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Abstract

In this paper, we study the Principal Component Analysis (PCA) problem under the
(distributed) non-interactive local differential privacy model. For the low dimensional
case (i.e., 𝑝 ≪ 𝑛), we show the optimal rate ofΘ( 𝑘𝑝

𝑛𝜖2 ) (omitting the eigenvalue terms) for
the private minimax risk of the 𝑘-dimensional PCA using the squared subspace distance
as the measurement, where 𝑛 is the sample size and 𝜖 is the privacy parameter. For the
high dimensional (i.e., 𝑝 ≫ 𝑛) row sparse case, we first give a lower bound of Ω(𝑘𝑠 log 𝑝𝑛𝜖2 )
on the private minimax risk, where 𝑠 is the underlying sparsity parameter. Then we
provide an efficient algorithm to achieve the upper bound of 𝑂( 𝑠

2 log 𝑝
𝑛𝜖2 ). Experiments

on both synthetic and real world datasets confirm our theoretical guarantees.
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1. Introduction

Principal Component Analysis (PCA) is a fundamental technique for dimension
reduction in statistics, machine learning, and signal processing. As of today, it remains
as one of the most commonly used tools in applications, especially in social sciences
[2], financial econometrics [3], medicine [4], and genomics [5].

With the rapid development of information technologies, big data now ubiquitously
exist in our daily life, which need to be analyzed (or learned) statistically by methods like
regression and PCA. However, due to the presence of sensitive data (especially those
in social science, biomedicine and genomics) and their distributed nature, such data are
extremely difficult to aggregate and learn from. Consider a case where health records
are scattered across multiple hospitals (or even countries), it is challenging to process
the whole dataset in a central server due to privacy and ownership concerns. A better
solution is to use some differentially private mechanisms to conduct the aggregation

✩A preliminary version [1] appeared in Proceedings of The 28th International Joint Conference on Arti-
ficial Intelligence (IJCAI 2019).
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and learning tasks. Differential Privacy (DP) (Dwork et al., 2006b) is a commonly-
accepted criterion that provides provable protection against identification and is resilient
to arbitrary auxiliary information that might be available to attackers.

Currently, there are mainly two user models available for differential privacy: the
central model and the local one. In the central model, data are managed by a trusted
central entity which is responsible for collecting them and for deciding which differ-
entially private data analysis to perform and to release. A classical application of this
model is the one of collecting census data. In the local model instead, each individual
manages his/her proper data and discloses them to a server through some differentially
private mechanisms. The server collects the (now private) data of each individual and
combines them into a resulting data analysis. A classical example of this model is the
one aiming at collecting statistics from user devices like in the case of Google’s Chrome
browser [6], and Apple’s iOS-10 [7].

In the local model, two basic types of protocols are often used: interactive and non-
interactive. [8] have recently investigated the power of non-interactive differentially
private protocols. This type of protocols is more natural for the classical use cases of
the local model: both projects from Google and Apple use the non-interactive model.
Moreover, implementing efficient interactive protocols in such applications is more dif-
ficult due to the latency of the network. Despite being used in industry, the local model
has been much less studied than the central one. Part of the reason for this is that there
are intrinsic limitations in what one can do in the local model. As a consequence, many
basic questions, that are well studied in the central model, have not been completely
understood in the local model, yet.

In this paper, we study PCA under the non-interactive local differential privacy
model and aim to answer the following main question.

What are the limitations and the (near) optimal algorithms of PCA under the
non-interactive local differential privacy model?

We summarize our main contributions as follows:

1. We first study the 𝑘-subspace PCA problem in the low dimensional setting and
show that the minimax risk (measured by the squared subspace distance) under 𝜖
non-interactive local differential privacy (LDP) is lower bounded byΩ( 𝜆1𝜆𝑘+1𝑝𝑘

(𝜆𝑘−𝜆𝑘+1)2𝑛𝜖2
),

where 𝑝 is the dimensionality of the data and 𝑛 is the number of data records,
𝜆1, 𝜆𝑘 and 𝜆𝑘+1 is the 1st, 𝑘-th and (𝑘+1)-th eigenvalue of the population covari-
ance matrix Σ, respectively. Moreover, we prove that the term Ω( 𝑝𝑘

𝑛𝜖2 ) is optimal

by showing that there is an (𝜖, 𝛿)-LDP whose upper bound is 𝑂
( 𝜆21𝑘𝑝 log(1∕𝛿)
(𝜆𝑘−𝜆𝑘+1)2𝑛𝜖2

)
.

2. An undesirable issue of the above result is that the error bound could be too
large in high dimensions (i.e., 𝑝 ≫ 𝑛). In such scenarios, a natural approach
is to impose some additional structural constraints on the leading eigenvectors.
A commonly used constraint is to assume that the leading eigenvectors are row
sparse, which is refereed as sparse PCA in the literature and has been studied
intensively in recent years [9, 10, 11]. Thus, for the high dimensional case, we
consider the sparse PCA under the non-interactive local model and show that
the private minimax risk (measured by the squared subspace distance) is lower
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bounded by Ω( 𝜆1𝜆𝑘+1
(𝜆𝑘−𝜆𝑘+1)2

𝑘𝑠 log 𝑝
𝑛𝜖2 ), where 𝑠 is the sparsity parameter of the under-

lying subspace. We also give an algorithm to achieve a near optimal upper bound

of 𝑂
( 𝜆21
(𝜆𝑘−𝜆𝑘+1)2

𝑠2 log 𝑝
𝑛𝜖2

)
. With additional assumptions on the correlation of the

population covariance matrix, we further show that our private estimator is spar-
sistency, i.e. it recovers the support of the underlying parameter.

3. Finally, we provide an experimental study for our proposed algorithms on both
synthetic and real world datasets, and show that the experimental results support
our theoretical analysis.

2. Related Work

There is a vast number of papers studying PCA under differential privacy, starting
from the SULQ framework [12], [13, 14, 15, 16, 17, 18]. We compare only those private
PCA results in distributed settings.

For the low dimensional case, Balcan et al. [18] studied the private PCA problem
under the interactive local differential privacy model and introduced an approach based
on the noisy power method. They showed an upper bound which is suitable for general
settings, while ours is mainly for statistical settings. It is worth pointing out that the
output in [18] is only an 𝑂(𝑘)-dimensional subspace, instead of an exact 𝑘-dimensional
subspace; thus their result is incomparable with ours. Moreover, we provide, in this
paper, a lower bound on the 𝜖 non-interactive private minimax risk.

For the private high dimensional sparse PCA, the work most closely related to ours
is the one by Ge et al. [17]. The authors in this paper proposed a noisy iterative hard
thresholding power method, which is an interactive LDP algorithm and proved an upper
bound of 𝑂

( 𝜆1𝜆𝑘
(𝜆𝑘−𝜆𝑘+1)2

𝑠(𝑘+log 𝑝)

𝑛(1−𝜌
1
4 )

)
for their method, where 𝜌 is a parameter related to

𝜖. Specifically, they showed that there exists some ’Privacy Free Region’. However,
several things need to be pointed out. Firstly, our method is for general 𝜖 ∈ (0, 1] and
non-interactive settings, while Ge et al. considered the interactive setting with more
restricted 𝜖. Secondly, the assumptions in our paper are less strict than the ones in [17].
Finally, we provide a lower bound on the private minimax risk.

The optimal procedure in our paper is based on perturbing the covariance by Gaus-
sian matrices, which has been studied in [13]. However, there are some major differ-
ences; firstly, we show the optimality of our algorithm under the non-interactive local
model using subspace distance as the measurement, while [13] showed the optimality
under the (𝜖, 𝛿) central model using variance as the measurement. It is notable that
in [13] the authors also provided an upper bound on the subspace distance. However,
the lower bound is still unknown. Secondly, while the optimal algorithm for the low
dimensional case is quite similar, we extend it to the high dimensional case. The opti-
mal procedure in the high dimensional sparse case is quite different from that in [13].
Thirdly, in this paper,since we focus the statistical setting while [13] considered the
general setting, the upper bound results are incomparable.
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3. Preliminaries

In this section, we introduce the definitions that will be used throughout the paper;
more can be found in [19].

3.1. Classical Minimax Risk
Since all of our lower bounds are in the form of private minimax risk, we first intro-

duce the classical statistical minimax risk before discussing the locally private version.
Let  be a class of distributions over a data universe  . For each distribution 𝑃 ∈ , there is a deterministic function 𝜃(𝑃 ) ∈ Θ, where Θ is the parameter space. Let

𝜌 ∶ Θ × Θ ∶↦ ℝ+ be a semi-metric function on the space Θ and Φ ∶ ℝ+ ↦ ℝ+ be a
non-decreasing function with Φ(0) = 0 (in this paper, we assume that 𝜌 is the subspace
distance and Φ(𝑥) = 𝑥2 unless specified otherwise).

We further assume that {𝑋𝑖}𝑛𝑖=1 are 𝑛 i.i.d observations drawn according to some
distribution 𝑃 ∈  , and �̂� ∶ 𝑛 ↦ Θ is some estimator. Then, the minimax risk in
metric Φ◦𝜌 is defined by the following saddle point problem:

𝑛(𝜃(),Φ◦𝜌) ∶= inf
�̂�

sup
𝑃∈ 𝔼𝑃 [Φ(𝜌(�̂�(𝑋1,⋯ ,𝑋𝑛), 𝜃(𝑃 ))],

where the supremum is taken over distributions 𝑃 ∈  and the infimum over all esti-
mators �̂�.

3.2. Local Differential Privacy and Private Minimax Risk
Since we consider the non-interactive local model in this paper, we will follow the

definitions in [20].
We assume that {𝑍𝑖}𝑛𝑖=1 are the private observations transformed from {𝑋𝑖}𝑛𝑖=1

through some privacy mechanisms. When 𝑍𝑖 depends only on 𝑋𝑖, the mechanism is
called non-interactive and in this case we have a simpler form for the conditional dis-
tributions 𝑄𝑖(𝑍𝑖 ∣ 𝑋𝑖 = 𝑥𝑖). We now define local differential privacy by restricting the
conditional distribution.

Definition 1 ([20]). For a given privacy parameter 𝜖, 𝛿 > 0, we say that the random
variable 𝑍𝑖 is an (𝜖, 𝛿) non-interactively locally differentially private (LDP) view of 𝑋𝑖
if for any 𝑥𝑖, 𝑥′𝑖 ∈  and for all the events 𝑆 we have

𝑄𝑖(𝑍𝑖 ∈ 𝑆 ∣ 𝑋𝑖 = 𝑥𝑖) ≤ 𝑒𝜖𝑄𝑖(𝑍𝑖 ∈ 𝑆 ∣ 𝑋𝑖 = 𝑥′𝑖) + 𝛿.

When 𝛿 = 0, we call it 𝜖 non-interactively LDP view. We say that the privacy mechanism
𝑄 = {𝑄𝑖}𝑛𝑖=1 is (𝜖, 𝛿) (𝜖) non-interactively locally differentially private (LDP) if each
𝑍𝑖 is an (𝜖, 𝛿) (𝜖) non-interactively LDP view.

For a given privacy parameter 𝜖 > 0, let 𝜖 be the set of conditional distributions
that have the 𝜖-LDP property. For a given set of samples {𝑋𝑖}𝑛𝑖=1, let {𝑍𝑖}𝑛𝑖=1 be the
set of observations produced by any distribution 𝑄 ∈ 𝜖 . Then, our estimator will be
based on {𝑍𝑖}𝑛𝑖=1, that is, �̂�(𝑍1,⋯ ,𝑍𝑛). This yields a modified version of the minimax
risk: 𝑛(𝜃(),Φ◦𝜌,𝑄) = inf

�̂�
sup
𝑃∈ 𝔼𝑃 [Φ(𝜌(�̂�(𝑍1,⋯ ,𝑍𝑛), 𝜃(𝑝))].

4



From the above definition, it is natural to seek the mechanism 𝑄 ∈ 𝜖 that has the
smallest value for the minimax risk. This allows us to define functions that characterize
the optimal rate of estimation in terms of privacy parameter 𝜖.

Definition 2. Given a family of distributions 𝜃() and a privacy parameter 𝜖 > 0, the
𝜖 non-interactive private minimax risk in the metric Φ◦𝜌 is:

Nint
𝑛 (𝜃(),Φ◦𝜌, 𝜖) ∶= inf

𝑄∈𝜖
𝑛(𝜃(),Φ◦𝜌,𝑄),

where 𝜖 is the set of all 𝜖 non-interactively locally differentially private mechanisms.

3.3. Locally Private 𝑘-dimensional PCA
Let 𝑋 ∈ ℝ𝑝 a random vector with mean 0 and covariance matrix Σ. 𝑘-dimensional

PCA is to find a 𝑘 dimensional subspace that optimizes the following problem:

min𝔼‖(𝐼𝑝 − Π)𝑋‖22, s.t.  ∈ 𝔾𝑝,𝑘,

where 𝔾𝑝,𝑘 is the Grassmann manifold of 𝑘-dimensional subspaces of ℝ𝑝, and Π is the
projection of . There always exists at least one solution; consider Σ =

∑𝑝
𝑗=1 𝜆𝑗𝑣𝑗𝑣

𝑇
𝑗 ,

where 𝜆1 ≥ 𝜆2 ≥ ⋯ , 𝜆𝑝 ≥ 0 are the eigenvalues of Σ and 𝑣1, 𝑣2,⋯ , 𝑣𝑝 ∈ ℝ𝑝 are the
corresponding eigenvectors. If 𝜆𝑘 ≥ 𝜆𝑘+1, then the 𝑘-dimensional principal subspace
of Σ, i.e. the subspace  spanned by 𝑣1,⋯ , 𝑣𝑘 solves the above optimization problem,
where the orthogonal projector of  is given by Π = 𝑉𝑘𝑉 𝑇

𝑘 , where 𝑉𝑘 = [𝑣1,⋯ , 𝑣𝑘] ∈
𝕍𝑝,𝑘, 𝕍𝑝,𝑘 is the set of all 𝑝 × 𝑘 orthogonal matrices. For simplicity we denote  =
col(𝑉𝑘), where col(𝑀) denotes the subspace spanned by the columns vectors of 𝑀 .

PCA under the non-interactive local model. In practice, Σ is unknown, and the only
thing that we have is the set of observation data records {𝑋1,⋯ ,𝑋𝑛}, which are i.i.d
sampled from 𝑋. Thus, the problem of (non-interactively) locally differentially private
PCA is to find a 𝑘-dimensional subspace priv which is close to  , where the algorithm
that outputs priv must be 𝜖 (non-interactively) locally differentially private.

After obtaining a private estimator priv, there are multiple ways to measure the
success, such as variance guarantee [13], low rank approximation error [21], etc. In
this paper, we will use the subspace distance as the measurement [13, 17].

Subspace distance. Let  and  ′ be two 𝑘-dimensional subspaces in ℝ𝑝. Also denote
by 𝐸 and 𝐹 , respectively, the orthogonal matrix corresponds to  and  ′. That is,
𝐸 = 𝑉 𝑉 𝑇 and 𝐹 = 𝑊𝑊 𝑇 for some orthogonal matrices 𝑉 ∈ 𝕍𝑝,𝑘 and 𝑊 ∈ 𝕍𝑝,𝑘.
Then, the squared subspace distance between  and  ′ is defined by the following [22]:

‖ sinΘ( , ′)‖2𝐹 = ‖𝐸 − 𝐹‖2𝐹 = 1
2
‖𝑉 𝑉 𝑇 −𝑊𝑊 𝑇 ‖2𝐹 ,

where ‖⋅‖𝐹 is the Frobenious norm. For simplicity, we will overload notation and write
sinΘ( , ′) = sinΘ(𝑉 ,𝑊 ).
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4. Low Dimensional Case

In this section, we focus on the general case and always assume 𝑛 ≥ 𝑝. We first
derive a lower bound of the 𝜖 non-interactive private minimax risk using the squared
subspace distance as the measurement. By the definition of the 𝜖-private minimax risk,
it is important to select an appropriate class of distributions.

4.1. Class of Distributions

1. We assume that the random vector X is sub-Gaussian, that is 𝑋 = Σ
1
2𝑍, where

𝑍 ∈ ℝ𝑝 is some random vector satisfying equations 𝔼𝑍 = 0, Var(𝑍) = 𝐼𝑝 and
its sub-Gaussian norm ‖𝑍‖𝜓2

≤ 1, where

‖𝑍‖𝜓2
∶= sup

𝑣∶‖𝑣‖2≤1
inf{𝐶 > 0,𝔼 exp | ⟨𝑍, 𝑣⟩

𝐶
|2 ≤ 2},

which means that all the one-dimensional marginals of 𝑋𝑖 have sub-Gaussian
tails. We need to note that this assumption on 𝑋 is commonly used in many
papers on PCA in statistical settings, such as [9, 17].

2. In the study of private PCA, it is always assumed that the 𝓁2 norm of each 𝑋𝑖 is
bounded by 1, as in [13][17]. For convenience, we relax this assumption in the
following way; for the random vector 𝑋 ∈ ℝ𝑝, we assume that ‖𝑋‖2 ≤ 1 with a
probability at least 1 − 𝑒−Ω(𝑝).

3. Next, we give assumptions on the population covariance matrix Σ. Firstly, we
assume that for the target 𝑘-dimensional subspace, 𝜆𝑘 − 𝜆𝑘+1 > 0 so that the
principal subspace is well defined. Next, we define the effective noise variance
𝜎2𝑘, which is proposed in [9] and [10]:

𝜎2𝑘(𝜆1, 𝜆2,⋯ , 𝜆𝑝) ∶=
𝜆1𝜆𝑘+1

(𝜆𝑘 − 𝜆𝑘+1)2
. (1)

For a given constant 𝜎2 > 0, we assume that 𝜎2𝑘 ≤ 𝜎2.

We denote the collection of distributions which satisfy the previous conditions 1), 2)
and 3) as (𝑘, 𝜎2)

4.2. Main Results
The next theorem shows a lower bound of 𝜖 non-interactive private minimax risk

under squared subspace distance.

Theorem 1. Let {𝑋𝑖}𝑛𝑖=1 be samples from 𝑃 ∈ (𝑘, 𝜎2). If 𝑝
4 ≤ 𝑘 ≤ 3𝑝

4 , 𝜖 ∈ (0, 12 ] and
𝑛 ≥ Ω

( 1
𝜖2

𝜆1𝜆𝑘+1
(𝜆𝑘−𝜆𝑘+1)2

min{𝑘, 𝑝 − 𝑘}
)
, then the 𝜖 non-interactive private minimax risk in

the metric of squared subspace distance satisfies:

Nint
𝑛 (((𝑘, 𝜎2)),Φ◦𝜌, 𝜖) ≥ Ω

(
𝜎2

𝑘𝑝
𝑛𝜖2

)
.
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Remark 1. We note that for the non-private case, the minimax risk is lower bounded
by Ω

( 𝜆1𝜆𝑘+1
(𝜆𝑘−𝜆𝑘+1)2

𝑘𝑝
𝑛

)
[10]. Thus, in this case, the impact of the local differential privacy

is to change the number of efficient sample from 𝑛 to 𝑛𝜖2. However, the collection of the
considered distributions needs another assumption which says that ‖𝑋‖2 is bounded by
1 with high probability. This is not necessary in the non-private case [10], but needed
in ours for showing the upper bound.

We also note that although Theorem 1 holds only for 𝑘 = Θ(𝑝), while in practice 𝑘
always be a constant. As we can see from Section 7, the lower bound holds for all 𝑘 if
we relax the condition 2) in our collection of distributions (𝜎2, 𝑘). It is the same for
the high dimensional sparse case.

Finally, note that in the central differential privacy model, [13] showed that the

lower bound of the k-dimensional PCA is Ω̃(
𝑘𝑝 log( 1𝛿 )
𝑛2𝜖2 ) for (𝜖, 𝛿)-differential privacy.

However, this lower bound is measured by the variance of 𝑋 = (𝑋𝑇
1 ,𝑋

𝑇
2 ,⋯ ,𝑋𝑇

𝑛 )
𝑇 ∈

ℝ𝑛×𝑝, not the squared subspace distance used in this paper. Although [13] gave an
upper bound of 𝑂( 𝑘𝑝 log(1∕𝛿)

(𝜆2𝑘−𝜆
2
𝑘+1)𝑛

2𝜖2
) in the general setting using the squared subspace dis-

tance as measurement, it is still unknown whether the bound is optimal. Also, their
lower bound omits the parameters related to the eigenvalues. For the 𝜖 differential pri-
vacy in the central model, [14] showed that the lower bound is Ω( 𝑝2

𝑛2𝜖2(𝜆1−𝜆2)2
) in the

special case of 𝑘 = 1. However, it is still unknown for the general case of 𝑘. Thus, from
the above discussion, we can see that the lower bound of 𝜖 non-interactively locally dif-
ferentially private PCA is similar to the (𝜖, 𝛿) differentially private PCA in the central
model.

One of the main questions is whether the lower bound in Theorem 1 is tight. In the
following, we show that the term Ω( 𝑝𝑘

𝑛𝜖2 ) is tight. By our definition of the parameter
space, we know that for any 𝑋 ∼ 𝑃 ∈ (𝜎2, 𝑘), ‖𝑋‖2 ≤ 1 with high probability. Thus,
we always assume that the event of each ‖𝑋𝑖‖2 ≤ 1 holds. Note that this assumption
also appears in [17, 13, 18]. The idea is the same as in [13], where each 𝑋𝑖 perturbs its
covariance and aggregates the noisy version of covariance, see Algorithm 1 for details.

Theorem 2. For any 𝜖, 𝛿 > 0, Algorithm 1 is (𝜖, 𝛿) (non-interactively) locally differ-
entially private. Furthermore, with probability at least 1 − 𝑒−𝐶1𝑝 − 1

𝑝𝐶2
, the output

satisfies:

‖ sinΘ(𝑉𝑘,𝑉𝑘)‖2𝐹 ≤ 𝑂
( 𝜆21𝑘𝑝 log(1∕𝛿)

(𝜆𝑘 − 𝜆𝑘+1)2𝑛𝜖2
)
, (2)

where 𝐶1,𝐶2 are some universal constants.

In Theorem 7 of [13], the authors provided a similar upper bound for the (𝜖, 𝛿)-
differential privacy in the central model. However, they need to assume that the eigen-
values satisfy the condition 𝜆2𝑘 − 𝜆2𝑘+1 = 𝜔(

√
𝑝), which is not needed in our Theorem 2

where we use some recent result on Davis-Khan theorem (see Section 7 for details).
From the analysis, we can see that, to ensure non-interactive LDP, here we should

add a randomized matrix to the covariance matrix, and this will cause an additional
factor of 𝑂( 1

𝜖2 ) in the error compared with the non-private case.
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Algorithm 1 Local Gaussian Mechanism
𝐈𝐧𝐩𝐮𝐭: data records {𝑋𝑖}𝑛𝑖=1 ∼ 𝑃 𝑛 for 𝑃 ∈ (𝜎2, 𝑘), and for 𝑖 ∈ [𝑛], ‖𝑋‖2 ≤ 1. 𝜖, 𝛿
are the privacy parameters.

1: for Each 𝑖 ∈ [𝑛] do
2: Denote �̃�𝑖�̃�𝑇

𝑖 = 𝑋𝑖𝑋𝑇
𝑖 + 𝑍𝑖, where 𝑍𝑖 ∈ ℝ𝑝×𝑝 is a symmetric matrix where

the upper triangle ( including the diagonal) is i.i.d samples from  (0, 𝜎21 ); here
𝜎21 = 2 ln(1.25∕𝛿)

𝜖2 , and each lower triangle entry is copied from its upper triangle
counterpart.

3: end for
4: Compute �̃� = 1

𝑛
∑𝑛

𝑖=1 �̃�𝑖�̃�𝑇
𝑖 .

5: Output col(𝑉𝑘) where 𝑉𝑘 ∈ ℝ𝑝×𝑘 is the principal 𝑘-subspace of �̃�.

From Theorems 1 and 2, we can see that there is still a gap of 𝑂( 𝜆1
𝜆𝑘+1

) between the
lower and upper bounds. We leave it as an open problem to determine whether these
bounds are tight or not.

5. High Dimensional Sparse Case

From Theorem 1, we can see that for the high dimensional case, i.e. 𝑝 ≫ 𝑛, the
bound in (2) becomes trivial. Thus, to avoid this issue, we need some additional as-
sumption on the parameter space. One of the commonly used assumption is sparsity.
There are many definitions of sparsity on PCA and we use the row sparsity in this paper,
which has also been studied in [9, 10, 17].

We first define the (𝑝, 𝑞)-norm of a 𝑝×𝑘 matrix 𝐴 as the usual 𝓁𝑞 norm of the vector
of row-wise 𝓁𝑝 norms of 𝐴:

‖𝐴‖𝑝,𝑞 ∶= ‖(‖𝑎1∗‖𝑝, ‖𝑎2∗‖𝑝,⋯ , ‖𝑎𝑝∗‖𝑝)‖𝑞 , (3)

where 𝑎𝑗∗ denotes the 𝑗-th row of 𝐴. Note that ‖ ⋅ ‖2,0 is coordinate independent, i.e.
‖𝐴𝑂‖2,0 = ‖𝐴‖2,0 for any orthogonal matrix 𝑂 ∈ ℝ𝑘×𝑘. We define the row sparse
space as follows.

Definition 3. Let 𝑠 be the sparsity level parameter satisfying the condition of 𝑘 ≤ 𝑠 ≤ 𝑝.
The 𝑠-(row) sparse subspace is defined as follows

0(𝑠) = {col(𝑈 ),𝑈 ∈ ℝ𝑝×𝑘 and orthogonal , ‖𝑈‖2,0 ≤ 𝑠}.

We define our parameter space, (𝑠, 𝑘, 𝜎2), to be the same as in the previous section
with an additional condition that  ∈ 0(𝑠), where  is the 𝑘-dimensional principal
subspace of covariance matrix Σ.

Below, we will first derive a lower bound of the non-interactive locally differentially
private PCA in the high dimensional sparse case.
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Theorem 3. Let {𝑋𝑖}𝑛𝑖=1 be the observations sampled from a distribution𝑃 ∈ (𝑠, 𝑘, 𝜎2).

If the privacy parameter 𝜖 ∈ (0, 12 ], 𝑛 ≥ Ω((𝑠 − 𝑘)𝜎
2(𝑘+log 𝑝)

𝜖2 ). Then for all 𝑘 ∈ [𝑝] sat-
isfying the condition of 2𝑘 ≤ 𝑠 − 𝑘 ≤ 𝑝 − 𝑘 and 𝑝

4 ≤ 𝑘 ≤ 3𝑝
4 , the 𝜖 non-interactive

private minimax risk in the metric of squared subspace distance satisfies the following

Nint
𝑛 (((𝑠, 𝑘, 𝜎2), 𝜖) ≥ Ω

(
𝜎2

𝑠(𝑘 + log 𝑝)
𝑛𝜖2

)
.

Note that in the non-private case, the optimal minimax risk isΘ
(
𝜎2 𝑠(𝑘+log 𝑝)𝑛

)
. Thus,

same as in the low dimensional case, the impact of the privacy constraint is to change
the efficient samples from 𝑛 to 𝑛𝜖2.

Next, we consider the upper bound. In the non-private case, the optimal procedure
is to solve the following NP-hard optimization problem [9]:

max⟨𝑆,𝑈𝑈𝑇 ⟩
subject to 𝑈𝑇𝑈 = 𝐼𝑘,𝑈 ∈ ℝ𝑝×𝑘 and ‖𝑈‖2,0 ≤ 𝑠, (4)

where 𝑆 is the empirical covariance matrix. Our upper bound is based on (4). How-
ever, instead of solving (4) on the perturbed version of the empirical covariance matrix,
we perturb the covariance matrix and solve the following optimization problem on the
convex hull of the constraints in (4), that is:

�̂� = argmax⟨�̃�,𝑋⟩ − 𝜆‖𝑋‖1,1 (5)
subject to 𝑋 ∈ 𝑘 ∶= {𝑋 ∶ 0 ⪯ 𝑋 ⪯ 𝐼 and Tr(𝑋) = 𝑘},

where ⟨𝑆,𝑋⟩ = Tr(𝑆𝑋𝑇 ). Note that the constraints in (5), which is called Fantope
[23][11], is the convex hull of the constrains in (4). Also, since the constraints in (5)
only guarantees that the rank of the output is ≥ 𝑘, the output �̂� needs not to be a matrix
with exact rank of 𝑘. Thus, in order to obtain a proper 𝑘-dimensional subspace, we just
output the 𝑘-PCA of �̂�.

Theorem 4. For any given 0 < 𝜖, 𝛿 < 1, if {𝑋𝑖}𝑛𝑖=1 ∼ 𝑃 𝑛 for 𝑃 ∈ (𝑠, 𝜎2, 𝑘) and
‖𝑋‖2 ≤ 1 for all 𝑖 ∈ [𝑛], then the solution to the optimization problem (5) is (𝜖, 𝛿) non-
interactive locally differentially private. Moreover, if let 𝑉𝑘 denote the 𝑘-dimensional

principal component subspace of �̂� and set 𝜆 ≤ 𝑂(𝜆1
√

log 𝑝
𝑛𝜖2 ), then with probability at

least 1 − 2
𝑝2 −

1
𝑝𝑐 , the following holds

‖ sinΘ(𝑉𝑘,𝑉𝑘)‖2𝐹 ≤ 𝑂
( 𝜆21
(𝜆𝑘 − 𝜆𝑘+1)2

𝑠2 log 𝑝
𝑛𝜖2

)
,

where 𝑐 is a universal constant.

From the analysis, we can see that, to ensure non-interactive LDP, here we still
need to add a randomized matrix to the covariance matrix, which is similar as in the
low dimensional case. And this will cause an additional factor of 𝑂( 1

𝜖2 ) in the error
compared with the non-private case in [11].
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Algorithm 2 Local Gaussian Mechanism-High Dimension
𝐈𝐧𝐩𝐮𝐭: data records {𝑋𝑖}𝑛𝑖=1 ∼ 𝑃 𝑛 for 𝑃 ∈ (𝑠, 𝜎2, 𝑘), and for 𝑖 ∈ [𝑛], ‖𝑋‖2 ≤ 1. 𝜖, 𝛿
are privacy parameters. 𝜌 > is a constant.

1: for Each 𝑖 ∈ [𝑛] do
2: Denote �̃�𝑖�̃�𝑇

𝑖 = 𝑋𝑖𝑋𝑇
𝑖 + 𝑍𝑖, where 𝑍𝑖 ∈ ℝ𝑝×𝑝 is a symmetric matrix where

the upper triangle, including the diagonal, is i.i.d samples from  (0, 𝜎2); here
𝜎2 = 2 ln(1.25∕𝛿)

𝜖2 , and each lower triangle entry is copied from its upper triangle
counterpart.

3: end for
4: Compute �̃� = 1

𝑛
∑𝑛

𝑖=1 �̃�𝑖�̃�𝑇
𝑖 .

5: Get the optimal solution �̂� in (5) or do as the followings
6: Setting 𝑌 (0) = 0,𝑈 (0) = 0
7: for 𝑡 = 1, 2,⋯ do
8: 𝑋(𝑡+1) = 𝑘 (𝑌 (𝑡) − 𝑈 (𝑡) + �̃�

𝜌 )
9: 𝑌 (𝑡+1) = 𝜆∕𝜌(𝑋(𝑡+1)+𝑈 (𝑡)) where  is the entry-wise soft thresholding operator

defined as 𝜆∕𝜌(𝑥) = sign(𝑥) max(|𝑥| − 𝜆∕𝜌, 0).
10: 𝑈 (𝑡+1) = 𝑈 (𝑡) +𝑋(𝑡+1) − 𝑌 (𝑡+1)

11: Return 𝑌 (𝑡)

12: end for
13: Let k-dimensional principal component of �̂� or 𝑌 (𝑡) be 𝑉𝑘, output ̂ = col(𝑉𝑘).

Since the optimization problem (5) is convex, we can follow the approach in [11] to
solve it by using ADMM method (see Algorithm 2 for the details).

Comparing with the lower bound of the private minimax risk in Theorem 3, we can
see that the bound in Theorem 4 is roughly larger than the optimal rate by a factor of
𝑂( 𝜆1

𝜆𝑘+1
𝑠
𝑘 ). This means that the upper bound is only near optimal [11]. A remaining

open problem is to determine whether it is possible to get a tighter upper bound that
does not contain the term of 𝑠

𝑘 in the gap.

Support recovery under local differential privacy. In the high dimensional sparse case,
to ensure that an estimator 𝜃 is consistent, we need to demonstrate that 𝜌(𝜃, 𝜃∗) → 0
as 𝑛 → ∞ and supp(𝜃) = supp(𝜃∗). By the definition of row sparsity (3), we will
show that the solution of (5) can recover the support under some reasonable assump-
tions. For a matrxi 𝑉 ∈ ℝ𝑝×𝑘, we let supp(𝑉 ) = supp((‖𝑉1∗‖2, ‖𝑉2∗‖2,⋯ , ‖𝑉𝑝∗‖2)) =
supp(diag(𝑉 𝑉 𝑇 )).

Below we assume that the underlying covariance matrix Σ is limited correlated, i.e.,
satisfies the limited correlation condition (LCC). LCC is first proposed by [24], which
is an extension of the Irrepresentable Condition in [25]. Let 𝐽 = supp(𝑉𝑘), and Σ be
the following block representation:

Σ =
[
Σ𝐽𝐽 Σ𝐽𝐽 𝑐

Σ𝐽 𝑐𝐽 Σ𝐽 𝑐𝐽 𝑐

]
,

where Σ𝐽1𝐽2 denotes the |𝐽1|×|𝐽2| submatrix of Σ consisting of rows in 𝐽1 and columns
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in 𝐽2.

Definition 4 (LCC). A symmetric matrix Σ satisfies the limited correlation condition
with constant 𝛼 ∈ (0, 1], if 8𝑠

𝜆𝑘(Σ)−𝜆𝑘+1(Σ)
‖Σ𝐽 𝑐𝐽‖2,∞ ≤ 1 − 𝛼.

Under the LCC assumption, we now show that our private estimator can recover the
support 𝐽 with high probability by a modified argument for the Theorem in [11].

Theorem 5. Under the same assumption in Theorem 4, if the covariance matrix is
further assumed to satisfy the LCC condition with 𝛼 (Definition 4) and parameters
(𝑛, 𝑝, 𝑠, 𝜆1, 𝜆𝑘, 𝜆𝑘+1, 𝜖, 𝛿, 𝛼) satisfy the following condition

𝑛 ≥ Ω
(𝑠2𝜆21 log

1
𝛿 log 𝑝(8𝜆1 + 𝜆𝑘 − 𝜆𝑘+1)

𝜖2𝛼2(𝜆𝑘 − 𝜆𝑘+1)2
)
, (6)

then by setting 𝜆 = 𝑂(
√
log 1∕𝛿
𝛼𝜖

√
log 𝑝
𝑛 ), with probability at least 1− 2

𝑝2 −
1
𝑝𝑐 , the solution

�̂� to the optimization problem (5) is unique and satisfies supp(diag(�̂�)) ⊆ 𝐽 . Moreover,
if either

min
𝑗∈𝐽

√
(𝑉𝑘𝑉 𝑇

𝑘 )𝑗𝑗 ≥ 𝑂
( 𝜆1𝑠

√
log 1∕𝛿

𝛼𝜖(𝜆𝑘 − 𝜆𝑘+1)

√
log 𝑝
𝑛

)
or

min
(𝑖,𝑗)∈𝐽2

Σ𝑖𝑗 ≥ 𝑂(
√
log 1∕𝛿𝜆1
𝛼𝜖

√
log 𝑝
𝑛

), rank(sign(Σ𝐽𝐽 )) = 1

holds, then supp(diag(�̂�)) = 𝐽 .

6. Experiments

In this section we conduct numerical experiments on both synthetic and real world
datasets to validate our theoretical results on utility and privacy tradeoff.

6.1. Low dimensional case
Experimental settings. For synthetic datasets, we generate the data samples {𝑋𝑖}𝑛𝑖=1 in-
dependently from a multivariate Gaussian distribution (0,Σ), whereΣ = 𝜆

5𝑝(𝜆+1))𝑉 𝑉 𝑇+
1

5𝑝(𝜆+1)𝐼𝑝 for 𝑉 ∈ 𝕍𝑝,𝑘. It can be shown that ‖𝑋𝑖‖2 ≤ 1 ∀𝑖 ∈ [𝑛] with high prob-
ability. We choose 𝑛 = 105, 𝑝 = 40, 𝑘 = {5, 10, 15, 20}, 𝜖 = 0.5, 𝛿 = 10−4, and
𝜆 = 1. For real world datasets, we run Algorithm 1 on Covertype and Buzz datasets
[26] with normalized rows for each dataset. The error is measured by the subspace dis-
tance ‖𝑉𝑘𝑉 𝑇

𝑘 −𝑉𝑘𝑉 𝑇
𝑘 ‖𝐹 . For each experiment, we repeat 20 times and take the average

as the final result.
Figure 1 and 2 are the results for the real world datasets while Figure 3 is for syn-

thetic datasets. Figures indicate that 1) the error deceases as the sample size increases
or 𝜖 increases (i.e., becomes less private); 2) the error increases as the dimensionality
𝑝 increases or the dimensionality 𝑘 of the target subspace increases. All these support
our theoretical analysis in Theorem 2.
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Figure 1: LDP-PCA in low dimensional case on real world datasets with different sample size. The left one
is for Covertype. The middle one is for Buzz. The right one is for Year dataset.

6.2. High dimensional case
Experimental settings. For the high dimensional case, we consider the same distribu-
tions as in the low dimensional case and generate the target subspace 𝑉 in the following
way. For a given sparsity parameter 𝑠, we first generate a random orthogonal matrix
𝑉 ∈ ℝ𝑠×𝑘, then pad it with rows of zeros, and finally randomly permute the matrix. We
set 𝑘 = 10, 𝑛 = 2000, 𝑝 = 400, 𝑠 = {15, 20, 40, 80} and 𝜖 = 1.

Besides the synthetic datasets, we also test our algorithm on some real world datasets
in [26] and [27]. We first orthogonalize each row of the datasets to 1 as the preprocess-
ing, then run the method in [28] 50 times, and select the one with the largest variance
as the optimal solution.

Figure 3 shows the results on the synthetic data. We can see that 1) as the term of 𝑘
𝑛

increases ( 𝑛 decreases), the error increases accordingly; 2) the error slightly increases
when the dimensionality 𝑝 increases, which is due to the fact that the upper bound in
Theorem 4 depends only logarithmically on 𝑝 (i.e., log 𝑝); 3) the error decreases when 𝜖
increases. Table 1 and 2 show the results of the error with different sparsity and privacy,
respectively. We can see that these results are consistent with our theoretical analysis
in Theorem 4.
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Figure 2: LDP-PCA in low dimensional case on real world datasets at different levels of privacy. The left
one is for Covertype. The middle one is for Buzz. The right one is for Year dataset.

Dataset Size 𝑠 Error

cancer RNA-Seq (801, 20531)
10 3.162
20 3.381
40 3.668

Leukemia (72, 7128)
10 3.162
20 3.435
40 3.701

Colon cancer (60, 2000)
10 2.449
20 3.058
40 3.228

isolet5 (1559, 617)
10 1.441
20 2.023
40 2.508

lung (203, 3312)
10 2.858
20 3.464
40 3.901

NIPS (11463, 5811)
10 3.643
20 3.881
40 4.472

Table 1: Results with different sparsity 𝑠 for LDP-High dimensional PCA on real world datasets. For all the
datasets, the target dimensions 𝑘 is set to be 𝑘 = 10 and 𝜖 = 2.
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(a) Relative error w.r.t dimensionality (b) Relative error w.r.t dimensionality

(c) Relative error w.r.t privacy level

Figure 3: LDP-PCA in low dimensional case on synthetic datasets. The left one is for different target dimen-
sions 𝑘 over sample size 𝑛 with fixed 𝜖 = 0.5 and 𝑝 = 40. The middle one is for different dimensions with
fixed 𝑛 = 105 and 𝜖 = 0.5. The right one is for different level of privacy with fixed 𝑛 = 105 and 𝑝 = 40.

Dataset Size 𝜖 Error

cancer RNA-Seq (801, 20531)
1 3.559
0.5 3.790
0.1 3.967

Leukemia (72, 7128)
1 4.375
0.5 4.403
0.1 4.518

Colon cancer (60, 2000)
1 3.013
0.5 4.237
0.1 4.310

isolet5 (1559, 617)
1 2.884
0.5 3.405
0.1 3.896

lung (203, 3312)
1 4.042
0.5 4.275
0.1 4.362

NIPS (11463, 5811)
1 4.006
0.5 4.052
0.1 4.472

Table 2: Results with different privacy levels 𝜖 for LDP-High dimensional PCA on real world datasets. For
all the datasets, the target dimensions 𝑘 is set to be 𝑘 = 10 and 𝑠 = 20.
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(a) Relative error w.r.t dimensionality (b) Relative error w.r.t sparsity level

(c) Relative error w.r.t privacy level

Figure 4: LDP-PCA in high dimensional case on synthetic datasets. The left one is for different target dimen-
sions 𝑘 over sample size 𝑛 with fixed 𝜖 = 1 and 𝑝 = 400. The middle one is for different dimensions with
fixed 𝑛 = 2000 and 𝜖 = 1. The right one is for different level of privacy with fixed 𝑛 = 2000 and 𝑝 = 400.

7. Detailed Proofs

7.1. Proof of Theorem 1
Proof of Theorem 1. We first prove the non-interactive case, which is based on the fol-
lowing lemma.

Lemma 1 (Corollaries 2 and 4 in [20]). Let 𝑉 be randomly and uniformly distributed in . Assume that given 𝑉 = 𝑣, 𝑋𝑖 is sampled independently according to the distribution
of 𝑃𝑣,𝑖 for 𝑖 = 1,⋯ , 𝑛. Then, there is a universal constant 𝑐 < 19 such that for any
𝛼 ∈ (0, 2335 ], we have

𝐼(𝑍1,𝑍2,⋯ ,𝑍𝑛;𝑉 ) ≤ 𝑐𝜖2
𝑛∑
𝑖=1

1
||2

∑
𝑣,𝑣′∈

‖𝑃𝑣,𝑖 − 𝑃𝑣′,𝑖‖2𝑇𝑉 .

The 𝜖 non-interactive private minimax risk satisfies

Nint
𝑛 (𝜃(),Φ◦𝜌, 𝜖) ≥ Φ(𝛿)

2
(
1 −

𝐼(𝑍1,⋯ ,𝑍𝑛;𝑉 ) + log 2
log ||

)
.

Where 𝐼(⋅; ⋅) is the mutual information.

For the packing set, we have the following lemma:
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Lemma 2. [[10]] Let (Θ, 𝜌) be a totally bounded metric space. For any subset 𝐸 ⊂ Θ,
denote by  (𝐸, 𝜖) the 𝜖-covering number of 𝐸, that is, the minimal number of balls of
radius 𝜖 whose union contained in 𝐸. Also denote by (𝐸, 𝜖) the 𝜖-packing number
of 𝐸, that is, the maximal number of points in 𝐸 whose pairwise distance is at least 𝜖.
If there exist 0 ≤ 𝑐0 ≤ 𝑐1 < ∞ and 𝑑 > 0 such that:

(
𝑐0
𝜖
)𝑑 ≤  (Θ, 𝜖) ≤ (

𝑐1
𝜖
)𝑑

for all 0 < 𝜖 ≤ 𝜖0, then for any 1 ≥ 𝛼 > 0, there exists a packing set  = {𝑣1,⋯ , 𝑣𝑚}
with 𝑚 ≥ ( 𝑐0

𝛼𝑐1
)𝑑 such that 𝛼𝜖 ≤ 𝜌(𝑣𝑖, 𝑣𝑗) ≤ 2𝜖 for each 𝑖 ≠ 𝑗.

Now, for the Grassmannian manifold 𝔾𝑝,𝑘 we have the following lemma regarding
the metric entropy (due to [29]).

Lemma 3. For any 𝑉 ∈ 𝔾𝑝,𝑘, identify the subspace span(𝑉 ) with its projection matrix
𝑉 𝑉 𝑇 , and define the metric on 𝔾𝑝,𝑘 by 𝜌(𝑉 𝑉 𝑇 ,𝑈𝑈𝑇 ) = ‖𝑉 𝑉 𝑇 − 𝑈𝑈𝑇 ‖𝐹 . Then for
any 𝜖 ∈ (0,

√
2min{𝑘, 𝑝 − 𝑘}),

(
𝑐0
𝜖
)𝑘(𝑝−𝑘) ≤  (𝔾𝑝,𝑘, 𝜖) ≤ (

𝑐1
𝜖
)𝑘(𝑝−𝑘),

where 𝑐0, 𝑐1 are absolute constants.

Proof of Theorem 1. By Lemmas 3 and 2, we know that there exists a packing set 
with log || ≥ 𝑘(𝑝 − 𝑘) log 𝑐0

𝛼𝑐1
with 2𝜖1 ≥ 𝜌(𝑉 𝑉 𝑇 ,𝑈𝑈𝑇 ) ≥ 𝛼𝜖1, where 𝛼 and 𝜖1 will

be specified later. Now we construct the collection of distributions; for each 𝑉 ∈  ,
we define

Σ𝑉 = 𝜆
5𝑝(𝜆 + 1)

𝑉 𝑉 𝑇 + 1
5𝑝(𝜆 + 1)

𝐼𝑝, (7)

that is, 𝜆1 = 𝜆2 = ⋯ = 𝜆𝑘 = 1
5𝑝 and 𝜆𝑘+1 = ⋯ = 𝜆𝑝 = 1

5𝑝(𝜆+1) . Then we let 𝑃𝑉

denote the distribution  (0,Σ𝑉 ).
Now, we first show that the distribution is contained in our parameter space. For

𝑥 ∼  (0,Σ𝑉 ), we know that there exists an orthogonal matrix 𝑀 ∈ ℝ𝑝×𝑝 which
satisfies 𝑀𝑥 ∼  (0,Diag(Σ𝑉 )), where

Diag(Σ𝑉 ) =

⎡
⎢
⎢
⎢
⎢
⎢⎣

1
5𝑝

1
5𝑝

⋱
1

5𝑝(𝜆+1)

⎤
⎥
⎥
⎥
⎥
⎥⎦

.

Thus, we have ‖𝑥‖22 = ‖𝑀𝑥‖22 ∼
1
5𝑝𝜒

2
𝑘 +

1
5𝑝(𝜆+1)𝜒

2
𝑝−𝑘. For the 𝜒2-distribution, we have

the following concentration bound:

Lemma 4 ([30]). If 𝑧 ∼ 𝜒2
𝑛 , then

ℙ[𝑧 − 𝑛 ≥ 2
√
𝑛𝑥 + 2𝑥] ≤ exp(−𝑥).
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By Lemma 4, we have the following with probability at least 1−exp(−𝑘)−exp(−(𝑝−
𝑘)) ≥ 1−2 exp(− 𝑝

4 ) (by our definition of 𝑘), ‖𝑥‖22 ≤ 1
5𝑝5𝑘+

1
5𝑝(𝜆+1)5(𝑝−𝑘) ≤ 1. Thus,

‖𝑥‖2 ≤ 1 with probability at least 1− exp(−Ω(𝑝)), which is contained in the parameter
space.

The following lemma shows that the Total Variation distance between 𝑃𝑉 and 𝑃𝑉 ′

can be bounded by the subspace distance between 𝑉 and 𝑉 ′.

Lemma 5. For any pair of 𝑉 ,𝑉 ′ ∈  , by the KL-distance 𝐷(⋅||⋅) of two Gaussian
distributions, we have that

𝐷(𝑃𝑉 ||𝑃𝑉 ′ ) ≤ 𝜆2

2(1 + 𝜆)
‖ sinΘ(𝑉 ,𝑉 ′)‖2𝐹 .

Thus, by PinskerâĂŹs inequality that is ‖𝑃𝑉 − 𝑃𝑉 ′‖2𝑇𝑉 ≤ 𝜆2

1+𝜆‖ sinΘ(𝑉 ,𝑉 ′)‖2𝐹 .

Proof of Lemma 5.

𝐷(𝑃𝑉 ||𝑃𝑉 ′ ) = 𝐷( (0,Σ𝑉 )|| (0,Σ𝑉 ′ ))

= 1
2

trace(Σ−1
𝑉 ′ (Σ𝑉 − Σ𝑉 ′ )).

Now
Σ−1
𝑉 ′ = 5𝑝(𝜆 + 1)[(1 + 𝜆)−1𝑉 ′𝑉 ′𝑇 + (𝐼𝑝 − 𝑉 ′𝑉 ′𝑇 )]

and
Σ𝑉 − Σ𝑉 ′ = 𝜆

5𝑝(𝜆 + 1)
(𝑉 𝑉 𝑇 − 𝑉 ′𝑉 ′𝑇 ).

we can get

trace(Σ−1
𝑉 ′ (Σ𝑉 − Σ𝑉 ′ )) = 𝜆2

1 + 𝜆
‖ sinΘ(𝑉 ,𝑉 ′)‖2𝐹 .

By Lemmas 1, 2 and 3, we have

𝐼(𝑍1,𝑍2,⋯ ,𝑍𝑛;𝑉 ) ≤ 4 𝜆2

1 + 𝜆
𝑐𝑛𝜖2𝜖21

and

Nint
𝑛 (𝜃(),Φ◦𝜌, 𝜖) ≥ 𝛼2𝜖21(1 −

4 𝜆2

1+𝜆𝑐𝑛𝜖
2𝜖21 + log 2

𝑘(𝑝 − 𝑘) log 𝑐0
𝛼𝑐1

),

where 𝜖1 ∈ (0,
√
2min{𝑘, 𝑝 − 𝑘}].

Let 𝛼 = 𝑐0
4𝑐1

and 𝜖21 = 𝑘(𝑝−𝑘)

8 𝜆2
1+𝜆 𝑐𝑛𝜖

2
. We have that if 𝜖21 ≤ 2min{𝑘, 𝑝 − 𝑘} (which holds

under the assumption of 𝑛 ≥ Ω( 1
𝜖2

𝜆1𝜆𝑘+1
(𝜆𝑘−𝜆𝑘+1)2

min{𝑘, 𝑝−𝑘})), thenNint
𝑛 (𝜃(),Φ◦𝜌, 𝜖) ≥

Ω( (𝜆+1)𝑘(𝑝−𝑘)𝜆2𝑛𝜖2 ).
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7.2. Proof of Theorem 2
The following lemma is based on [31][32].

Lemma 6. Suppose that 𝑋 and {𝑋𝑖}𝑛𝑖=1 are i.i.d sub-Gaussian random vectors in 𝑝

with zero mean and covariance matrix 0 ⪯ Σ. Let 𝑆𝑛 =
1
𝑛
∑𝑛

𝑖=1𝑋𝑖𝑋𝑇
𝑖 be the empirical

covariance matrix, {𝜆𝑖}
𝑝
𝑖=1 be the eigenvalues of Σ sorted in the descending order, and

𝑟 = Tr(Σ)
‖Σ‖2

. Then there exist constants 𝑐 ≥ 1 and 𝐶 ≥ 0 such that when 𝑛 ≥ 𝑟, we have
the following:

ℙ(‖𝑆𝑛 − Σ‖2 ≥ 𝑠) ≤ exp(− 𝑠
𝑐1𝜆1

√
𝑟∕𝑛

),∀𝑠 ≥ 0.

Proof of Theorem 2. Instead of using Davis-Kahan sin−Θ theorem in [33] and Weyl’s
inequality (which is used in [13] based on the assumption that 𝜆𝑘−𝜆𝑘+1 = 𝜔(

√
𝑝)), we

will use a generalized version of Davis-Kahan Theorem [34].

Lemma 7 (Generalized Davis-Kahan Theorem). Let Σ, Σ̂ ∈ ℝ𝑝×𝑝 be two symmetric
matrices, with eigenvalues 𝜆1 ≥ ⋯ , 𝜆𝑝 and �̂�1 ≥ ⋯ ≥ �̂�𝑝, respectively. Fix 1 ≤ 𝑟 ≤
𝑠 ≤ 𝑝 and assume that min(𝜆𝑟−1−𝜆𝑟, 𝜆𝑠−𝜆𝑠+1) > 0, where 𝜆0 ∶= ∞ and 𝜆𝑝+1 ∶= −∞.
Let 𝑑 ∶= 𝑠− 𝑟+ 1. If 𝑉 = (𝑣𝑟, 𝑣𝑟+1,⋯ , 𝑣𝑠) ∈ ℝ𝑝×𝑑 and 𝑉 = (�̂�𝑟, �̂�𝑟+1,⋯ , �̂�𝑠) ∈ ℝ𝑝×𝑑

have orthogonal columns satisfying Σ𝑣𝑗 = 𝜆𝑗𝑣𝑗 and Σ̂�̂�𝑗 = �̂��̂�𝑗 for 𝑗 = 𝑟, 𝑟 + 1,⋯ , 𝑠,
then

‖ sinΘ(𝑉 ,𝑉 )‖𝐹 ≤ 2min(
√
𝑑‖Σ̂ − Σ‖2, ‖Σ̂ − Σ‖𝐹 )

min(𝜆𝑟−1 − 𝜆𝑟, 𝜆𝑠 − 𝜆𝑠+1)
.

By taking 𝑟 = 1, 𝑠 = 𝑘 in Lemma 7, we have

‖ sinΘ(col(𝑉𝑘), col(𝑉𝑘))‖2𝐹 ≤ 𝑂(
𝑘‖�̃� − Σ‖22
(𝜆𝑘 − 𝜆𝑘+1)2

).

Let 𝑆 denote the non-noise covariance matrix 𝑆 = 1
𝑛
∑𝑛

𝑖=1𝑋𝑖𝑋𝑇
𝑖 . Then

‖�̃� − Σ‖2 ≤ ‖�̃� − 𝑆‖2 + ‖𝑆 − Σ‖2.
For the fist term, we have ‖�̃�−𝑆‖2 = ‖𝑍‖2, where 𝑍 is a symmetric matrix whose up-
per triangle, including the diagonal, is i.i.d sample from  (0, 𝜎2) with 𝜎2 = 2 ln(1.25∕𝛿)

𝑛𝜖2 .
Thus, by Corollary 2.3.6 in [35], we have, with probability at least 1 − 1

𝑝Ω(1) , that
‖𝑍‖2 ≤ 𝑂(

√
𝑝𝜎).

For the second term, by Lemma 6, we have, with probability at least 1− exp(−𝐶1),
that ‖𝑆 − Σ‖2 ≤ 𝑂(𝜆1

√
𝑟
𝑛 ). Combining the above results, we get the proof.

7.3. Proof of Theorem 3
The construction of the class of distributions follows the idea presented in [9]. For

self-completeness, we rephrase below some important lemmas. See [9] for the proofs.
Similar to the proof of Theorem 1, we consider the same class of distribution as

in (7). Thus, the key step is to find a packing set in 𝕍𝑝,𝑘. The next lemma provides a
general method for constructing such local packing sets.
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Lemma 8 (Local Stiefel Embedding). Let 1 ≤ 𝑑 ≤ 𝑘 ≤ 𝑝 and the function 𝐴𝛼 ∶
𝕍𝑝−𝑘,𝑑 ↦ 𝕍𝑝,𝑘 be defined in block form as

𝐴𝛼(𝐽 ) =
⎡
⎢
⎢⎣

(1 − 𝛼2)
1
2 𝐼𝑑 0

0 𝐼𝑘−𝑑
𝛼𝐽 0

⎤
⎥
⎥⎦

(8)

for 0 ≤ 𝛼 ≤ 1. If 𝐽1, 𝐽2 ∈ 𝕍𝑝−𝑘,𝑑 , then

𝛼2(1 − 𝛼2)‖𝐽1 − 𝐽2‖2𝐹 ≤ ‖ sinΘ(𝐴𝛼(𝐽1),𝐴𝛼(𝐽2))‖2𝐹
≤ 𝛼2‖𝐽1 − 𝐽2‖2𝐹 .

By Lemmas 1 and 8, we have the following lemma.

Lemma 9. Let 𝛼 ∈ [0, 1], 𝜖 ∈ (0, 2335 ] and {𝐽1,⋯ , 𝐽𝑁} ⊂ 𝕍𝑝−𝑘,𝑑 for some 1 ≤ 𝑑 ≤
𝑘 ≤ 𝑝. For each 𝑖 ∈ [𝑁], let 𝑃𝑖 be the distribution of  (0,Σ𝐴𝛼(𝐽𝑖)), where Σ𝐴𝛼(𝐽𝑖) is in
(7). If

min
𝑖≠𝑗 ‖𝐽𝑖 − 𝐽𝑗‖𝐹 ≥ 𝛿𝑁 ,

then the 𝜖 non-interactive private minimax risk in the metric of squared subspace dis-
tantce satisfies:

Nint
𝑛 (𝜃(),Φ◦𝜌, 𝜖) ≥ 𝛿2𝑁𝛼2(1 − 𝛼2)

2

× [1 −
4𝑐𝛼2𝜖2𝑑𝑛 𝜆2

1+𝜆 + log 2

log𝑁
].

For variable selection, we have the following lemma.

Lemma 10 (Hypercube construction [36]). Let𝑚 be an integer satisfying 𝑒 ≤ 𝑚 and 𝑠 ∈
[1,𝑚]. There exists a subset {𝐽1,⋯ , 𝐽𝑁} ⊂ 𝕍𝑚,1 satisfying the following properties:

1. ‖𝐽𝑖‖2,0 ≤ 𝑠, ∀𝑖 ∈ [𝑁],

2. ‖𝐽𝑖 − 𝐽𝑗‖22 ≥ 1
4 ,

3. log𝑁 ≥ max{𝑐𝑠[1 + log(𝑚∕𝑠)], log𝑚}, where 𝑐 ≥ 1
30 is an absolute constant.

We choose 𝑑 = 1 and 𝛿𝑁 = 1
2 in Lemma 9 and 𝑚 = 𝑝 − 𝑘 in Lemma 10. Then, if

set 𝛼2 = 𝑂( 1+𝜆𝜆2
𝑠 log 𝑝
𝑛𝜖2 ), we get Nint

𝑛 (𝜃(),Φ◦𝜌, 𝜖) ≥ Ω( 1+𝜆𝜆2
𝑠 log 𝑝
𝑛𝜖2 ).

The following lemma shows packing sets in the Grassman manifold.

Lemma 11 ([37]). Let 𝑘 and 𝑠 be integers satisfying 1 ≤ 𝑘 ≤ 𝑠 − 𝑘 and 𝛿 > 0. There
exists a subset {𝐽1,⋯ , 𝐽𝑁} ⊂ 𝕍𝑠,𝑘 satisfying the following properties:

1. ‖ sin(𝐽𝑖, 𝐽𝑗)‖𝐹 ≥ 𝑘
√
𝛿 for all 𝑖 ≠ 𝑗 and
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2. log𝑁 ≥ 𝑘(𝑠 − 𝑘) log( 𝑐2𝛿 ), where 𝑐2 > 0 is an absolute constant.

We set 𝑠 = 𝑠 − 𝑘, 𝑚 in Lemma 11 and 𝑘 = 𝑑 in Lemma 9. For each 𝐽𝑖 ∈ 𝕍𝑠−𝑘,𝑘
in Lemma 11, we can turn it into a matrix in 𝕍𝑝−𝑘,𝑘 by padding additional rows with

zero entries. Thus, if taking 𝛿𝑁 = 𝑂(
√
𝑘
𝑒 ) and 𝛼2 = Θ(𝜆+1𝜆2

𝑠
𝑛𝜖2 ) in Lemma 9, we have

Nint
𝑛 (𝜃(),Φ◦𝜌, 𝜖) ≥ Ω(𝜆+1𝜆2

𝑠𝑘
𝑛𝜖2 ). Putting everything together, we have

Nint
𝑛 (𝜃(),Φ◦𝜌, 𝜖) ≥ Ω(1 + 𝜆

𝜆2
max{

𝑠 log 𝑝
𝑛𝜖2

, 𝑠𝑘
𝑛𝜖2

})

≥ Ω(𝜆 + 1
𝜆2

𝑠(𝑘 + log 𝑝)
𝑛𝜖2

).

7.4. Proof of Theorem 4
Our proof follows the framework in [11]. First, we show that the subspace distance

is close to ‖�̂� − 𝑉𝑘𝑉 𝑇
𝑘 ‖2𝐹 , where 𝑉𝑘 is the 𝑘-dimensional principal subspace of Σ.

Lemma 12. [[9]] Let𝐴,𝐵 be symmetric matrices and𝑉𝐴,𝑘,𝑉𝐵,𝑘 be their 𝑘-dimensional
principal component subspace, respectively. Let 𝛿𝐴,𝐵 = max{𝜆𝑘(𝐴)−𝜆𝑘+1(𝐴), 𝜆𝑘(𝐵)−
𝜆𝑘+1(𝐵)}. Then, we have

‖ sinΘ(𝑉𝐴,𝑘,𝑉𝐵,𝑘)‖𝐹 ≤ √
2
‖𝐴 − 𝐵‖𝐹

𝛿𝐴,𝐵
.

By Lemma 12, we get the following lemma.

Lemma 13.
‖ sinΘ(𝑉𝑘,𝑉𝑘)‖2𝐹 ≤ 2‖�̂� − 𝑉𝑘𝑉

𝑇
𝑘 ‖2𝐹 .

Thus, we have the following bound for ‖�̂� − 𝑉𝑘𝑉 𝑇
𝑘 ‖𝐹 .

Lemma 14 ([11]). Let 𝐴 be a symmetric matrix and 𝐸 be its projection onto the
subspace spanned by the eignevectors of 𝐴 corresponding to its 𝑘-largest eigenvalues
𝜆1 ≥ 𝜆2 ≥ ⋯. If 𝛿𝐴 = 𝜆𝑘 − 𝜆𝑘+1 > 0, then

𝛿𝐴
2
‖𝐸 − 𝐹‖2𝐹 ≤ ⟨𝐴,𝐸 − 𝐹 ⟩

for all 𝐹 satisfying 0 ⪯ 𝐹 ⪯ 𝐼 and Tr(𝐹 ) = 𝑘.

Lemma 15. In the optimization problem (5), if 𝜆 ≥ ‖�̃� − Σ‖∞,∞, then

‖�̂� − 𝑉𝑘𝑉
𝑇
𝑘 ‖𝐹 ≤ 4𝑠𝜆

𝜆𝑘(Σ) − 𝜆𝑘+1(Σ)
,

where ‖𝐴‖∞,∞ = max𝑖,𝑗 |𝐴𝑖,𝑗| for any matrix 𝐴 ∈ ℝ𝑚×𝑛.
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Proof of Theorem 4. Since �̂� and 𝑉𝑘𝑉 𝑇
𝑘 are all feasible for the optimization problem

(5), we have
0 ≤ ⟨�̃�, �̂� − 𝑉𝑘𝑉

𝑇
𝑘 ⟩ − 𝜆(‖�̂�‖1,1 − ‖𝑉𝑘𝑉 𝑇

𝑘 ‖1,1).
In Lemma 14, taking 𝐴 = Σ (then 𝐸 = 𝑉𝑘𝑉 𝑇

𝑘 ) and 𝐹 = �̂�, we get

𝜆𝑘 − 𝜆𝑘+1
2

‖�̂� − 𝑉𝑘𝑉
𝑇
𝑘 ‖2𝐹 ≤ ⟨Σ,𝑉𝑘𝑉 𝑇

𝑘 − �̂�⟩.

Thus, we have

𝜆𝑘 − 𝜆𝑘+1
2

‖�̂� − 𝑉𝑘𝑉
𝑇
𝑘 ‖2𝐹 ≤ ⟨�̃� − Σ, �̂� − 𝑉𝑘𝑉

𝑇
𝑘 ⟩

− 𝜆(‖�̂�‖1,1 − ‖𝑉𝑘𝑉 𝑇
𝑘 ‖1,1).

Since
⟨�̃� − Σ, �̂� − 𝑉𝑘𝑉

𝑇
𝑘 ⟩ ≤ ‖�̃� − Σ‖∞,∞‖�̂� − 𝑉𝑘𝑉

𝑇
𝑘 ‖1,1

and 𝜆 ≥ ‖�̃� − Σ‖∞,∞, we have

𝜆𝑘 − 𝜆𝑘+1
2

‖�̂� − 𝑉𝑘𝑉
𝑇
𝑘 ‖2𝐹 ≤

𝜆(‖�̂� − 𝑉𝑘𝑉
𝑇
𝑘 ‖1,1 − ‖�̂�‖1,1 + ‖𝑉𝑘𝑉 𝑇

𝑘 ‖1,1).
Let 𝑄 be the subset of indices of the non-zero entries of 𝑣𝑘𝑉 𝑇

𝑘 . We have 𝑣𝑘𝑉 𝑇
𝑘 =

(𝑣𝑘𝑉 𝑇
𝑘 )𝑄. Thus,

‖�̂� − 𝑉𝑘𝑉
𝑇
𝑘 ‖1,1 − ‖�̂�‖1,1 + ‖𝑉𝑘𝑉 𝑇

𝑘 ‖1,1
≤ 2‖(�̂� − 𝑉𝑘𝑉

𝑇
𝑘 )𝑄‖1,1.

Also, we have ‖(�̂� − 𝑉𝑘𝑉 𝑇
𝑘 )𝑄‖1,1 ≤ 𝑠‖�̂� − 𝑉𝑘𝑉 𝑇

𝑘 ‖𝐹 . This gives us the proof.

By Lemma 15, we know that our goal is to bound the term of ‖�̃� − Σ‖∞,∞. Note
that by the definition of �̃�, we have �̃� = 𝑆 + 𝑍, where 𝑍 is a symmetric Gaussian
matrix with covariance 𝜎2 = 2 log 1.25∕𝛿

𝑛𝜖2 . Thus, we have

‖�̃� − Σ‖∞,∞ ≤ ‖𝑆 − Σ‖∞,∞ + ‖𝑍‖∞,∞.

For the first term, we have the following lemma, since 𝑋 is assumed to be sub-Gaussian.

Lemma 16. [[11]] Let 𝑆 be the sample covariance of an i.i.d. sample of size 𝑛 from a
sub-Gaussian distribution with population covariance Σ. Then, we have

max
𝑖,𝑗

ℙ(|𝑆𝑖𝑗 − Σ𝑖𝑗| ≥ 𝑡) ≤ 2 exp(− 4𝑛𝑡2

(𝑐𝜆1)2
).

For the second term ‖𝑍‖∞,∞, we have, with probability at least 1 − 2𝑝2 exp(− 𝑡2

𝜎2 ),
‖𝑍‖∞,∞ ≤ 𝑡. Thus in total, with probability at least 1− 2

𝑝2 −
1
𝑝𝐶 we have ‖�̃�−Σ‖∞,∞ ≤

𝑂(𝜆1
√
log 𝑝√
𝑛𝜖

). Combining thi s with Lemma 15, we get the proof.
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7.5. Proof of Theorem 5
The proof is based on Theorem 1 in [24], which considers the case of general sym-

metric matrix 𝑆.

�̂� = argmax < 𝑆,𝑋 > −𝜆‖𝑋‖1,1 (9)
subject to 𝑋 ∈ 𝑘 ∶= {𝑋 ∶ 0 ⪯ 𝑋 ⪯ 𝐼 and Tr(𝑋) = 𝑘}.

Lemma 17 ([24]). If the parameter 𝜆 in (9) satisfies:

‖𝑆 − Σ‖∞,∞

𝜆
+ 8𝑠

𝜆𝑘(Σ) − 𝜆𝑘+1(Σ)
‖Σ𝐽 𝑐𝐽‖2,∞ ≤ 1

and
0 ≤ 𝜆𝑘(Σ) − 𝜆𝑘+1(Σ) − 4𝜆𝑠(1 +

8𝜆1(Σ)
𝜆𝑘(Σ) − 𝜆𝑘+1(Σ)

),

then the solution to (9) is unique and satisfies supp(�̂�) ⊆ 𝐽 . Furthermore, if either

min
𝑗∈𝐽

√
(𝑉𝑘𝑉 𝑇

𝑘 )𝑗𝑗 ≥ 4𝜆𝑠
𝜆𝑘(Σ) − 𝜆𝑘+1(Σ)

or

min
(𝑖,𝑗)∈𝐽2

Σ𝑖𝑗 ≥ 2𝜆, rank(sign(Σ𝐽𝐽 )) = 1,

then supp(diag(�̂�)) = 𝐽 .

Proof of Theorem 5. From the proof in Theorem 4, we know that with probability at
least 1 − 2

𝑝2 − 1
𝑝𝐶 , we have ‖�̃� − Σ‖∞,∞ ≤ 𝑂(𝜆1

√
log 1∕𝛿 log 𝑝√

𝑛𝜖
). By the assumption of

LCC and the assumption of 𝑛, we know that if taking 𝜆 = Θ(𝜆1
√
log 1∕𝛿 log 𝑝√

𝑛𝜖𝛼
), all the

conditions in Lemma 17 are satisfied. Thus, we get the proof.

8. Conclusion

In this paper, we comprehensively study 𝑘-dimensional PCA in the non-interactive
local differential privacy model. We first study the low dimensional case and show
that Θ( 𝑝𝑘

𝑛𝜖2 ) is optimal under the measurement of squared space distance by modifying
the Gaussian perturbation method. Moreover, we study the high dimensional sparse
case and provide a near optimal upper bound. There are still many open problems.
For example, in this paper, all of the minimax lower bounds are for non-interactive
local model and cannot extended to the interactive local model directly. Thus, it is still
unknown what are the minimax lower bounds for the problem in the interactive LDP
model under low dimensional and high dimensional setting.
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