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On Sparse Linear Regression in the Local
Differential Privacy Model
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Abstract—In this paper, we study the sparse linear regression
problem under the Local Differential Privacy (LDP) model. We
first show that polynomial dependency on the dimensionality p
of the space is unavoidable for the estimation error in both non-
interactive and sequential interactive local models, if the privacy
of the whole dataset needs to be preserved. Similar limitations
also exist for other types of error measurements and in the
relaxed local models. This indicates that differential privacy in
high dimensional space is unlikely achievable for the problem.
With the understanding of this limitation, we then present two
algorithmic results. The first one is a sequential interactive LDP
algorithm for the low dimensional sparse case, called Locally
Differentially Private Iterative Hard Thresholding (LDP-IHT),
which achieves a near optimal upper bound. This algorithm is
actually rather general and can be used to solve quite a few other
problems, such as (Local) DP-ERM with sparsity constraints
and sparse regression with non-linear measurements. The second
one is for the restricted (high dimensional) case where only the
privacy of the responses (labels) needs to be preserved. For this
case, we show that the optimal rate of the error estimation can
be made logarithmically dependent on p (i.e., log p) in the local
model, where an upper bound is obtained by a label-privacy
version of LDP-IHT. Experiments on real world and synthetic
datasets confirm our theoretical analysis.

Index Terms—Sparse Linear Regression, Local Differential
Privacy

I. INTRODUCTION

L INEAR regression is a fundamental and classical tool for
data analysis, and finds numerous applications in social

sciences [2], genomics research [3] and signal recovery [4].
One frequently encountered challenge for such a technique is
how to deal with the high dimensionality of the dataset, such
as those in genomics, educational and psychological research.
A commonly adopted strategy for dealing with such an issue
is to assume that the unknown regression vector is sparse.

Another often encountered challenge for linear regression is
how to handle sensitive data, such as those in social science.
As a commonly-accepted approach for preserving privacy,
differential privacy [5] provides provable protection against
identification and is resilient to arbitrary auxiliary information
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that might be available to attackers. Methods to guarantee
differential privacy have been widely studied, and recently
adopted in industry [6], [7], [8].

Two main user models have emerged for differential privacy:
the central model and the local one. In the central model, data
are managed by a trusted central entity which is responsible for
collecting them and for deciding which differentially private
data analysis to perform and to release. A classical application
of this model is the one of census data. In the local model
instead, each individual manages his/her proper data and
discloses them to a server through some differentially private
mechanisms. The server collects the (now private) data of each
individual and combines them into a resulting data analysis. A
classical example of this model is the one aiming at collecting
statistics from user devices like in the case of Google’s Chrome
browser [7], and Apple’s iOS-10 [6], [8].

Despite being used in industry, the local model has been
much less studied than the central one. Part of the reason for
this is that there are intrinsic limitations in what one can do in
the local model. As a consequence, many basic questions, that
are well studied in the central model, have not been completely
understood in the local model, yet.

To advance our understanding on the local model, we study,
in this paper, the locally differentially private version of the
sparse linear regression problem, where each user i ∈ [n] holds
a data record (xi, yi) ∈ ℝp ×ℝ. There are two commonly used
ways for measuring the performance of this problem, which
correspond to two different settings, the statistical learning
and the statistical estimation settings. For the first setting, the
measurement is based on the optimization error, i.e. F (�priv) −
min�∈ F (�), where F (�) = E(x,y)∼ (⟨x, �⟩ − y)2, and  is an
unknown distribution. For the second setting, y is assumed to
be y = ⟨x, �∗⟩+ �, where x ∼ ,  is a known distribution, �
is a random noise, and �∗ ∈ ℝp is the to-be-estimated vector
that satisfies the condition of ‖�∗‖0 ≤ s. The estimation error
for this setting is represented by the loss of the squared l2
norm, i.e., ‖�priv − �∗‖22. In this paper, we will focus on the
latter setting, and assume that x ∼ Uniform{+1,−1}p.

Our contributions can be summarized as follows:
∙ We first present a negative result which suggests that

the � non-interactive private minimax risk of ‖�priv −
�∗‖22 is lower bounded by Ω( p log pn�2 ) if the privacy of the
whole dataset {(xi, yi)}ni=1 needs to be preserved. This
indicates that it is impossible to obtain any non-trivial
error bound in high dimensional space (i.e. p ≫ n). The
private minimax risk is still lower bounded by Ω( p

n�2 ),
even in the sequentially interactive local model. Our proofs
are based on a locally differentially private version of the
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Fano and Le Cam method [9], [10], [11]. We further
reveal that this polynomial dependency on p cannot be
avoided even if the measurement of the loss function or
definitions of differential privacy is relaxed.

∙ With the understanding of this limitation, we then propose
an �-sequential interactive LDP algorithm for the low di-
mensional sparse case, called Locally Differentially Private
Iterative Hard Thresholding (LDP-IHT), which achieves
a near optimal upper bound. Furthermore, we show that
the idea of DP-IHT is actually rather general and can be
used to achieve differential privacy for quite a few other
problems. Specifically, it can be applied to the (Locally)
Differentially Private Empirical Risk Minimization (DP-
ERM) problem with sparsity constraints, and achieves an
upper bound that depends only logarithmically on p (i.e.,
log p) and the sparsity parameter of the optimal estimator,
making it suitable for applications in high dimensions. To
our best knowledge, this is the first paper studying DP-
ERM with non-convex constraint set. Another application
of LDP-IHT is the sparse regression problem with non-
linear measurements [12], [13].

∙ We also give a positive result for high dimensions.
Particularly, we consider the restricted case where only
the responses (labels) are required to be private, i.e., the
dataset {xi}ni=1 is assumed to be public and {yi}ni=1 is
private (note that this is a valid assumption as shown in
[14], [15]). For this case, we propose a general algorithm
which achieves an upper bound of O( s log pn�2 ) for the
estimation error. We show that this bound is actually
optimal, as the � non-interactive private minimax risk can
also be lower bounded by Ω( s log pn�2 ).

∙ Finally, we perform our algorithms on both synthetic and
real world datasets. Experimental results also support our
theoretical analysis.

II. RELATED WORK

There is a vast number of existing results studying the dif-
ferentially private linear regression problem (or more generally,
DP-ERM) from different perspectives, such as [16], [17], [18],
[19], [20], [21], [22]. Below, we focus only on those with
theoretical guarantees on the error.

For the central model, [18] recently conducted a compre-
hensive study, from both theoretical and practical points of
views, on the differentially private linear regression problem.
The author gave upper bounds of the optimization error in
the statistical learning setting and the estimation error in the
statistical estimation setting, as well as a general lower bound
of the optimization error. There are also other works on this
problem (we refer the reader to the Related Work section in
[18] for more details). But all these results are only for the low
dimensional case (i.e. the dimensionality p is a small constant
number). Contrarily, we study mainly, in this paper, the high
dimensional sparse case under the statistical estimation setting
and provide both upper and lower bounds of the estimation
error for the non-interactive and sequentially interactive models.
A couple of results also exist for the high dimensional sparse
linear regression problem in the central model [20], [23]; but all

of them consider only the optimization error. [24] studied the
problem of Bayesian linear regression, which is incomparable
to our problem. [19] focused the confidence interval of Ordinary
Linear Regression while we mainly focus on the estimation
error. It is notable that recently [25] studied the optimal rates of
the estimation error of linear regression in both low dimension
and high dimensional sparse settings. Specifically, for (�, �)-
DP, they showed that in the low dimension setting, the near

optimal rate of estimation error is Õ(
√

p
n +

p
√

log 1∕�
n� ), while in

the high dimensional setting it is Õ(
√

s log p
n + s log p

√

log 1∕�
n� ),

here Õ-term omits log n factor. We will show more details in
Remark 2 for the comparison between sparse linear regression
in the central model and the local model.

Unlike the central model where tremendous progresses have
been made, linear regression in the local model is still not well
understood. The only known results are [21], [26], [10], [9]. [9]
studied the low dimensional, non-interactive private minimax
risk of the estimation error for the restricted case of keeping
the responses private, while we consider the high dimensional
case of the problem in the interactive local model. [21] gave
the optimal lower bound of the optimization error, Θ(

√

p
n�2 ),

for the low dimensional case which was later improved to
O(( log pn�2 )

1
4 ) by [26], [27] in the case where the constraint set is

a unit l1 norm ball. However, their settings are different from
ours since they all assume that the norm of xi is bounded by
1, i.e. ‖xi‖2 ≤ 1, while in our statistical setting, ‖xi‖2 =

√

p.
Thus, our results are incomparable with theirs.

DP-ERM has been studied in [28], [29], [30], [31], [27], [9],
[32] under different settings. However, none of these considered
the non-convex constraint case.

To proof the low bounds in this paper, we mainly use
private version of the Fano and Le Cam method, which are
initially given by [9], [10], [11]. Based on different settings or
problems, there are different versions of private Fano and Le
Cam method. For example, [33] proposed a generalized private
Assouad method to deal with the lower bounds of some matrix
estimation problems in the local differential privacy model.
[34] proposed private Fano, Le Cam and Assouad method
under central differential privacy. [35] proved lower bounds for
various testing and estimation problems under local differential
privacy using a notion of chi-squared contractions based on
Le Cam’s method and Fano’s inequality.

III. PRELIMINARIES

In this section, we introduce some definitions that will be
used throughout the paper. More details can be found in Section
A of Appendix or [10].

A. Classical Minimax Risk

Since all of our lower bounds are in the form of private
minimax risk, we first introduce the classical statistical minimax
risk before discussing the locally private version.

Let  be a class of distributions over a data universe  .
For each distribution p ∈  , there is a deterministic function
�(p) ∈ Θ, where Θ is the parameter space. Let � ∶ Θ ×
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Θ ∶ → ℝ+ be a semi-metric function on the space Θ and
Φ ∶ ℝ+ → ℝ+ be a non-decreasing function with Φ(0) = 0
(in this paper, we assume that �(x, y) = |x− y| and Φ(x) = x2
unless specified otherwise). We further assume that {Xi}ni=1
are n i.i.d observations drawn according to some distribution
p ∈  , and �̂ ∶ n → Θ be some estimator. Then the minimax
risk in metric Φ◦� is defined by the following saddle point
problem:

n(�(),Φ◦�) ∶= inf
�̂
sup
p∈

Ep[Φ(�(�̂(X1,⋯ , Xn), �(p))],

where the supremum is taken over distributions p ∈  and the
infimum over all estimators �̂.

B. Local Differential Privacy and Private Minimax Risk

Since we will consider the sequential interactive and non-
interactive local models in this paper, we follow the definitions
in [9].

We assume that {Zi}ni=1 are the private observations trans-
formed from {Xi}ni=1 through some privacy mechanisms. We
say that the mechanism is sequentially interactive, when it
has the following conditional independence structure:

{Xi, Z1,⋯ , Zi−1} → Zi, Zi ⫫ Xj ∣ {Xi, Z1,⋯ , Zi−1}

for all j ≠ i and i ∈ [n], where ⫫ means independent
relation. The full conditional distribution can be specified
in terms of conditionals Qi(Zi ∣ Xi = xi, Z1∶i−1 = z1∶i−1).
The full privacy mechanism can be specified by a collection
Q = {Qi}ni=1.

When Zi is depending only on Xi, the mechanism is called
non-interactive and in this case we have a simpler form for the
conditional distributions Qi(Zi ∣ Xi = xi). We now define local
differential privacy by restricting the conditional distribution
Qi.

Definition 1 ([9]). For given privacy parameters � > 0, � ≥
0, the random variable Zi is an (�, �) sequentially locally
differentially private view of Xi if for all z1, z2,⋯ , zi−1 and
x, x′ ∈  we have the following for all the events S:

Qi(Zi ∈ S ∣ Xi = xi, Z1∶i−1 = z1∶i−1) ≤
e�Qi(Zi ∈ S ∣ Xi = x′i, Z1∶i−1 = z1∶i−1) + �.

If � = 0, we will omit the term of � (the same for other
definitions).

We say that the random variable Zi is an (�, �) non-
interactively locally differentially private view of Xi if

Qi(Zi ∈ S ∣ Xi = xi) ≤ e�Qi(Zi ∈ S ∣ Xi = x′i) + �.

We say that the privacy mechanism Q = {Qi}ni=1 is (�, �)-
sequentially (non-interactively) locally differentially private
(LDP) if each Zi is a sequentially (non-interactively) locally
differentially private view.

For a given privacy parameter � > 0, let � be the set of
conditional distributions that have the �-LDP property. For
a given set of samples {Xi}ni=1, let {Zi}ni=1 be the set of
observations produced by any distribution Q ∈ � . Then, our

estimator will be based on {Zi}ni=1, that is, �̂(Z1,⋯ , Zn). This
yields a modified version of the minimax risk:

n(�(),Φ◦�,Q) ∶= inf
�̂
sup
p∈

Ep[Φ(�(�̂(Z1,⋯ , Zn), �(p))].

From the above definition, it is natural for us to seek the
mechanism Q ∈ � that has the smallest value for the minimax
risk. This allows us to define functions that characterize the
optimal rate of estimation in terms of privacy parameter �.

Definition 2. Given a family of distributions �() and a
privacy parameter � > 0, the � sequential private minimax risk
in the metric Φ◦� is:

Int
n (�(),Φ◦�, �) ∶= inf

Q∈�
n(�(),Φ◦�,Q),

where � is the set of all � sequentially locally differentially
private mechanisms. Moreover, the � non-interactive private
minimax risk in the metric Φ◦� is:

Nint
n (�(),Φ◦�, �) ∶= inf

Q∈�
n(�(),Φ◦�,Q),

where � is the set of all � non-interactively locally differen-
tially private mechanisms.

IV. PROBLEM SET-UP

The focus of this paper is the sparse linear regression
problem. In this problem, we have n pair of observations
{(xi, yi)}ni=1, where each (xi, yi) ∈ ℝp ×ℝ. Moreover, there is
some unknown parameter vector �∗ ∈ ℝp that links each pair
(xi, yi) by the standard linear model

yi = ⟨xi, �
∗
⟩ + �i,

where |�i| ≤ C is observation noise and C > 0 is some constant.
Here �∗ satisfies the sparsity constraint, meaning that �∗ has no
more than s ≪ p non-zero entries. The goal is to estimate the
unknown vector �∗ based on these n observations while also
under the local differential privacy constraint. Specifically, we
want to find an estimator �priv via some locally differentially
private algorithm to make its estimation error ‖�priv − �∗‖22 be
as small as possible. Specifically, in this paper we will focus
on the following collection of samples (x, y) ∈ {+1,−1}p ×ℝ:

s,p,C = {P�,� ∣ x ∼ Uniform{+1,−1}p, y = ⟨�, x⟩ + �,
where � is the random noise s.t E[�|x] = 0, |�| ≤ C

for some constant C > 0, ‖�‖2 ≤ 1, ‖�‖0 ≤ s}. (1)

In the above definition, � is sampled from a bounded stochastic
noise domain such as uniform distribution and could depend
on x.

It is notable that in the non-private setting, [36] showed
the following optimal minimax rate n(�(s,p,C ), ‖ ⋅ ‖22) =

Θ(
C2s log ps

n ).
It is worth noting that there is some difference between our

model (1) and the sub-Gaussian linear model, which is a classic
model in statistics [36]. That is, here x is assumed to follow
a uniform distribution (which is an often adopted assumption
in estimating lower bounds in differential privacy [37]) in our
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model, while it is often sampled from general sub-Gaussian
distribution in a sub-Gaussian model. Even though the uniform
distribution can be viewed as a sub-Gaussian distribution, the
way of using it in our paper is different.

V. KEEPING THE WHOLE DATASET PRIVATE

A. Lower Bounds of Private Minimax Risk

In this section, we investigate the private minimax risk in
the case where the whole dataset {(xi, yi)}ni=1 needs to be
locally private, and show that even if the parameter vector �∗
is 1-sparse, the polynomial dependence on the dimensionality
p in the estimation error cannot be avoided. This implies
that achieving �-LDP for the high dimensional sparse linear
regression problem is unlikely.

To show the limitations of the problem with respect to the
private minimax risk, we first give some intuition. Consider a
raw data record (xi, yi) which is sampled from some P�,� ∈
1,p,C , where 1,p,C has the form as in (1). Suppose that we
want to use a Gaussian or Laplacian mechanism on (xi, yi)
in order to make the algorithm locally differentially private.
Then, due to sensitivity, the l1 or l2 norm of (xi, yi) is a
polynomial of p. The scale of the added random noise will
also be a polynomial of p, which makes the final estimation
error large.

The following theorem indicates that for some fixed privacy
parameter � ∈ (0, 1), the optimal rate of the � non-interactive
private minimax risk is lower bounded by Ω(min{1, p log pn�2 }).

Theorem 1. For a given fixed privacy parameter � ∈ (0, 12 ],
the � non-interactive private minimax risk (measured by
the ‖ ⋅ ‖22 metric) of the 1-sparse high dimensional sparse
linear regression problem 1,p,2 needs to satisfy the following
inequality,

Nint
n (�(1,p,2), ‖ ⋅ ‖22, �) ≥ Ω(min{1,

p log p
n�2

}). (2)

With the above theorems, our question now is to determine
whether there are other factors in the local model that might
allow us to avoid the polynomial dependency on p in the
estimation error.

We first consider the necessity of interaction in the model,
since for some problems, such as convex Empirical Risk
Minimization (ERM), there exists a large gap in the estimation
error between the interactive and non-interactive local models
[21]. The following theorem suggests that even if sequential
interaction is allowed in the local model, the polynomial
dependence on p is still unavoidable. Note that sequential
interaction is a commonly used model in LDP [9], [21].

Theorem 2. For a given fixed privacy parameter � ∈ (0, 12 ], the
� sequential private minimax risk (measured by the ‖⋅‖22 metric)
of the 1-sparse high dimensional sparse linear regression
problem 1,p,2 needs to satisfy the following inequality,

int
n (�(1,p,2), ‖ ⋅ ‖

2
2, �) ≥ Ω(min{1,

p
n�2

}). (3)

Remark 1. Since the lower bound of the non-private minimax
risk is O( log pn ) [36], we conjecture that the lower bound in
Theorem 2 is not tight and the tightest bound should be

O( p log pn�2 ), which is the same as Theorem 1. Later, we will
propose a near optimal algorithm (compared with (3)) in
Section V-B and leave the problem of finding a tighter lower
bound as future research.

Corollary 1. Recently, [38] proposed a general framework
which could transfer any k-compositional fully interactive LDP
algorithm to sequentially interactive LDP algorithm with an
O(k) blowup in the same complexity. Combining with Theorem
2, we can claim that even in the O(p)-compositional fully
interactive LDP model, the dependence on the polynomial of
the dimensionality p still cannot be avoided.

Remark 2. Recently [25] studied the lower bound of linear
regression with statistical error in both low and high dimen-
sional case under central (�, �)-DP model. Specifically, they
show that for s-sparse high dimensional case, the private
minimax risk under the l2 norm measurement is lower bound

by Ω(
√

s log p
n + s log p

√

log 1∕�
n� ) while for the low dimensional

case it is lower bounded by Ω(
√

p
n +

p
√

log 1∕�
n� ), all of these

bounds are optimal up to factors of Poly(log n). From Theorem
1 and 2, we can see that for sparse linear regression problem,
LDP and DP are quite different.

Then, we investigate whether the loss function in the
estimation error is too strong. For example, if let �∗ = ej
and the private estimator �priv = ei for some i ≠ j, then by the
squared l2 norm loss, we have ‖�priv − �∗‖22 = 2. Since it is
possible to get |⟨1, �priv − �∗⟩| = 0, this seems to suggest that
relaxing the loss function could possibly lower the dependency
on p. However, our next theorem gives a negative answer.

Theorem 3. Consider the loss function L ∶ Θ × Θ → ℝ+,
where L(�, �′) = |1T (� − �′)|. Then, for any fixed � ∈ (0, 12 ],
the � sequential private minimax risk of the loss function L in
the 1-sparse high dimensional sparse linear regression problem
1,p,2 needs to satisfy the following inequality,

int
n (�(1,p,2), L, �) ≥ Ω(min{1,

√

p
n�2

}). (4)

Finally, we consider the possibility of lowering the depen-
dence of p by relaxing the definition of � local differential
privacy. This is motivated by the following fact in the central
model, where there is a big difference between � and (�, �)-
differential privacy for a number of problems, such as the
Empirical Risk Minimization [39] and the 1-way marginal
[37]. However, as shown in a recent study [40], any non-
interactive (�, �)-LDP protocol can be transformed to an �-LDP
protocol. This implies that relaxing to (�, �) LDP cannot avoid
the polynomial dependence.

To further investigate the problem, we consider other types
of relaxation for LDP, such as Local Rényi Differential Privacy
(LRDP) [41] and Local Zero-Concentrated Differential Privacy
(LzCDP) [42]. The following theorem shows that the lower
bounds on the minimax risk of the (2, log(1 + �2)) sequential
LRDP and (�, �) sequential LzCDP still have polynomial
dependence on p.

We first recall the definitions of Rényi Differential Privacy
and Zero-Concentrated Differential Privacy and then extend
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them to the sequentially interactive model. For any � ≥ 1, we
denote the Rényi divergence of distribution P and Q as

D�(P‖Q) =
1

� − 1
log∫ (dP

dQ
)�dQ.

For � = 1, it is just the KL-divergence.

Definition 3. Similar to the Definition of local differential pri-
vacy, a random variable Zi is a (�, �) locally zero-concentrated
differentially private view of Xi if for all � > 1, z1, z2,⋯ , zi−1
and x, x′ ∈  ,

D�(Qi(Zi ∈ S ∣ xi, z1∶i−1)‖Qi(Zi ∈ S ∣ x′i,= z1∶i−1)) ≤ �+��

holds for all events S. Similar to the locally differentially
private case, we have (�, �) local zero-concentrated differential
privacy (LzCDP) and (�, �) sequential zero-concentrated
differential private minimax risk (sequential zCDP minimax
risk).

Definition 4. Similarly, we have (�, �) local Rényi differen-
tial privacy and (�, �) (sequential) Renyi differential private
minimax risk (called sequential RDP minimax risk) if

D�(Qi(Zi ∈ S ∣ xi, z1∶i−1)‖Qi(Zi ∈ S ∣ x′i, z1∶i−1)) ≤ �.

Theorem 4. For given fixed privacy parameters 0 < � ≤
1, �, � > 0, the (�, �) sequential zCDP minimax risk (under
the ‖ ⋅ ‖22 metric) of the 1-sparse high dimensional sparse
linear regression problem 1,p,2 needs to satisfy the following
inequality,

int
n (�(1,p,2), ‖ ⋅ ‖

2
2, (�, �)) ≥ Ω(min{1,

p
n(e�+2� − 1)

}).

The (2, log(1 + �2)) sequential RDP minimax risk (under the
‖ ⋅ ‖22 metric) of the 1-sparse high dimensional sparse linear
regression problem 1,p,2 needs to satisfy :

int
n (�(1,p,2), ‖ ⋅ ‖

2
2, (2, log(1 + �

2))) ≥ Ω(min{1, p
n�2

}).

B. Near Optimal Upper Bound for Sequential Interactive Local
Model

With the understanding of the limitation in high dimensions,
we focus, in this section, on the low dimensional sparse case
(i.e., n ≥ Ω( p�2 )) and propose an � sequential interactive LDP
algorithm that achieves a near optimal upper bound on the
estimation error (compared with (3)). Instead of considering
the 1-sparse case as in Theorem 2, we study here the general
case, that is, {(xi, yi)}ni=1 ∼ P�∗,� , where P�∗,� ∈ s∗,p,C , and
assume that some upper bound of s∗ is already known.

Our method is called Locally Differentially Private Iterative
Hard Thresholding (LDP-IHT), which is a locally differentially
private version of the traditional Iterative Hard Thresholding
method [43]. We consider the following more general optimiza-
tion problem, with the intention to extend it to other problems
(see Section VII),

minL(�;D) = 1
2n

n
∑

i=1
(⟨xi, �⟩ − yi)2

s.t.‖�‖2 ≤ 1, ‖�‖0 ≤ s. (5)

The key ideas for solving (5) in our Algorithm 1 are the
follows. First, we partition the users into T groups {St}Tt=1
(where the value of T will be specified later). Then, in the i-th
iteration, each user receives the current estimator �i−1, and all
users in group Si conduct the �-LDP randomizer procedure [10]
on their current gradients xTi (⟨xi, �i−1⟩− yi) (see below for the
definition of the Randomizer). After receiving the noisy version
of the gradient from each user, the server runs the iterative
hard thresholding algorithm and produces a new estimator.
That is, it executes first a gradient descent step, and then a
truncation step �′t+1 = Trunc(�̃t+1, s), where the truncation
function simply keeps the largest s entries of �̃t+1 (in terms
of the magnitude) and converts the rest of the entries to zero.
This can be done by first sorting {|�̃t+1,j|}

p
j=1, where �̃t+1,j is

the j-th coordinate of the vector, then keeping the s-largest
ones, and making the entries of all other coordinates 0. Finally,
the algorithm projects �′t+1 onto the unit l2 norm ball B1.

a) Randomizer r
�(⋅) [10]: On input x ∈ ℝp, where

‖x‖2 ≤ r, the randomizer �(x) does the following. It first
sets x̃ = brx

‖x‖2
where b ∈ {−1,+1} a Bernoulli random variable

Ber( 12 +
‖x‖2
2r ). We then sample T ∼ Ber( e�

e�+1 ) and outputs
O(r

√

p)�(x), where

�(x) =

{

Uni(u ∈ Sp−1 ∶ ⟨u, x̃⟩ > 0) if T = 1
Uni(u ∈ Sp−1 ∶ ⟨u, x̃⟩ ≤ 0) if T = 0

(6)

Using the same proof as in [21] we can show that each
coordinate of the the randomizer r

�(x) is sub-Gaussian.

Lemma 1 ([21]). Given any vector x ∈ ℝp, where ‖x‖2 ≤ r,
each coordinate of the randomizer r

�(x) defined above is a

sub-Gaussian random vector with variance �2 = O( r
2

�2 ) and
E[�(x)] = x.

Algorithm 1 LDP-IHT
Input: Private data records {(xi, yi)}ni=1 ∼ P�∗,� , where P�∗,� ∈
s∗,p,C , iteration number T , privacy parameter �, step size �.
Set �0 = 0. s = 8s∗.

1: For t = 1,⋯ , T , define the index set St =
{(t − 1)

⌊

n
T

⌋

,⋯ , t
⌊

n
T

⌋

− 1}; if t = T , then St =

St
⋃

{t
⌊

n
T

⌋

,⋯ , n}.
2: for t = 1, 2,⋯ , T do
3: The server sends �t−1 to all the users. Every use i,

i ∈ St, conducts the following operation: let ∇i =
xTi (⟨�t−1, xi⟩ − yi), compute zi = r

�(∇i), where r
� is

the randomizer defined above with r = O(C
√

p) and
send back to the server.

4: The server compute ∇̃t−1 =
1

|St|
∑

i∈St zi.
5: Perform the gradient descent updating �̃t = �t−1−�∇̃t−1.

6: �′t = Trunc(�̃t−1, s).
7: �t = arg�∈B1 ‖� − �

′
t‖
2
2.

8: end for
9: Return �T
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Before giving the theoretical analysis of Algorithm 1, we
first show the assumption of the partitioned datasets {XSt}

T
t=1.

Assumption 1. {XSt}
T
t=1 satisfies the Restricted Isometry

Property (RIP) with parameter 2s+ s∗, where s = 8s∗. That is,
for any v ∈ ℝp with ‖v‖0 ≤ 2s+ s∗, there exists a constant Δ
which satisfies (1 − Δ)‖v‖2 ≤ 1

|St|
‖XStv‖

2
2 ≤ (1 + Δ)‖v‖

2
2 for

any t ∈ [T ].

Note that for an m × p matrix X = (xT1 ,⋯ , xTm)
T ∼

Uniform{+1,−1}m×p, it satisfies the RIP condition (with pa-
rameter s∗) with probability at least 1−� if m ≥ cΔ−2(s∗ log p+
ln(1∕�)) for some universal constant c (see Theorem 2.12
in [44]). Thus, with probability at least 1 − �, {XSt}

T
t=1

satisfies Assumption 1 if n ≥ Ω(Δ−2(T s∗ log p log T� )). Later,
we will see that T = O(log n). Thus, in order to ensure that
Assumption 1 and n ≥ Ω( p�2 ) hold, we need to assume that
n

log n ≥ Ω( ps
∗ log p
�2 ).

Theorem 5. For any � > 0, Algorithm 1 is � sequentially
interactive LDP. Moreover, under Assumption 1 with Δ = O(1)
and n

log n ≥ Ω( ps
∗ log p
�2 ), if {(xi, yi)}ni=1 ∼ P�∗,� , where P�∗,� ∈

s∗,p,C , then by taking s = 8s∗ and � = O(1), the output �T
of the algorithm satisfies

‖�T − �∗‖2 ≤ (
1
2
)T ‖�∗‖2 + O(

C
√

p log p
√

T
√

s∗
√

n�
), (7)

with probability at least 1 − 2T
pc for some constant c > 0.

Note that Theorem 5 shows that if s∗ = 1, T = O(log n�2

p log p ),

then ‖�T − �∗‖22 = O( p log p log nn�2 ). Compared with the lower
bound in Theorem 2, it is an optimal upper bound up to a
factor of

√

log p.
We notice that recently [45] also used IHT to distributed

DP-sparse PCA. However, compared with theirs, our method is
�-sequentially LDP while theirs is (�, �)-fully interactive LDP.
Thus, the algorithms are quite different.

VI. KEEPING THE RESPONSES PRIVATE

In this section, we consider a restricted case where only the
responses or labels (i.e., {yi}ni=1) are required to be locally
differentially private and all the observations {xi}ni=1 are
assumed to be public. Preserving the privacy of the labels
has been studied in [14], [15] for private PAC learning. We
also note that keeping the responses private is related to some
issues of physical sensory data and the sparse recovery problem,
which has been studied in [46]. In this case, we can actually
assume that {xi}ni=1 ∼ Uniform({+1,−1}p)n are public, and
the collection of probability s,p,C in (1) is now reduced to
the following model:

 ′s,p,C = {P�,�(y1,⋯ , yn) ∣ yi = ⟨�∗, xi⟩ + �i,

where ‖�‖0 ≤ s, ‖�‖2 ≤ 1 and the random noise |�i| ≤ C}.
(8)

The following theorem shows that, for every set of data
{(xi, yi)}ni=1, if only {yi}ni=1 needs to be private, then there is an

(�, �) non-interactively locally differentially private algorithm
DP-IHT, which yields a non-trivial upper bound on the squared
l2 norm of the estimation error (see Algorithm 2). More
specifically, the algorithm first perturbs each yi by Gaussian
noise to ensure that it is (�, �)-LDP. Then, it performs the
classical IHT procedure on the server side. Note that we can
combine our algorithm with the protocol in [40] to obtain an
� non-interactive LDP algorithm.

Algorithm 2 Label-LDP-IHT
Input: Public dataset {xi}ni=1, private {yi}ni=1 ∈ P�∗,� , where
P�∗,� ∈  ′s∗,p,C , �, � are privacy parameters, T is the number
of iteration, � is the step size, and s = 8s∗. Set �0 =
0.

1: for Each i ∈ [n] do
2: Denote ỹi = yi + zi, where zi ∼  (0, �2), �2 =

32C2 ln(1.25∕�)
�2 .

3: end for
4: for t = 0, 1,⋯ , T − 1 do
5: �̃t+1 = �t − �(

1
n
∑n
i=1(ỹi − ⟨xi, �t⟩)xTi ).

6: �′t+1 = Trunc(�̃t+1, s).
7: �t+1 = arg�∈B1 ‖� − �

′
t+1‖

2
2.

8: end for
9: Return �T .

Assumption 2. X = (xT1 ,⋯ , xTn )
T ∈ {−1,+1}n×p satisfies the

Restricted Isometry Property (RIP) with parameter 2s + s∗,
where s = 8s∗. That is, for any v ∈ ℝp with ‖v‖0 ≤ 2s +
s∗, there exists a constant Δ which satisfies (1 − Δ)‖v‖2 ≤
1
n‖Xv‖

2
2 ≤ (1 + Δ)‖v‖

2
2.

Theorem 6. For any 0 < � ≤ 1 and 0 < � < 1, Algorithm
2 is (�, �) (non-interactively) locally differentially private for
{yi}ni=1. Moreover, if X satisfies Assumption 2 with 0 < Δ ≤ 2

7 ,
then by setting s = 8s∗ in Algorithm 2, there is an � =
�(Δ) which ensures that the output �T satisfies the following
inequality with probability at least 1 − exp(−n) − 2

pc

‖�T − �∗‖2 ≤ (
1
2
)T ‖�∗‖2 + O(

C log(1∕�)
√

s∗ log p
√

n�
). (9)

Note that if T = O(log
√

n�
C
√

s∗ log p
) in (9), we have ‖�T −

�∗‖22 ≤ O(C2 s log pn�2 ). Compared with the bounds in Theorem
1 and 2, the dependency on p is reduced from polynomial
to logarithmic, which makes it suitable for handling high
dimensional data. We note that the term O( s log pn ) also appears
in the optimal minimax rate of the high dimensional sparse
sub-Gaussian linear model [36].

Also note that after obtaining {(xi, ỹi)}ni=1, we can get
another private estimator, which has the same upper bound of
O( s log pn�2 ), by performing Lasso �priv ∈ arg�∈ℝp{

1
2n
∑n
i=1(ỹi −

⟨�, xi⟩)2+�‖�‖1}, for some � = O(
√

log p
n�2 ) [47]. However, we

would like to point out that our algorithm is more practical
and can be extended to the case of non-linear measurements.

With the above theorem, a natural question is to determine
whether the upper bound in Theorem 6 can be further improved.
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The following theorem (adopted from [36]) suggests that it is
actually tight as the � non-interactive local private minimax
risk (under the ‖ ⋅ ‖2 metric) is lower bounded by Ω(C

2s∗ log p
n�2 ).

Theorem 7. Under Assumption 2 and for a given fixed privacy
parameter � ∈ (0, 12 ], the � non-interactive local private
minimax risk (under the ‖ ⋅ ‖2 metric) satisfies the following
inequality if only {yi}ni=1 needs to be kept locally private

Nint
n (�( ′s,p,C ), ‖ ⋅ ‖

2
2, �) ≥ Ω

(

min{1,
C2s log ps
n�2(1 + Δ)

}
)

.

VII. EXTENSION TO OTHER PROBLEMS

As mentioned earlier, the (Local) DP-IHT method is actually
quite general for achieving differential privacy. In this section,
we extend it to other problems. Specifically, we use it to the DP-
ERM problem 1 under some sparsity constraint and the sparse
regression problem with non-linear monotone measurements.

A. ERM with sparsity constraint

We start with reviewing some definitions of DP-ERM.

Definition 5 (DP-ERM [48] ). Given a dataset D =
{z1,⋯ , zn} from a data universe  , a loss function l(⋅, ⋅)
and a constraint set  ⊆ ℝp, DP-ERM is to find xpriv so as
to minimize the empirical risk, i.e. L(x;D) = 1

n
∑n
i=1 l(x, zi)

with the guarantee of being differentially private [5]. The
utility of the algorithm is measured by the expected excess
empirical risk, that is E[L(xpriv;D)]−minx∈ L(x;D), where
the expectation of  is taking over all the randomness of the
algorithm.

Here, in the Differential Privacy (DP) model, data are
managed by a trusted central entity which is responsible for
collecting them and for deciding which differentially private
data analysis to perform and to release.

Definition 6 (Differential Privacy [5]). Given a data universe
 , we say that two datasets D,D′ ⊆  are neighbors if they
differ by only one entry, which is denoted as D ∼ D′. A
randomized algorithm  is (�, �)-differentially private (DP) if
for all neighboring datasets D,D′ and for all events S in the
output space of , the following holds

ℙ((D) ∈ S) ≤ e�ℙ((D′) ∈ S) + �.

When � = 0,  is �-differentially private.

In this section, we consider the sparsity-constrained (�, �)
DP-ERM problem. That is, the constraint set  is defined as
 = {x ∶ ‖x‖0 ≤ k}, where ‖x‖0 denotes the number of non-
zero entries in vector x. We note that such a formulation
encapsulates several important problems such as the l0-
constrained linear/logistic regression [49].

We first introduce some assumptions to the loss function,
which are commonly used in the research of ERM under the
sparsity-constrained optimization.

1It is easy to extend to LDP model

Definition 7 (Restricted Strong Convexity, RSC). A differ-
entiable function f (x) is restricted �s-strongly convex with
parameter s if there exists a constant �s > 0 such that for any
x, x′ with ‖x − x′‖0 ≤ s, we have

f (x) − f (x′) − ⟨∇f (x′), x − x′⟩ ≥
�s
2
‖x − x′‖22.

Definition 8 (Restricted Strong Smoothness, RSS). A differ-
entiable function f (x) is restricted ls-strong smooth with
parameter s if there exists a constant ls > 0 such that for any
x, x′ with ‖x − x′‖0 ≤ s, we have

f (x) − f (x′) − ⟨∇f (x′), x − x′⟩ ≤
ls
2
‖x − x′‖22.

Assumption 3. Denote x∗ = argminx∈ L(x;D) and ‖x∗‖0 =
k∗. We assume that the objective function L(x;D) is �s-RSC
and l(x, z) is ls-RSS for all z ∈  with parameter s = 2k+k∗.
We also assume that l(x, z) is G-Lipshitz w.r.t l2 norm for all
z ∈  .

For the sparsity-constrained DP-ERM problem, we follow
the idea in Algorithm 1 to solve the optimization problem (5).
That is, we first execute a DP-Gradient Descent step and then
perform a hard thresholding operation (see Algorithm 3 for
details).

Theorem 8. Under Assumption 3, for any 1 ≥ �, � > 0, there
exists a constant c > 0 which makes Algorithm 3 (�, �)-DP.
Moreover, if the sparsity level k ≥ (1+64�2s )k

∗, where �s =
ls
�s

,

then by setting � = 1
2ls

and T = O(�s log
n2�2

k∗ ), we have

EL(xT ;D) − L(x∗;D) ≤ O(
log n log pk∗ log 1�

n2�2
), (10)

where the big O-notation omits the terms of G, �s and ls.

Algorithm 3 DP-IHT
Input: Initial point x0, learning rate �, empirical risk L(x;D),
privacy parameters 1 > �, � > 0, and iteration number
T .

1: for t = 0, 1,⋯ , T − 1 do
2: Let x̃t+1 = xt − �(∇L(xt;D) + zt), where zt ∼

 (0, �2Ip), �2 =
cT log 1�G

2

n2�2 for some constant c.
3: Let xt+1 = Trun(x̃t+1, k).
4: end for
5: Return xT .

Remark 3. We note that the upper bound in (10) depends
only logarithmically on p (i.e., logp), rather than polynomially
(i.e., Poly(p)) as in general DP-ERM with (strongly) convex
loss functions [31], [48]. This means that we have obtained a
non-trivial upper bound for the high dimensional case (p ≫ n)
of the problem. Recently, [23], [50] also studied the case
of high dimensional DP-ERM with specified constraint set.
However, there are considerable differences. Firstly, the [23]
paper considers only linear regression and l1-norm Lipshitz
with the constraint set restricted to an l1-norm ball. Secondly,
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the [50] paper shows that its upper bound depends only on
the Gaussian width of the underlying constraint set, which
could has sub-linear dependence on p (e.g., for the case of
the unit l1-norm ball, it is logarithmic in p). However, their
algorithm is based on the mirror descent method, which needs
the constraint set to be convex. But it is non-convex in our
problem. Thus, these previous results are not comparable with
ours.

It would be interesting to find a general condition on the
constraint set such that the upper bound of the problem can
be independent of Poly(p). Also, we note that to achieve the
bound in (10), the gradient complexity of Algorithm 3 needs
to be Õ(n�s), which is quite large. We leave it as an open
problem to make it more practical.

B. Non-linear Regression

We now study a model with non-linear non-convex measure-
ment: yi = f (⟨�∗, xi⟩) + �, where f is some known function
and �∗ is sparse. This model has recently been studied in [12],
[13]. Note that when f is the identity function, it reduces to
the sparse linear regression model. In this paper, we focus on
a special class of functions called (a, b) monotone:

Definition 9. A function f ∶ ℝ → ℝ is (a, b) monotone for
some 0 < a ≤ b if f is differentiable and f ′(x) ∈ [a, b] for all
x ∈ ℝ.

Like in the linear model, we also consider the cases of
keeping the whole dataset and only the responses {yi}ni=1
locally differentially private.

1) Keeping the Whole Dataset Private: Same as in the linear
model case, we consider the following distribution collection
of samples (x, y) ∈ {+1,−1}p ×ℝ:

s,p,C,f ,a,b = {P�,� ∣ x ∼ Uniform{+1,−1}p, y = f (⟨�, x⟩)+�,
where � is the random noise |�| ≤ C,C > 0

is some constant ‖�‖2 ≤ 1, ‖�‖0 ≤ s, f is (a, b) monotone }.
(11)

We note that when f (x) = x, it reduces to (1).
To obtain an upper bound of the empirical risk, we can

easily extend Algorithm 1 to the non-linear measurement case
(see Algorithm 4) to solve the following problem

minL(�;D) = 1
n

n
∑

i=1
(f (⟨xi, �⟩) − yi)2

s.t.‖�‖2 ≤ 1, ‖�‖0 ≤ s. (12)

Theorem 9. For any � > 0, Algorithm 4 is � sequential
interactive LDP. Moreover, if {XSt} satisfies Assumption 1 with

0 ≤ �′ ≤ 9a2−5b2
14 in Section 4.2 and n

log n ≥ Ω( ps
∗ log p
�2 ), and

{(xi, yi)}ni=1 ∼ P�∗,� , where P�∗,� ∈ s∗,p,C,f ,a,b (we assume
a2

b2 ≥ 5
9 ), then after taking s = 8s∗ and � = �(a, b), the output

�T satisfies

‖�T − �∗‖2 ≤ (
1
2
)T ‖�∗‖2 + O(

√

p log p
√

T
√

s
√

n�
), (13)

Algorithm 4 LDP-IHT
Input: Private data records {(xi, yi)}ni=1 ∼ P�∗,� , where P�∗,� ∈
s,p,C,f ,a,b, T is the Iteration number, � is the privacy parameter,
and � is the step size. Set �0 = 0. s is a parameter to be specified
later.

1: For t = 1,⋯ , T , define the index set St =
{(t − 1)

⌊

n
T

⌋

,⋯ , t
⌊

n
T

⌋

− 1}, if t = T , then St =

St
⋃

{t
⌊

n
T

⌋

,⋯ , n}.
2: for t = 1, 2,⋯ , T do
3: The server sends �t−1 to all the users. Every use

i which i ∈ St does the following operation: let
∇i = xTi f

′(⟨�t−1, xi⟩)(f (⟨�t−1, xi⟩) − yi), compute zi =
r
�(∇i), where r

� is the randomizer defined in the
previous section with r = O(bC

√

p) and send back to
the server.

4: The server compute ∇̃t−1 =
1

|St|
∑

i∈St zi.
5: Do the gradient descent updating �̃t = �t−1 − �∇̃t−1.
6: �′t = Trunc(�̃t, s).
7: �t = arg�∈B1 ‖� − �

′
t‖
2
2.

8: end for
9: Return �T

with probability at least 1 − 2T
pc for some constant c > 0.

2) Keeping the Labels Private: For a fixed X =
(xT1 ,⋯ , xTn )

T ∈ {+1,−1}n×p, we consider the following
collection of distributions:

 ′s,p,C,f ,a,b = {P�,�({yi}
n
i=1) ∣ yi = f (⟨�

∗, xi⟩) + �i,

where ‖�‖0 ≤ s, ‖�‖2 ≤ 1, the random noise
|�i| ≤ C for some constant C > 0, and f is (a, b) monotone}.

The following theorem shows the lower bound of the private
minimax risk (under the ‖ ⋅ ‖22 metric) with respect to the
above collection of distributions, which is similar to the one
in Theorem 6.

Theorem 10. Under Assumption 2 and for a given fixed
privacy parameter � ∈ (0, 12 ], the � non-interactive local private
minimax risk (under the ‖ ⋅ ‖2 metric) in the case of keeping
{yi}ni=1 locally private satisfies the following inequality

Nint
n (�( ′s,p,C,f ,a,b), ‖ ⋅ ‖

2
2, �) ≥ Ω(min{1, C

2
s log ps

nb2�2(1 + Δ)
}).

Comparing to the lower bound in Theorem 6 in the previous
section, we can see that there is an additional factor of b2 in
Theorem 10, which is due to the fact that the model is more
complicated.

For the upper bound, we adopt a similar approach as in
DP-IHT for linear regression. Particularly, we let L(�) =
1
2n
∑n
i=1(ỹi − ⟨xi, �⟩)2 and then apply the ideas of IHT.

Theorem 11. For any 0 < � ≤ 1 and 0 < � < 1,
Algorithm 5 is (�, �) (non-interactively) locally differentially
private for {yi}ni=1. Moreover, if {yi}ni=1 ∈ P�∗,� (where

P�∗,� ∈  ′s∗,p,C,f ,a,b with 1 ≥ a
b >

√

5
3 ) and X satisfies
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Algorithm 5 General DP-Iterative Hard Thresholding
Input: Public dataset {xi}ni=1, private {yi}ni=1 ∈ P�∗,� , where
P�∗,� ∈ s∗,p,C,f ,a,b, �, � are privacy parameters, T is the
number of iteration, � is the step size, and s is a parameter to
be specified. Set �0 = 0.

1: for Each i ∈ [n] do
2: Denote ỹi = yi + zi, where zi ∼  (0, �2), �2 =

32C2 ln(1.25∕�)
�2 .

3: end for
4: for t = 0, 1,⋯ , T − 1 do
5: �̃t+1 = �t − �∇L(�t).
6: �′t+1 = Trunc(�̃t+1, s).
7: �t+1 = arg�∈B1 ‖� − �

′
t+1‖

2
2.

8: end for
9: Return �T .

Assumption 1 with 0 < Δ ≤ 9a2−5b2
14 , then by setting s = 8s∗

in Algorithm 5, there is an � = �(Δ) which ensures that the
output �T satisfies the following inequality

‖�T − �∗‖2 ≤ (
1
2
)T ‖�∗‖2 + O(

bC log(1∕�)
√

s∗ log p
√

n�
),

with probability at least 1 − T exp(−n) − 2T
pc .

VIII. EXPERIMENTS

A. Experiments on Sparse Linear Regression

a) Data Generation: Our data generation process is
similar to the one in [32]. We first fix a parameter vector �∗ by
randomly choosing s∗ coordinates, with each of them sampled
independently from a uniform distribution in interval [0, 1],
and setting the remaining coordinates/entries to zero. Then, we
generate the data samples using equation yi = ⟨xi, �∗⟩ + �i,
where xi ∈ Uniform{−1,+1}p and �i ∈ Uniform[−C,C]. We
assume C = 0.05 in our experiment.

b) Experiment Results: We compare the relative error,
i.e. ‖�T−�∗‖2

‖�∗‖2
, with the sample size n in three different settings,

i.e., under varying dimensionality, sparsity and privacy level,
respectively. We run algorithms Label-LDP-IHT with � = 0.2
or � = 0.1, s = s∗, T = ⌈log np⌉, � = 10−3 and a random
normal Gaussian vector as the initial point to obtain �T . For
each experiment, we run the algorithm 10 times and take the
one with the lowst relative error as the final value.

Figure 1 and 2 depict the results of Algorithm 1 and
2, respectively. From Figure 1, we can see that when the
dimensionality and the sparsity level increase or the privacy
parameter � decreases, the relative error increases, especially
when the sample size n is small. When the sample size increases,
the relative error will decreases. From Figure 2, we can learn
that when the dimensionality p increases, unlike Figure 1, it
does not cause the relative error to change significantly. This
can be explained by the fact that the error bound is only
logarithmically depending on p. Moreover, when the privacy
parameter increases, the relative error decreases. These results
confirm our theoretical claims.

B. Experiments on Sparsity-constrained DP-ERM

In this section, we test Algorithm 3 on real world datasets
Covertype and rcv1 [51]. Particularly, we study the sparsity-
constrained logistic regression problem with l(w, z) = log(1+
exp(−yi⟨w, xi⟩)) +

�
2‖w‖

2
2, where yi is the label of xi. As pre-

processing, the data is first normalized. Since there is no ground
truth on real data, we run the algorithm in [32] sufficiently
long until ‖wt−wt+1‖2∕‖wt‖2 ≤ 10−4 and then use the output
L(wt;D) as the approximate optimal value. With this, we can
calculate the optimality gap of our estimator. In the experiments,
we set � = 10−3, � = 0.1 and � = 10−3, and use zCDP [42]
to achieve the (�, �)-DP.

From Figure 3 and 4, we can see that when the dimensionality
p increases, the optimality gap does not change too much, which
is due to the fact that the error bound is only logarithmically
depending on p. Also, when the sparsity level increases or
� decreases, the optimality gap increases. Clearly, all these
experimental results are consistent with Theorem 8.

C. Tests on Synthetic Datasets For Linear Regression with
Non-linear Measurements

Our data generation process is similar to the one in [32].
We first fix a parameter vector �∗ by randomly choosing
s∗ coordinates, with each of them sampled independently
from a uniform distribution in interval [0, 1], and setting the
remaining coordinates/entries to zero. For the case of non-
linear measurements, we assume that yi = f (⟨xi, �∗⟩) + �i,
where f (x) ∶= 8x + cos x where xi ∈ Uniform{−1,+1}p and
�i ∈ Uniform[−C,C] so that it satisfies the assumptions in
Theorem 9 . The results are shown in Figure 6 and 5. We can
see that these results are almost the same as in Figure 1 and
2, respectively.

IX. CONCLUSION

In this paper, we comprehensively studied the sparse linear
regression problem in the non-interactive and sequential
interactive local differential privacy models. Specifically, we
first showed that polynomial dependency on the dimensionality
p of the space is unavoidable for the estimation error in both
non-interactive and sequential interactive local models if the
privacy of the whole dataset needs to be preserved, even if
we allow relaxed privacy models and relaxed measurements of
error. This is quite different compared with both of the non-
private case and the problem in the central (�, �) Differential
Privacy model. However, in a restricted (high dimensional)
case where only the privacy of the responses (labels) needs
to be preserved. We showed that the optimal rate of the error
estimation can be made logarithmically dependent on p (i.e.,
log p) in the local model, which is quite similar as in the non-
private case. Second, we proposed a general method which is
called Differentially Private Iterative Hard Thresholding whose
output achieve an optimal rate up to a

√

log n factor. Moreover,
we used this method to solve some other problems, such as
(Local) DP-ERM with sparsity constraints and sparse regression
with non-linear measurements.
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(a) Relative error w.r.t dimensionality (b) Relative error w.r.t sparsity level (c) Relative error w.r.t privacy level

Fig. 1: Experimental results on sparse linear regression under LDP while keeping the whole dataset private (Algorithm 1).

(a) Relative error w.r.t dimensionality (b) Relative error w.r.t sparsity level (c) Relative error w.r.t privacy level

Fig. 2: Experimental results on sparse linear regression under LDP while keeping the labels private (Algorithm 2).

(a) Optimality gap w.r.t dimensionality with
fixed s = 10 and � = 2.

(b) Optimality gap w.r.t sparsity level with
fixed p = 54 and � = 2

(c) Optimality gap w.r.t privacy level with
fixed p = 54 and s = 10

Fig. 3: Experimental results on Covertype dataset [52] for l0-constrained logistic regression under (�, �)-DP (Algorithm 3).
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APPENDIX

A. Technical Lemmas

For the estimation error, we first give some definitions and
lemmas.

Definition 10. A random variable X is said to be sub-Gaussian
with �2 if E(X) = 0 and

E[exp(sX)] ≤ exp(�
2s2

2
),∀s ∈ ℝ.

http://arxiv.org/abs/1806.05756
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://archive.ics.uci.edu/ml
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For the case that X is a d-dimensional random vector, it is
sub-Gaussian with �2 if for any unit vector u ∈ Sd−1, uTX is
sub-Gaussian with �2.

It is well known that if X1, X2,⋯ , Xn are all sub-Gaussian
with �2, then a1X1 + ⋯ + anXn is sub-Gaussian with
(
∑n
i=1 a

2
i )�

2.
We can easily see that if x ∼ Uniform{+1,−1}d , x is sub-

Gaussian with �2 = 1.

Lemma 2 ([53]). Let X1, X2,⋯ , Xn be n random variables
such that each Xi is sub-Gaussian with �2. Then the following
holds

Pr[max
i∈n

Xi ≥ t] ≤ ne−
t2

2�2 ,

Pr[max
i∈n

|Xi| ≥ t] ≤ 2ne−
t2

2�2 .

Lemma 3 ([32]). For any � ∈ ℝk and an integer s ≤ k, if
�t = Trunc(�, s) then for any �∗ ∈ ℝk with ‖�∗‖0 ≤ s, we
have ‖�t − �‖2 ≤

k−s
k−s∗ |�

∗ − �‖22.

Lemma 4. Let  be a convex body in ℝp, and v ∈ ℝp. Then
for every u ∈ , we have

‖(v) − u‖2 ≤ ‖v − u‖2,

where  is the operator of projection onto .

The following theorem says that when X ∈
Uniform{+1,−1}n×p, with high probability it satisfies
the Restricted Isometry Property if n is sufficiently large.

Lemma 5 (Theorem 2.12 in [44]). Let X ∈ {+1,−1}n×p be
a Bernoulli Random Matrix and �,Δ ∈ (0, 1). Assume that

n ≥ CΔ−2(s log(p∕s) + log(1∕�)).

Then with probability at least 1 − �, X satisfies the Restricted
Isometry Property (RIP) with sparsity level s and parameter
Δ, that is, for every ‖v‖0 ≤ s,

(1 − Δ)‖v‖2 ≤ 1
n
‖Xv‖22 ≤ (1 + Δ)‖v‖

2
2.

Note that if X satisfies the Restricted Isometry Property
(RIP) with sparsity level s and parameter Δ, it means that

Δ = max
‖x‖2=1,‖x‖0≤s

‖(1
n
XTX − Ip×p)x‖2.

Lemma 6 ([54]). If z ∼ �2n , where �2n is the Chi-square
distribution with parameter n, then

Pr[z − n ≥ 2
√

nx + 2x] ≤ exp(−x).

B. Private Fano and Le Cam Method

Our lower bounds are basic on the locally private version
Fano and Le Cam method [10], [11]. Given a finite set  ,
a family of distributions {Pv, v ∈ } with Pv ∈  is 2�-
separated in a metric � if �(�(Pv), �(Pv′ )) ≥ 2� for all distinct
pairs v, v′ ∈  . Given any 2�-separated set, the private Fano’s
method for the � non-interactive private minimax risk can be
summarized by the following lemma.

Lemma 7 (Prop. 2 in [10]). Given any 2�-separated set
{Pv, v ∈ }, and � ∈ (0, 12 ], the � non-interactive private
minimax risk satisfies the following inequality

Nint
n (�(),Φ◦�, �) ≥ Φ(�)

2
(

1−
n�2Nint∞ ({Pv}v∈ ) + log 2

log ||
)

,

where Nint∞ ({Pv}v∈ ) =
1
|| sup∈B∞

∑

v∈ ( v())2, B∞ is
the 1-ball of the supremum norm B∞ = { ∈ L∞() ∣ ‖‖∞ ≤
1}, and L∞() = {f ∶  → ℝ ∣ ‖f‖∞ < ∞} is the space of
uniformly bounded functions with the supremum norm ‖f‖∞ =
supx |f (x)|. Also, for each v ∈  ,  v ∶ L∞() → ℝ is a linear
function defined by

 v() = ∫
(x)dPv(x) − dP̄ (x),

where P̄ is the mixture distribution P̄ = 1
||

∑

v∈ P
n
v .

A useful corollary is the following:

Lemma 8 (Corollaries 2 and 4 in [9]). Let V be randomly
and uniformly distributed in  . Assume that given V = v, Xi
is sampled independently according to the distribution of Pv,i
for i = 1,⋯ , n. Then, there is a universal constant c < 19
such that for � ∈ (0, 12 ],

I(Z1, Z2,⋯ , Zn;V ) ≤ c�2
n
∑

i=1

1
||2

∑

v,v′∈
‖Pv,i − Pv′,i‖2TV .

The � non-interactive private minimax risk satisfies

Nint
n (�(),Φ◦�, �) ≥ Φ(�)

2
(

1 −
I(Z1,⋯ , Zn;V ) + log 2

log ||
)

.

Now we introduce the generalized private Le Cam method.
Let 0 and 1 be two collections of distributions in  .
We say that 0 and 1 are �-separated for loss function
L if dL(P0, P1) ≥ � for all P0 ∈ 0 and P1 ∈ 0, where
dL(P0, P1) = inf�∈Θ{L(�, �(P0)) + L(�, �(P1)). Then we have
the following lemma.

Lemma 9 (Theorem 2 in [11]). Consider a set of distributions
 , a collection of distributions on  , {Pv}v∈ ⊂  , indexed
by v ∈  , as well as a distribution P0 ∈  . For each of these
distributions, we have i.i.d. observations Xi, that is, samples
from the product with density

dP nv = Π
n
i=1dPv(xi).

We also define the marginal distributions Mn
v (⋅) =

∫ Q(⋅|x1∶n)dP nv (x1∶n) and M̄n = 1
||

∑

v∈ M
n
v , where Q is a

private channel. For any � ∈ (0, 12 ], the � sequential private
minimax risk in the loss function L satisfies the following
inequality

Int
n (�(), L, �) ≥

1
2
min
v∈

dL(P0, Pv)
(

1 − 1
2

√

Dkl(Mn
0‖M̄

n)
)

,

where

Dkl(Mn
0‖M̄

n) ≤ n�2

4
∞({Pv}v∈ ) min{e� ,maxv∈

‖

dP
dPv

‖∞}
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for any distribution P supported on  . Here

∞({Pv}v∈ ) = inf
suppP ∗∈

sup

{ 1
||

∑

v∈
�v()2|‖‖L∞(P ∗)}.

Where the linear functional �v(f ) is defined as

�v(f ) ∶= ∫ f (x)(dP0(x) − dPv(x)).

C. Proofs in Sections V and VI

Proof of Theorem 1. The main idea of the proof is :

∙ Find an index set  which corresponds to a 2�-separated
set {Pv,�v , v ∈ }.

∙ Obtain an upper bound on ∞({Pv,�v}v∈ ), use Lemma
7 to specify �, and then get an lower bound.

We consider  as the set of {±ej , j ∈ [p]}, where {ej}nj=1
is the standard basis of ℝp. Let �v = �v for some � < 1 and
every v ∈  . Then for each �v, we define the distribution
P�v,�v as

P�v,�v =
{

x ∈ Uniform{+1,−1}p; p�v (y ∣ x, �) = ⟨x, �v⟩+�;

where � =

{

1 − ⟨x, �v⟩ w.p. 1+⟨x,�v⟩2
−1 − ⟨x, �v⟩ w.p. 1−⟨x,�v⟩2

}

. (14)

It is easy to see that P�v,�v ∈ 1,p,2 since the noise |�v| ≤
1+ |⟨x, �v⟩| ≤ 2. Note that the distribution in (14) is equivalent
to

p�v,�v ((x, y)) =
1 + y⟨x, �v⟩

2p+1
for (x, y) ∈ {+1,−1}p+1. (15)

Also for every fixed (x, y) ∈ {+1,−1}p+1, we have p̄((x, y)) ∶=
1
||

∑

v∈ p�v,�v ((x, y)) =
1

2p+1 .
Now we show our main lemma used in the proof. For

convenience we denote Pv = P�v,�v (the same for later
theorems).

Lemma 10. The term Nint∞ ({Pv}v∈ ) satisfies the following
inequality

Nint∞ ({Pv}v∈ ) ≤
�2

p
. (16)

Proof of Lemma 10. By definition, for each v ∈  we have

 v() =
∑

(x,y)∈{+1,−1}p+1
(x, y)[pv((x, y)) − p̄((x, y))]

= �
2p+1

∑

(x,y)∈{+1,−1}p+1
(x, y)y⟨x, v⟩

= �
2p+1

∑

x∈{+1,−1}p
[(x, 1)⟨x, v⟩ − (x,−1)⟨x, v⟩]

Thus, we can get

1
||

∑

v∈
 2v () ≤ 2 ×

1
2p

∑

v∈
[
( �
2p+1

∑

x∈{+1,−1}p
(x, 1)⟨x, v⟩

)2

+
( �
2p+1

∑

x∈{+1,−1}p
(x,−1)⟨x, v⟩

)2]

= �2

p4p+1
∑

v∈

∑

x1,x2∈{+1,−1}p
[
(

(x1, 1)(x2, 1)

+ (x1,−1)(x2,−1)
)

xT1 vv
T x2]

= 2�2

p4p+1
∑

x1,x2∈{+1,−1}p

(

(x1, 1)(x2, 1)xT1 x2

+ (x1,−1)(x2,−1)xT1 x2
)

,

where the last equation is due to
∑

v∈ vv
T = 2Ip×p. Thus by

the definition of Nint∞ ({Pv}v∈ ) we have

Nint∞ ({Pv}v∈ ) ≤
1
2
�2

p4p
[ sup
∈B∞

∑

x1,x2∈
(x1, 1)(x2, 1)xT1 x2

+ sup
∈B∞

∑

x1,x2∈
(x1,−1)(x2,−1)xT1 x2]

= �2

2p
[ sup
∈B∞

‖EP0 [(X, 1)X]‖
2 + sup

∈B∞
‖EP0 [(X,−1)X]‖

2],

where P0 is the uniform distribution on {+1,−1}p. Note that
since ‖a‖22 = sup

‖v‖≤1⟨v, a⟩2 for any vector a, by Cauchy-
Schwartz inequality we have

sup
∈B∞

‖EP0 [(X, 1)X]‖
2

= sup
∈B∞,‖v‖2≤1

(EP0 [(X, 1)v
TX])2

≤ sup
∈B∞

EP0 [(X, 1)
2] × sup

‖v‖2≤1
EP0 [(v

TX)2]

≤ sup
‖v‖2≤1

vT
∑

x∈{−1,1}p

xxT

2p
v ≤ 1,

where the second inequality is due to the defini-
tion of X and  . Similarly, we can bound the term
sup∈B∞ ‖EP0 [(X,−1)X‖

2] ≤ 1. This completes the
proof.

By Lemma 7 and Lemma 10 , we can get

Nint
n (�(1,p,2),Φ◦�, �) ≥

�2

2
(

1 −
n�2 �

2

p + log 2

log 2p
)

.

If we take �2 = Ω(min{1, p log 2pn�2 }), we can get the proof of
the lower bound in Theorem 1.

Proof of Theorem 2. Now we use the squared loss as the loss
function L(�, �′) = ‖� − �′‖22. Then, dL(P0, P1) =

1
2‖�(P0) −

�(P1)‖22. Define P0 ∈ 1,p,C as the uniform distribution on
{+1,−1}p × {+1,−1}, that is,

P0 =
{

x ∈ Uniform{+1,−1}p; p�v (y ∣ x, �) = ⟨x, 0⟩ + �;

where � =

{

1 − ⟨x, 0⟩ w.p. 1+⟨x,0⟩
2

−1 − ⟨x, 0⟩ w.p. 1−⟨x,0⟩2

}

.
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Thus, �(P0) = 0.
Define the set of distributions {Pv, v ∈ } in the same way

as in the proof of Theorem 1. Then, we have dL(P0, P1) =
1
2�
2.

As in Lemma 9, we have Mn
0 and M̄n. For the KL-divergence

Dkl between Mn
0 and M̄n, by Lemma 9 we have

Dkl(Mn
0‖M̄

n) ≤ n�2

4
∞({Pv}v∈ ) min{e� ,maxv∈

‖

dP
dPv

‖∞}.

We can easily see that for each  ∈ B∞ and v ∈  , we have
that  v() in the proof of Lemma 10 is equivalent to �v() in
Lemma 9 for our construction. Thus, by Lemma 10 we have
∞({Pv}v∈ ) ≤

�2

p . Taking P = P0, we get maxv∈ ‖

dP
dPv

‖∞ =
1
1−� . Thus, if choosing �2 = Ω(min{1, p

n�2 }), we have

Dkl(Mn
0‖M̄

n) ≤ n�2�2(1 + �)
8p

.

By Lemma 9, we can get

Int
n (�(1,p,2),Φ◦�, �) ≥

�2

4
(1 −

√

n�2�2(1 + �)
8p

).

Thus, if taking �2 = Ω(min{1, p
n�2 }), we have the proof.

Proof of Theorem 3. Now consider the case of L(�, �′) =
|1T (� − �′)|. We can easily obtain dL(P1, P2) ≥ |1T (�(P2) −
�(P1))|. Consider the same distributions P0, {Pv, v ∈ } as
in the proof of Theorem 2, we have minv∈ dL(P0, Pv) ≥ �.
Since Dkl(Mn

0‖M̄
n) ≤ n�2�2(1+�)

8p for �2 = Ω(min{1, p
n�2 }), we

have

int
n (�(1,p,2), L, �) ≥

�
2
(1 −

√

n�2�2(1 + �)
8p

).

Thus, we have the proof if set �2 = Ω(min{1, p
n�2 }) .

Proof of Theorem 4. Before the proof, let us recall the
definition of �2-local differential privacy [11]:

For any convex function f on ℝ+ with f (1) = 0, the f -
divergence of distributions P and Q is

Df (P‖Q) ∶= ∫ f (dP
dQ

)dQ.

Definition 11. Let f (x) = (x − 1)2. Following the above
definitions, we have �2-�2-divergence local differential privacy
and �-�2-divergence (sequentially) private minimax risk if

Df (Qi(Zi ∈ S ∣ xi, z1∶i−1)‖Qi(Zi ∈ S ∣ x′i,= z1∶i−1)) ≤ �2.

From the above definitions, it is easy to see that if a channel
Q is (�, �) sequentially locally zero-concentrated differentially
private, it is (�2 = e�+2� − 1 )-�2-divergence sequentially
locally differentially private. Also, since (2, log(1 + �2)) local
Renyi differential privacy is equivalent to �2-�-divergence local
differential privacy, to prove Theorem 4, we only need to show
the lower bound of �2-�2-divergence sequential local private
minimax risk, which is denoted as Int

n,�2
(�(), L, �2). To do

that, we need the following lemma.

Lemma 11. [Theorem 2 in [11]] For any � ∈ (0, 1], the �2-�2-
divergence sequential private minimax risk in the loss function
L satisfies the following inequality

Int
n,�2

(�(), L, �2) ≥ 1
2
min
v∈

dL(P0, Pv)×(1−
1
2

√

Dkl(Mn
0‖M̄

n)),

where

Dkl(Mn
0‖M̄

n) ≤ n�22({Pv}v∈ ) min{e� ,maxv∈
‖

dPv
dP

‖∞}

for any distribution P supported on  , and 2({Pv}v∈ ) =
1
|| inf suppP⊂ sup{

∑

v∈ (�v())2 ∣ ‖‖L2(P ) ≤ 1}, where
�() is defined in Lemma 9.

Now, we will proof Theorem 4.
The construction of P0 and {Pv, v ∈ } is the same as

in the proof of Theorem 3. Thus, by Lemma 11, we only
need to bound 2({Pv}v∈ ), instead of ∞({Pv}v∈ ). From
the proof of Lemma 10, we can see that if taking P as a uniform
distribution, then for any  with ‖‖L2(P0) ≤ 1, we always have

EP0 [(X, 1)
2] ≤ 1. This means that 1

||
∑

v∈ ( v())2 ≤ �2

p .

Thus, we have 2({Pv}v∈ ) ≤
�2

p . The remaining part of the
proof is the same as the one in the proof of Theorem 2.

Proof of Theorem 5. Follow from the fact that the linear
model is a special case of the non-linear measurement. See the
proof of Theorem 9 in Section VII-B for the case f (x) = x
and a = b = 1.

Proof of Theorem 6. Follow from the fact that the linear
model is a special case of the non-linear measurement. See the
proof of Theorem 11 in Section VII-B for the case f (x) = x
and a = b = 1.

Proof of Theorem 7. Follow from the fact that the linear
model is a special case of the non-linear measurement. See the
proof of Theorem 10 in Section VII-B for the case f (x) = x
and a = b = 1.

D. Proofs in Section VII-A
Proof of Theorem 8. For the guarantee of (�, �)-DP, it fol-
lows from the Moment accountant and composition theorem,
see [55], [31] for details.

Let  = t+1
⋃

t
⋃

∗, where ∗ = supp(x∗), t =
supp(xt) and t+1 = supp(xt+1), and gt = ∇L(xt) + zt. Since
‖xt+1 − xt‖0 ≤ 2k. By the assumption of RSS, we have

L(xt+1) ≤ L(xt) + ⟨∇L(xt), xt+1 − xt⟩ +
ls
2
‖xt+1 − xt‖2

≤ L(xt) + ⟨(gt) , (xt+1 − xt)⟩ +
ls
2
‖xt+1 − xt‖2

+ ‖zt,‖‖(xt+1 − xt)‖2

= L(xt) +
1
2�

‖xt+1, − xt, + �gt,‖2 −
�‖gt,‖2

2

−
1 − �ls
2�

‖xt+1 − xt‖2 + ‖zt,‖‖(xt+1 − xt)‖2

= L(xt) +
1
2�
(‖xt+1, − xt, + �gt,‖2 − �2‖gt,∖(t⋃∗)‖

2)

−
�‖gt,t⋃∗‖2

2
+ ‖zt,‖‖(xt+1 − xt)‖2, (17)
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where the second inequality is due to xt+1 − xt = xt+1, − xt, .

We now bound the term of ‖xt+1, − xt, + �gt,‖2 −
�2‖gt,∖(t⋃∗)‖

2 by the idea in [32]. Since ∖(t
⋃

∗) =
t+1∖(t

⋃

∗) ⊆ t+1, we have

xt+1,∖(t⋃∗) = xt,∖(t⋃∗) − �gt,∖(t⋃∗).

Also, since xt,∖(t⋃∗) = 0, this means that xt+1,∖(t⋃∗) =
−�gt,∖(t⋃∗). Next, we choose a set  ⊆ t∖t+1 such that
|| = |t+1∖(t

⋃

∗)|. Note that such  can be found since
|t+1∖(t

⋃

∗)| = |t∖t+1| − |(t+1
⋂

∗)∖t| (which is a
consequence of |t| = |t+1|). Thus, we have

�2‖gt,∖(t⋃∗)‖
2 = ‖xt+1,∖(t⋃∗)‖

2

≥ ‖xt, − �gt,‖2. (18)

With (18) and the fact that xt+1, = 0, we have

‖xt+1, − xt, + �gt,‖2 − �2‖gt,∖(t⋃∗)‖
2

≤ ‖xt+1, − xt, + �gt,‖2 − ‖xt+1, − xt, + �gt,‖2

= ‖xt+1,∖ − xt,∖ + �gt,∖‖2. (19)

We then bound the size of |∖| as |∖| ≤ |t+1| +
|(t∖t+1)∖| + |∗| ≤ k + |(t+1

⋂

∗)∖t| + k∗ ≤ k + 2k∗.
Also, since t+1 ⊆ (∖), we have xt+1,∖ = Trun(xt,∖ −
�gt,∖, k). Thus, by (18) and Lemma 3 we have

‖xt+1, − xt, + �gt,‖2 − �2‖gt,∖(t⋃∗)‖
2

≤ ‖xt+1,∖ − xt,∖ + �gt,∖‖2

≤ 2k∗
k + k∗

‖x∗∖ − xt,∖ + �gt,∖‖
2

≤ 2k∗
k + k∗

‖x∗ − xt, + �gt,‖
2

= 2k∗
k + k∗

(‖x∗ − xt‖2 + 2�⟨gt, , (x∗ − xt)⟩ + �2‖gt,‖2)

= 2k∗
k + k∗

(‖x∗ − xt‖2 + 2�⟨∇L(xt), (x∗ − xt)⟩ + �2‖gt,‖2)

+ 4k∗
k + k∗

⟨zt, , (x∗ − xt)⟩

≤ 2k∗
k + k∗

[‖x∗ − xt‖2 + 2�(L(x∗) − L(xt) −
�s
2
‖x∗ − xt‖2)

+ �2‖gt,‖2] +
4k∗
k + k∗

⟨zt, , (x∗ − xt)⟩

=
4�k∗

k + k∗
(L(x∗) − L(xt)) +

2(1 − ��s)k∗

k + k∗
‖x∗ − xt‖2

+
2�2k∗

k + k∗
‖gt,∖(t⋃∗)‖

2 +
2�2k∗

k + k∗
‖gt,(t⋃∗)‖

2

+ 4k∗
k + k∗

⟨zt, , (x∗ − xt)⟩.

Plugging this into (17), we get

L(xt+1) ≤ L(xt) +
2k∗
k + k∗

(L(x∗ − L(xt))

+
(1 − ��s)k∗

�(k + k∗)
‖x∗ − xt‖2 +

�k∗

k + k∗
‖gt,∖(t⋃∗)‖

2

+ (
�k∗

k + k∗
−
�
2
)‖gt,t⋃∗‖

2 + 2k∗
�(k + k∗)

⟨zt, , (x∗ − xt)⟩

+ ‖zt,‖‖(xt+1 − xt)‖2 −
1 − �ls
2�

‖xt+1 − xt‖2

≤ L(xt) +
2k∗
k + k∗

(L(x∗ − L(xt)) +
(1 − ��s)k∗

�(k + k∗)
‖x∗ − xt‖2−

(
1 − �ls
2�

− k∗

�(k + k∗)
)‖xt+1 − xt‖2 + (

�k∗

k + k∗
−
�
2
)‖gt,t⋃∗‖

2

+ 2k∗
�(k + k∗)

⟨zt, , (x∗ − xt)⟩ + ‖zt,‖‖(xt+1 − xt)‖2
(20)

≤ L(xt) +
2k∗
k + k∗

(L(x∗ − L(xt)) +
(1 − ��s)k∗

�(k + k∗)
‖x∗ − xt‖2

+ (
�k∗

k + k∗
−
�
2
)‖gt,t⋃∗‖

2 + 2k∗
�(k + k∗)

⟨zt, , (x∗ − xt)⟩

+
�(k + k∗)

2((1 − �ls)k − (1 + �ls)k∗)
‖zt,‖

2, (21)

where the second inequality is due to the fact that ‖xt+1−xt‖ ≥
�‖gt,∖(t⋃∗)‖ and the third inequality is due to the fact that

ab ≤ a2

4c + cb
2 for any c > 0.

For the term ‖xt − x∗‖2, we have the following lemma:

Lemma 12.

‖xt − x∗‖2 ≤
4
�
[L(x∗) −L(xt)] +

8
�2s
‖gt,t⋃∗‖

2 + 8
�2s
‖zt,‖

2.

(22)

Proof. From RSC, we have

L(x∗) ≥ L(xt) + ⟨∇L(xt), x∗ − xt⟩ +
�s
2
‖x∗ − xt‖2

= L(xt) + ⟨∇t
⋃

∗L(xt) − gt,t⋃∗ + gt,t⋃∗ , x
∗ − xt⟩

+
�s
2
‖x∗ − xt‖2

≥ L(xt) −
2
�s
‖zt,‖

2 − 2
�s
‖gt,t⋃∗‖

2 +
�s
4
‖x∗ − xt‖2,

where the last inequality is due to ab ≤ a2

4c + cb
2.

With this lemma, we get

L(xt+1) ≤ L(xt) +
2k∗
k + k∗

(1 +
2(1 − ��s)

��s
)(L(x∗) − L(xt))

− (
�
2
−
(�2�2s + 8(1 − ��s))k

∗

��2s(k + k∗)
)‖gt,t⋃∗‖

2

+ 2k∗
�(k + k∗)

⟨zt, , (x∗ − xt)⟩ + (
�(k + k∗)

2((1 − �ls)k − (1 + �ls)k∗)

+
8(1 − ��s)k∗

��2s(k + k∗)
)‖zt,‖2. (23)
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Taking � = 1
2ls

and k ≥ (1 + 64l2s
�2s
)k∗, we further get

L(xt+1) ≤ L(xt) +
�s
8ls

(L(x∗) − L(xt))

+
4k∗ls
(k + k∗)

⟨zt, , (x∗ − xt)⟩ +
37ls
�2s

‖zt,‖
2. (24)

Lemma 13. For x ∼ (0, �2Ip)

E|x|2∞ ≤ O(�2 log p)

Proof. By definition of expectation, we have

E|x|2∞ = ∫

∞

0
Pr[|x|2∞ ≥ t]dt

= ∫

O(�2 log p)

0
Pr[|x|2∞ ≥ t]dt + ∫

∞

O(�2 log p)
Pr[|x|2∞ ≥ t]dt

≤ O(�2 log p) + ∫

∞

O(�2 log p)
2p exp(− t

2�2
)dt

≤ O(�2 log p) + 2
√

2p�2 exp(−O(log p)) = O(�2 log p).

Note that E⟨zt, , (x∗ − xt)⟩ = E⟨zt, x∗ − xt⟩ = 0. Taking
the expectation w.r.t zt and by the fact that ‖zt,‖2 ≤ |I||zt|2∞
(from the above lemma), we have

EL(xt+1) ≤ L(xt) +
�s
8ls

(L(x∗) − L(xt))

+ O(
�sk∗G2 log

1
� log pT

�sn2�2
). (25)

That is

E[L(xt+1) − L(x∗)] ≤ (1 −
�s
8ls

)E[L(xt) − L(x∗)]

+ O(
�sk∗G2 log p log

1
�T

�sn2�2
). (26)

Thus, taking T = O(�s log(
n2

k∗ )), we get the theorem.

E. Proofs in Section VII-B

Proof of Theorem 9. We first show that each stochastic gra-
dient ‖xTi f

′(⟨xi, �t−1⟩)(f (⟨xi, �t−1⟩) − yi)‖2 ≤ O(bC
√

p), this
is due to that

‖xTi f
′(⟨xi, �t−1⟩)(f (⟨xi, �t−1⟩) − yi)‖2

≤ b‖xTi ‖2(f (⟨xi, �t−1⟩) − yi)
≤ b

√

p(f (1) − yi) ≤ O(bC
√

p),

where the second inequality is due to that ⟨xi, �t−1⟩ ≤
‖xi‖∞‖�t−1‖2 ≤ 1, f is monotone and |yi| = |f ⟨�∗, xi⟩+�i| ≤
O(C).

W.o.l.g we assume that each |St| =
n
T . From the ran-

domizer �(⋅) and Lemma 1, we can see that ∇̃t =
T
n
∑

i∈St x
T
i f

′(⟨xi, �t−1⟩)(f (⟨xi, �t−1⟩) − yi) + �t, where each
coordinate of �t is a sub-Gaussian vector with �2 = O( bCpTn�2 ).

Let ∗ = supp(�∗) denote the support of �∗, and s∗ = |∗|.
Similarly, we define  t = supp(�t), and  t−1 =  t−1 ∪ t ∪∗.
Thus, we have | t−1

| ≤ 2s + s∗.
We let �̃t− 12

denote the following

�̃t− 12
= �t−1 − �∇̃t−1, t−1 ,

where v t−1 means keeping vi for i ∈  t−1 and converting
all other terms to 0. By the definition of  t−1, we have �′t =
Trunc(�̃t− 12

, s). Denote by Δt the difference of �t−�∗. We have
the following

‖�̃t− 12
− �∗‖2 = ‖Δt−1 − �([∇Lt(�t−1) + �t] t−1 )‖2,

where ∇Lt(�t−1) =
T
n
∑

i∈St (f (⟨xi, �t−1⟩)−yi)f
′(⟨xi, �t−1⟩)xTi .

Taking yi = ⟨xi, �∗⟩+ �i and by the triangle inequality we can
get

‖�̃t− 12
− �∗‖2 ≤ ‖Δt−1−

�[T
n
∑

i∈St

(f (⟨xi, �t−1⟩) − f (⟨xi, �∗⟩))f ′(⟨xi, �t−1⟩)xTi ] t−1‖2

+ �
√

| t−1
|[|T
n
∑

i∈St

f ′(⟨xi, �t−1⟩)�ixTi |∞ + |�t|∞].

We denote the followings:

At−1 = ‖Δt−1 − �[
T
n
∑

i∈St

(f (⟨xi, �t−1⟩) − f (⟨xi, �∗⟩))

× f ′(⟨xi, �t−1⟩)xTi ] t−1‖2 (27)

Bt−1 = �
√

| t−1
||

T
n
∑

i∈St

f ′(⟨xi, �t−1⟩)�ixTi |∞ (28)

C t−1 = �
√

| t−1
||�t|∞ (29)

We first bound Bt−1. Since each xi ∈ Uniform{+1,−1}p,
which is sub-Gaussian with 1, we know that for each coordinate
j ∈ [p], T

n
∑

i∈St f
′(⟨xi, �t−1⟩)�ixi,j is sub-Gaussian with

�2 = T 2

n2
∑

i∈St f
′2(⟨xi, �t−1⟩)�2i ≤ T b2C2

n . Thus, by Lemma
2 we have

Pr[|1
n

n
∑

i=1
f ′(⟨xi, �t⟩)�ixTi |∞ ≤ O(

√

T log pbC
√

n
)] ≥ 1 − 1

pc
.

This means that with probability at least 1 − 1
pc , we have

Bt ≤ �
√

2s + s∗O(

√

T log pbC
√

n
). (30)

For the term C t−1, by Lemma 1 and 2 and since each coordinate

�t,i is sub-Gaussian, we have C t−1 ≤ �
√

2s + s∗O(
√

T pbC log p
√

n�2
)

with probability at least 1 − 1
pc for some constant c > 0.

Finally, we bound the term At−1. By the mean value theorem,
we know that there exists a �t−1,i line between �t−1 and
�∗ which satisfies the equation f (⟨xi, �t−1⟩) − f (⟨xi, �∗⟩) =
f ′(⟨xi, �t−1,i⟩)⟨xi, �t−1 − �∗⟩). Hence, we have

T
n
∑

i∈St

(f (⟨xi, �t−1⟩)−f (⟨xi, �∗⟩))f ′(⟨xi, �t−1⟩)xTi = D
t−1Δt−1,
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where Dt−1 = T
n
∑

i∈St f
′(⟨xi, �t−1,i⟩)f ′(⟨xi, �t−1⟩)xixTi ∈

ℝp×p.
Since Supp(Dt−1Δt−1) ⊂  t−1 (by assumption), we have

At−1 = ‖Δt−1−�Dt−1
 t−1,⋅

Δt−1‖2 ≤ ‖(I−�Dt−1
 t−1, t−1

)‖2‖Δt−1‖2.
Now we bound the term ‖(I − �Dt−1

 t−1, t−1
)‖2, where I is the

| t−1
|-dimensional identity matrix.

By the RIP property of X and | t−1
| ≤ 2s + s∗, we can

easily get the following for any | t−1
|-dimensional vector v

a2[1 −Δ(2s+ s∗)]‖v‖22 ≤ vTDt−1
 t−1, t−1v ≤ b2[1 +Δ(2s+ s∗)].

Thus, ‖(I − �Dt−1
 t−1, t−1

)‖2 ≤ max{1 − �a2[1 − Δ(2s +
s∗)], �b2[1 + Δ(2s + s∗)] − 1}.

This means that if we can find an � satisfying the condition
of

5
7

1
a[1 − Δ(2s + s∗)]

≤ � ≤ 9
7

1
b2[1 + Δ(2s + s∗)]

,

then we have ‖(I − �Dt−1
 t−1, t−1

)‖2 ≤
2
7 . Note that such an �

can indeed be found if Δ(2s + s∗) ≤ 5a2−9b2
14 . This means that

a
b >

√

5
3 .

Thus, in total we have the following with probability at least
1 − 2

pc

‖�̃t− 12
− �∗‖2 ≤

2
7
‖Δt−1‖2 + O(

√

T p(2s + s∗) log pbC
√

n�
).

Our next task is to bound ‖�′t − �
∗
‖2 by ‖�̃t− 12

− �∗‖2 by
Lemma 3.

Thus, we have ‖�′t − �̃t− 12
‖

2
2 ≤ | t−1|−s

| t−1|−s∗ ‖�̃t− 12
− �∗‖22 ≤

s+s∗
2s ‖�̃t− 12

− �∗‖22.
Taking s = 8s∗, we get

‖�′t − �̃t− 12
‖2 ≤

3
4
‖�̃t− 12

− �∗‖2

and

‖�′t − �
∗
‖2 ≤

7
4
‖�̃t− 12

− �∗‖2

≤ 1
2
‖Δt−1‖2 + O(

√

T ps∗ log pbC
√

n�
).

Finally, we need to show that ‖Δt‖2 = ‖�t − �∗‖2 ≤ ‖�′t −
�∗‖2, which is due to the Lemma 4.

Putting all together, we have the following with probability
at least 1 − 2

pc ,

‖Δt‖ ≤ 1
2
‖Δt−1‖2 + O(

√

T ps∗ log pbC
√

n�
).

Thus, we get with probability at least 1 − 2T
pc ,

‖ΔT ‖2 ≤ (
1
2
)T ‖�∗‖2 + O(

√

T ps∗ log pbC
√

n�
).

Proof of Theorem 10. Our proof is inspired by the ones in
[9], [13] and [36]. Since it is reduced to the linear model when
f (x) ≡ x, we only need to consider the general case. Similar
to the proof of Theorem 1, we first construct a packing set
{Pv ∶ v ∈ } and then bound ∞({Pv}). To do so, we need
the following lemma.

Lemma 14. [[36]] For any s ∈ [p], define the set

(s) ∶= {z ∈ {−1, 0,+1}d ∣ ‖z‖0 = s}

with Hamming distance �H (z, z′) =
∑d
i=1 1[zj ≠ z′j] between

the vectors z and z′. Then, there exists a subset ̃ ⊂  with
cardinality |̃| ≥ exp( s2 log

p−s
s∕2 ) such that �H (z, z′) ≥

s
2 for

all z, z′ ∈ ̃.

Now consider the rescaled version of ̃,
√

2
� ̃, for some

� ≤ 1
√

2
. For any two �, �′ ∈ ̃, we have

8�2 ≥ ‖� − �′‖22 ≥ �2. (31)

Then,
√

2
� ̃ is a � packing in l2 norm with M = |̃| elements,

denoted as {�1, �2,⋯ , �M}. For each �i, let �i denote the
uniform distribution on the interval [−C,C]. Thus, we have
P�i , which can be easily verified that P�i ∈  ′s,p,C,f ,a,b.

Our idea is to use Lemma 8. Thus, our goal is to bound
the sum of the Total Variance

∑

v,v′∈ ‖Pv,i − Pv′,i‖2TV . Now
consider the case of P�,i and P�′,i, where (due to our con-
struction) P�,i is the uniform distribution on the interval of
[f (⟨xi, �⟩ − C, f (⟨xi, �⟩ + C]. Thus, we have

‖P�,i − P�′,i‖TV =
1
2 ∫

|p�,i(y) − p�′,i(y)|dy

≤ 1
2C

|f (⟨�, xi⟩) − f (⟨�′, xi⟩)| ≤
b
2C

|⟨� − �′, xi⟩|,

where the last inequality is due to the assumption on f . Hence,
we have

n
∑

i=1

1
||2

∑

v,v′∈
‖Pv,i − Pv′,i‖2TV

≤
n
∑

i=1

b2

4C2
∑

v,v∈
(�v − �v′ )T xixTi (�v − �v′ )

= b2

4C2
1

||2
∑

v,v∈
(�v − �v′ )XTX(�v − �v′ )

≤ 8b
2(1 + Δ)
4C2

�2 =
2b2(1 + Δ)�2

C2
,

where the last inequality is due to the fact that for every pair
(v, v′) with ‖�v−�v′‖0 ≤ 2s, (�v−�v′ )XTX(�v−�v′ ) ≤ n(1+Δ)
holds (by Assumption 1).

Thus by Lemmas 14 and 8, we have

Φ(�)
2

≥ �2

8
(1 −

2cn�2�2 b
2(1+Δ)
C2 + log 2

s
2 log

p−s
s∕2

).

Taking �2 = Ω(min{1, s log p∕sC
2

(1+Δ)b2n�2 ), we get the result.

Proof of Theorem 11. For the guarantee of (�, �) locally
differentially private, it is due to the fact that xi is known
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and each yi ∈ [⟨xi, �∗⟩ − C, ⟨xi, �∗⟩ − C] (since the random
noise �i is bounded by C). Thus, by the Gaussian Mechanism
[5], we can see that it is locally differentially private.

Now we prove Theorem the upper bound.
Let ∗ = supp(�∗) denote the support of �∗, and s∗ = |∗|.

Similarly, we define  t+1 = supp(�t+1), and  t =  t∪ t+1∪∗.
Thus, we have | t

| ≤ 2s + s∗.
We let �̃t+ 12

denote the following

�̃t+ 12
= �t − �∇ tL(�t),

where v t means keeping vi for i ∈  t and making all other
terms 0. By the definition of  t, we have �′t+1 = Trunc(�̃t+ 12

, s).
Denote by Δt+1 the difference of �t+1 − �∗. We have the
following

‖�̃t+ 12
− �∗‖2 = ‖Δt − �∇ tL(�t)‖2,

where ∇ tL(�t) = [ 1n
∑n
i=1(f (⟨xi, �t⟩) − ỹi)f

′(⟨xi, �t⟩)xTi ] t .
Plugging ỹi = f (⟨�∗, xi⟩) + �i + zi, where zi ∼ (0, �2), and
�2 = 32C2 log(1.25∕�)

�2 into the above equality, we get

‖�̃t+ 12
− �∗‖2 ≤

‖Δt − �[
1
n

n
∑

i=1
(f (⟨xi, �t⟩) − f (⟨xi, �∗⟩))f ′(⟨xi, �t⟩)xTi ] t‖2+

�
√

| t
|[|1
n

n
∑

i=1
f ′(⟨xi, �t⟩)�ixTi |∞ + |

1
n

n
∑

i=1
f ′(⟨xi, �t⟩)zixTi |∞].

Define the following terms

At = ‖Δt − �[
1
n

n
∑

i=1
(f (⟨xi, �t⟩) − f (⟨xi, �∗⟩))f ′(⟨xi, �t⟩)xTi ] t‖2

Bt = �
√

| t
||

1
n

n
∑

i=1
f ′(⟨xi, �t⟩)�ixTi |∞,

C t = �
√

| t
||

1
n

n
∑

i=1
f ′(⟨xi, �t⟩)zixTi |∞.

We first bound Bt. Since each xi ∈ Uniform{+1,−1}p,
which is sub-Gaussian with 1, we know that for each coordinate
j ∈ [p], 1

n
∑n
i=1 f

′(⟨xi, �t⟩)�ixi,j is sub-Gaussian with �2 =
1
n2
∑n
i=1 f

′2(⟨xi, �t⟩)�2i ≤ b2C2

n . Thus, by Lemma 2 we have

Pr[|1
n

n
∑

i=1
f ′(⟨xi, �t⟩)�ixTi |∞ ≤ O(

√

log pbC
√

n
)] ≥ 1 − 1

pc
.

This means that with probability at least 1 − 2
pc , we have

Bt ≤ O(�
√

2s + s∗
√

log pbC
√

n
). (32)

Similarly, for C t we have that with probability at least 1− 1
pc ,

the following holds

|

1
n

n
∑

i=1
f ′(⟨xi, �t⟩)zixTi |∞ ≤ O(

b
√

log p
√

∑n
i=1 z

2
i

n
).

Since zi is Gaussian with variance �2, we know that
∑n
i=1 z

2
i = �

2∑n
i=1 r

2
i , where

∑n
i=1 r

2
i is a �2-distribution with

parameter n.
By the above concentration bound for �2-distribution and

Lemma 6, we have
∑n
i=1 z

2
i ≤ 5�2n with probability at least

1 − exp(−n). Thus,

C t ≤ �
√

2s + s∗O(
b
√

log p�
√

n
) (33)

with probability at least 1 − 1
pc − exp(−n).

For the term of At, the proof is the same as the one for At−1
in the proof of Theorem 9, and thus we omit it from here.

By (32) and (33) and plugging �2 = 32C2 log(1.25∕�)
�2 into (33),

we have the following with probability at least 1− 2
pc −exp(−n)

‖�̃t+ 12
− �∗‖2 ≤

2
7
‖Δt‖2 + O(

√

(2s + s∗) log p log(1∕�)bC
n�

).

Putting all together, we have the following with probability
at least 1 − 2

pc − exp(−n),

‖Δt+1‖ ≤ 1
2
‖Δt‖2 + O(

√

s∗ log p log(1∕�)bC
n�

).

Thus, we get the bound in Theorem 11 with probability at
least 1 − 2T

p − T exp(−n). For the linear case, since f ′ ≡ 1,
(32) and (33) will be the same in each iteration, the probability
for the linear case becomes 1 − 2

pc − exp(−n).
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