√δ log d

n

)1− q
2
] 2
q ≤ √

s
(√δ log d

n

)1− q
2

.
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This, together with (3.13), gives the upper bound for ‖∆̂‖1 as

‖∆̂‖1 . s
(√δ log d

n

)1−q
.

Thus, we conclude the proof. �

Proof of Theorem 10. The proof is still based on Corollary 2. First let us verify the crucial
relation λ ≥ 2‖Σ̂X̃X̃Θ∗ − Σ̂Y X‖max. Note that ΣXXΘ∗ = EYkXk, by triangle inequality we
can divide it into three terms Ri, 1 ≤ i ≤ 3

‖Σ̂X̃X̃Θ∗ − Σ̂Y X‖max ≤
∥∥(Σ̂X̃X̃ −ΣXX

)
Θ∗∥∥

max
+
∥∥
E

(
γ · ẎkX̃k − YkXk

)∥∥
max

+
∥∥ 1

n

n∑

k=1

γ · ẎkX̃k −E

(
γ · ẎkX̃k

)∥∥
max

:= R1 +R2 +R3.
(B.20)

Bound of R1. We first decompose ‖Σ̂X̃X̃ −ΣXX‖max as

‖Σ̂X̃X̃ −ΣXX‖max ≤
∥∥Σ̂X̃X̃ −EX̃kX̃

T
k

∥∥
max

+
∥∥
E

(
XkX

T
k − X̃kX̃

T
k

)∥∥
max

:= R11 +R12.

Let us deal with them element-wisely. For R11 and any (i, j) ∈ [d] × [d], recall that the

truncated covariate satisfies |X̃k,i| ≤ ηX , combining with (3.21) it gives




n∑

k=1

E

(
X̃k,iX̃k,j

)2 ≤
n∑

k=1

EX2
k,iX

2
k,j ≤

n∑

k=1

1

2

(
EX4

k,i +EX4
k,j

)
≤ nM

n∑

k=1

E(X̃k,iX̃k,j)
q
+ ≤

n∑

k=1

E|X̃k,iX̃k,j|q ≤ (η2X)q−2

n∑

k=1

E(X̃k,iX̃k,j)
2 ≤ nM · (η2X)q−2, ∀q ≥ 3

.

Thus, by the version of Bernstein’s inequality given in Theorem 2.10 in [14], we obtain

P

(∣∣ 1

n

n∑

k=1

X̃k,iX̃k,j −EX̃k,iX̃k,j

∣∣ >
√

2Mt

n
+
η2Xt

n

)
≤ exp(−t), ∀ t > 0.

Moreover, we can use an union bound and get

P

(
R11 >

√
2Mt

n
+
η2Xt

n

)
≤ d2 · exp(−t), ∀ t > 0.

Thus, we set t = δ log d and plug in ηX ≍
(

n
log d

)1/4
, then with probability at least 1 − 2d2−δ

we have R11 .
√

δ log d
n

. We now turn to R12 and have the (i, j)-th entry bounded by

∣∣
E

(
Xk,iXk,i − X̃k,iX̃k,j

)∣∣ ≤ E|Xk,iXk,j|
(
1(|Xk,i| > ηX) + 1(|Xk,j| > ηX)

)
.

The two terms can be bounded likewise, so we only deal with one of them by Cauchy-Schwarz
inequality and (3.21):

E|Xk,iXk,j|1(|Xk,i| > ηX) ≤
√
E|Xk,iXk,j|2

√
P(|Xk,i| > ηX)

≤
√

1

2

(
E|Xk,i|4 +E|Xk,j|4

)
√
E|Xk,i|4
η4X

≤ M

η2X
.

√
δ log d

n
.
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Therefore, with high probability we have

R1 ≤ ‖Σ̂X̃X̃ −ΣXX‖max‖Θ∗‖1 . (R11 +R12) .

√
δ log d

n
.

Bound of R2. We consider the j-th entry. Note that γ > ηY , Lemma 1 gives

|E(γ · ẎkX̃k,j − YkXk,j)| = |E(ỸkX̃k,j − YkXk,j)| ≤ E

(
|YkXk,j|1(|Yk| > ηY ) + 1(|Xk,j| > ηX)

)
.

By Cauchy-Schwarz inequality, (3.21) and the value of ηY , we obtain

E|YkXk,j|1(|Yk| > ηY ) ≤
√
E|YkXk,j|2 ·P(|Yk| > ηY ) ≤ M

η2Y
.

(δ log d

n

) 1
3

.

Similarly, it holds that E|YkXk,j|1(|Xk,j > ηX) ≤ M
η2X

.
√

δ log d
n

. Since this is valid for any

j ∈ [d], we obtain R2 .
(
δ log d
n

)1/3
.

Bound of R3. We consider the j-th entry first. Recall that |X̃k,j| ≤ ηX , and by (3.21) we know

EX̃2
k,j ≤ E|Xk,j|2 ≤

√
M , thus we have





n∑

k=1

E

(
γ · ẎkX̃k,j

)2
= γ2

n∑

k=1

EX̃2
k,j ≤ n

√
Mγ2

n∑

k=1

E(γ · ẎkX̃k,j)
q
+ ≤ γq

n∑

k=1

E|X̃k,j|q ≤ n
√
Mγ2(γ · ηX)q−2, ∀ q ≥ 3.

(B.21)

Now, we can invoke the Bernstein’s inequality given in Theorem 2.10 in [14] and obtain

P

(∣∣ 1

n

n∑

k=1

γ · ẎkX̃k,j −Eγ · ẎkX̃k,j

∣∣ > γ

√
2
√
Mt

n
+
γ · ηXt
n

)
≤ exp(−t), ∀ t > 0.

Thus, for some absolute constant hidden behind “&”, a union bound gives

P

(
R3 & γ

√
t

n
+
γ · ηX · t

n

)
≤ d · exp(−t), ∀ t > 0. (B.22)

We set t = δ log d and plug in our choices ηX ≍
(

n
δ log d

)1/4
and γ ≍

(
n

δ log d

)1/6
, it yields that

R3 .
(
δ log d
n

)1/3
holds with probability at least 1 − d1−δ.

Now combining the upper bounds for Ri, 1 ≤ i ≤ 3 and (B.20), we can choose λ =

C12

(
δ log d
n

)1/3
with sufficiently large C12 to guarantee λ ≥ 2‖Σ̂X̃X̃Θ∗ − Σ̂Y X‖max. Note that

ΣXXΘ∗ = EYkXk. By Corollary 2 under the same probability we have (3.13), i.e., ‖∆̂‖1 ≤
10s

1
2−q ‖∆̂‖

2−2q
2−q

2 .
To invoke Corollary 2 we still need to establish the RSC (3.14). Note that our choice of the

truncation parameter ηX is the same as [45], so we can use Lemma 2(b) therein4. Combining
with λmin(ΣXX) ≥ 2κ0 and (3.13), it gives

P

(
∆̂T Σ̂X̃X̃∆̂ ≥ 2κ0‖∆̂‖22 −D1

√
δ log d

n
s

2
2−q ‖∆̂‖

4−4q
2−q

2

)
≥ 1 − d2−

√
δ.

4This result is presented with the probability term reversed in different versions of [45], but the proof
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We assume the above event holds, and divide the discussion into two cases.

Cases 1. If D1

√
δ log d
n
s

2
2−q ‖∆̂‖

4−4q
2−q

2 ≤ κ0‖∆̂‖22, we have ∆̂T Σ̂X̃X̃∆̂ ≥ κ0‖∆̂‖22, thus confirming

the RSC (3.14). Therefore, we can use (3.15) in Corollary 2 and plug in λ ≍
(
δ log d
n

)1/3
to

yield the error bound ‖∆̂‖2 .
√
s
(
δ log d
n

)(1− q
2
)/3

:= B1.

Cases 2. Otherwise, we assume

D1

√
δ log d

n
s

2
2−q ‖∆̂‖

4−4q
2−q

2 > κ0‖∆̂‖22. (B.23)

With no loss of generality we assume ∆̂ 6= 0. If q = 0, under the scaling that s
(√

δ log d
n

)1−q/2

is sufficiently small, (B.23) can imply ∆̂ = 0. Thus, we assume q ∈ (0, 1) without losing
generality, then (B.23) gives

‖∆̂‖2 .
[
s
(√δ log d

n

)1−q/2]1/q
= s

1
q

(δ log d

n

) 1
2q

− 1
4

:= B2.

Therefore, we obtain ‖∆̂‖2 . max{B1, B2} = B1 max
{

1, B2

B1

}
. Because we have assumed

the additional s
(
δ log d
n

) 1
2
− q

3 = O(1) for q ∈ (0, 1), it leads to

B2

B1
=

(
s
(δ log d

n

) 1
2
− q

3

) 1
q
− 1

2

= O(1).

Therefore, we arrive at the desired upper bound ‖∆̂‖2 .
√
s
(
δ log d
n

)(1−q/2)/3
. Combining with

(3.13), the bound for ‖∆̂‖1 follows. �

Proof of Theorem 11. We simply write K (s, R) as K in this proof, and we use the
shorthand Σs to denote the set of s-sparse vectors in R

d.
We first use the sparse Varshamov-Gilbert (e.g., [82, Lemma 4.14]) to construct a packing

set K0 := {Θ
(1)
0 , ...,Θ

(N)
0 } ⊂ Σs such that

• for any i ∈ [N ], Θ
(i)
0 has s non-zero entries that equal 1;

• logN ≥ s
8

log d
2s

;

• for i 6= j, Θ
(i)
0 and Θ

(j)
0 contain at least s

2
different entries.

Then we let α̂ = D1γ

√
log d

2s

nKu
for some constant D1, and recall that we choose γ ≍

(
n

log d

)1/6
.

We consider the set of parameters K1 = α̂K0 = {Θ(i) = α̂Θ
(i)
0 : i ∈ [N ]}. Because we assume

n & K−1
u

(
s
R

)3
log d

2s
, we have ‖Θ(i)‖1 = sα̂ ≤ R, and so K1 ⊂ K .

For a ∈ R we let Tη(a) = sign(a) min{|a|, η}. It suffices to consider the noiseless case
ǫk = 0, and hence for underlying matrix Θ we have the observations

P(Θ) = {Ẏk = sign(TηY (XT
k Θ) + Λk), k = 1, 2, ..., n}.

therein is find and can yield what we need here.
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Note that for any i 6= j
s

2
α̂2 ≤ ‖Θ(i) − Θ(j)‖22 ≤ 2sα̂2.

By reduction to hypothesis testing and Fano’s inequality (e.g., [82, Section 4]), we have

inf
Θ̂

sup
Θ∈K

PΘ

(
‖Θ̂ − Θ‖22 >

s

8
α̂2

)
≥ 1 −

1
N2

∑N
i,j=1KL(P(Θ(i)),P(Θ(j))) + log 2

logN
. (B.24)

Then we estimate KL(P(Θ(i)),P(Θ(j))). Let Θ(i) be the underlying parameter, then because
ηY < 8

9
γ, the corresponding Ẏk follows a (symmetrized) Bernoulli distribution with success

probability

P(Ẏk = 1) = P

(
Λk > −TηY (XT

k Θ)
)

=
γ + TηY (XT

k Θ)

2γ
∈
[ 1

18
,
17

18

]
.

We use KL(p, q) to denote the KL divergence between Bernoulli distribution with success

probability p and q, then [34, Lemma A.4] provides KL(p, q) ≤ (p−q)2
q(1−q) . Because {Ẏk : k =

1, ..., n} are independent, we have

KL(P(Θ(i)),P(Θ(j))) =

n∑

k=1

KL

(1

2
+

TηY (XT
k Θ(i))

2γ
,

1

2
+

TηY (XT
k Θ(j))

2γ

)

≤
n∑

k=1

D2

γ2

(
TηY (XT

k Θ(i)) − TηY (XT
k Θ(j))

)2

≤ D2

γ2

n∑

k=1

(
XT
k (Θ(i) − Θ(j))

)2

≤ D2Kun

γ2
∥∥Θ(i) − Θ(j)

∥∥2

2
≤ 2D2s

Kunα̂
2

γ2
= 2D2D

2
1s log

d

2s
.

Note that in the first inequality we use KL(p, q) ≤ (p−q)2
q(1−q) , and because q is bounded away from

0 and 1, 1
q(1−q) is bounded by absolute constant, then in the following inequalities we use the

assumption
∑n

k=1 |XT
k V |2 ≤ nKu‖V ‖22 for V ∈ Σ2s, finally we plug in our choice of α̂. Since

the estimate is valid for any i, j, and logN ≥ s
8

log d
2s

, so we can set D1 sufficiently small so
that under relatively large s, the right hand side of (B.24) is greater than 3

4
. Also, we perform

some algebra to arrive at

√
sα̂ ≍

( log d
2s

log d

) 1
6

√
s

Ku

( log d
2s

n

)1/3

.

Putting this into (B.24) completes the proof. �

C Proofs: Low-rank Matrix Completion

C.1 Sub-Gaussian Data

Proof of Lemma 3. I. We first prove several facts that would be frequently used later.
Fact 1: EXT

k Xk = EXkX
T
k = Id/d.

Since Xk and XT
k follow the same distribution, we only calculate EXT

k Xk. Equivalent to (4.2)
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we can assume Xk = ek(i)e
T
k(j) where (k(i), k(j)) ∼ uni([d] × [d]). Then we calculate that

EXT
k Xk = Ek(i),k(j)ek(j)e

T
k(i)ek(i)e

T
k(j) = Ek(j)ek(j)e

T
k(j)

=
d∑

k(j)=1

d−1ek(j)e
T
k(j) = Id/d.

Fact 2: Given random matrix A ∈ R
d×d, then ‖EA‖op ≤ E‖A‖op. Let S = {x ∈ R

d : ‖x‖2 =
1}, by using ‖B‖op = supU,V ∈S U

TBV , we have

‖EA‖op = sup
U,V ∈S

E[UTAV ] ≤ E[ sup
U,V ∈S

UTAV ] = E‖A‖op

Fact 3: Given random matrix A ∈ R
d×d, then ‖E(A − EA)T (A − EA)‖op ≤ ‖EATA‖op,

‖E(A−EA)(A−EA)T‖op ≤ ‖EAAT ‖op.
We only show the first inequality, the second follows likewise. By calculation we have

‖E(A−EA)T (A−EA)‖op = ‖EATA−EAT
EA‖op ≤ ‖EATA‖op,

where we use the positive semi-definiteness of EAT
EA and EATA−EAT

EA.
II. We now start the proof. We first note that

ΣYX = E(YkXk) = E(〈Xk,Θ
∗〉Xk + ǫkXk) = E(〈Xk,Θ

∗〉Xk),

so by using triangle inequality we obtain

∥∥∥ 1

n

n∑

k=1

[
〈Xk,Θ

∗〉 − γ · Ẏk
]
Xk

∥∥∥
op

≤
∥∥∥ 1

n

n∑

k=1

[
γ · ẎkXk −E(γ · ẎkXk)

]∥∥∥
op

+

∥∥∥E
[
(γ · Ẏk − Yk)Xk

]∥∥∥
op

+
∥∥∥ 1

n

n∑

k=1

[
〈Xk,Θ

∗〉Xk −E(〈Xk,Θ
∗〉Xk)

]∥∥∥
op

:= R1 +R2 +R3.

(C.1)

Bound of R1. We intend to use matrix Bernstein inequality (See Theorem 6.1.1 in [90]) to

bound R1. Consider a finite seqnence of independent, zero-mean random matrices
{
Sk :=

γ · ẎkXk −E(γ · ẎkXk) : k ∈ [n]
}
, and by Fact 2 we have

‖Sk‖op ≤ ‖γ · ẎkXk‖op + ‖E(γ · ẎkXk)‖op ≤ γ +E‖γ · ẎkXk‖op ≤ 2γ.

Then we bound max{‖n · ESkS
T
k ‖op, ‖n · EST

k Sk‖op}. By using Fact 1 and Fact 3. we have
‖ESkS

T
k ‖op ≤ ‖Eγ2 · XkX

T
k ‖op ≤ γ2/d, and similarly it holds that ‖EST

k Sk‖op ≤ γ2/d.
Thus, we have

ν
( n∑

k=1

Sk

)
:= max{‖n ·ESkS

T
k ‖op, ‖n ·EST

k Sk‖op} ≤ nγ2

d
.

By using matrix Bernstein inequality, for any t > 0 we have

P(R1 ≥ t) ≤ 2d exp
(
− nt2

2γ[γ/d+ 2t/3]

)
. (C.2)
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We let t = 2γ
√

δ log(2d)
nd

, when δd log(2d)
n

< 9/16 it holds that

P

(
R1 ≥ 2γ

√
δ log(2d)

nd

)
≤ 2d exp

(
− ndt2

4γ2

)
≤ (2d)1−δ. (C.3)

Bound of R2. We first bound the max norm error ‖E[(γ · Ẏk − Yk)Xk]‖max. Let Xk,ij denotes
the (i, j)-th entry of Xk. Consider specific (i, j) ∈ [d] × [d], then the distribution of Xk,ij is
given by P(Xk,ij = 1) = d−2, otherwise Xk,ij = 0. Also, we let Θ∗

ij be the (i,j)-th entry of Θ∗.

When |Yk| < γ by Lemma 1 we have EΛk

(
γ · Ẏk

)
= Yk. Furthermore, it holds that

|E(γ · Ẏk − Yk)Xk,ij| ≤ E|Yk|Xk,ij1(|Yk| ≥ γ) = E

(
E

[
|Yk|Xk,ij1(|Yk| ≥ γ)

∣∣Xk,ij

])

= d−2
E

[
|Yk|Xk,ij1(|Yk| ≥ γ)

∣∣Xk,ij = 1
]

= d−2
E

[
|Θ∗

ij + ǫk|1(|Θ∗
ij + ǫk| ≥ γ)

]
.

By (4.5) we have |Θ∗
ij| ≤ α∗, recall that γ ≥ 2α∗, so |Θ∗

ij + ǫk| ≥ γ implies

|ǫk| ≥ |Θ∗
ij + ǫk| − |Θ∗

ij| ≥ γ − α∗ ≥ γ

2
,

which implies |ǫk| ≥ α∗. Moreover, we obtain

|Θ∗
ij + ǫk| ≤ |Θ∗

ij| + |ǫk| ≤ α∗ + |ǫk| ≤ 2|ǫk|.

Thus, we apply Cauchy-Schwarz inequality, (4.12), Proposition 1, it gives

|E(γ · Ẏk − Yk)Xk,ij| ≤ d−2
E

[
|Θ∗

ij + ǫk|1(|Θ∗
ij + ǫk| ≥ γ)

]
≤ 2d−2

E

[
|ǫk|1(|ǫk| ≥

γ

2
)
]

≤ 2d−2
√
Eǫ2k

√
P

(
|ǫk| ≥

γ

2

)
. d−2σ exp

(
− D1γ

2

σ2

)
. d−1σ

√
δ log(2d)

nd
,

where the last “.” follows from γ given in (4.12) with sufficiently large C13. Since the esti-

mation holds for any (i, j), we have ‖E[(γẎk − Yk)Xk]‖max ≤ d−1σ
√

δ log(2d)
nd

. By the relation

between ‖.‖op and ‖.‖max, it further gives

R2 ≤ d · ‖E[(γ · Ẏk − Yk)Xk]‖max . σ

√
δ log(2d)

nd
.

Bound of R3. Similar to R1 we use matrix Bernstein inequality. We consider the finite inde-
pendent, zero-mean random matrix sequence

{
Wk := 〈Xk,Θ

∗〉Xk −E(〈Xk,Θ
∗〉Xk) : k ∈ [n]

}
.

Note that | 〈Xk,Θ
∗〉 | ≤ α∗, so ‖ 〈Xk,Θ

∗〉Xk‖op ≤ α∗, by Fact 2 we have

‖Wk‖op ≤ ‖ 〈Xk,Θ
∗〉Xk‖op + ‖E 〈Xk,Θ

∗〉Xk‖op ≤ 2α∗ ≤ 2γ.

By using Fact 1 and Fact 3, we obtain ‖EWkW
T
k ‖op ≤ ‖E 〈Xk,Θ

∗〉2XkX
T
k ‖op ≤ (α∗)2

d
.

Likewise we have ‖EW T
k Wk‖op ≤ (α∗)2

d
, so we derive the bound

ν
( n∑

k=1

Wk

)
:= max{‖n ·EWkW

T
k ‖op, ‖n ·EW T

k Wk‖op} ≤ n(α∗)2

d
≤ nγ2

d
.
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Parallel to R1, by using Matrix Bernstein inequality and set t = 2γ
√

δ log(2d)
nd

,

P

(
R3 ≥ 2γ

√
δ log(2d)

nd

)
≤ (2d)1−δ. (C.4)

We combine the obtained upper bounds for R1, R2, R3 and draw the conclusion that with
probability higher than 1 − 2d1−δ, we have

∥∥∥ 1

n

n∑

k=1

[
〈Xk,Θ

∗〉 − γ · Ẏk
]
Xk

∥∥∥
op

. γ

√
δ log d

nd
.

Now we can use γ ≤ C13 max{α∗, σ}√log n to conclude the proof. �

Proof of Lemma 4. I. We first decompose the complementary event of (4.15) which can
be stated as B = {∃ Θ0 ∈ C(ψ), s.t. FX (Θ0) ≤ κd−2‖Θ0‖2F − T0}. Note that EFX (Θ) =
d−2‖Θ‖2F, so B implies the following event

{∃ Θ0 ∈ C(ψ), s.t. |FX (Θ0) −EFX (Θ0)| ≥ (1 − κ)d−2‖Θ0‖2F + T0}. (C.5)

Let D0 = (α∗d)2(ψδ log(2d)/n)1/2, then by (4.14) we have ‖Θ0‖2F ≥ D0, so by a specific β > 1
(that will be selected later), there exists positive integer l such that ‖Θ0‖2F ∈ [βl−1D0, β

lD0).
We further consider C(ψ, l) = C(ψ) ∩ {Θ : ‖Θ‖2F ∈ [βl−1D0, β

lD0)}, and define a term

ZX (l) = sup
Θ∈C(ψ,l)

|FX (Θ) −EFX (Θ)|,

then we know the event defined in (C.5) implies the event

Bl = {ZX (l) ≥ (1 − κ)d−2βl−1D0 + T0}. (C.6)

By taking the union bound over l ∈ N
∗ we obtain P(B) ≤ ∑∞

l=1P(Bl).
II. It suffices to bound P(Bl). We first bound the deviation |ZX (l) −EZX (l)|. We consider

X̃ = (X̃1,X2, ...,Xn) where only the first component may be different from X

sup
X ,X̃

|ZX (l) −Z
X̃

(l)| = sup
X ,X̃

∣∣∣ sup
Θ∈C(ψ,l)

|FX (Θ) −EFX (Θ)| − sup
Θ∈C(ψ,l)

|F
X̃

(Θ) −EF
X̃

(Θ)|
∣∣∣

≤ sup
X ,X̃

∣∣∣ sup
Θ∈C(ψ,l)

|FX (Θ) −F
X̃

(Θ)|
∣∣∣ = sup

X1,X̃1

sup
Θ∈C(ψ,l)

1

n

∣∣∣
〈
X1,Θ

〉
|2 − |

〈
X̃1,Θ

〉
|2
∣∣∣ ≤ 4(α∗)2

n
.

Note that n components of X are symmetrical, by bounded different inequality (e.g., Corollary
2.21, [94]), for any t > 0 we have

P

(
ZX (l) −EZX (l) ≥ t

)
≤ exp

(
− nt2

8(α∗)4

)
. (C.7)

It remains to bound EZX (l). Let E = (ε1, ..., εn) be i.i.d. Rademacher random variables
satisfying P(εk = 1) = P(εk = −1) = 1/2, then by symmetrization of expectations (e.g.,
Theorem 16.1, [91]), Talagrand’s inequality (e.g., Theorem 16.2, [91]), the second constraint
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in (4.14), it yields that

EZX (l) = E sup
Θ∈C(ψ,l)

|FX (Θ) −EFX (Θ)| = E sup
Θ∈C(ψ,l)

∣∣∣ 1

n

n∑

k=1

{〈
Xk,Θ

〉2 −E
〈
Xk,Θ

〉2}∣∣∣

≤ 2EXEE sup
Θ∈C(ψ,l)

∣∣∣ 1

n

n∑

k=1

εk
〈
Xk,Θ

〉2∣∣∣ ≤ 16α∗
E sup

Θ∈C(ψ,l)

∣∣∣
〈1

n

n∑

k=1

εkXk,Θ
〉∣∣∣

≤ 16α∗
E

∥∥∥ 1

n

n∑

k=1

εkXk

∥∥∥
op

sup
Θ∈C(ψ,l)

‖Θ‖nu ≤ 160α∗r
1

2−q {βlD0}
1−q
2−q
E

∥∥∥ 1

n

n∑

k=1

εkXk

∥∥∥
op
.

(C.8)
Assume d log(2d)/n < 1/16, by matrix bernstein inequality (Theorem 6.1.1, [90]) it holds that

E

∥∥∥ 1
n

∑n
k=1 εkXk

∥∥∥
op

≤ 3
2

√
log(2d)
nd

. We then plug it in (C.8), some algebra yields

EZX (l) ≤
{

(2 − q)T0
} 1

2−q
{
d−2βlD0

} 1−q
2−q ≤ 1 − q

2 − q

βlD0

d2
+ T0 (C.9)

By combining with (C.6), (C.7) and let κ1 = 1−κ
β

− 1−q
2−q (here we assume κ1 ∈ (0, 1) since we

can choose κ sufficiently close to 0, β sufficiently close to 1), we have

P(Bl) ≤ P

(
ZX (l) −EZX (l) ≥ κ1

βlD0

d2

)
≤ exp

(
− nκ21β

2lD2
0

8(α∗d)4

)
. (C.10)

We further plug in D0 and use β2l ≥ 2l log β, it yields that

P(B) ≤
∞∑

l=1

P(Bl) ≤
∞∑

l=1

[
(2d)−

ψδκ21 log β

4

]l ≤ d−δ,

the last inequality holds since we can let ψ be large such that ψ ≥ 4(κ21 log β)−1. �

Proof of Theorem 12. I. By Lemma 3 we can choose sufficiently large C14 in (4.17) to ensure
(4.7) holds with probability higher than 1−2d1−δ, then (4.8) holds with high probability. From
Lemma 4 we can further rule out probability d−δ to ensure (4.15) holds.

By (4.5) and (4.6) we have ‖∆̂‖max ≤ ‖Θ̂‖max + ‖Θ∗‖max ≤ 2α∗. Thus, the estimation
error satisfies the first constraint of C(ψ). Since (4.8) displays the second constraint in C(ψ),

whether ∆̂ ∈ C(ψ) ∈ C(ψ) holds only depends on the third constraint, and let us discuss as
follows:
Case 1. ∆̂ /∈ C(ψ). Note that it can only violate the third constraint of C(ψ), so we know

that ‖∆̂‖2F ≤ (α∗d)2
√

ψδ log(2d)
n

. Under the assumption r & dq, n . d2 log(2d), it holds that

‖∆̂‖2F
d2

. (α∗)2
√
δ log(2d)

n
. (α∗)2

δd log d

n
. rd−q

(
(α∗)2

δd log d

n

)1−q/2
. (C.11)

Case 2. ∆̂ ∈ C(ψ). By (4.15) we know FX (∆̂) ≥ κd−2‖∆̂‖2F − T0. If T0 ≥ 1
2
κd−2‖∆̂‖2F, then

we plug in T0 and obtain

‖∆̂‖2F
d2

. rd−q
(

(α∗)2
δd log d

n

)1−q/2
. (C.12)
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If T0 ≤ 1
2
κd−2‖∆̂‖2F, then we have FX (∆̂) ≥ 1

2
κd−2‖∆̂‖2F. Note that this displays the RSC in

(4.9), so we now use Corollary 3 and obtain

‖∆̂‖2F
d2

. rd−q
(

max{(α∗)2, σ2} log d logn
δd

n

)1−q/2
. (C.13)

Now we can see that in all cases considered above, the bound of ‖∆̂‖2F/d2 in (4.18) holds. Then

a direct application of (4.8) delivers the bound of ‖∆̂‖nu/d in (4.18). To conclude, (4.18) holds
with probability higher than 1 − 3d1−δ. �

C.2 Heavy-tailed Data

Proof of Lemma 5. From (4.1) we have E(YkXk) = E(〈Xk,Θ
∗〉Xk), and since η < γ by

Lemma 1 we know EΛk

(
γ · Ẏk

)
= Ỹk, hence we have

∥∥∥ 1

n

n∑

k=1

[
〈Xk,Θ

∗〉 − γ · Ẏk
]
Xk

∥∥∥
op

≤
∥∥∥ 1

n

n∑

k=1

[
γ · ẎkXk −E(γ · ẎkXk)

]∥∥∥
op

+

∥∥∥E
[
(Ỹk − Yk)Xk

]∥∥∥
op

+
∥∥∥ 1

n

n∑

k=1

[
〈Xk,Θ

∗〉Xk −E(〈Xk,Θ
∗〉Xk)

]∥∥∥
op

:= R1 +R2 +R3.

Bound of R1, R3. We use matrix Bernstein inequality (Theorem 6.1.1, [90]), and the arguments
are exactly the same as the corresponding parts in the proof of Lemma 3. As a result, one can
still invoke Matrix Bernstein to show (C.3) and (C.4), but only with different value of γ. To
obtain the explicit form of the bounds, we further plug in γ in (4.20), with probability higher
than 1 − 2d1−δ it gives

max{R1, R3} . max{α∗,
√
M}

(
δ log d

nd3

)1/4

.

Bound of R2. Let Xk,ij be the (i, j)-th entry of Xk, where (i, j) ∈ [d] × [d] is fixed, we first

bound the element-wise error |E(Ỹk − Yk)Xk,ij|. Recall the definition of truncation, Lemma 1
gives

|E
[
(Ỹk − Yk)Xk,ij

]
| = |E

[
(Ỹk − Yk)Xk,ij1(|Yk| > η)

]
| ≤ E|Yk|Xk,ij1(|Yk| > η).

Note that Xk,ij can only be 1 or 0, and P(Xk,ij = 1) = d−2. Let Θ∗
ij be the (i, j)-th entry of

Θ∗, we further compute it via law of total expectation, then use Cauchy-Schwarz inequality
and Marcov’s inequality, finally plug in η finally. These steps deliver

E|Yk|Xk,ij1(|Yk| > η) = E

(
E

[
|Yk|Xk,ij1(|Yk| > η)

∣∣∣Xk,ij

])

= d−2
E

[
|Yk|Xk,ij1(|Yk| > η)

∣∣∣Xk,ij = 1
]

= d−2
E

[
|Θ∗

ij + ǫk|1(|Θ∗
ij + ǫk| ≥ η)

]

≤ d−2
√
E|Θ∗

ij + ǫk|2P(|Θ∗
ij + ǫk| ≥ η) ≤ d−2η−1

E|Θ∗
ij + ǫk|2

≤ 2d−2η−1[(Θ∗
ij)

2 +Eǫ2k] ≤ 4(dC15)
−1 max{α∗,

√
M}

(δ log d

nd3

)1/4
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Since the above analysis works for all (i, j) ∈ [d]× [d], this is also an upper bound for the max
norm, which delivers a bound for operator norm

R2 ≤ d
∥∥∥E

[
(Ỹk − Yk)Xk

]∥∥∥
max

. max{α∗,
√
M}

(δ log d

nd3

)1/4

. (C.14)

The result follows from the upper bounds for R1, R2, R3. �

Proof of Theorem 13. By Lemma 5 we can choose sufficiently large C17 in (4.22) to ensure
(4.7) holds with probability higher than 1− 2d1−δ, then it further implies (4.8), meaning that

∆̂ satisfies the second constraint of C(ψ). From Lemma 4 we can further rule out probability

d−δ so that (4.15) holds. Evidently we have ‖∆̂‖max ≤ 2α∗. Thus, with probability higher

than 1 − 3d1−δ, ∆̂ satisfies the first two constraints of C(ψ), and (4.15) holds. Based on these
conditions we further discuss as follows:
Case 1. ∆̂ /∈ C(ψ), then by exactly the same analysis in proof of Theorem 12, we obtain
(C.11).

Case 2. ∆̂ ∈ C(ψ), then we have FX (∆̂) ≥ κd−2‖∆̂‖2F − T0. If T0 ≥ 1
2
κd−2‖∆̂‖2F, then (C.12)

holds. Otherwise, we have the restricted strong convexity FX (∆̂) ≥ 1
2
κd−2‖∆̂‖2F. We then

apply Corollary 3 and plug in λ, it holds that

‖∆̂‖2F/d2 . rd−q
(

max{(α∗)2,M}
√
δd log d

n

)1−q/2
. (C.15)

It is not hard to see that the right hand side of (C.15) dominates the bound in (C.11) and

(C.12), so the bound for ‖∆̂‖2F/d2 in (4.23) holds. The bound for ‖∆̂‖nu/d follows from a
direct application of (4.8). �

Proof of Theorem 14. We simply write K (r, α∗) as K . Recall our choice of dithering scale

γ ≍ (α∗ +
√
M)

( n

d log d

)1/4

.

We define α̂ = min
{

1
4
α∗, D1γ

√
rd
n

}
, then by invoking [34, Lemma A.3] (set γ therein to 1),

we can find K1 = {Θ(1),Θ(2), ...,Θ(N)} ⊂ K such that:

• N ≥ exp
(
rd
16

)
;

• K1 ⊂ {−α̂, α̂}d×d, i.e., entries of Θ ∈ K1 are either α̂ or −α̂;

• for different Θ(i),Θ(j) ∈ K1, it holds that ‖Θ(i) −Θ(j)‖2F > 1
2
(α̂d)2.

It is sufficient to deal with the noiseless case ǫk = 0, i.e., when the underlying matrix is Θ, we
let Tη(a) = sign(a) min{|a|, η} be the truncation operator and have the observations

P(Θ) = {Ẏk = sign
(
Tη(

〈
Xk,Θ

〉
) + Λk

)
, k = 1, 2, ..., n}.

By reduction to hypothesis testing and Fano’s inequality [82, Section 4], we have

inf
Θ̂

sup
Θ

PΘ

(
‖Θ̂−Θ‖2F >

1

8
(α̂d)2

)
≥ 1 −

1
N2

∑N
i,j=1KL(P(Θ(i)),P(Θ(j))) + log 2

logN
. (C.16)
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We now estimate KL(P(Θ(i)),P(Θ(j))). Let Θ(i) be the underlying parameter, because〈
Xk,Θ

(i)
〉

= ±α̂, and also η > α̂ holds trivially, so Ẏk = sign
(〈
Xk,Θ

(i)
〉

+ Λk

)
follows a

(symmetrized) Bernoulli distribution with success probability

P

(
Ẏk = 1

)
= P

(
Λk > −

〈
Xk,Θ

(i)
〉)

=
γ ∓ α̂

2γ
=

1

2
∓ α̂

2γ
.

Moreover, because P(Θ(i)) consists of n i.i.d. observations,

KL(P(Θ(i)),P(Θ(j))) ≤ n · KL
(1

2
+

α̂

2γ
,

1

2
− α̂

2γ

)
,

where we use KL(p, q) to denote the KL divergence between Bernoulli distribution with success
probability p and q. Because | α̂

2γ
| ≤ 1

4
α∗

2γ
≤ 1

8
(recall that we assume γ > η > α∗), by

using [34, Lemma A.4] we obtain

KL(P(Θ(i)),P(Θ(j))) ≤ n(α̂/γ)2

(1
2

+ α̂
2γ

)(1
2
− α̂

2γ
)
≤ 16nα̂2

3γ2
≤ 16D2

1rd

3
<

rd

150
, (C.17)

note that the last two inequalities holds because α̂ ≤ D1γ
√

rd
n

and we can select sufficiently

small D1. Now we put this into (C.16). Because logN ≥ rd
16

, with slightly large rd to overcome
log 2, the probability term on the right hand side of (C.16) is greater than 3

4
, while the event

on the left hand side is just

‖Θ̂−Θ‖2F/d2 >
1

8
α̂2 = min

{(α∗)2

128
, D2

(
(α∗)2 +M

)
r

√
d

n log d

}
,

where we plug in the value of γ. The proof is complete. �

D Comparisons with Related Work

D.1 1-bit Compressed Sensing

In this part we compare our Theorems 9-10 with existing results of 1-bit CS.
The traditional setting of 1-bit CS, where one aims to recovery a sparse d-dimensional

signal Θ∗ based on measurement Ẏk = sign(XT
k Θ∗) with some Xk, was first introduced in [15]

and widely studied in subsequent works (e.g., [55, 74, 75]). By projection-based method [77]
or K-Lasso [76], similar results were obtained for a model with more general observation (that
involves possibly unknown nonlinearity) and signal structure. Nevertheless, all these results
are restricted to Gaussian sensing vectors that can be unrealistic in practice5. There does
exist one work, [1], presents result for Xk with i.i.d. sub-Gaussian entries. However, the result
in [1] is still overly restrictive and impractical, see the discussions in [40].

To overcome the restriction of Gaussian sensing vector (and also some other limitations),
it was recently realized that introducing dithering noise can help. With dithering noise Λk,

5More precisely, [76] handles Xk ∼ N (0,Σ) with unknown Σ while other several papers above assume
Xk ∼ N (0, Id).
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the measurement now becomes Ẏk = sign(XT
k Θ∗ + Λk). In this setting, specifically, we can

recover the signal with norm information [63], achieve exponentially-decaying error rate (This
requires adaptive dithering) [5], and perhaps more prominently, accommodate non-Gaussian
Xk [39, 40, 89]. In what follows, we will focus on comparing Theorems 9-10 with the most
relevant works [40,89] that adopt uniform dithering noise. The comparisons will be conducted
on exactly sparse Θ∗ since [40,89] do not adopt the formulation

∑n
k=1 |θ∗k|q ≤ s, q ∈ (0, 1) for

approximately sparse Θ∗. For other developments on 1-bit CS (or more generally, quantized
compressed sensing), we refer readers to the survey papers [16, 37].

Dirksen and Mendelson [40] first essentially extend 1-bit CS to non-Gaussian Xk. Their
methodology is based on random hyperplane tessellation. Specifically, under sub-Gaussian or
even heavy-tailed Xk

6 with uniform dithering noise, they show a relatively small number of
random hyperplanes (that depends on the complexity of Θ∗) leads to ρ-uniform tessellation
on the signal set of interest. Moreover, they apply the new hyperplane tessellation results to
1-bit CS and propose two reconstruction optimization problems





(a) : Θ̂ ∈ arg min
Θ∈Rd

n∑

k=1

1(sign(XT
k Θ + Λk) 6= Yk), s.t. ‖Θ‖0 ≤ s, ‖Θ‖2 ≤ 1

(b) : Θ̂ ∈ arg min
Θ∈Rd

1

2λ
‖Θ‖22 −

1

2n

n∑

k=1

YkX
T
k Θ, s.t. ‖Θ‖1 ≤ s, ‖Θ‖2 ≤ 1

. (D.1)

Although (a) is shown to possess uniform recovery guarantee with fast rate in both sub-
Gaussian and heavy-tailed Xk, it is essentially intractable due to the ℓ0 constraint and the
0-1 objective function. Also, a secondary drawback is that, the information of Λk is needed
in problem (a), which induces undesired memory or transmission costs. For these reasons,
(a) is mainly of theoretical interest. Then, (b) is proposed as a convex relaxation to remedy
the downside of (a). Under sub-Gaussian Xk and ǫk, the error rate of (b) for s-sparse Θ∗

was shown to be Õ
(

4
√

s
n

)
, and this is inferior to the near optimal rate Õ

(√
s
n

)
provided by

our Theorem 9. Indeed, their error rate for sub-Gaussian data is even worse than our rate

for heavy-tailed data, i.e., Õ
(

3

√
s2

n

)
given in Theorem 10, while the guarantee of (b) under

heavy-tailed Xk has not yet been established. On the other hand, the advantages of [40] is
that their guarantee is uniform, as an outcome of the hyperplane tessellation method. They
also obtain a partial extension to structured random measurement matrix in the companion
work [39]. These two aspects are left as future research directions of our theories.

A result directly comparable to our Theorem 9 is due to Thrampoulidis and Rawat [89].
Under almost the same setting they assume Θ∗ ∈ T and consider a constrained Lasso

Θ̂ ∈ arg min
Θ∈T

1

2n

n∑

k=1

(
XT
k Θ − γ · Ẏk

)2
. (D.2)

This is analogous to our convex programming problem (3.24): up to constant, the objective
of (D.2) equals the loss function (i.e., the first two terms) in (3.24); the only difference is
that, the structure of Θ∗, specifically sparsity, is incorporated into (D.2) via the constraint,
but appears in (3.24) as a regularizer. The relevant result is in [89, Theorem IV.1]. Inter-
estingly, when specialized to exactly s-sparse Θ∗, they choose T = {Θ : ‖Θ‖1 ≤ ‖Θ∗‖1} and

6In [40], heavy-tailed Xk is assumed to satisfy E
(
|vTXk|2

)
≤ L

(
E|vTXk|

)2
for any v ∈ R

d.
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show ℓ2 norm error rate Õ
(√

s
n

)
that coincides with Theorem 9. Despite these similarities,

our Theorem 9 exhibits several obvious improvements. Firstly, we consider pre-quantization
noise ǫk while they only study noiseless case. Secondly, we assume zero-mean Xk satisfies
λmin(ΣXX) = Ω(1), but [89] requires symmetric Xk to satisfy a nondegeneracy condition for-
mulated as inf‖v‖2=1E|vTXk| = Ω(1), which is more restrictive. Thirdly, their guarantee is
valid with probability at least 0.99, while our probability term 1 − O(d2−δ) is finer. In ad-
dition, we comment that a pre-estimation of ‖Θ∗‖1 is needed to specify T in (D.2), while
our unconstrained program (3.24) is free of this issue and hence more practically appealing.
On the other hand, their advantage is the more general assumption on signal structure (i.e.,
Θ∗ ∈ T ).

We also compare with two less related works [5, 63], where the authors study Ẏk =
sign(XT

k Θ∗ + Λk) with Gaussian dithering noise Λk. Convex programming problems are pro-
posed in [5, 63] to recover s-sparse Θ∗, but their results are only valid for standard Gaussian
Xk. Specifically, the theoretical rate in [63, Theorem 4] reads Õ

(
5
√

s
n

)
, while [5, Theorem 2]

provides an error rate Õ
(

4
√

s
n

)
. Note that both are slower than the rates presented in our

Theorem 9 (sub-Gaussian Xk), Theorem 10 (heavy-tailed Xk).
Therefore, our 1-bit CS results improve on the prior ones in terms of generality of sensing

vectors and random noise (that can be sub-Gaussian or heavy-tailed), convergence rate. In
particular, while [40, Theorem 1.11] involves an intractable program and a parameter hard to
control (see E(Tr) therein), our Theorem 10 provides the first convex program with rigorous
recovery guarantee for 1-bit CS under heavy-tailed sensing vector.

D.2 1-bit Matrix Completion

In this part, we compare our Theorems 12-13 with existing results on 1-bit matrix completion
(1-bit MC), a problem first proposed and studied in [23, 34]. Unlike 1-bit CS where it is still
possible to recover the direction Θ∗/‖Θ∗‖2 from the directly quantized measurement Ẏk =
sign(XT

k Θ∗), due to the nature of the covariate in matrix completion (i.e., Xk = ei(k)e
T
j(k)),

1-bit MC could be extremely ill-posed if we only observe Ẏk = sign
(〈
Xk,Θ

∗

〉)
. This issue

happens even when Θ∗ is rank-1, see the discussion in [34]. Thus, dithering noise (denoted
by Λk) is indispensable for the well-posedness of 1-bit MC, hence the observation becomes

Ẏk = sign
(〈
Xk,Θ

∗〉 + Λk

)
.

Existing works consider dithering noise with rather general distribution, but particularly focus
on the Logistic model and Probit model7.

Let us give a brief review of existing results. In the first study of 1-bit MC [34], Davenport
et al. proposed to recover Θ∗ via negative log-likelihood minimization (put d1 = d2 = d)

Θ̂ ∈ arg min
Θ∈Rd×d

LNLL(Θ), s.t. ‖Θ‖max ≤ α∗, ‖Θ‖nu ≤ α∗d
√
r . (D.3)

In (D.3), the first constraint is commonly used in matrix completion (see the interpretation
at the beginning of Section 4), the second constraint relaxes rank(Θ) ≤ r via the relation

‖Θ‖nu ≤
√

rank(Θ)‖Θ‖F ≤ d‖Θ‖max

√
rank(Θ),

7The Probit model corresponds to Gaussian dithering noise Λk ∼ N (0, σ2).
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and the loss function LNLL(Θ) is

LNLL(Θ) = −1

n

n∑

k=1

[
1(Ẏk = 1) logP(

〈
Xk,Θ

〉
+ Λk ≥ 0)

+ 1(Ẏk = −1) logP(
〈
Xk,Θ

〉
+ Λk < 0)

]
.

(D.4)

Some developments can be seen in subsequent works, to name a few, [23] used another sur-
rogate of matrix rank rather than the nuclear norm8, [10, 61, 67] extended 1-bit MC to finite
alphabets, [9,10,73] imposed (exactly) low-rank constraint without relaxation, [61,67] adopted
nuclear norm penalty to avoid the pre-estimation of ‖Θ∗‖nu needed in (D.3).

We emphasize that all above works are restricted to a noiseless setting; by saying this, we
do not regard Λk as a detrimental noise since the dithering is indeed beneficial to the recovery.
We are aware of only two recent papers [48, 86] that deal with the noisy setting. In [48], Gao
et al. considered a deterministic sparse pattern S∗ mixing with the desired low-rank structure
Θ∗. Specifically, this more general “low-rank plus sparse” model can be formulated as

Ẏk = sign
(〈
Xk,Θ

∗ + S∗
〉

+ Λk

)
, where ‖vec(S∗)‖0 ≤ s. (D.5)

In [86], Shen et al. studied 1-bit MC with post-quantization noise in a form of sign flipping,
which can be described by

Ẏk = δk · sign
(〈
Xk,Θ

∗

〉
+ Λk

)
, where P(δk = −1) = τ0, P(δk = 1) = 1 − τ0. (D.6)

Evidently, for (D.5) or (D.6), as done in [48, 86], the recovery can still be based on negative
log-likelihood minimization. However, if we consider pre-quantization noise ǫk with unknown
distribution (this is a natural and well-studied situation in other statistical estimation prob-
lems), i.e.,

Ẏk = sign
(〈
Xk,Θ

∗
〉

+ ǫk + Λk

)
, (D.7)

recovery based on likelihood no longer works due to lack of knowledge on LNLL(Θ). Therefore,
before our work, it was an open question whether 1-bit MC under unknown pre-quantization
random noise is possible.

Our Theorems 12-13 provide an affirmative answer to this question. Particularly, under
uniformly distributed Λk, sub-Gaussian or even heavy-tailed ǫk, we formulate 1-bit CS as
a convex programming problem and establish theoretical guarantee. Unlike the likelihood
approach, we now use a generalized quadratic loss

L(Θ) =
1

2n

n∑

k=1

(〈
Xk,Θ

〉
− γ · Ẏk

)2
. (D.8)

For the core idea behind, while maximum likelihood estimation is a standard estimation strat-
egy, the inspiration of (D.8) is drawn from Lemma 1, i.e., γ · Ẏk can serve as a surrogate of the
full observation Yk =

〈
Xk,Θ

∗

〉
+ ǫk.

At first glance, one may feel that (D.8) is a bit coarse compared to negative log-likelihood,
but under uniform dither Λk and sub-Gaussian ǫk our estimator achieves near minimax rate

8This rank surrogate is called max-norm but totally different from ‖.‖max in our work. To avoid confusion,
we refer readers to [23] for the details.
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(Theorem 12). For comparison, we go back to the noiseless (i.e., ǫk = 0 in (D.7)) and exactly
low-rank (i.e., q = 0 in (4.3)) case. In this case, Theorem 12 gives a bound Õ

(
(α∗)2 rd

n

)
for

mean squared error. This is faster than Õ
(
(α∗)2

√
rd
n

)
obtained in two pioneering works [23,34],

and similar to the more recent paper [67].
To conclude, we present the first result for 1-bit MC with unknown pre-quantization ran-

dom noise, which can either be sub-Gaussian or heavy-tailed. In addition, by some extra
technicalities, we believe our method can be extended to both deterministic sparse corruption
in [48] and sign flipping noise in [86].

E Details and Algorithms in Experiments

E.1 Sparse Covariance Matrix Estimation

E.1.1 Detailed Simulation

To generate the d×d underlying covariance matrix Σ∗ that satisfies Assumption 1 with q = 0
and sparsity s, we first construct

Σ∗

0 =

(
Σ∗

1 0
0 Id−3s

)
,

where Σ∗

1 = diag(Σ∗

2,Σ
∗

2,Σ
∗

2) ∈ R
3s×3s, and Σ∗

2 = [σ∗
2,ij ] ∈ R

s×s are defined as σ∗
2,ii = 1 for

i ∈ [s], σ∗
2,12 = σ∗

2,21 = 0.99 − (s − 2) · 0.03, σ∗
2,ij = 0.03 for all other entries. By normalizing

the operator norm, we set

Σ∗ =
Σ∗

0

‖Σ∗

0‖op
.

We i.i.d. draw sub-Gaussian Xk ∼ N (0,Σ∗), and draw heavy-tailed Xk from Student’s t
distribution via the Matlab function “mvtrnd(·)” with ν = 6. Then, we apply the 1-bit
quantization scheme with parameters slightly tuned to be well-functioning, to obtain the
binary data

{
Ẋkj : k ∈ [n], j = 1, 2

}
. Now, we can directly construct the 1-bit estimator

Σ̂ defined in (2.4), (2.18), and track the experimental recovery error. In our results, each
experiment is obtained as the mean value of 15 independent runs.

E.2 Sparse Linear Regression

E.2.1 Detailed Simulation

We conduct numerical experiments of 1-bit QC-CS (Theorems 7-8) and 1-bit CS (Theorems 9-
10). We consider isotropic covariate (i.e., EXkX

T
k = Id), which admits Assumption 3 required

for 1-bit QC-CS. For the covariate, sub-Gaussian Xk are generated from Gaussian distribution,

while entries of heavy-tailed Xk are i.i.d. drawn from
√

2
3
· t(ν = 6). Here, t(ν = 6) represents

Student’s t distribution with 6 degrees of freedom, and
√

2
3

aims to normalize the variance.

We set the first s entries of Θ∗ to be 1√
s
, while other entries are 0, hence Θ∗ is (exactly)

s-sparse. Sub-Gaussian and heavy-tailed noise ǫk are respectively drawn from N (0,
√

3
5
) and
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0.3 · t(ν = 6). All these parameters specify the model, so we can generate the full data
{(Xk, Yk) : k ∈ [n]} for a specific (n, d, s).

Then we apply the 1-bit quantization scheme to quantize {(Xk, Yk) : k ∈ [n]} to {(Ẋk1, Ẋk2, Ẏk) :
k ∈ [n]} in 1-bit QC-CS, or {(Xk, Ẏk) : k ∈ [n]} in 1-bit CS. All parameters are properly
set according to the Theorems, and we stress that the truncation and dithering parameters
for Xk, Yk are different. For instance, in sub-Gaussian 1-bit QC-CS we use dithering noise
Λk ∼ uni

(
[−γY , γY

)
, Γkj ∼ uni

(
[−γX , γX ]d

)
with γX 6= γY . After the data quantization, we

can solve the proposed convex programming problems to obtain the estimator Θ̂. We track
the ℓ2 norm error ‖Θ̂ − Θ∗‖2 and report the mean value of 15 independent runs.

E.2.2 Algorithm

Note that the convex programming problems (3.17), (3.26) and (3.30) share the common
formulation of

Θ̂ ∈ arg min
Θ∈Rd

1

2
ΘT Σ̂1Θ − Σ̂T

2 Θ + λ‖Θ‖1, (E.1)

where Σ̂1 is positive semi-definite, Σ̂2 ∈ R
d. Here, we use alternating direction method of

multipliers (ADMM) to solve (E.1), and the convergence of our algorithm is guaranteed since
the variable is divided into two blocks [47]. For more details of ADMM, we refer readers to
the survey paper [17].

We now invoke the framework of ADMM and show the iterative formula. Divide Θ ∈ R
d

into M,Z ∈ R
d, (3.17) is equivalent to

arg min
M,Z∈Rd

1

2
MT Σ̂1M − Σ̂T

2M + λ‖Z‖1, s.t. M = Z.

By introducing the multiplier Υ ∈ R
d, the augmented Lagrangian function reads

1

2
MT Σ̂1M − Σ̂T

2M + λ‖Z‖1 + ΥT (M − Z) +
ρ

2
‖M − Z‖22.

Minimizing (M,Z) alternatively and updating Υ via gradient ascent give the iteration formulas





Mt+1 = (Σ̂1 + ρ · Id)−1(Σ̂2 + ρ · Zt − Υt)

Zt+1 = Sλ/ρ(Mt+1 + ρ−1 · Υt)

Υt+1 = Υt + ρ · (Mt+1 − Zt+1)

(E.2)

that updates (Mt, Zt,Υt) to (Mt+1, Zt+1,Υt+1). In (E.2), we define Sβ(x) = sign(x) max{0, |x|−
β} if x ∈ R, and then let Sβ(·) element-wisely operate on vectors. This is known as the soft
thresholding operator.

E.3 Low-rank Matrix Completion

E.3.1 Detailed Simulation

We simulate low-rank matrix completion with exactly low-rank matrix Θ∗. The d × d rank
r underlying matrix Θ∗ is generated by the formulation Θ∗ = ΘlΘr

‖ΘlΘr‖F , where entries of

Θl ∈ R
d×r and Θr ∈ R

r×d are i.i.d. drawn from N (0, 1). Furthermore, Θ∗ with different
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(d, r) are controlled to possess comparable spikiness α(Θ∗) = d‖Θ∗‖max

‖Θ∗‖F . While the covariate is

specified to be Xk = ek(i)e
T
k(j) with (k(i), k(j)) ∼ uni([d]×[d]) (4.2), we test both sub-Gaussian

noise and heavy-tailed noise. Specifically, sub-Gaussian or heavy-tailed ǫk are i.i.d. copies of
N (0, 1

400
) or 1

250
·
(

1√
3
t(ν = 3)

)
, respectively. Here, 1√

3
t(ν = 3) is the Student’s t distribution

with 3 degrees of freedom and variance rescaled to 1. Following these parameters, the full
data {(Xk, Yk) : k ∈ [n]} are obtained from the model Yk =

〈
Xk,Θ

∗

〉
+ ǫk. The responses

are processed by the 1-bit quantization scheme and quantized to 1-bit Ẏk, then solving the
convex programming problem (4.6) gives the estimator Θ̂. In (4.6), we set α∗ = ‖Θ∗‖max and
properly tune λ so that it balances the data fidelity and low-rank structure. We track the
Frobenius norm error ‖Θ̂−Θ∗‖F and report the mean value of 15 independent trials.

E.3.2 Algorithm

We similarly apply ADMM to solve (4.6), and first separate variable Θ to be two blocks
M ,Z ∈ R

d×d. Define 1′(E) to be the indicator function widely used in optimization, i.e.,
1

′(E) = 0 if E happens, 1′(E) = ∞ otherwise. Then, we can move the max-norm constraint
to objective and obtain the equivalent program

arg min
M ,Z∈Rd×d

1

2n

n∑

k=1

(〈
Xk,M

〉
− γ · Ẏk

)2
+ 1

′(‖M‖max ≤ α∗) + λ‖Z‖nu, s.t. M = Z.

Let Υ ∈ R
d×d be the multiplier, we have the augmented Lagrangian function

1

2n

n∑

k=1

(〈
Xk,M

〉
− γ · Ẏk

)2
+ 1

′(‖M‖max ≤ α∗) + λ‖Z‖nu +
〈
Υ,M −Z

〉
+
ρ

2
‖M −Z‖2F.

Some additional notations are necessary before presenting the algorithms. Let Iij = {k ∈ [n] :
Xk = eie

T
j }, then we define J1 = [J1(i, j)],J2 = [J2(i, j)] ∈ R

d×d as

J1(i, j) =
∑

k∈Iij

γ · Ẏk , J2(i, j) =
∑

k∈Iij

1 = |Iij |.

We define PΩ(·) to be the projection onto Ω ⊂ R
d×d under Frobenius norm. Let 1 be the

all-ones matrix with self-evident size, and ⊘ represents the element-wise division between two
matrices of the same size. Furthermore, we introduce the soft thresholding operator Sβ(·) for
a matrix A that admits singular value decomposition A = UΣV ∗, where the singular values
of A are arranged in the diagonal matrix Σ. Based on Sβ(x) = sign(x) max{0, |x| − β} for
x ∈ R, we define Sβ(A) = USβ(Σ)V ∗ and let Sβ(·) element-wisely operates on the diagonal
matrix Σ. Now, one can derive the ADMM iteration formulas as





Mt+1 = P‖M‖max≤α∗ [(nρ ·Zt + J1 − nΥt) ⊘ (nρ · 1 + J2)]

Zt+1 = Sλ/ρ(ρ−1 ·Υt + Mt+1)

Υt+1 = Υt + ρ · (Mt+1 −Zt+1)

. (E.3)
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