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Abstract

In this paper, we study the sparse covariance matrix estimation problem in the local

differential privacy model, and give a lower bound of Q(Szl#) on the € non-interactive
private minimax risk in the metric of squared spectral norrnri where s is the row sparsity
of the underlying covariance matrix, # is the sample size, and p is the dimensionality of
the data. We show that the lower bound is actually tight, as it matches a previous upper
bound. Our main technique for achieving this lower bound is a general framework,
called General Private Assouad Lemma, which is a considerable generalization of
the previous private Assouad lemma and can be used as a general method for bounding
the private minimax risk of matrix-related estimation problems.
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1. Introduction

Machine Learning and Statistical Estimation have made profound impacts in re-
cent years to many applied domains such as social sciences, genomics, and medicine.
A frequently encountered challenge in such applications is how to deal with the high
dimensionality of the datasets, especially for those in genomics, educational and psy-
chological research. A commonly adopted strategy is to assume that the underlying
structure of the parameter space is sparse.

Another often encountered challenge is how to handle sensitive data, such as those in
social science, biomedicine and genomics. A promising approach is to use some private
mechanisms for the statistical inference and learning tasks. Differential Privacy (DP)
and its distributed version, Local Differential Privacy (LDP) [1], are widely-accepted
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models that provide provable protection against identification and are resilient to arbi-
trary auxiliary information that might be available to attackers. Since its introduction
over a decade ago, a rich line of works are now available, which have made (local) dif-
ferential privacy compelling privacy enhancing technologies for many organizations,
such as Uber [2], Google [3], Apple [4].

While differentially private high dimensional estimation is quite promising, such
as sparse linear regression [5] and selection problem [6], estimating high dimensional
datasets in a locally differentially private manner could be quite challenging for many
problems, such as sparse linear regression [7], sparse mean estimation [8] and selec-
tion problem [9]. Fortunately, recent research has shown that the loss of some prob-
lems caused by the local differential privacy constraints can be quite small compared to
their non-private counterparts. Examples of this phenomenon include high dimensional
sparse PCA [10]. Recently, [11] studied the locally differentially private high dimen-
sional sparse covariance estimation problem and proposed an algorithm which achieves
an upper bound of 0(521—02“) measured by the squared spectral norm, i.e., || ZPY —X*||2,
where s is the row spargigty of the underlying covariance matrix, p is the dimensionality,
and 7 is the sample size. With the above upper bound, a natural question is the follows.

Is the upper bound of 0(521#) in the LDP high dimensional sparse covariance
estimation tight? "

In this paper, we give an affirmative answer to the above question. Specifically, we
have the following contributions.

1. We show that in the non-interactive local differnetial privacy model, the private
minimax risk (in the metric of squared spectral norm) of high dimensional sparse

covariance matrix estimation is lower bounded by €( % ). Moreover, we show
that the same lower bound also holds, even if the metric is generalized from the
squared spectral norm to the general squared £, norm for any w € [1, oo]. Com-
bining these with previous upper bounds, it indicates that these lower bounds are
tight.

2. To prove the above lower bounds, we propose a framework, called General Pri-
vate Assouad Lemma, for lower bounding the private minimax risk in the non-
interactive or sequential differential privacy model. Our lemma is a generaliza-
tion of the private Assoud lemma in [12], and can be viewed as a general method
for locally differentially private matrix estimation problems. We believe that it
has the potential to be used in other matrix-related estimation problems.

2. Related Work

Recently, there are several papers studying the private covariance matrix estima-
tion problem [13, 14, 15, 16, 17, 11]. For covariance matrix estimation in the central
differential privacy model, [15] considered the 1-dimensional Gaussian distribution es-
timation with (un)known variance. [13] studied the problem of privately learning a mul-
tivariate Gaussian and product distributions in the total variation distance and showed
that it is privacy-free for these problems. [17] recently also investigated the low dimen-
tional case of the problem in Frobenious norm and proposed an iterative eigenvector



sampling method. The work that is the most related to ours is probably the one in [11],
where the authors studied the problem in the high dimensional sparse case and proposed
a method based on the idea of thresholding the private empirical covariance matrix. A
missing ingredient in all the above works is that no lower bound is given, which makes
it difficult to tell how far their solutions are away from the optimal.

Covariance matrix estimation under local differential privacy has been studied in
[16, 14, 11]. Specifically, [16, 14] comprehensively studied the 1-dimensional Gaussian
distribution estimation and provided several lower bounds. However, none of these
works can be extended to general distributions and to the high dimensional sparse case.
For the high dimensional case of the problem, [11] proposed a general method which

achieves an upper bound of O(SZI—Ong) in the squared spectral norm. In this paper, we
provide a lower bound which matches this upper bound.

Using information-theoretic techniques to prove lower bounds in the local differen-
tial privacy model has also been studied in many papers, such as [8, 12, 18, 14, 19, 20].
[8, 12, 18] proposed several general frameworks for bounding the private minimax risk,
such as the private versions of Le Cam lemma, Fano lemma, and Assouad lemma. How-
ever, none of these methods can be applied to our problem since all the previous lemmas
can only be used in the one-directional case (i.e., the underlying parameter is a vector),
while it is a two-directional case (i.e., the underlying parameter is a matrix) in our prob-
lem. Moreover, all of the previous methods need to obtain some upper bounds of some
hard distribution instances under the total variation distance (or KL-divergence) while
in our problem we use y2-divergence, which makes our method quite different from
the previous ones. The method that is the most related to ours is the private Assouad
lemma proposed in [12] which can be seen as a special case of our general private As-
soud lemma. Recently, [20] revisited the private Assouad lemma and proposed a gen-
eral theorem with tighter lower bounds via some results in the theory of communication
complexity. However, our theorems are incomparable with theirs since we cannot use
their theorem directly to our problem (see Conclusion section for details) .

3. Preliminaries

In this section, we introduce some definitions that will be used throughout the paper.
More details can be found in [12].

Notation. In this paper, we will always assume (except for Corollary 2) that ®(x) = x?
and p(X,Z,) = [|Z; — X, ||, is the spectral norm between two matrices £, and %,.

3.1. Classical Minimax Risk

Since all of our lower bounds are in the form of private minimax risk, we first in-
troduce the classical statistical minimax risk before discussing its locally differentially
private version.

Let P be a class of distributions over a data universe X'. For each distribution p €
P, there is a deterministic function 6(p) € ®, where O is the parameter space. Let
p: ®X0O :~ R, beasemi-metric function on the space ® and ® : R, — R, be
a non-decreasing function with ®(0) = 0. We further assume that { X, };‘21 are n i.i.d



observations drawn according to some distribution p € P, and f : X" — O be some
estimator. Then the minimax risk in metric ®op is defined by the following saddle point
problem: A
M, (O(P), @op) := ir;f Sug E [@(p(O(X, -+, X)), 0(P))],
pe

where the supremum is taken over distributions p € P and the infimum over all esti-
mators 6.

3.2. Local Differential Privacy and Private Minimax Risk

Since we will consider the sequential interactive and non-interactive local models
in this paper, we follow the definitions in [18].

We assume that {Z, ,-};‘zl are the private observations transformed from {X ,-}l’.’=1
through some privacy mechanisms. We say that the mechanism is sequentially interac-
tive, when it has the following conditional independence structure:

(Xi.Zy,.Z, 1} Z;,Z; L Xj [ { X, Zy, -, Z;_1}

for all j # i and i € [n], where 1L means independent relation. The full conditional
distribution can be specified in terms of conditionals Q;(Z; | X; = x;, Z;.; = z;.})-
The full privacy mechanism can be specified by a collection O = {Q; };‘zl.

When Z; is depending only on X, the mechanism is called non-interactive and in
this case we have a simpler form for the conditional distributions Q;(Z; | X; = x;). We
now define local differential privacy by restricting the conditional distribution Q;.

Definition 1 ([18]). For a given privacy parameter € > 0, the random variable Z; is
an € sequentially locally differentially private view of X, if for all zy, z,, -+, z;_; and
x,x" € X we have the following for all the events S':

Q(Z €S| Xi =X Zy:iny = Z1siz) o€

0(Z, €S| X;=x,Zy._1 =21.21)

We say that the random variable Z; is an € non-interactively locally differentially pri-
vate view of X; if

0/(Z, eS|X=x) < of

0/(Z,eS|X;=x))~
We say that the privacy mechanism Q = {Q,-}?=1 is e-sequentially (non-interactively)
locally differentially private (LDP) if each Z; is a sequentially (non-interactively) lo-
cally differentially private view.

For a given privacy parameter € > 0, let Q, be the set of conditional distributions
that have the e-LDP property. For a given set of samples { X i}7=1’ let {Z; };’zl be the
set of observations produced by any distribution Q € Q.. Then, our estimator will be
based on { Z; };’zl , that is, 9(2 1> -+ Z,). This yields a modified version of the minimax
risk: .

M,(O(P), @op, Q) = inf sup E,D(p(0(Z) . Z,). 0(p).
p
From the above definition, it is natural for us to seek the mechanism Q € Q, that has the
smallest value for the minimax risk. This allows us to define functions that characterize
the optimal rate of estimation in terms of privacy parameter €.



Definition 2. Given a family of distributions O(P) and a privacy parameter € > 0, the
€ sequential private minimax risk in the metric ®op is:

MIO(P), Dop,¢) 1= ngg M, (O(P), Dop, Q),

where Q. is the set of all € sequentially locally differentially private mechanisms. More-
over, the € non-interactive private minimax risk in the metric ®op is:

MVPQ(P), @op,€) 1= inf M, (O(P),Pop,Q),
0€Q,
where Q. is the set of all € non-interactively locally differentially private mechanisms.

4. General Private Assouad Lemma

In this section we introduce our general framework for lower bounding. Before that,
we first review the classical Assouad lemma [21] and its two-directional generalization
[22].

Assouad’s method works with a hypercube V = {—1,+1}" for some r € N. It
transforms an estimation problem into multiple hypothesis testing problems using the
structure of the problem in an essential way. Let {P,} cy € P be a family of distri-
butions with its corresponding parameters {6, },c), indexed by the hypercube. Similar
to the standard reduction from estimation to testing, we consider the following random
process. Let V' be a random vector uniformly chosen from the hypercube {—1,+1}".
After that, the samples X, X,, ---, X,, are drawn from the distribution P, conditioned
on V = v. For each j € [r], we define the mixture of distributions

1 1
n —_ n n — n
P = 25 2 PP = o 2 P )
viv;=l1 viv;=-1
where Plj’ is the product distribution of X, ---, X,,. Then, Assouad lemma can be stated

as follows.

Lemma 1 (Assouad Lemma). Under the conditions stated in the above paragraph,

,
a
M, (O(P), @op) > 7 D= IIP, = PI_ llry ], )
j=1
D(p(0,,0,1))
€V 2HWwY) ’ nd
H (v, V') is the hamming distance between 0 and ', i.e., H(v, ") = Z;zl o, # U; }.

where || - ||y is the total variation distance, @ = ming, ,/y>1 p.1

Instead of restricting to a hypercube V, the general Assouad lemma in [22] works
with the Cartesian product of a hypercube and the r-th power of a finite set of vectors.
Specifically, for a given r € N and a finite set of p-dimensional vectors B C R”\{0;y,,},
letV={-1,+1}"and A C B". DefineT = VA ={r=(,4) : veVand 1 € A}.
This means that one can view an element A € A as an rX p matrix with each row coming
from set B, and V as a set of parameters with each row indicating whether a given row



of A is present or not. Similar to Assouad lemma, we assume that there is a family of
distributions in the class P, { P, } <y indexed by T and its corresponding parameters

{91 }TGT'

Let Dy = |A|. Foragivena € {—1,+1}andj € [r], weletT; , = {7 : v;(r) = a},
where v;(7) is the i-th coordinate of the first component of 7. It is easy to see that
IT; .| = 2"-1D,. We have the following mixture of distributions

n o _ 1 n
Pz ymp X PPe= g X P @

A €Ty, TET

Lemma 2 (General Assouad’s Lemma [23]). Under the conditions stated in above
paragraph, we have the following

r

04
M, O(P), ®op) > 7 Y11= 1P, = P liry].
j=1

where a satisfies

D(p(0,,0,1))
H(U(T) v(r’))>l o) u(hey 2H (o(t), v(t!))’

and v() is the first component of t.

Now, we present the locally private version of Lemma 2. Suppose that we draw
samples Z;, ---, Z, according to e-LDP channel Q(:| X .,). Then, conditioned on V' =
7, the private sample is distributed according to the marginal distribution M”:

M?(S) = / O"(S|xy,xp, =+, x,)d PI(x1, X3, =+, X,,). 4)

Specifically, when Q is non-interactive, we have M = ( f O(-|x)d PT(x))®". Similarly
to (3), we can define M} and M; , fora € {—1,+1} and j € [r]. Thus, combining
the above with Lemma 2, We have the following theorem:

Theorem 1. Under the conditions given in Lemma 2, the € private minimax risk satis-

fies:
M, (O(P), cbop,e>>—2[1—|| = My )

For the sequential private minimax rlsk, we have the following general lower bound.

Theorem 2. Under the conditions given in Theorem 1 and further assuming that € €
O, %], the € sequential private minimax risk in the metric ®op satisfies

1

MITOP, dop,e) > L1- (" qup Y / Y)AP; o —dP;_)?) ], (6)
4 2" J/EB (X)J 1

where B, is the 1-ball of supremum norm By, = {y € L®(X) | |7l < 1}, and

L¥X) ={f : X = R | ||fll < oo} is the space of uniformly bounded functions

with the supremum norm || f ||, = sup, | f(x)|.



Proof of Theorem 2. The proof follows the proof of Theorem 3 in [12]. We will
mainly prove the following lemma

Lemma 3. [Theorem 3 in [12]] Under the condition in Theorem 1, for any € sequential
interactive private channel Q we have

Z[Dm alIME_D)+ Dy (M0 1M )]
< -1 sup Z(/X y()(dP; 4 —dP;_)))*

yEB(X) 171

By Lemma 3 we can easily get Theorem 1, which is due to the Pinsker’s inequality
and Cauchy-Schwartz:

r

DM, =My < ZDm MY+ Dy (MM )2
Jj=1

NI—

O

Note that the lower bound in Theorem 2 reduces to the same one in the private As-
souad lemma [12] when A contains only one matrix which every row is non-zero. Thus,
we call Theorem 1 as the General Private Assouad Lemma. Particularly, if we restrict
our attention only to the non-interactive LDP mechanisms, we have the following theo-
rem bounding the private minimax risk, which will be used to prove our lower bounds
in this paper.

Theorem 3. Under the conditions given in Theorem 1 and further assuming that € €
O, %], the € non-interactive private minimax risk in the metric ®op satisfies

MU0, ®op,€) 2 ZX x min (1 - \/ 2D PP, ()

1<j<r

N2
where D 2(:||-) is the y2-divergence, that is, D (P|lQ) = / %for distributions
P and Q.

Proof. By Theorem 1, we have

Nint ra . _ n. _ aqn
M™(OP). @op.c) > T min(l — |IM] ~ M]'_ 7).

By the non-interactivity, we have M7 = (/ OClx)dP; )®". Let M; , = [ Q(-|x)dP;,



By Pinsker inequality, we have the following

1

IM!, —M] 1||TV < 2Dk,(M"+1||M;"_1) 3)
<1
2 D, (M7 (M) )
= —(Dlz(M,,HIIM,,_l))" (10)
1 ¢ 2 N
z(mln{4 ) (e = D|P 4 — Py l17) 11
1
—(m1n{2 }€2D 2P 1P 1)), (12)

where (8) is due to Pinsker inequality, (9) is by the relation between KL-divergence
and xz—divergence D, (P||Q) < log(1 + sz(PllQ)) < Dlz(PllQ) [21], (10) is due to

the non-interactivity, (12) is by Pinsker inequality and inequalities (e — 1)*> < 2¢? and
e%¢ < 2. Next, we prove (11).

Lemma 4.

D (M, 1|M; _,) <min{4,e*}(e — D*||P; 4 — P17,

Proof. W.l.o.g, we can assume that the density function of M;, is mj’a(z) = [ q(zlx)de p
and ¢q(-|x) is the density function of Q(-|x). By the definition, we have

D (M, (M, _)) /(mj’+‘(z)_m”“(z))2d (13)
. )= Z
72 M g ", _1(2)
2 2 € 2 2
csinf _g=(z|x)(e® — D*||P; ., — P; _||
s/ I il TRV 4, (14)
[ azlx)dP,,
< 2(ef — 1)? _ 2 :
= Ce(e ) “Pj,+l Pj,—l ”TV H;f q(z|lx)dz
< (e = D2P 4 — P yll7y (15)

where ¢, = min{2, e}, (13) is by the definition of x2-divergence, (14) is by Lemma 3
in [12] and (15) is due to the fact that [ inf g(z|x)dz < 1.
O

O

The inequality in Lemma 4 is weaker than the one in Theorem 1 of [12] in the sense
that it becomes the later one if combining the inequality of ||M; ,, — M; |7y <
M; 1 IM; ).

Remark 1. We note that comparing to existing general lower bounding methods on the
private minimax risk, such as [12, 8, 19], Theorem 3 is quite different. Firstly, while
all previous lower bounds depend only linearly on the sample size n, the lower bound
in Theorem 3 depends exponentially on n. Secondly, due to the special structure of our



indexing set T, Theorem 3 is more suitable for matrix estimation problems, while previ-
ous methods are more suitable for vector estimation problems. Thirdly, previous lower
bounds are measured by (or derived from) the mutual information, the total variation
distance, or the KL-divergence between the hard distribution instances, while in Theo-
rem 3, the lower bound is measured by the y*- divergence between distributions. This
indicates that although Theorem 3 is stronger than the previous ones, as it can be seen
later in the sparse covariance estimation problem, it is easier to obtain a lower bound
on the y*-divergence of the hard instances than other measurements. This is also the
reason that existing methods cannot be applied to our problem.

From (7), we can see that, to obtain the lower bound, one needs to bound the terms
of D 2(P; 4|1 P; ;) for all j, which are quite complicated since they are mixture dis-
tributions. To simplify the task, we fix all the other terms and consider only the j-th
term, which can be seen as an r X p matrix with all other rows fixed, except for the j-th
one. Formally, for an element ¢ € T, we define the projection v 4(7) = (v;(1));c4 for
aset A C {1,2-,r}, and the set {—j} = [FI\{j}. A4(7) and A_;(7)(4;(7));c4 can
be defined similarly, where 4;(r) is the i-th coordinate of the second component of 7.
Denote by A4 theset Ay = {A (7)) : T €T}. Forae {+1,-1},b € {=1,+1}""! and
ceA;C B!, we let

TAj(a,b,c) ={r €T :vj(r)=a,v_j(r)=b,4_;(r) =c}
and D Aj@be) = |TAj(a,b,c)|' Let Pj’fa’b’c denote the mixture distribution

_ 1
e = Py, (16)

D
Aj@b) reTy e

and M ;‘a ».. D€ its corresponding marginal distribution. Similar to Theorem 3, we have
the following corollary.

Corollary 1. Under the conditions given in Theorem 1 and further assuming that € €
(O, %], the € non-interactive private minimax risk in the metric ®op satisfies

MV (4 (6), Dop, €) > % X min

1<j<r

e2n _ _
(1- \/ S-Average, s (D (P10 i 1P s 0D (1)

where the average over v_;, A_; is induced by the uniform distribution over T.

—Jj> "=

Proof. The key observation is that the distributions ij’a can be represented by a linear

. . _n .
combination of {Pj’u’b’c } beeT. > where the set T_; is

T_; = {0, 1 1TeA,
={(b,c) : It €T stv_,(r)=band i_,(r) = c}.



Th pr h = Dyese
atlS _Z(bC)GT wbc j.abe ’W ere wbc_ 2r—lDA

is mdependent of a, we omit it). Also, ¥, oer_, Whe = 1. Thus, P/, can be seen as

(note that since D A (@b,o)

an average over (b, ¢). The same also holds for M n
By the convexity of total variation norm and Lemma 4, we have

M7 =My <), wy M =M Dy
(be)eT_;

= AveragebcllM lbe M;l,—l,b,c”TV'

By a similar argument given in the proof of Theorem 3, we get

”Mn+lbc - MJ,—lbc”TV <D 2( Jitlo_j. A ”M —l,u_,-,/l_j)n

< 3 min(2, S)ED (P 1 I By 1)
1
2(5 D 2(P 41, bc”P —15)"

Thus, by the inequality AveragebcllM Lbe M;l,—l,b,c”TV)z < AveragebcllM lbe”

Y 2
M;,—l,b,c lI,,» we have the proof. O
5. Lower Bound of Private Sparse Covariance Estimation
We follow the settings in [22, 11]. Let X, -+, X,, be random samples from a zero-

mean p-variate distribution with covariance matrix X = (0;;),<; j<,- The goal of sparse
covariance matrix estimation is to estimate the unknown matrix X based on samples
{X;,:-,X,}, and the locally private version is to determine a locally differentially
private estimator. In this paper, we focus on the high dimensional case, that is, ¢,nf <
p < exp(cyn) for some f > 1,¢p,c, > 0. We assume that the underlying covariance is
sparse. That is, £ € G(s) with

G(s)=1{Z= (Uij)lg,jgp : ”0'_/,/”0 <s,Vj€lpl}, (18)

where o_; ", is the j-th column of ¥ with ¢ removed i.e., a matrix in G(s) has at most
s-nonzero off-diagonal elements on each column.
Moreover, we assume that each X is sampled from a p-sub-Gaussian distribution.

That is, for all > 0 and ||v]|, = 1,
_2
P{l{v, X)| > 1} < eXp(E), (19)

which means that all the one-dimensional marginals of X have sub-Gaussian tails.
Additionally, in private matrix-related estimation problems, it is always assumed

that the £, norm of each X; are bounded by 1 [24, 10, 25, 11]. In this paper, we relax

the bounded norm assumption in the following way; for the random vector X € R?, we

10



assume that || X ||, < 1 with probability at least 1 —e™**?), This leads us to the following
class of distributions P(z, s).

P(p,s) ={P : X ~ Psatisfies (19) and || X, <1
wpatleast ] —e P EX =0,Z=E[XXT] € G(s)}. (20)

Before showing the lower bound, we first describe our construction of the hard indexing
set T with their distributions { P, } < instances, which is motivated by the ones in [22].

We first construct the parameter set, which is the same as in [22]. Let 7 = | 2] and
B be the collection of all row vectors b = (v;), <<, such thatv; = Oforall 1 <j < p—r
and v; = 0or1forp—r+1 < ;< punder the constraint that [|b]|, = k (where the
value of k will be specified later). We can view each (b, -, b,) as an r X p matrix with
the i-th row being b;.

Then, we define the set T and its corresponding distributions. Define A C B" to be
the set of all elements in B” such that each column is less than or equal to 2k. For each
matrix A = (44, 4, -+, 4,) € A, define a p X p matrix A,,(4,,) by making the m-th row
and column of A,,(4,,) be 4,, and the rest of entries be 0.

Next, we construct the distributions. Let T = VY ® A. For each 7 = (v, 1), we define
amatrix P, = N'(0, %(r)) with the matrix X(r) having the following form

n

(1) = cl, +ca,,, D v;A[(A), 1)
j=1

where ¢ > 0 is some constant to be specified later and «
universal small enough constant y.

We first choose ¢, y and k to make the Gaussian distribution N (0, (7)) contained
in the class (20).

2
Lemma 5. Under the assumption of n > CSL#, if let ¢ < min{g, %p} and k =
max { [%] — 1,0}, then there is a y, which depends only on C, such that N'(0,%(r)) €

P(p, s) for every t € T, where T is the set defined in the above paragraph.

Proof. We first bound the term of ||Z(7)]|,. Note that since X(7) is symmetric, we have
IZ(2)]l, < l|IZ(7)]l;. By the construction of X(r), we can see that the #; norm of each

column in %(7) is less than 1 + 2ka,, , .

<1+sy ‘i;’ Thus, we have ||Z(7)[|, <

1
c+csy %.

We need N'(0, (7)) satisfying (19). By [26], we know that it is sufficient to have

IZ@l; < p.
Let £(z) = VT QV be the SVD decomposition and Q = diag(4,, ---, 4,). Then, for

X ~ N(0,%(z)), wehave VX ~ N'(0,Q). Thus, | X|I = [V X|I < |Z(2)]l,Y, where
Yisa ;(3 random variable. For the y2-distribution, we have the following concentration
bound.

Lemma 6 ([27]). If z ~ x2, then

Plz — n > 24/nx + 2x] < exp(—x).

11



Thus, with probability at least 1 — exp(—p), we have Y < 5p. This means that, to
ensure || X ||, < 1, it is sufficient to have 5p||Z(7)||, < 1. Thus, we need that

/1
c+csy &zp < min{p, L }. 22)
ne 5p

L} and choosing a small enough y <

Taking ¢ = min{p/2 € we can get the

> 10p N
proof. O
In order to use Theorem 4, we need to bound the term
, I=(e) - 2()]12
a= min _—=
H(u(x),0(z")>Lo(x)u(zhev 2H (u(t), v(r!))
which is due to the following Lemma in [22].
(kat,, . )*

Lemma 7. Under the conditions given in Lemma 5, we have a >

Proof of Lemma 7. Let the vector v = (v;),;<, be a p-vector with v; =0 for 1 <i <
p—randv; =1forp—r+1<i<p. Denotew = (w;)<ic, = (XZ(7) — >(z"))v. Note
that for each i, if |v;,(r) — v;(z")| = 1, then we have |w;| = kay, . Then there are at

least H (v;(t), v;(z) number of elements w; with |w;| = ka,, , ¢, which implies

(Z(2) = Z(" ol = H(v,(2), v,(c ke, )

Since ||v||§ < p, we have

I(2(2) = Z()oll;
lloll?
H (v,(2), 0,(z")(kat,, . .)?
>
p

I£(x) = Z(=)I|5 >

2
Thus, a > % O
The following key lemma gives a lower bound on the term

Averagev,j,/{,j(D;(Z(Pj,+l,u_j,i_j | I_)j,—l,v_j,i_j ))”
Lemma 8. Under the conditions on T, 2(t) and the conditions of given in Lemma 5,
the following holds for every j € [r], when y is sufficiently small and p is sufficiently

large
= = 31
Average, ; (D2 (P iy 5 1B 1 5 )" < o

12



Proof of Lemma 8. Our proof is similar to the proof of Lemma 6 in [22] with differ-
ence parameters. Here we only give a sketch of the proof.
Without loss of generality, we only consider the case where j = 1. And we denote

the density function of P be p; . Also, we have

,a,0_1,A_1 L4, U_1,A_1

Do (P10 NP1 0 ) = / - dx —1.

Pr-10_.4_, )

By the definition, we know that the covariance matrix of the distribution I_’l’_ Lo_1,iey

has the form
c 0
T = ( Px(p=1) ) (23)
Op—nx1 Se-Dxp-1)

Here S,_1)x(p-1) = (5ij)2<ij<p 1S @ symmetric matrix uniquely determined by
(v_y, A_y) where for i < j,

1,i=1
i =9 CUypes U =4;() =1 (24)
0, otherwise

Let
Aim)={a€ B :3reTs.t A(r)=a,A_ =m}

which gives the rest of all possible values of the first row with the rest of the rows fixed,
that A_;(z) = m. Let n;_ be the number of columns of A_; with the column sum
equal to 2k for which the first row has no choice but to take value 0 in this column. Set
py, =r—n; . Wehavep, > £—1. Since 2kn,_, < rk, the total number of 1s in the

upper triangular matrix by the construction of the parameter set, we thus have »n i, < %,

thus p, =r—n;, 2 % > g — 1. Thus we have |A;(A_;)| = (p*k—l). Then from the

5

with the covariance matrix has the following form:

¢ I'1><(p—l) > (25)
<r(p—1)x1 Sp-x(p-1)
With ||r||y = k with non-zero elements of r equal ce,

is the same as the ones in X in (23).
We have the following lemma, given by [22]

definition, we have Py, , is an average of (" ‘];1) multivariate normal distribution

np.e and the submatrix S,y ,—1)

Lemma 9. Let g; be the density function of N'(0,%;) fori = 0, 1,2, then we have

/ A8 e - ) - E (%~ ST . (26)
0

Let X defined above and determined by v_;, A_;. Let X; and X, be the form above
with the first row 4, /1’1, respectively. Set

A _
Rj;}z’l '= —logdet(J — 3*(Z — Z))(Zp — T)). 27

13



Now we denote the average as the expectation, then we have

[Eu_l,/l_l(D)(z(Pl,-f-l,v_l,/l_l ||P1,—1,1)_1,,1_1))n (28)
1A
< By (B, i [expG R = D)) 29)
1
n 1A
< By (B [expG R, ) = 11 (30)
e
n U_1,A_
= [Eil”vl [[E(v—l’ﬂ—l)l(il’ﬂl)[eXp(z(Rﬂl,1/1/1 1)) — l] (31)

where 4, and /l’l are independent and uniformly distributed over A(A_;) for given A_,,
and the distribution of (v_j, A_;) given (4, 4)) is inform over T_; (4, 4_;), where

T (a1, @) = (-1, +1})'®{ceA I eT,i=1,2
s.t. Ay(7) = a;, A_y(z;) = v}
O

We now have the following lemma for the term (Z; — Z)(Z, — X)), which corre-
sponds to the Lemma 10 in [22]:

Lemma 10. Let X, X, X, be the same covariance matrices as above. Define J to be
the number of overlapping ca,, ,.’s between X and Z, on the first row, and define the
matrix Q as the following

n.,p.e

0= (qij)lgi,jgp =2 = Z)(Z — )

Then there are index subsets I, and I, in {2, -+, pYwith |I.| = |I,| = kand |I.(I,| =
J

chaip’e,i:j =1

4 = c2a? i€l andj€ 1, (32)

n,p,e’
0, otherwise

And the matrix (Zo — Z1)(Zy — Z,) has rank 2 with two identical non-zero eigenvalues
Jcta? .
n,p,e

Thus by Lemma 10 and the Lemma 11 in [22] we have:

v_1,Ag

Lemma 11 (Lemma 11 in [22]). Let R Y satisfies
»ALA
vy 2.2 v_1,4g
Riwl' =—2log(1-Jc a"aPa€)+Rl,/11,/1§ 33)

Then uniformly over J, we have

R, U A 3
[E(/n,z;)u[[E(u,l,x,nlul,/l;)[eXp(E(RL;I’A,I'))] <3

14



Next we will prove our lemma. By (31) and Lemma 11 we now have

n U_1,A_
[E/l],/l’l [[E(u_l,/1_,)|(/1,,/1’1)[6XP(§(R/11’]2,] ") —1]

= E;{exp[—nlog(l — Jta? )Ix

n.p.e

n _1,A_
E(’ll’/ll)lJ[IE(U—l’ﬂ—l)l(ﬂl"V)[exp(_(Ri/lll’Afll ))] —_ 1}
< [EJ{ exp[—nlog(l — Jla npe)] -1}

Recall that J is the number of overlapping ca,, , .’s between £ and X, on the first row.
Thus J has the hypergeometric distribution as 4, /1’1 vary in B for each given A_;. For
0 < j < k, the same as in [22], we have

. k\ (Pi_ —k> <P;1_> K2 i
E( = = 1 1 - ./_
W7 =y <j>< ) st

Thus, we have

[EJ{ exp[— nlog(l—Jc npe)]—l}

k ) A
< Y (V1S expl-nlog(l - je?a2, )1 - 1)

s p/4—1
1 ; K2 J lgp
< = D (=) {5 expl—nlog(l - | ”
_62,,];0(1’/4 ){ pl—nlog(l — jc?y?—=5)] -1} (34)
Ly K 3 11
> ng)(m)’{aexpl%c P logpl) + 5
13 1- l/ﬁ -2 - 11
—522(1’ AR (35)
j=1
Z(plﬂ 128y 4 2 11 gi 6

o0 = 2n
j>1 2e 4€

Where (34) is due to that, let a = e% and b = jczyzk’%, then it is sufficient to prove
—log(1 — ab) <loga —log(l — b)
1 < @
l—ab ™~ 1-b
=ba+1)<1

The final inequality is true due to that b(a + 1) < 2ab < 2kc? 21252” < 1 when y is
small enough.

(35) is due to that k> = O(2 ne? =)= 1ogp ( ) and y2 < ﬂ . for sufficient

large p. Combining Lemmas 5 7 and 8 with r = [ 2] by Corollary 1 we have the
following lower bound theorem.

15



Theorem 4. Ife € (O,%], n> CIJEL leogp and p > clnﬂforﬂ > 1, then the € non-

interactive private minimax risk in the metric of squared spectral norm satisfies the
following inequality

2logp

MNI(E(P(s, p)), Dop, €) > ). (37)

Proof of Theorem 4. By Corollary 1, Lemma 8 and 7 we have

MYy (6), Dop, €) > ™ % min
1<j<r

e2n _ _
(1- \/TAVefag%_j,a_j D2 Py 1 i 1P —10_,,0_ 00"

2.2
gk a”””e(l_ ﬁéL)
27 p V 2 4

2
s-logp
(—=5).

ne

\%

\Y
0

O

For the upper bound, [11] recently showed that if each || X;||, < 1 and { X }?=1 ~ P
where P € P(s, p), then by using a thresholding method on the perturbed empirical
covariance matirx with some well-defined threshold, the output ¥ satisfies ||X — le% <

2
O(%) with high probability. Combining this upper bound with Theorem 4, we can

2
see that the bound @(%) is actually tight (i.e., optimal).
We note that for the non-private case, the optimal rate of minimax risk under the

2
same measurement is @(%) [22]. Thus, in this case, the impact of the local dif-

ferential privacy is to change the number of efficient samples from n to ne?. However,
the collection of the considered distributions needs another assumption, which says that
|[X]|, is bounded by 1 with high probability. This is not necessary in the non-private
case [22], but needed for showing the upper bound.

Moreover, [11] also show that there is an (e, ) non-interactive LDP algorithm
whose output  satisfies || £ — E||fv < O(%) for every w € [1, oo] with high prob-
ability. One natural question is whether it is optimal. The following corollary provides
an affirmative answer.

Corollary 2. Under the assumptions given in Theorem 4, for each w € [1, x], the
€ non-interactive private minimax risk in the metric of squared ¢, norm satisfies the
following

logp

MYTEP (s, p)), Dop, €) 2 ), (38)

IAx]l,
l1x1l

Proof of Corollary 2. First, by the Riesz-Thorin Interpolation Theorem [23], we know
that for every symmetric matrix M, ||M||, < || M||,, for all w € [1, oo]. Thus we have

where the €, -norm of any matrix A is defined as || A||,, = sup
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N (katy e )?
p

npe = , also since the term

under 7, norm, by Lemma 6 we always have «,
Averagebij, /L,(D 12( Lo h ||P —1 ,1_,) is independent on the norm, so we have

the corollary. O

SU_js

6. Conclusion and Discussion

In this paper we propose a general framework called General Assouad Lemma,
which can be used to derive lower bounds for private mininax risk of matrix-related
estimation problems in the local differential privacy model. The method generalizes
the previous private Le Cam and private Assouad lemma in [12]. As an application of
this lemma, we give the optimal lower bound on the non-interactive private mininax
risk of the LDP sparse covariance matrix estimation problem in the metric of squared
spectral norm.

There are still some open problems. Firstly, both Theorem 3 and 4 are restricted to
non-interactive LDP protocols. The first open question is whether they can be extended
to the sequential LDP model. Secondly, from Theorem 3 we can see that the lower
bound holds under the assumption of € € (0, M] Thus, the second open question is
whether the range of € can be enlarged, or whether better result can be achieved when
€ is larger, such as those in [28]? Recently, [20] extended the classical private Assouad
lemma to the case where ¢ € [0, c0) via some results in the theory of communication
complexity. However, their theorem cannot be used in our problem. The main reason
is that, in their main results (Theorem 10 and Corollary 11 in [20]), they need the two
distributions P; and P_, %ati%fy strong data processing inequalities (SDPI), and also
they should satisfy | log —| is bounded by a constant under the assumption that the

coordinates of X are 1ndependent However, it is quite hard to bound the term or proof
the SDPI property for our distributions in (21) due to the facts that the coordinates of
the samples are dependent and the forms of our distributions are quite complicated.
Thus, to extend to general € € (0, 00) case we need new methods, which will be left for
future work. The third open question is whether Theorem 2 and 3 can be used to other
matrix-related estimation problems? We leave them for future research.
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