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Abstract

Nowadays, crowdsourcing gains an increasing popularity as it can be adopted to solve
many challenging question answering tasks that are easy for humans but difficult for
computers. Due to the variety in the quality of users, it is important to infer not only
the underlying ground truth of these tasks but also the users ability from the answers
given by users. This problem is called Ground Truth Inference and has been studied for
many years. However, since the answers collected from the users may contain sensitive
information, ground truth inference raises serious privacy concern. Due to this reason,
the problem of ground truth inference under local differential privacy (LDP) model has
been recently studied. However, this problem is still not well understood and even some
basic questions have not been solved yet. First, it is still unknown what is the average
error of the private estimators to the underlying ground truth. Secondly, we do not
known whether we can infer the ability of each user under LDP model and what is the
estimation error w.r.t the underlying users ability. Finally, previous work only show
that their methods have better performance than the private major voting algorithm
through experiments. However, there is still no theoretically result which shows this
priority formally or mathematically. In this paper, we partially solve these problems by
studying the ground truth inference problem under local attribute differential privacy
(LADP) model, which is a relaxation of LDP model, and propose a new algorithm
called private Dawid-Skene method, which is motivated by the classical Dawid-Skene
method. Specifically, we first provide the estimation errors for both ability of users and
the ground truth under some assumptions of the problem if the algorithm start with some
appropriate initial vector. Moreover, we propose an explicit instance and show that the
estimation error of the ground truth achieved by the private major voting algorithm is
always greater than the error achieved by our method.
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1. Introduction

Nowadays, crowdsourcing gains an increasing popularity as it can be adopted to
solve many challenging question answering tasks that are easy for humans but difficult
for the computer, and it has many real-world machine learning or data mining appli-
cations. For example, patients who are taking new drugs can answer the question on
whether a specific drug has a certain side-effect [1]. Also there are many commercial
web service for crowdsourcing such as Amazon Mechanical Turk (AMT). In these and
many more applications, crowds of users can contribute their efforts to answer questions
of interest, which largely reduces the financial cost and benefits various application do-
mains.

Due to the variety in the quality of users, the information quality of the answers
given by the users varies significantly. Some users may have sufficient domain knowl-
edge and can provide accurate answers while others may submit biased or wrong an-
swers. This diversity of users motivates a basic and important problem in crowdsourc-
ing: how the do the server get the accurate answers (or ground truth) via these noisy
answers while also could infer the underlying ability of each user. This problem is called
Ground Truth Inference1 [2] and there is a large amount of work study this problem in
both Machine Learning [3], Data Mining [4] and Theoretical Computer Science [5, 6, 7]
communities.

However, in the problem of ground truth inference, collecting individual users an-
swers may cause the privacy issue on the users. For example, individual users can report
the relevance between a search query and a webpage, but their answers may leak their
personal preference. Patients’ reactions to drugs are valuable for physicians to discover
drugs’ side-effect, but these also contain sensitive information. Moreover, recently it
has been reported that AMT platform was leveraged by politicians to access a large pool
of Facebook profiles and collects ten of thousands of individuals demographic data [8].

As a strong mathematical scheme for privacy-preserving, Differential Privacy [9]
recently has been used in a many applications on machine learning and data mining
and is now becoming a standard in data analysis. Two main user models have emerged
for differential privacy: the central model and the local one. In the central model, data
are managed by a trusted central entity which is responsible for collecting them and for
deciding which differentially private data analysis to perform and to release. A classical
use case for this model is the one for collecting census data [10]. In the local model,
each individual manages his/her proper data and discloses them to a server through
some differentially private mechanisms. The server collects the (now private) data of
each individual and combines them into a resulting data analysis. A classical application
of this model is the one aiming at collecting statistics from user devices like in the case
of Google’s Chrome browser [11], and Apple’s iOS-10 [12]. Thus, compared with the
central model, we can see that the ground truth inference is more suitable for the local
differential privacy (LDP) model.

1Note that in the data mining community this problem is also called Truth Discovery.
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Ground truth inference in LDP model has been first studied by [13] and was later
extended by [8] to the sparse crowdsourcing data case. Although their methods are
effective with tolerable accuracy loss practically, there are still some basic theoretical
open problems which have not been studied or solved. First, it is still unknown what is
the average error of the private estimators with respect to the underlying ground truth.
Secondly, while all the previous work focus on the quality private ground truth estima-
tor, we do not known whether we can infer the ability of each user under LDP model
and what is the estimation error with respect to the underlying ability of users. Finally,
previous work only shows that their methods have better performance than the private
major voting algorithm through experiments on some datasets. However, there is still
no theoretically result which shows the priority of their methods formally or mathemat-
ically.

In this paper, we partially solve the above theoretical issues. That is, instead of
considering the LDP model, in this paper we will focus on one of its relaxations called
local attribute differential privacy (LADP) model. This is motivated by the fact that in
practice of ground truth inference, instead of keeping the each whole data record of each
user private, it is always the case that only a small number of answers given by users
may contain sensitive information, which means it is sufficient to protect some attributes
of a vector (if we see the set of answers of each user as a vector). LADP corresponds
to an adversary cannot infer a single attribute value despite he knows the values of
all other attributes and thus is more suitable for ground truth inference. We study the
previous issues of ground truth inference in LADP model. In particularly, we propose a
method called private Dawid-Skene method which outputs the private truth estimators
and private ability of users. Specifically, our contributions can be summarized as the
followings.

• We first show that our private Dawid-Skene method is LADP. Then we provide
the result on the average error of the private truth estimators w.r.t the ground
truth. We show that under some statistical assumptions of the problem and if
the initial vector of the algorithm is closed enough to the ground truth, then the
average error will be upper bounded by exp(−𝑛�̃�) with high probability, where 𝑛
is the number of users and �̃� is the term called collective private wisdom which
is related to the privacy level 𝜖 (see Theorem 2 for details).

• We also show that under the same assumptions, the output of private ability of
users has the estimation error of 𝑂(

√
log𝑚
𝑚𝜖2 ), where 𝑚 is the number of tasks with

high probability (see Theorem 3 for details).

• Finally, we compare our method with the classical private major voting algorithm.
To show the priority of our method, we propose a special instance. We show that
the estimation error given by the private major voting error is always greater than
the error given by our algorithm, which means the private major voting is always
worse than our method on this instance theoretically. See Theorem 4 for details.
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2. Related Work

There are a large number of work study the machine learning or statistics problems
in LDP model. Such as Empirical Risk Minimization [14, 15, 16], Principal Component
Analysis [17, 18] and sparse covariance matrix estimation [19, 20, 21]. However, none
of these work consider ground truth inference problem and all of these methods cannot
be used to solve our problem.

There is much attention on studying crowdsourcing system in LDP model. For
example, [22] consider the problem of publishing high dimensional crowdsourced data
in LDP model. [23] propose a method which could generating synthetic crowdsourced
data via some Privacy-Test. However, their methods are incomparable with ours due
to that there utility is different with ours and also there is no theoretical guarantees on
their output.

Among all the previous work, maybe [13] and [8] are the most relevant to ours.
In [13] the authors propose a two-layer perturbation mechanism based on randomized
response to protect users privacy. [8] consider the case where the data is sparse and
propose a private mechanism based on the formula of Matrix Factorization and ran-
domized response. However, as we mentioned before, first, their methods can only
output private estimators of the ground truth and it is unknown whether they can also
estimate the ability of users. Secondly, there is no theoretical guarantees of the average
error of the ground truth. Moreover, in all of these work they compared with the private
major voting algorithm practically on some datasets and showed that their method have
better performance. However, there is no theoretical guarantees on these comparisons.
Thus, our work provides some theoretical guarantees which have not been solved in
these previous work.

Our method is motivated by the classical Dawid-Skene method [24], which laid a
solid foundation in the field of crowdscourcing. Extensions of the framework under a
Bayesian setting were investigated by [25]. However, there is no previous study on the
private version of Dawid-Skene method. Moreover, compared with the classical Dawid-
Skene method, here we need some modifications such as perturbation and projection
see Section 4.2 for details.

3. Preliminaries

In this section, we review the definition of ground truth estimation in crowdsourcing,
local differential privacy and the classical Dawid-Skene algorithm.

3.1. Local Differential Privacy
Definition 1 (Differential Privacy [9]). Given a data universe , we say that two datasets
𝐷,𝐷′ ⊆  are neighbors if they differ by only one entry, which is denoted as 𝐷 ∼ 𝐷′.
A randomized algorithm  is (𝜖, 𝛿)-differentially private (DP) if for all neighboring
datasets 𝐷,𝐷′ and for all events 𝑆 in the output space of , the following holds

ℙ((𝐷) ∈ 𝑆) ≤ 𝑒𝜖ℙ((𝐷′) ∈ 𝑆) + 𝛿.

When 𝛿 = 0,  is 𝜖-differentially private.
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Instead of the trusted curator, in Local Differential Privacy model [26], each data
provider perturb his/her private data record locally via some differentially private mech-
anisms before sending it to the curator. It is defined as the follows.

Definition 2. A randomized algorithm  is 𝜖-locally differentially private (LDP) of for
all 𝑥, 𝑥′ ∈  that are different and all events 𝑆, the following holds

ℙ((𝑥) ∈ 𝑆) ≤ 𝑒𝜖ℙ((𝑥′) ∈ 𝑆).

Note that the LDP can be regarded as a special case of traditional DP where each
dataset only contains one tuple. Thus, for the same privacy parameter 𝜖, LDP provides
a stronger guarantee than DP.

However, in some problems, it is always the case that only some of the attributes are
related to users sensitive information. We only need to protect some attributes instead of
the whole data record of each user in LDP model. Formally, it is called Local Attribute
Differential Privacy (LADP), which is a relaxation of LDP and has been studied in
many previous papers, such as [27, 28, 29, 30]. Mathematically it can be defined as the
follows.

Definition 3 (Local Attribute Differential Privacy). A randomized algorithm  is 𝜖-
locally is differentially private if for all 𝑥, 𝑥′ ∈  with there is some 𝑖 where 𝑥 and 𝑥′
are differ in the 𝑖-th coordinate and all for all events 𝑆 in the output of , we have

ℙ((𝑥) ∈ 𝑆) ≤ 𝑒𝜖ℙ((𝑥′) ∈ 𝑆).

We note that the only difference between LDP and LADP is in LADP we have an
additional restriction on 𝑥, 𝑥′. LADP corresponds to an adversary cannot infer a single
attribute value despite he knows the values of all other attributes.

3.2. Problem Setting
We now start by formally define the problem of Ground Truth Inference. Concep-

tually, there are two parties, sever and user, are involved in the crowdsourced question
answering. We assume there are 𝑚 tasks and 𝑛 users, each task 𝑗 ∈ [𝑚] is independent
with other tasks and is associated with a label 𝑦∗𝑗 ∈ {0, 1} which is called the ground
truth. We note that in practice the number of tasks 𝑚 is much larger than the number
of users 𝑛, such as the Web and AdultCotent datasets [8]. The users, who represent
the individual participants, provide their own answer 0 or 1 to each of these tasks and
send them to the server. However, there is one main issue. Due to the quality of the
users, these answers are noisy. It is more challenging that the underlying quality of the
workers are also unknown. Mathematically, to model the users’ quality, [24] proposed
the so-called confusion matrix. The confusion matrix for the 𝑖-the worker is denoted as

[
𝜋(𝑖)
00 ,𝜋

(𝑖)
01

𝜋(𝑖)
10 ,𝜋

(𝑖)
11

]

where the number 𝜋(𝑖)
𝑘𝑙 represents the probability for the 𝑖-th user to give answer 𝑙 given

the ground truth is 𝑘. In our paper, we will study a special class of the confusion matrix,
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where the ability of the 𝑖-th user is characterized by the probability of success 𝑝∗𝑖 ∈ [0, 1]
with the confusion matrix [

𝑝∗𝑖 , 1 − 𝑝∗𝑖
1 − 𝑝∗𝑖 , 𝑝

∗
𝑖

]
.

Equivalently, here we will assume that for each user 𝑖 ∈ [𝑛], his/her abilities are the
same for all the 𝑚 tasks.

After collecting the users answers, the server aggregate them to derive the final
inference and estimation. The goal is not only inferring the truth labels {𝑦∗𝑗 }

𝑚
𝑖=1, but

also estimating the abilities of the users, i.e., {𝑝∗𝑖 }
𝑛
𝑖=1.

The main privacy concern of users is that the submitted answers many contain their
sensitive information and thus users are not willing to leak these answers to other par-
ties. This prevents users from sharing their own answers with the server. The server,
who is assumed to be untrusted, may try to infer additional knowledge of users forms
their submitted answers. The unfaithful behavior of server can be driven by financial
incentives or other benefits. Motivated by this, it is naturally to study the problem of
ground truth inference under LDP model. However, the definition if LDP might be too
strong for the problem of ground truth inference. Since in the problem, it is always the
case that only some of the tasks are related to users sensitive information. Thus it is
sufficient of we can protect these tasks instead of the whole data record of each user in
LDP model, which is just the LADP model.

Thus, motivated by the strong need to provide users with privacy protection. In
the Private Ground Truth Inference problem, we want to design 𝜖-LADP algorithms
whose outputs {𝑦𝑗}𝑛𝑗=1 and {𝑝∗𝑖 }

𝑛
𝑖=1 are close to {𝑦∗𝑗 }

𝑚
𝑖=1 and {𝑝∗𝑖 }

𝑛
𝑖=1, respectively.

4. Main Method

In this section we will propose our method and analyze its theoretical performance.
Before that, we first recall the classical Dawid-Skene method [24].

4.1. Dawid-Skene Method
Now we consider the problem of ground truth inference in the non-private case

(see Section 3.2). We first observe that the ability of the works {𝑝𝑖}𝑛𝑖=1 can be easily
estimated by using the frequency of success of the workers if the ground truth {𝑦∗𝑗 }

𝑚
𝑗=1

is known. Motivated by this, [24] proposed to estimate {𝑝𝑖}𝑛𝑖=1 by maximizing the
marginal likelihood function by giving the ground truth:

ℙ(𝑋|𝑦, 𝑝) = Π𝑗∈[𝑚]Π𝑖∈[𝑛]ℙ(𝑋𝑖𝑗|𝑦𝑗 , 𝑝𝑖)
= Π𝑗∈[𝑚]Π𝑖∈[𝑛]𝑝

𝕀(𝑋𝑖𝑗=𝑦𝑗 )
𝑖 (1 − 𝑝𝑖)𝕀(𝑋𝑖𝑗=1−𝑦𝑗 ), (1)

where 𝕀 is the indicator function 2. Integrating out the ground truth with a uniform prior,
the marginal likelihood is

ℙ(𝑋|𝑝) = Π𝑗∈[𝑚]
(1
2
Π𝑖∈[𝑛]𝑝

𝑋𝑖𝑗
𝑖 (1 − 𝑝𝑖)1−𝑋𝑖𝑗 + 1

2
Π𝑖∈[𝑛](1 − 𝑝𝑖)𝑋𝑖𝑗𝑝

1−𝑋𝑖𝑗
𝑖

)
. (2)

2Given an event 𝐴, 𝕀(𝐴) = 1 if 𝐴 happens and otherwise it is 0.
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Thus, the the maximum likelihood estimator (MLE) based on (2) is defined as

�̂� = argmax
𝑝

log𝑃 (𝑋|𝑝).

After getting the MLE solution �̂� = (�̂�1, �̂�2,⋯ , �̂�𝑛), we can plug it into the Bayes for-
mula and get an estimator for the ground truth 𝑦∗:

�̂�𝑗 =
Π𝑖∈[𝑛]�̂�

𝑋𝑖𝑗
𝑖 (1 − �̂�𝑖)1−𝑋𝑖𝑗

Π𝑖∈[𝑛]�̂�
𝑋𝑖𝑗
𝑖 (1 − �̂�𝑖)1−𝑋𝑖𝑗 + Π𝑖∈[𝑛](1 − �̂�𝑖)𝑋𝑖𝑗 �̂�

1−𝑋𝑖𝑗
𝑖

, (3)

Note that we implicitly use the uniform prior in the Bayes formula and the resulting
estimator �̂� is a soft label, taking value in [0, 1]𝑚. Now the pair of estimator (�̂�, �̂�) is the
global optimizer of the following objective function.

𝐹 (𝑝, 𝑦) =
∑
𝑖

∑
𝑗
𝑦𝑗
(
𝑋𝑖𝑗 log 𝑝𝑖 + (1 −𝑋𝑖𝑗) log(1 − 𝑝𝑖)

)
+

∑
𝑖

∑
𝑗
(1−𝑦𝑖)

(
𝑋𝑖𝑗 log(1−𝑝𝑖)+(1−𝑋𝑖𝑗) log 𝑝𝑖)+

∑
𝑗
(𝑦𝑗 log

1
𝑦𝑗

+(1−𝑦𝑗) log
1

1 − 𝑦𝑗
.

(4)

[31] showed that optimizing over logℙ(𝑋|𝑝) is equivalent as optimizing over 𝐹 (𝑝, 𝑦),
i.e., (�̂�, �̂�) = argmax𝐹 (𝑝, 𝑦), while the latter one is more tractable. In order to maximize
(4), one natural and heuristic way is to iteratively update 𝑝 an 𝑦. That is, given an initial
estimator 𝑦(0), the 𝑡-th step of the iterative algorithm is

𝑝(𝑡) = argmax𝐹 (𝑝, 𝑦(𝑡−1)), 𝑦(𝑡) = argmax𝐹 (𝑝(𝑡), 𝑦). (5)

Calculating (5) directly, we have the followings:

𝑝(𝑡)𝑖 = 1
𝑚

∑
𝑗∈[𝑚]

(
(1 −𝑋𝑖𝑗)(1 − 𝑦(𝑡−1)𝑗 ) +𝑋𝑖𝑗𝑦

(𝑡−1)
𝑗

)
, (6)

𝑦(𝑡)𝑗 ∝ Π𝑖∈[𝑛](𝑝
(𝑡)
𝑖 )𝑋𝑖𝑗 (1 − 𝑝(𝑡)𝑖 )1−𝑋𝑖𝑗 , (7)

1 − 𝑦(𝑡)𝑗 ∝ Π𝑖∈[𝑛](𝑝
(𝑡)
𝑖 )1−𝑋𝑖𝑗 (1 − 𝑝(𝑡)𝑖 )𝑋𝑖𝑗 . (8)

Eq. (6)-(8), are given by [24] and are called Dawid-Skene method.

4.2. Private Dawid-Skene Estimation
Now we propose the our Private Dawid-Skene method. The idea is that for each

user 𝑖 ∈ [𝑛] who process answers (𝑋𝑖1,𝑋𝑖2,⋯ ,𝑋𝑖𝑗), he/she perturbs each answer by
the following distribution:

�̂�𝑖𝑗 =

{
𝑋𝑖𝑗 w.p. 𝑒𝜖

𝑒𝜖+1
1 −𝑋𝑖𝑗 w.p. 1

𝑒𝜖+1 .
(9)
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After the server getting these perturbed answers {�̂�𝑖𝑗}𝑖∈[𝑛],𝑗∈[𝑚], it then performs the
Dawid-Skene estimator on these perturbed answers, see Algorithm 1 for details. How-
ever, we note that instead of performing (6) for updating the abilities of users, here we
perform a projected version, that is

𝑝(𝑡)𝑖 = Π(𝜆) 1𝑚
∑
𝑗∈[𝑚]

(
(1 −𝑋𝑖𝑗)(1 − 𝑦(𝑡−1)𝑗 ) +𝑋𝑖𝑗𝑦

𝑡−1
𝑗

)
. (10)

Where Π(𝜆) is the projection operator on a interval (𝜆) = [𝜆, 1 − 𝜆] with some small
𝜆 > 0. The motivation is that in the case of the estimator 𝑝(𝑡)𝑖 is 0 or 1 for some 𝑖 ∈ [𝑛]
and 𝑡 ∈ [𝑇 ], 𝑝(𝑡)𝑖 will be trapped in its current value, which might be a poor local
optimizer. Thus, in order to avoid, we perform the projector operator to keep 𝑝(𝑡)𝑖 be
slightly away from 0 or 1. Later, we will see that an appropriate value of 𝜆 is crucial
for the rate of convergence. We note that this operator also has been used and studied
in [32].

Also, we note that, after the 𝑇 -th iteration, instead of releasing the the estimators of
the ability 𝑝(𝑇 )𝑖 directly, we have to post-process them via Step 7 in Algorithm 1. This
is due to that, {𝑝𝑇𝑖 }𝑖∈[𝑛] are some biased estimators of the underlying ability {𝑝∗𝑖 }𝑖∈[𝑛]
since the perturbation procedure in Step 2. Thus, in order to get some useful estimators
we need to rescale them. We will see later for the reason of choosing these terms for
rescaling.

Finally, since the terms {𝑦𝑗}𝑗∈[𝑚] are soft labels contained in [0, 1]𝑚, in order to get
hard labels as final answers, we need to do a round procedure in step 8. We will show
that it will not effect the error to much.

Algorithm 1 Private Dawid-Skene Method
𝐈𝐧𝐩𝐮𝐭: 𝑇 is the number of iteration, 𝜖 > 0 is the privacy parameter, 𝑦(0) is
the initial vector, worker 𝑖 ∈ [𝑛] process the answers 𝑋𝑖 = (𝑋𝑖1,⋯ ,𝑋𝑖𝑚) ∈
{0, 1}𝑚.

1: for Each worker 𝑖 ∈ [𝑛] do
2: Perturb each𝑋𝑖𝑗 , 𝑗 ∈ [𝑚] by the distribution (9) and get �̂�𝑖𝑗 . Then send {�̂�𝑖𝑗}𝑚𝑗=1

to the server.
3: end for
4: for 𝑡 = 1,⋯ , 𝑇 do
5: The server perform the updating (10), (7), (8) on {�̂�𝑖𝑗}𝑖∈[𝑛],𝑗∈[𝑚] and get

{𝑝(𝑡)𝑖 }𝑖∈[𝑛], {𝑦
(𝑡)
𝑗 }𝑗∈[𝑚].

6: end for
7: For each 𝑖 ∈ [𝑛], let �̂�(𝑇 )𝑖 = 𝑒𝜖+1

𝑒𝜖−1 (𝑝
(𝑇 )
𝑖 − 1

𝑒𝜖+1 ).
8: For each 𝑗 ∈ [𝑚], let �̂�(𝑇 )𝑗 = 𝕀(𝑦(𝑇 )𝑗 ≥ 1

2 ).
9: return �̂�(𝑇 ) = {�̂�(𝑇 )𝑖 }𝑖∈[𝑛] and {�̂�(𝑇 )𝑗 }𝑚𝑗=1.

The following theorem shows that the algorithm is LADP. Not only LADP, it is also
easy to see that Algorithm 1 is also 𝑚𝜖 locally differentially private.
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Theorem 1. For any given 𝜖 > 0, Algorithm 1 is 𝜖-LADP.

Proof of Theorem 1. Now consider 𝑋𝑖,𝑋′
𝑖 ∈ {0, 1}𝑚 differ in the 𝑗-th coordinate, i.e.,

𝑋𝑖 = (𝑋𝑖1,𝑋𝑖2,⋯ ,𝑋𝑖𝑗 ,⋯ ,𝑋𝑖𝑚) and 𝑋𝑖 = (𝑋𝑖1,𝑋𝑖2,⋯ ,𝑋′
𝑖𝑗 ,⋯ ,𝑋𝑖𝑚). For any 𝑆 ∈

{0, 1}𝑚, by the independence and the definition of (9) we have

ℙ(�̂�𝑖 ∈ 𝑆)
ℙ(�̂�′

𝑖 ∈ 𝑆)
=

ℙ(�̂�𝑖𝑗 = 𝑆𝑗)

ℙ(�̂�′
𝑖𝑗 = 𝑆𝑗)

(11)

when 𝑋𝑖𝑗 = 1 and 𝑋𝑖𝑗 = 0 and 𝑆𝑗 = 1 then (11) equals 𝑒𝜖 . When 𝑆𝑗 the then (11)
equals 1

𝑒𝜖 ≤ 𝑒𝜖 . The same for the case where 𝑋𝑖𝑗 = 0 and 𝑋𝑖𝑗 = 1. Thus in total we can
see that (11) less equals than 𝑒𝜖 , which satisfies the definition of LADP. Moreover, due
to the post-processing property of differential privacy [33], we know that Algorithm 1
is LADP.

4.3. Theoretical Guarantees
In this section, we will give the estimation errors of the outputs {�̂�(𝑇 )𝑖 }𝑖∈[𝑛] and

{𝑦(𝑇 )𝑗 }𝑚𝑗=1 to the underlying abilities and ground truth, respectively. Before showing the
explicit result, we first introduce some critical quantities.

First, for each user 𝑖 ∈ [𝑛], we define the term of private effective ability as

�̂�𝑖 =
𝑒𝜖 − 1
𝑒𝜖 + 1

𝜇𝑖 +
1

𝑒𝜖 + 1
, (12)

where 𝜇𝑖 is the effective ability proposed by [32]:

𝜇𝑖 = 𝑝∗𝑖 𝕀{𝑝
∗
𝑖 ≥ 1

2
} + (1 − 𝑝∗𝑖 )𝕀{𝑝

∗
𝑖 < 1

2
}. (13)

Intuitively, 𝜇𝑖 measures how much information we can get from the user 𝑖: when 𝑝∗𝑖 > 1
2

it is just the underlying ability, when 𝑝𝑖 <
1
2 then we can use the information to detect

and invert the answers. �̂�𝑖 can be thought as the private version of 𝜇𝑖 due to the effect
of perturbation by (9). When the algorithm is extremely private i.e., 𝜖 → 0, we can
see that �̂�𝑖 →

1
2 , that is all the workers become spammers. Equivalently, from (9) we

can see that ℙ(�̂�𝑖𝑗 = 0) = ℙ(�̂�𝑖𝑗 = 1) = 1
2 , which means we cannot get any useful

information from the perturbed observations. However, when the algorithm tends to be
non-private, that is 𝜖 → ∞, we have �̂�𝑖 → 𝜇𝑖, in this case the private effective ability
will be the same as the effective ability. We note that for both 𝜇𝑖, �̂�𝑖 are in [ 12 , 1].

Now we define the term of collective private wisdom �̂� as

�̂� = 1
𝑛

𝑛∑
𝑖=1

(2�̂�𝑖 − 1)2. (14)

�̂� measures the proportion of experts among the crowd under the privacy constraint,
when the 𝜖 → 0, then �̂� → 0 since in the extreme private case we cannot distinguish

9



which one is the expert. When 𝜖 → ∞, then �̂� → 𝜐 = 1
𝑛
∑

𝑖(2𝜇𝑖 − 1)2, which is the
collective wisdom in [32].

Note that the objective function𝐹 (𝑝, 𝑦) in (4) is non-convex with the fixed {�̂�𝑖𝑗}𝑖∈[𝑛],𝑗∈[𝑚].
Thus, alternating maximization procedures (6) and (7) will only converge to some local
minimum. However, in the following theorem, we will show that under the setting of
𝑚 ≫ 𝑛, with some appropriate initial vector 𝑦(0), the iterations {𝑦(𝑡)𝑗 }𝑗∈[𝑚] after the first
step will be in the neighborhood of the ground truth {𝑦∗𝑗 }𝑗∈[𝑚] with high probability.

Theorem 2. Assume 𝑛 and 𝑚 are sufficiently large so that 𝑛 ≤ 𝑚 ≤ 𝑒𝑛, log𝑚
𝑛 ≤ �̂� and

the initial vector 𝑦(0) satisfies

1
𝑚

∑
𝑗∈[𝑚]

|𝑦(0)𝑗 − 𝑦∗𝑗 | ≤
√

log𝑚
𝑚

. (15)

Whenever the parameter 𝜆 of Algorithm 1 are chose in the range

16
�̂�

√
log𝑚
𝑚

≤ 𝜆 ≤ 1
8
− 1

2

√
log𝑚
𝑚

. (16)

Then for any 𝑦∗ ∈ {0, 1}𝑚, we have

1
𝑚

∑
𝑗∈[𝑚]

|�̂�(𝑇 )𝑗 − 𝑦∗𝑗 | ≤ 2 exp(−1
2
𝑛�̂�). (17)

with probability at least 1 − 𝐶′

𝑚 for some constant 𝐶 ′ > 0.

Proof of Theorem 2. By the definition of �̂�𝑖𝑗 and the assumption, we can represent it
as

�̂�𝑖𝑗 = 𝑦∗𝑗𝑇𝑖𝑗 + (1 − 𝑦∗𝑗 )(1 − 𝑇𝑖𝑗) (18)

where 𝑇𝑖𝑗 is a Bernoulli random variable with parameter

�̂�∗𝑖 = 𝑒𝜖

𝑒𝜖 + 1
𝑝∗𝑖 +

1
𝑒𝜖 + 1

(1 − 𝑝∗𝑖 ) =
𝑒𝜖 − 1
𝑒𝜖 + 1

𝑝∗𝑖 +
1

𝑒𝜖 + 1
. (19)

We notice that 𝑇𝑖𝑗 means that the 𝑖-th worker answers the 𝑗-th task correctly.
We also define the projected version of �̂�∗𝑗 as

�̂�∗𝜆,𝑖 = 𝜆𝕀(�̂�∗𝑖 < 𝜆) + �̂�∗𝑖 𝕀(𝜆 ≤ �̂�∗𝑖 ≤ 1 − 𝜆) + (1 − 𝜆)𝕀(�̂�∗𝑖 > 1 − 𝜆).

To proof Theorem 2, we first proof a stronger claim that for each iteration 𝑡 ≥ 1,
{𝑦(𝑡)𝑗 }𝑗∈[𝑚] satisfies Eq. (17) with probability at least 1 − 𝐶′

𝑚 .
We denote the error of {𝑦(𝑡)𝑗 }𝑗∈[𝑚] as 𝑟𝑡, that is

𝑟𝑡 = 1
𝑚

∑
𝑗∈[𝑚]

|𝑦(𝑡)𝑗 − 𝑦∗𝑗 |.

By assumption (15) we know 𝑟0 ≤ √
log𝑚
𝑚 . We first prove the following lemma:

10



Lemma 1. Define the events

𝐸1 = {max
𝑖∈[𝑛]

| 1
𝑚

∑
𝑗∈[𝑚]

(𝑇𝑖𝑗 − �̂�∗𝑖 )| ≤
√

log𝑚
𝑚

}.

𝐸2 = {max
𝑗∈[𝑚]

|
∑
𝑖∈[𝑛]

(𝑇𝑖𝑗 − �̂�∗𝑖 ) log
�̂�∗𝜆,𝑖

1 − �̂�∗𝜆,𝑖
| ≤ 2 log( 1

𝜆
)
√
𝑛 log𝑚}.

Then ℙ(𝐸1
⋂

𝐸2) ≥ 1 − 𝐶′

𝑚 for some 𝐶 ′ > 0.

Proof of Lemma 1. To proof this, we recall the Hoeffiding’s inequality

Lemma 2 (Hoeffiding’s inequality). For independent bounded random variables {𝑋𝑖}𝑖∈[𝑛]
satisfying 𝑋𝑖 ∈ [𝑎𝑖, 𝑏𝑖] for all 𝑖 ∈ [𝑛], we have for any 𝑡 ≥ 0

ℙ
(|1
𝑛
∑
𝑖∈[𝑛]

(𝑋𝑖 − 𝔼𝑋𝑖)| > 𝑡
) ≤ 2 exp( −2𝑛2𝑡2∑

𝑖∈[𝑛](𝑏𝑖 − 𝑎𝑖)2
).

Note that for the Event 𝐸1, by Lemma 2, we have ℙ(𝐸1) ≥ 1− 𝐶1
𝑚 for some 𝐶1 > 0.

For the event 𝐸2, we note that by the definition of �̂�∗𝜆,𝑖 we have

log
�̂�∗𝜆,𝑖

1 − �̂�∗𝜆,𝑖
≤ log 1 − 𝜆

𝜆
≤ log 1

𝜆
.

Thus, by Lemma 2, we know there is a 𝐶2 > 0, where ℙ(𝐸2) ≥ 1 − 𝐶2
𝑚 .

In the following we will always assume events 𝐸1 and 𝐸2 in Lemma 1 hold. Next
we will prove the following lemma:

Lemma 3. Under the event 𝐸1, as long as 2𝜆 + 𝑟𝑡−1 ≤ 1
4 and 𝑚 ≥ 9, we have for all

𝑡 ≥ 1:

max
𝑖∈[𝑛]

| log
𝑝(𝑡)𝑖

1 − 𝑝(𝑡)𝑖
− log

�̂�∗𝜆,𝑖
1 − �̂�∗𝜆,𝑖

| ≤ 2
𝜆

√
log𝑚
𝑚

+ 2
𝜆
𝑟𝑡−1.

Proof of Lemma 3. We note that from Eq. (6) and Eq. (10) on {�̂�𝑖𝑗}𝑖∈[𝑛],𝑗∈[𝑚] we can
get

𝑝(𝑡)𝑖 = 𝜆𝕀(�̄�(𝑡)𝑖 < 𝜆) + �̄�(𝑡)𝑖 𝕀(𝜆 ≤ �̄�(𝑡)𝑖 ≤ 1 − 𝜆) + (1 − 𝜆)𝕀(�̄�(𝑡)𝑖 > 1 − 𝜆).

Where �̄�(𝑡)𝑖 is the value of (6), i.e., the vector before projecting. By the definitions (18)
and (6) we can get the following via simple calculations:

|�̄�(𝑡)𝑖 − �̂�∗𝑖 | ≤ | 1
𝑚
∑
𝑗
(𝑇𝑖𝑗 − �̂�∗𝑖 )| + 𝑟𝑡−1. (20)
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To show (20), by definition of �̄�(𝑡)𝑖 we have

𝑝(𝑡)𝑖 = 1
𝑚

∑
𝑗∈[𝑚]

(
(1 − �̂�𝑖𝑗)(1 − 𝑦(𝑡−1)𝑗 ) + �̂�𝑖𝑗𝑦

(𝑡−1)
𝑗

)
. (21)

Now we fix 𝑗 ∈ [𝑚] and assume that 𝑦∗𝑗 = 1, then by (18) we have �̂�𝑖𝑗 = 𝑇𝑖𝑗 , we can
get

|(1 − �̂�𝑖𝑗)(1 − 𝑦(𝑡−1)𝑗 ) + �̂�𝑖𝑗𝑦
(𝑡−1)
𝑗 − �̂�∗𝑖 | = |2𝑇𝑖𝑗𝑦(𝑡−1)𝑗 − 𝑇𝑖𝑗 − 𝑦(𝑡−1)𝑗 + 1 − 𝑝∗𝑖 |. (22)

When 𝑇𝑖𝑗 = 0, (22) is |𝑦(𝑡−1)𝑗 − 1 + 𝑝∗𝑖 | ≤ |𝑝∗𝑖 | + |𝑦(𝑡−1)𝑗 − 𝑦∗𝑗 |. When 𝑇𝑖𝑗 = 1, (22) is
|𝑦(𝑡−1)𝑗 − 𝑝∗𝑖 | ≤ |1− 𝑝∗𝑖 |+ ||𝑦(𝑡−1)𝑗 − 𝑦∗𝑗 |. Thus in total we have (22) less than |𝑇𝑖𝑗 − 𝑝∗𝑖 |+
||𝑦(𝑡−1)𝑗 − 𝑦∗𝑗 |. The same for the case when 𝑦∗𝑗 = 0.

Taking the average from 1 to 𝑚 we can get (20).
Now we have for each 𝑖 ∈ [𝑛]

| log
𝑝(𝑡)𝑖

1 − 𝑝(𝑡)𝑖
− log

�̂�∗𝜆,𝑖
1 − �̂�∗𝜆,𝑖

| ≤
𝑝(𝑡)𝑖

1−𝑝(𝑡)𝑖
−

�̂�∗𝜆,𝑖
1−�̂�∗𝜆,𝑖

min{ 𝑝(𝑡)𝑖
1−𝑝(𝑡)𝑖

,
�̂�∗𝜆,𝑖

1−�̂�∗𝜆,𝑖
}

(23)

≤ 2
𝜆
|𝑝(𝑡)𝑖 − �̂�∗𝜆,𝑖| (24)

≤ 2
𝜆
|�̄�(𝑡)𝑖 − �̂�∗𝑖 | +

4
𝜆
𝕀(|�̄�(𝑡)𝑖 − �̂�∗𝑖 | > 1 − 2𝜆) (25)

≤ 2
𝜆
(| 1
𝑚
∑
𝑗
(𝑇𝑖𝑗 − �̂�∗𝑖 )| + 𝑟𝑡−1) + 4

𝜆
𝕀(| 1

𝑚
∑
𝑗
(𝑇𝑖𝑗 − �̂�∗𝑖 )| >

3
4
) (26)

≤ 2
𝜆

√
log𝑚
𝑚

+ 2
𝜆
𝑟𝑡−1. (27)

Where the first inequality (23) is due to the following inequality

| log 𝑥 − log 𝑦| ≤ |𝑥 − 𝑦|
min{𝑥, 𝑦}

.

The inequality (24) is due to that 𝜆 ≤ 𝑝(𝑡)𝑖 , �̂�∗𝜆,𝑖 ≤ 1 − 𝜆 and simple calculation.
The inequality (25) is due to the following. When |�̄�(𝑡)𝑖 − �̂�∗𝑖 | > 1−2𝜆, then |𝑝(𝑡)𝑖 − �̂�∗𝜆,𝑖| ≤
2. Otherwise by the definition we have either �̄�(𝑡)𝑖 or �̂�∗𝑖 is in the interval [𝜆, 1− 𝜆], thus
we have |𝑝(𝑡)𝑖 − �̂�∗𝜆,𝑖| ≤ |�̄�(𝑡)𝑖 − �̂�∗𝑖 | due to the property of contraction of the projection.
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The inequality (26) is due to the following. By (20) we have

𝕀(|�̄�(𝑡)𝑖 − �̂�∗𝑖 | > 1 − 2𝜆)

≤ 𝕀(| 1
𝑚
∑
𝑗
(𝑇𝑖𝑗 − �̂�∗𝑖 )| + 𝑟𝑡−1 > 1 − 2𝜆)

= 𝕀(| 1
𝑚
∑
𝑗
(𝑇𝑖𝑗 − �̂�∗𝑖 )| > 1 − 2𝜆 − 𝑟𝑡−1)

≤ 𝕀(| 1
𝑚
∑
𝑗
(𝑇𝑖𝑗 − �̂�∗𝑖 )| >

3
4
), (28)

where the last inequality is due to the assumption that 2𝜆 + 𝑟𝑡−1 ≤ 1
4 .

The inequality (26) is due to the assumption of the event 𝐸1 in Lemma 1 holds.
Thus, we get the proof.

Now we back to the proof of Theorem 2.
Since we already know that 𝑟0 ≤ √

log𝑚
𝑚 and we want to show it hold for all 𝑟𝑡.

We will prove it by induction, assume 𝑟𝑡−1 ≤ √
log𝑚
𝑚 holds. Denote the terms

𝐴𝑡
𝑗 ,𝐵

𝑡
𝑗 , 𝑗 ∈ [𝑚] as

𝐴𝑡
𝑗 = logΠ𝑖∈[𝑛](𝑝

(𝑡)
𝑖 )�̂�𝑖𝑗 (1 − 𝑝(𝑡)𝑖 )1−�̂�𝑖𝑗 =

∑
𝑖

(
�̂�𝑖𝑗 log 𝑝

(𝑡)
𝑖 + (1 − �̂�𝑖𝑗) log(1 − 𝑝(𝑡)𝑖 )

)

𝐵𝑡
𝑗 = logΠ𝑖∈[𝑛](1 − 𝑝(𝑡)𝑖 )�̂�𝑖𝑗 (𝑝(𝑡)𝑖 )1−�̂�𝑖𝑗 =

∑
𝑖

(
�̂�𝑖𝑗 log(1 − 𝑝(𝑡)𝑖 ) + (1 − �̂�𝑖𝑗) log 𝑝

(𝑡)
𝑖

)
.

Then by the definition of {𝑦(𝑡)𝑗 }𝑚𝑗=1 we have

𝑟𝑡 = 1
𝑚
∑
𝑗
|𝑦(𝑡)𝑗 − 𝑦∗𝑗 | =

1
𝑚
∑
𝑗
|

exp(𝐴𝑡
𝑗)

exp(𝐴𝑡
𝑗) + exp(𝐵𝑡

𝑗)
− 𝑦∗𝑗 |

= 1
𝑚
∑
𝑗
|

exp(𝐴𝑡
𝑗 − 𝐵𝑡

𝑗)

exp(𝐴𝑡
𝑗 − 𝐵𝑡

𝑗) + 1
− 𝑦∗𝑗 |

= 1
𝑚
∑
𝑗

1

1 + exp(
∑

𝑖(2𝑇𝑖𝑗 − 1) log 𝑝(𝑡)𝑖
1−𝑝(𝑡)𝑖

)

≤ 1
𝑚
∑
𝑗
exp(−

∑
𝑖
(2𝑇𝑖𝑗 − 1) log

𝑝(𝑡)𝑖
1 − 𝑝(𝑡)𝑖

)

≤ 1
𝑚
∑
𝑗
exp(−

∑
𝑖
(2𝑇𝑖𝑗 − 1) log

�̂�∗𝜆,𝑖
1 − �̂�∗𝜆,𝑖

+ 4𝑛
𝜆

√
log𝑚
𝑚

)

≤ 1
𝑚
∑
𝑗
exp(−

∑
𝑖
(2�̂�∗𝑖 − 1) log

�̂�∗𝜆,𝑖
1 − �̂�∗𝜆,𝑖

) exp(4𝑛
𝜆

√
log𝑚
𝑚

+ 4 log 1
𝜆
√
𝑛 log𝑚).

13



Where the equalities are followed by the direct computation. The second inequality is
by Lemma 3 and the assumption of 𝑟𝑡−1 ≤ √

log𝑚
𝑚 , the third inequality is due to Lemma

1.
For the exponent in the first term we have

∑
𝑖
(2�̂�∗𝑖 − 1) log

�̂�∗𝜆,𝑖
1 − �̂�∗𝜆,𝑖

= (
∑

𝑖∶�̂�∗𝑖 <𝜆
+

∑
𝑖∶𝜆≤�̂�∗𝑖 ≤1−𝜆

+
∑

𝑖∶�̂�∗𝑖 >1−𝜆
)(2�̂�∗𝑖 − 1) log

�̂�∗𝜆,𝑖
1 − �̂�∗𝜆,𝑖

≥ (|{𝑖 ∶ �̂�∗𝑖 < 𝜆}| + |{𝑖 ∶ �̂�∗𝑖 > 1 − 𝜆}|)(1 − 2𝜆) log 1 − 𝜆
𝜆

+
∑

𝑖∶𝜆≤�̂�∗𝑖 ≤1−𝜆
(2�̂�∗𝑖 − 1) log

�̂�∗𝜆,𝑖
1 − �̂�∗𝜆,𝑖

≥ (|{𝑖 ∶ �̂�∗𝑖 < 𝜆}| + |{𝑖 ∶ �̂�∗𝑖 > 1 − 𝜆}|) +
∑

𝑖∶𝜆≤�̂�∗𝑖 ≤1−𝜆
(2�̂�∗𝑖 − 1)2

≥ ∑
𝑖
(2�̂�∗𝑖 − 1)2

In the following we will show that (2�̂�∗𝑖 −1)
2 = (2�̂�𝑖−1)2, by this we have

∑
𝑖(2�̂�∗𝑖 −1)

2 =
𝑛�̂�. This is due to the following equation:

�̂�𝑖 = �̂�∗𝑖 𝕀(�̂�
∗
𝑖 ≥ 1

2
) + (1 − �̂�∗𝑖 )𝕀(�̂�

∗
𝑖 < 1

2
). (29)

Thus, in total we have

𝑟𝑡 ≤ exp(4𝑛
𝜆

√
log𝑚
𝑚

+ 4 log 1
𝜆
√
𝑛 log𝑚 − 𝑛�̂�) (30)

≤ exp(−1
2
𝑛�̂�) ≤

√
log𝑚
𝑚

. (31)

Where the second inequality is due to the assumption on the range of 𝜆.
Next, due to the rounding procedure (Step 8 of Algorithm 1) and

|𝕀(𝑦𝑗 ≥ 1
2
) − 1| ≤ 2|𝑦𝑗 − 1|

|𝕀(𝑦𝑗 < 1
2
) − 1| ≤ 2|𝑦𝑗 − 0|

We have 1
𝑚
∑

𝑗∈[𝑚] |�̂�(𝑇 )𝑗 − 𝑦∗𝑗 | ≤ 2 exp(− 1
2𝑛�̂�).

From Theorem 2, we can see that as long as the our initial guess has the average
error of �̃�( 1√

𝑚
), then for some 𝜆 the average error will decreases to exp(− 1

2𝑛�̂�). We can
see that when 𝜖 deceases, this upper bound will increase, which means the error will
be larger. Equivalently, this shows that when the algorithm is more private, the error
bound will be larger. When 𝜖 = 0, the upper bound becomes 1

2 and will be trivial.
The following theorem states that our algorithm not only can almost infer the ground

truth, but also can estimate the users’ abilities with some statistical error.
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Theorem 3. Under the assumptions in Theorem 2. For 0 < 𝜖 ≤ 1 we have the follow-
ings with probability at least 1 − 𝐶′

𝑚 for some 𝐶 ′ > 0:

max
𝑖∈[𝑛]

|�̂�(𝑇 )𝑖 − 𝑝∗𝑖 | ≤ 6
√

log𝑚
𝑚𝜖2

, (32)

Proof. For (32), due to (20) we can see for each 𝑗 ∈ [𝑛]

|𝑝(𝑇 )𝑗 − �̂�∗𝑗 | ≤
√

log𝑚
𝑚

+ 𝑟𝑡−1 ≤ 2
√

log𝑚
𝑚

.

By the definition of �̂�∗𝑖 . We have

|𝑝(𝑇 )𝑗 − 𝑒𝜖 − 1
𝑒𝜖 + 1

𝑝∗𝑗 +
1

𝑒𝜖 + 1
| ≤ 2

√
log𝑚
𝑚

which implies

|�̂�(𝑇 )𝑗 − 𝑝∗𝑗 | ≤ 2𝑒
𝜖 + 1
𝑒𝜖 − 1

√
log𝑚
𝑚

≤ 6
𝜖

√
log𝑚
𝑚

.

Eq. (32) characterize the accuracy for users’ abilities from the worst-case. We know
the rate of error is �̃�( 1

𝑚𝜖2 ), which means that it will decreases as the number of tasks
increases. Moreover, when the algorithm is more private, the bound will be larger.

5. Comparison with Private Major Voting

In order to show the priority of our method theoretically, in this part, we will com-
pared our algorithm with the most trivial method i.e., private major voting. The algo-
rithm of private major voting is quite simple; the steps of the user side is the same as
steps 1-3 in Algorithm 1 while each user send the private answers to the server. Af-
ter collecting all of the private answers, the server will do major voting and decide the
output for each task, that is for all 𝑗 ∈ [𝑚]

�̄�𝑗 = 𝕀(
∑
𝑖∈[𝑛]

�̂�𝑖𝑗 ≥ 𝑛
2
). (33)

Now we will provide a case where the upper bound (17) is lower than the bound of
private major voting, which means our algorithm has better performance than private
major voting theoretically. Formally, suppose that there are ⌈𝑛𝛿⌉ number of experts,
i.e., 𝑝∗𝑖 = 1 and the left workers are spammers, i.e., 𝑝∗𝑖 = 1

2 . Here we assume that
𝛿 ∈ (0, 12 ), that is only a small proportion of workers are experts.

Next theorem show that the expected average error of the outputs {�̄�𝑗}𝑗∈[𝑚] in (33)
of private major voting is larger than the average error in Theorem 2 if 𝜖 in some range.
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Theorem 4. For any 𝜖 > 0, private major voting is 𝜖-LADP. Moreover, if 𝜖 > ln 85
15

and 𝑛 > 𝐶 for some sufficiently large constant 𝐶 (only related to 𝛿), then the outputs
{�̄�𝑗}𝑗∈[𝑚] satisfy

1
𝑚

∑
𝑗∈[𝑚]

𝔼|�̄�𝑗 − 𝑦∗𝑗 | ≥ 2
(
exp(−1

2
(𝑒

𝜖 − 1
𝑒𝜖 + 1

)2⌈𝑛𝛿⌉)) ≥ 1
𝑚

∑
𝑗∈[𝑚]

|�̂�(𝑇 )𝑗 − 𝑦∗𝑗 |, (34)

where {�̂�(𝑇 )𝑗 } are outputs of Algorithm 1.

Proof of Theorem 4. To proof Theorem 4, we need the Berry-Essen Lemma in [34]:

Lemma 4. Let 𝑋1,⋯ ,𝑋𝑛 be i.i.d random variables with mean 0 and variance 𝜎2.
Define the function 𝐹𝑛(𝑡) = ℙ( 1

𝜎
√
𝑛

∑
𝑖𝑋𝑖 ≤ 𝑡). Then we have

sup
𝑡∈ℝ

|𝐹𝑛(𝑡) − Φ(𝑡)| ≤ 𝑐𝔼|𝑋1|3
𝜎
√
𝑛

, (35)

where 𝑐 < 0.4748 and Φ(𝑡) is the cumulative distribution function of the standard
Gaussian distribution  (0, 1).

By the definition of majority voting and the definition in (18) we have |�̄�𝑗 − 𝑦∗𝑗 | =
𝕀( 1𝑛

∑
𝑖 𝑇𝑖𝑗 <

1
2 ). To prove this, we first consider the case where 𝑦∗𝑗 = 1. Then by (18)

we have

|�̄�𝑗 − 𝑦∗𝑗 | = |𝕀(
∑
𝑖∈[𝑛]

�̂�𝑖𝑗 ≥ 𝑛
2
) − 1|

= |𝕀(
∑
𝑖∈[𝑛]

𝑇𝑖𝑗 ≥ 𝑛
2
) − 1| = 𝕀(1

𝑛
∑
𝑖
𝑇𝑖𝑗 <

1
2
).

The same for the case where 𝑦∗𝑗 − 1.
Thus

1
𝑚

∑
𝑗∈[𝑚]

𝔼|�̄�𝑗 − 𝑦∗𝑗 | =
1
𝑚

∑
𝑗∈[𝑚]

ℙ(1
𝑛
∑
𝑖
𝑇𝑖𝑗 <

1
2
)

= ℙ(1
𝑛
∑
𝑖
𝑇𝑖 <

1
2
),

where {𝑇𝑖}𝑖∈[𝑛] are independent Bernoulli random variable with parameter �̂�∗𝑖 in (19).
By the definition (19), we known that if 𝑝∗𝑖 = 1

2 then �̂�∗𝑖 = 1
2 , if 𝑝∗𝑖 = 1 then

�̂�∗𝑖 = 𝑒𝜖

𝑒𝜖+1 . W.l.o.g we assume 𝑝∗𝑖 = 1
2 for 𝑖 ≤ 𝑛− ⌈𝑛𝛿⌉. By Lemma 4 with 𝔼[𝑇𝑖 −

1
2 ] =

0,Var(𝑇𝑖 −
1
2 ) =

1
4 and 𝔼|𝑇𝑖 − 1

2 |3 =
1
8 for 𝑖 ≤ 𝑛 − ⌈𝑛𝛿⌉ we have

sup
𝑡
|ℙ{ 2√

𝑛 − ⌈𝑛𝛿⌉
∑

𝑖≤𝑛−⌈𝑛𝛿⌉
(𝑇𝑖 −

1
2
) ≤ 𝑡} − Φ(𝑡)| ≤ (𝑛 − ⌈𝑛𝛿⌉)− 1

2

16
. (36)
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Also by direct calculation we have

ℙ(1
𝑛
∑
𝑖
𝑇𝑖 <

1
2
) ≥ ℙ{ 2√

𝑛 − ⌈𝑛𝛿⌉
∑

𝑖≤𝑛−⌈𝑛𝛿⌉
(𝑇𝑖 −

1
2
)

≥ −
⌈𝑛𝛿⌉√
𝑛 − ⌈𝑛𝛿⌉

} × ℙ{𝑇𝑖 = 1,∀𝑖 > 𝑛 − ⌈𝑛𝛿⌉}

Thus by (36) we have

ℙ(1
𝑛
∑
𝑖
𝑇𝑖 <

1
2
) ≥ ( 𝑒𝜖

𝑒𝜖 + 1
)⌈𝑛𝛿⌉ × {Φ(−

⌈𝑛𝛿⌉√
𝑛 − ⌈𝑛𝛿⌉

) −
(𝑛 − ⌈𝑛𝛿⌉)− 1

2

16
}. (37)

We know that since 𝛿 < 1
2 , thus for sufficiently large 𝑛 we have Φ(− ⌈𝑛𝛿⌉√

𝑛−⌈𝑛𝛿⌉
) ≥ 1

4 and

(𝑛−⌈𝑛𝛿⌉)−
1
2

16 ≤ 1
8 , which are due to that

lim
𝑛→∞

Φ(−
⌈𝑛𝛿⌉√
𝑛 − ⌈𝑛𝛿⌉

) = Φ(0) = 1
2
,

lim
𝑛→∞

(𝑛 − ⌈𝑛𝛿⌉)− 1
2

16
= 0.

Thus
ℙ(1

𝑛
∑
𝑖
𝑇𝑖 <

1
2
) ≥ ( 𝑒𝜖

𝑒𝜖 + 1
)⌈𝑛𝛿⌉ 1

8
.

On the other side by Theorem 2 we have

1
𝑚

∑
𝑗∈[𝑚]

|�̂�(𝑇 )𝑗 − 𝑦∗𝑗 | ≤ 2
(
exp(−1

2
(𝑒

𝜖 − 1
𝑒𝜖 + 1

)2⌈𝑛𝛿⌉)).

Now we will show that for large enough 𝑛:

2
(
exp(−1

2
(𝑒

𝜖 − 1
𝑒𝜖 + 1

)2⌈𝑛𝛿⌉)) ≤ ( 𝑒𝜖

𝑒𝜖 + 1
)⌈𝑛𝛿⌉ 1

8
. (38)

Denote 𝑣 = 𝑒𝜖

𝑒𝜖+1 ∈ [0.85, 1), it is equivalent to show

exp(− 1
2 (2𝑣 − 1)2⌈𝑛𝛿⌉)
𝑣⌈𝑛𝛿⌉

≤ 1
16

(39)

Thus, it is sufficient if we can show the following

lim
𝑛→∞

exp(− 1
2 (2𝑣 − 1)2⌈𝑛𝛿⌉)
𝑣⌈𝑛𝛿⌉

= 0. (40)

we note LHS of (40) equals to exp((− 1
2 (2𝑣 − 1)2 − log 𝑣)⌈𝑛𝛿⌉), we will show 𝑓 (𝑣) =

1
2 (2𝑣 − 1)2 + log 𝑣 > 0 under our assumption on 𝜖. This is due to that 𝑓 (𝑣) is an
increasing function, it is easy to see that 𝑓 (0.85) > 0. Thus we proof Eq. (40).
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6. Conclusion

In this paper we study the problem of ground truth inference under local attribute
differential privacy model and propose an algorithm called private Dawid-Skene method.
Specifically, under some statistical assumptions, we provide the first results on the es-
timation error of the abilities of the users and the ground truth which have not been
studied before. Moreover, we propose an explicit example and show that our method
has less error than the private major voting algorithm theoretically, which is the first
result on theoretically comparing with private major voting method.

There are still some open problems. For example, the model we consider in the
paper is LADP, which is a relaxation of LDP. So the first question is whether we can
extend our results to the LDP model. Secondly, as we can see from the paper, all of
our theorems needs to assume that the ability for each user is the same for all the tasks.
Thus how to extend to the case where these ability are different will be another question.
Finally, in our theorems, we need to assume the initial vector is already closed to the
underlying parameters. Thus, the problem is that how to find this initial vector privately
or how to relax this assumption is still an open problem. We leave these problems as
future work.
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