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Abstract

As one of the most fundamental problems in machine learning, statistics and
differential privacy, Differentially Private Stochastic Convex Optimization (DP-
SCO) has been extensively studied in recent years. However, most of the previous
work can only handle either regular data distributions or irregular data in the low
dimensional space case. To better understand the challenges arising from irregular
data distributions, in this paper we provide the first study on the problem of DP-
SCO with heavy-tailed data in the high dimensional space. In the first part we
focus on the problem over some polytope constraint (such as the `1-norm ball). We
show that if the loss function is smooth and its gradient has bounded second order
moment, it is possible to get a (high probability) error bound (excess population
risk) of Õ( log d

(nε)
1
3

) in the ε-DP model, where n is the sample size and d is the

dimension of the underlying space. Next, for LASSO, if the data distribution
has bounded fourth-order moments, we improve the bound to Õ( log d

(nε)
2
5

) in the

(ε, δ)-DP model. In the second part of the paper, we study sparse learning with
heavy-tailed data. We first revisit the sparse linear model and propose a truncated
DP-IHT method whose output could achieve an error of Õ( s

∗2 log2 d
nε ), where s∗ is

the sparsity of the underlying parameter. Then we study a more general problem
over the sparsity (i.e., `0-norm) constraint, and show that it is possible to achieve

an error of Õ( s
∗ 3
2 log d
nε ), which is also near optimal up to a factor of Õ(

√
s∗), if the

loss function is smooth and strongly convex. Experiments on both of the synthetic
and real world data also support our theoretical analysis.

1 Introduction

Privacy-preservation has become an important consideration and now is a challenging task for
machine learning algorithms with sensitive data. To address the privacy issue, Differential Privacy
(DP) has received a great deal of attentions and now has established itself as a de facto notation of
privacy for data analysis. Methods to guarantee differential privacy have been widely studied, and
recently adopted in industry [51, 20].

Stochastic Convex Optimization (SCO) [53] and its empirical form, Empirical Risk Minimization
(ERM), are the most fundamental problems in machine learning and statistics, which include several
basic models, such as linear regression and logistic regression. They find numerous applications
in many areas such as medicine, finance, genomics and social science. Due to their importance,
the problem of designing DP algorithms for SCO or ERM (i.e., DP-SCO and DP-ERM) have been
extensively studied for nearly a decade starting from [18, 19]. Later on, a long list of works have
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attacked the problems from different perspectives: [7, 33, 6, 5, 28, 64, 49] studied the problems in
the low dimensional case and the central model, [38, 39, 50, 61, 14] considered the problems in the
high dimensional sparse case and the central model, [48, 22, 56, 23] focused on the problems in the
local model.

However, most of those previous work can only handle regular data, i.e., they need to assume either
the underlying data distribution is bounded or sub-Gaussian, or the loss function is O(1)-Lipschitz for
all the data. This is particularly true for those output perturbation based [19] and objective or gradient
perturbation based [7] DP methods. However, such assumptions may not always hold when dealing
with real-world datasets, especially those from biomedicine and finance, which are often heavy-tailed
[62, 8, 32], implying that existing algorithms may fail to guarantee the DP property. Compared with
bounded data, heavy-tailed data could lead to unbounded gradient and thus violate the Lipschitz
condition. For example, consider the linear squared loss `(w, (x, y)) = (wTx − y)2. When x is
heavy-tailed, the gradient of `(w, (x, y)) becomes unbounded. To address the issue, one potential
approach is to truncating or trimming the gradient, such as in [1]. However, there is no existing
convergence result based on their algorithm. Thus, new private and robust estimation methods for
heavy-tailed data are needed.

Recently, there are several work studied private mean estimation or DP-SCO with heavy-tailed data
[57, 37, 41, 4] (see Section 2 for details). However, the estimation errors of these results all are
dependent on polynomial in the dimension of the underlying space, which impedes them to be
implemented to the high dimensional setting, where the dimension is far greater than the sample size.
In contrast, as we mentioned earlier, high dimensional DP-SCO with regular data has been studied
quite well. Thus, our question is, what are the theoretical behaviors of DP-SCO with heavy-tailed
data in the high dimensional space? In this paper, we provide a comprehensive and the first study on
the problem under different settings by providing several new methods. Our contributions can be
summarized as the following,

1. We first study DP-SCO over some polytope constraint, which has been studied in [50, 2]
for regular data. We first show that if the loss function is smooth and its gradient has
bounded second order moment, it is possible to get an excess population risk (error bound)
of Õ( log d

(nε)
1
3

) with high probability in the ε-DP model, where n is the sample size and d is

the dimensionality of the underlying space. Next, for LASSO, if the data distribution has
bounded fourth-order moments, we improve the bound to Õ( log d

(nε)
2
5

) in the (ε, δ)-DP model.

2. We then study DP-SCO for sparse learning with heavy-tailed data in the (ε, δ)-DP model,
which has been studied in [58, 60, 13] in the regular data case. We first revisit the sparse
linear regression problem and propose a new method whose output could achieve an error
bound of Õ( s

∗2 log2 d
nε ), where s∗ is the sparsity of the underlying parameter. Then we study

a general DP-SCO problem under the sparsity constraint, and show that it is possible to

achieve an error of Õ( s
∗ 3
2 log d
nε ), if the loss function is smooth and strongly convex. We also

show this bound is near optimal up to a factor of O(
√
s∗ log2 n). To get these results, we

provide several new methods and hard instances which may be used to in other machine
learning problems.

Due to space limit, all the proofs and lemmas are included in the Appendix.

2 Related Work

As mentioned earlier, there is a long list of results on DP-SCO and DP-ERM. However, most of them
consider the case where the underlying data distribution is sub-Gaussian and cannot be extended to
heavy-tailed case. On the other side, in the non-private case, recently a number of works have studied
the SCO and ERM problems with heavy-tailed data, such as [9, 44, 31, 40, 29, 43, 46]. It is not clear
whether they can be adapted to private versions and in the high dimensional setting.

For DP-SCO or private estimation for heavy-tailed distribution, [4] provides the first study on private
mean estimation for distributions with bounded moment and proposes the minimax private rates.
Their methods are based on truncating the data to make each data record has a bounded `2-norm.
However, as [37] mentioned, they need a stronger assumption on the bounded moment, e.g., for
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the mean estimation problem they need to assume E[‖x‖22] ≤ 1 while we only assume E[x2
j ] ≤ 1

for each coordinate j ∈ [d]. Moreover, their method cannot be extended to the high dimensional
sparse setting directly, and their error bound is in the expectation form, while in the robust statistics
it is preferable to get high probability results (see Definition 3 for details). Later, [37] also studies
the heavy-tailed mean estimation, which is also studied by [41] recently. However, their results for
general d dimensional space are still not the high probability form (they can only show their results
hold with probability at least 0.7). Thus, their methods cannot be used to DP-SCO directly. Moreover,
it is unknown whether their methods could be extended to the high dimensional or the sparse setting.
[10] recently also studies the same problem and proposes a method based on the PTR mechanism
[24]. However, their method can be only used in the 1-dimensional space and and needs stronger
assumptions.

Meanwhile, instead of the mean estimation, [57] provides the first study on DP-SCO with heavy-tailed
data and proposes three methods based on different assumptions. Their first method is based on the
Sample-and-Aggregate framework [45]. However, this method needs enormous assumptions and its
error bound is quite large. Their second method is still based on the smooth sensitivity [12]. However,
[57] needs to assume the distribution is sub-exponential. It also provides a new private estimator
motivated by the previous work in robust statistics. While some our estimators are quite similar as
theirs, they are quite a lot differences (see Remark 1 for details). Based on the mean estimator in
[37], [36] recently studies DP-SCO and improves the (expected) excess population risk to Õ(( dεn )

1
2 )

and Õ( dεn ) for convex and strongly convex loss functions respectively under the assumption that the
gradient of the loss has bounded second order moment. These results match the best known result of
the heavy-tailed mean estimation problem. However, all of these results are in the expectation form
instead of the high probability form. Moreover, their method cannot be extended to the linear model,
where the bounded second order moment of loss assumption is quite strong (see Assumption 3 for
details). We note that all these methods cannot be directly extended to the high dimensional case or
the sparse learning problem. 2

3 Preliminaries

Notations: For vectors v, vi ∈ Rd, we denote vj and vi,j as their corresponding the j-th coordinate.
Given a set of indices S ⊆ [d], we denote the vector vS ∈ Rd as the projection of v onto S, i.e.,
vS,j = vj if j ∈ S, and vS,j = 0 otherwise. We also denote |S| as the number of elements in S
and supp(w) = {j ∈ [d] : wj 6= 0} ⊆ [d] for w. For a constraint setW , we denote ‖W‖1 as it is
`1-norm diameter, i.e., ‖W‖1 = maxu,v∈W ‖u− v‖1.
Definition 1 (Differential Privacy [25]). Given a data universeX , we say that two datasetsD,D′ ⊆ X
are neighbors if they differ by only one data sample, which is denoted as D ∼ D′. A randomized
algorithmA is (ε, δ)-differentially private (DP) if for all neighboring datasets D,D′ and for all events
S in the output space of A, we have

Pr(A(D) ∈ S) ≤ eεPr(A(D′) ∈ S) + δ.

In this paper, we will mainly use the Laplacian and the Exponential mechanism, and the Advanced
Composition Theorem to guarantee DP property.
Definition 2 (Laplacian Mechanism). Given a function q : Xn → Rd, the Laplacian Mecha-
nism is defined as: ML(D, q, ε) = q(D) + (Y1, Y2, · · · , Yd), where Yi is i.i.d. drawn from
a Laplacian Distribution Lap(∆1(q)

ε ), where ∆1(q) is the `1-sensitivity of the function q, i.e.,
∆1(q) = supD∼D′ ||q(D)− q(D′)||1. For a parameter λ, the Laplacian distribution has the density
function Lap(λ)(x) = 1

2λ exp(−xλ ). Laplacian Mechanism preserves ε-DP.
Definition 3 (Exponential Mechanism). The Exponential Mechanism allows differentially private
computation over arbitrary domains and rangeR, parametrized by a score function u(D, r) which
maps a pair of input data set D and candidate result r ∈ R to a real valued score. With the score
function u and privacy budget ε, the mechanism yields an output with exponential bias in favor of
high scoring outputs. LetM(D,u,R) denote the exponential mechanism, and ∆ be the sensitivity
of u in the rangeR, i.e., ∆ = maxr∈RmaxD∼D′ |u(D, r)− u(D′, r)|. Then ifM(D,u,R) selects
and outputs an element r ∈ R with probability proportional to exp( εu(D,r)

2∆u ), it preserves ε-DP.

2We refer readers the reference [37, 57] to see more related work on DP methods for unbounded sensitivity.
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The output of exponential mechanism has the following utility.
Lemma 1 ([26]). For the exponential mechanismM(D,u,R), we have

Pr{u(M(D,u,R)) ≤ OPTu(x)− 2∆u

ε
(ln |R|+ t)} ≤ e−t.

where OPTu(x) is the highest score in the rangeR, i.e. maxr∈R u(D, r).
Lemma 2 (Advanced Composition Theorem). Given target privacy parameters 0 < ε < 1 and
0 < δ < 1, to ensure (ε, T δ′ + δ)-DP over T mechanisms, it suffices that each mechanism is
(ε′, δ′)-DP, where ε′ = ε

2
√

2T ln(2/δ)
and δ′ = δ

T .

Definition 4 (DP-SCO [7]). Given a dataset D = {z1, · · · , zn} from a data universe Z where
zi = (xi, yi) with a feature vector xi and a label/response yi are i.i.d. samples from some unknown
distribution D, a convex constraint set W ⊆ Rd, and a convex loss function ` : W × Z 7→ R.
Differentially Private Stochastic Convex Optimization (DP-SCO) is to find wpriv so as to minimize
the population risk, i.e., LD(w) = Ez∼D[`(w, z)] with the guarantee of being differentially private.3
The utility of the algorithm is measured by the excess population risk, that is

LD(wpriv)− min
w∈W

LD(w).

Besides the population risk, we can also measure the empirical risk of dataset D: L̂(w,D) =
1
n

∑n
i=1 `(w, zi). It is notable that in the high probability setting, we need to get a high probability

excess population risk. That is given a failure probability 0 < ζ < 1, we want get a (polynomial)
function f(d, log 1

δ , log 1
ζ ,

1
n ,

1
ε ) such that with probability at least 1− ζ (over the randomness of the

algorithm and the data distribution),

LD(wpriv)− min
w∈W

LD(w) ≤ O(f(d, log
1

δ
, log

1

ζ
,

1

n
,

1

ε
)).

Compared with the high probability setting, there is another setting namely the expectation setting
where our goal is to get a (polynomial) function f(d, log 1

δ ,
1
n ,

1
ε ) such that

ELD(wpriv)− min
w∈W

LD(w) ≤ O(f(d, log
1

δ
,

1

n
,

1

ε
)),

where the expectation takes over the randomness of the data records and the algorithm.

It is notable that, in the regular data case where the data distribution D or the gradient of the loss is
bounded or sub-Gaussian, it is easy to transform an expected excess population risk to an excess
population risk with high probability. However, this is not true for the heavy-tailed case. 4 Thus,
all of the recent studies on robust statistics such as [9, 44, 31, 40, 29, 43, 46] focused on the high
probability setting. In the paper, we will study the problem in the high probability setting. Moreover,
throughout the paper we focus on the high dimensional case where d could be far greater than n.
Thus we wish the error bounds (excess population risk) be logarithmic of d.

The following two definitions on loss functions are commonly used in machine learning, optimization
and statistics.
Definition 5. A function f is L-Lipschitz w.r.t the norm ‖ · ‖ if for all w,w′ ∈ W , |f(w)− f(w′)| ≤
L‖w − w′‖.
Definition 6. A function f is α-smooth onW if for all w,w′ ∈ W , f(w′) ≤ f(w) + 〈∇f(w), w′ −
w〉+ α

2 ‖w
′ − w‖22.

4 High Dimensional DP-SCO over Polytope Domain

In this section we will study DP-SCO over polytope domain, i.e., the underlying constraint set
W is some polytope and thus could be written as the convex hull of a finite set V . This contains
numerous of learning models that address high dimensional data, such as LASSO and minimization
over probability simplex.

3Note that in this paper we consider the improper learning case, that is wpriv may not inW .
4See [16] for the necessity to consider the high probability setting.
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[50] first studied the problem of DP-ERM over polytope domain in the regular data setting (i.e., the
gradient of loss function has bounded norm). Specifically, they showed that when the loss function is
Lipschitz w.r.t `1-norm, there is an (ε, δ)-DP algorithm (DP Frank-Wolfe) whose output could achieve
an error of O( log(|V |n)

(nε)
2
3

). However, to generalize to the heavy-tailed data setting, the main difficulty

is that the assumption of `1-norm Lipschitz does not hold anymore. To address the problem, one
possible approach may be truncating the gradient to make it has bounded `∞-norm (since `1-norm
Lipschitz is equivalent to its gradient has bounded `∞-norm). However, as mentioned in [57], it
could introduce enormous amount of error and it is difficult to select the best threshold parameter.
In the following we will propose a new method to overcome this challenge. We will focus on the
case where the gradient of the loss is heavy-tailed. Specifically, following from the previous work on
robust statistics such as [46, 29], here we propose the following assumption on the gradient of the
loss function.

Assumption 1. We assume LD(·) is α-smooth, and there exists a τ > 0 such that for any w ∈ W
and each coordinate j ∈ [d], we have E[(∇j`(w, x))2] ≤ τ .

First, it is notable that the smoothness condition in Assumption 1 is necessary for the high dimensional
setting. As shown by [2], when the loss function is non-smooth and `1-norm Lipschitz, even in

the regular data setting the excess population risk is lower bounded by Ω(
√

log d
n +

√
d

nε ), which

depends on Ω(
√
d). Secondly, in some other work on studying private estimation for distributions

with bounded second-order moment (such as [37]), they assume that for each unit vector u ∈ Rd,
E[〈u,∇`(w, x)〉2] ≤ τ = O(1). Thus, our assumption on the moment is reasonable. Thirdly, we note
that τ may be not a constant, it could depend on the structure of the loss function, data distribution
and the underlying structure ofW [55]. Throughout the whole paper we assume τ is known, which
is commonly used in other related work in robust statistics such as [37, 11].

Our approach, namely Heavy-tailed DP-FW, could be seen as a generalization of the DP Frank-Wolfe
method in [50]. The approach is motivated by a robust mean estimator for heavy-tailed distribution
given by [17] which was extended by [29]. For simplicity, we first consider a 1-dimensional random
variable x and assume that x1, x2, · · · , xn are i.i.d. sampled from x. The robust mean estimator
consists of three steps:

Scaling and Truncation For each sample xi, we first re-scale it by dividing s (which will be specified
later). Then, the re-scaled one was passed through a soft truncation function φ. Finally, we put the
truncated mean back to the original scale. That is,

s

n

n∑
i=1

φ(
xi
s

) ≈ Ex. (1)

Here, we use the function given in [17],

φ(x) =


x− x3

6 , −
√

2 ≤ x ≤
√

2
2
√

2
3 , x >

√
2

− 2
√

2
3 , x < −

√
2.

(2)

A key property for φ is that φ is bounded, that is, |φ(x)| ≤ 2
√

2
3 .

Noise Multiplication Let η1, η2, · · · , ηn be random noise generated from a common distribution
η ∼ χ with Eη = 0. We multiply each data xi by a factor of 1 + ηi, and then perform the scaling and
truncation step on the term xi(1 + ηi). That is,

x̃(η) =
s

n

n∑
i=1

φ(
xi + ηixi

s
). (3)

Noise Smoothing In this final step, we smooth the multiplicative noise by taking the expectation
w.r.t. the distributions. In total the robust mean estimator x̂(s, β) could be written as,

x̂(s, β) = Ex̃(η, s, β) =
s

n

n∑
i=1

∫
φ(
xi + ηixi

s
)dχ(ηi). (4)

5



Computing the explicit form of each integral in (4) depends on the function φ(·) and the distribution
χ. Fortunately, [17] showed that when φ is in (2) and χ ∼ N (0, 1

β ) (where β will be specified later),
we have for any a and b > 0

Eηφ(a+ b
√
βη) = a(1− b2

2
)− a3

6
+ Ĉ(a, b), (5)

where Ĉ(a, b) is a correction form which is easy to implement and its explicit form will be given in
Appendix.

The key idea of our method is that, by the definition of x̂(s, β) in (4) and the function φ is in (2), we
can see that the value of x̂(s, β) will be changed at most 4

√
2s

3n if we change one sample in the data,
i.e., the sensitivity of x̂(s, β) is bounded by 4

√
2s

3n . That is, given a fixed vector w and n gradients
{∇`(w, zi)}ni=1, we can use the above estimator to the entrywise of these gradients to get an estimator
(we denote it as g̃(w,D)) of E[`(w, z)]. Moreover, we can see the `∞-norm sensitivity of g̃(w,D)

is bounded 4
√

2s
3n , i.e., ‖g̃(w,D)− g̃(w,D′)‖∞ ≤ 4

√
2s

3n , where D and D′ are neighboring datasets.
Combing this result with DP Frank Wolfe method, we propose our algorithm. See Algorithm 1 for
details.

Algorithm 1 Heavy-tailed DP-FW
1: Input: n-size datasetD, loss function `(·, ·), initial parameter w0, parameters s, T, β, {ηt}t (will

be specified later), privacy parameter ε, failure probability ζ. W is the convex hull of a finite set
V .

2: Split the data D into T parts {Dt}Tt=1 with |Dt| = m = n
T .

3: for t = 1, · · · , T do
4: For each j ∈ [d], calculate the robust gradient by (2)-(5), that is

gt−1
j (wt−1, Dt)

=
1

m

∑
x∈Dt

(
∇j`(wt−1, x)

(
1−
∇2
j`(w

t−1, x)

2s2β

)
−
∇3
j`(w

t−1, x)

6s2

)

+
s

m

∑
x∈Dt

Ĉ

(
∇j`(wt−1, x)

s
,
|∇j`(wt−1, x)|

s
√
β

)
.

5: Let vector g̃(wt−1, Dt) ∈ Rd as g̃(wt−1, Dt) =
(gt−1

1 (wt−1, Dt), g
t−1
2 (wt−1, Dt), · · · , gt−1

d (wt−1, Dt)).
6: Denote the score function u(Dt, ·) : V 7→ R such that for each v ∈ V let u(Dt, v) =
−〈v, g̃(wt−1, Dt)〉. Run the exponential mechanism with the range R = V , sensitivity ∆ =
4‖W‖1

√
2s

3m and the privacy budget ε. Denote the output as w̃t−1 ∈ W .
7: Let wt = (1− ηt−1)wt−1 + ηt−1w̃

t−1.
8: end for
9: return wT .

Theorem 1. For any ε > 0, Algorithm 1 is ε-DP.
Theorem 2. Under Assumption 1 and if W is a convex hull of a finite compact set V . Then for
any given probability of failure 0 < ζ < 1, if we set T = Õ

(
( nεα2

τ log
|V |d
ζ

)
1
3

)
, β = O(1), s =

O(
√

nετ

T log
|V |dT
ζ

) and ηt−1 = 2
t+2 in Algorithm 1, with probability at least 1− ζ,

LD(wT )− min
w∈W

LD(w) ≤ O
(‖W‖1(ατ log n|V |d

ζ )
1
3

(nε)
1
3

)
. (6)

Remark 1. From Theorem 2 we can see that when |V | = poly(d) and τ = O(1), the excess
population risk will be upper bounded by Õ( 1

(nε)
1
3

). Compared with the previous results in private

heavy-tailed estimation [37, 10, 57], we improve the error bound from O(d) to O(log d). It is also
notable that [57] also used a similar robust estimator as ours. However, there are several differences:
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First, [57] first performs the robust estimator to each coordinate of the gradients and then add Gaussian
noise to the whole vector to ensure DP. Thus, all the errors in [57] depend on poly(d) and their
method cannot be extended to high dimensional space directly. Secondly, [57] sets s = O(

√
n) while

our s depends on both n, ε and T . We provide a finer analysis on the trade-off between the bias and
variance of the robust estimator, and the noise we added in each iteration (see the proof of Theorem
2 for details). Thus, our error is much lower than theirs and our method could be used in [57] and
improve their bounds.

Corollary 1. Consider the LASSO problem where LD(w) = E(〈x,w〉 − y)2 andW = {w ∈ Rd :
‖w‖1 ≤ 1}. We know that the population risk function is λmax(E(xxT ))-smooth, where λmax(M)
is the maximal eigenvalue of the matrix M . If we further assume each coordinate of the gradient
has bound second moment i.e., for each w ∈ W and j ∈ [d], E[(xj(〈x,w〉 − y))2] ≤ O(1) (for
example xj and y are O(1)-sub-Gaussian). Then the output of Algorithm 1 satisfies the following
with probability at least 1− ζ:

LD(wT )− min
w∈W

LD(w) ≤ O
( (λmax(E(xxT ) log d

ζ log n)
1
3

(nε)
1
3

)
. (7)

In the previous theorem, we need to assume the loss function is convex. However, we can also show
that Algorithm 1 could be used to some specific non-convex loss functions. Below we will study
the Robust Regression and provide an upper bound of Õ( 1

(nε)
1
4

). ForW = {w ∈ Rd|‖w‖1 ≤ 1},
and a non-convex positive loss function ψ, the loss of robust regression is defined as `(w, (x, y)) =
ψ(〈x,w〉 − y). We make the following assumptions on ψ, which includes the biweight loss function
5 [42].

Assumption 2. We assume that

1. There is a constant Cψ ≥ 1, s.t. max{ψ′(s), ψ′′(s)} ≤ Cψ = O(1), for for all s.

2. ψ′(·) is odd with ψ′(s) > 0, for ∀s > 0; and h(s) := Eξ[ψ′(s + ξ)] satisfies h′(0) > cψ,
where cψ = O(1) > 0.

3. There is w∗ ∈ W such that y = 〈w∗, x〉+ ξ, where ξ is symmetric noise with a zero-mean
given x. Also we assume that for each coordinate j ∈ [d], xj has bounded second order
moment, that is Ex2

j ≤ O(1).

Theorem 3. Under Assumption 2, for any given probability of failure 0 < ζ < 1, if we set β = O(1),
s = O(

√
nε√

T log dT
ζ

), η = 1√
T

, and T = Õ(
√

nε
log d

ζ

) in Algorithm 1. Then with probability at least

1− ζ (we omit the Cψ and cψ term),

LD(wT )− min
w∈W

LD(w) ≤ O
(λmax(E(xxT )) log

1
4 dn
ζ

(nε)
1
4

.
)
. (8)

For LASSO, there are enormous differences between our results and the results in [50]. First, [50]
needs to assume that each |xij | ≤ O(1) and |yi| ≤ O(1) to guarantee the loss function be `1-norm
Lipschitz, while here we just need a bounded second order moment condition. Secondly, [50]
only considers the empirical risk function while here we consider the population risk. It is notable
that their method cannot be extended to population risk directly based on their theoretical analysis.
Thus, our result of Õ( 1

(nε)
1
3

) cannot be compared with theirs directly. Recently [2] considers

DP-SCO with `1-norm Lipschitz loss functions and it provides an upper bound of Õ( 1√
εn

) and

Õ(
√

1
n + 1

(nε)
2
3

) for ε and (ε, δ)-DP model respectively. Compared with this, we can see, due to

the heavy-tailed distribution, the upper bound now decreases to Õ( 1

(nε)
1
3

) for ε-DP. Thirdly, the DP

Frank Wolfe algorithm given by [50] could guarantee both ε and (ε, δ)-DP with error upper bounds of

5For a fixed parameter c > 0, the biweight loss is defined as ψ(s) = c2

6
·

{
1− (1− ( s

c
)2)3, |t| ≤ c

1, |t| ≥ c.
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Õ( 1√
nε

) and Õ( 1

(nε)
2
3

) respectively.6 However, our method can only guarantee ε-DP and cannot get

improved bounds in the (ε, δ)-DP model. The mainly reason is that, [50] performs the exponential
mechanism on the whole data to achieve O( ε√

T log 1
δ

)-DP in each iteration, then the whole algorithm

will be (ε, δ)-DP due to the advanced composition theorem. However here we cannot adopt this
technique directly. The major difficulty is that if we use whole dataset in each iteration then wt−1

will depend on the whole dataset. And this cause us in the proof to analyze an upper bound of
supv∈V supw∈W〈v, g̃(w,D)− E[∇`(w; z)]〉, which is difficult to analyze due to the complex form
of our estimator g̃(w,D) in step 5. Thus, we need to get avoid of the dependency. Our strategy is
splitting the whole dataset into several parts and in each iteration we use the exponential mechanism
on one subset. That is why here we only consider the ε-DP model. It is an open problem that whether
we can get an improved (ε, δ)-DP method in general. Below we will show that for LASSO it is
possible to improve the upper bound from Õ( 1

(nε)
1
3

) in Corollary 1 to Õ( 1

(nε)
2
5

) in (ε, δ)-DP model

if the data distribution has bounded fourth-order moments.

The algorithm consists of two parts. In the first part, motivated by [27], we shrunk each entry of each
sample by a threshold K, which will be determined later. That is, for each i ∈ [n] and j ∈ [d], we let
x̃i,j = sign(xi,j) min{|xi,j |,K} and ỹi = sign(yi) min{|yi|,K}. Note that since now each entry
is bounded, the loss function will be `1-norm Lipschitz with O(K2). Thus, in the second part, we
perform the DP-FW in [50] on the shrunken data. See Algorithm 2 for details.

Algorithm 2 Heavy-tailed Private LASSO
1: Input: n-size dataset D = {(xi, yi)}ni=1, loss function `(w, (x, y)) = (〈w, x〉 − y)2, initial

parameter w0, parameters K,T, {ηt} (will be specified later), privacy parameter ε, δ, failure
probability ζ. W is the `1-norm ball with set of vertices V .

2: For each i ∈ [n], we denote a truncated sample x̃i ∈ Rd where for j ∈ [d] x̃i,j =
sign(xi,j) min{|xi,j |,K}, and ỹi = sign(yi) min{|yi|,K}. Denote the truncated dataset as
D̃ = {(x̃i, ỹi)}ni=1.

3: for t = 1, · · · , T do.
4: Denote the score function u(D̃, ·) : V 7→ R such that for each v ∈ V let u(D̃, v) =

−〈v, g̃(wt−1, D̃)〉, where g̃(wt−1, D̃) = 2
n

∑n
i=1 x̃i(〈x̃i, wt−1〉 − ỹi). Run the exponential

mechanism with the range R = V , sensitivity ∆ = 8‖W‖1K2

n and the privacy budget ε

2
√

2T log 1
δ

.

Denote the output as w̃t−1 ∈ V .
5: Let wt = (1− ηt−1)wt−1 + ηt−1w̃

t−1.
6: end for
7: return wT .

Theorem 4. For any 0 < ε, δ < 1, Algorithm 1 is (ε, δ)-DP.
Assumption 3. We assume that x and y have bounded forth order moment, i.e., for each j1, j2 ∈ [d],
E(xj1xj2)2 ≤M , and E[y4] ≤M , where M = O(1) is a constant.

Remark 2. We note that Assumption 1 implies E(xjxk)2 ≤ O(τ) for any j, k ∈ [d]. Since in
Assumption 1 we can get E[(xjy)2] ≤ τ if we take w = 0. And we have E[(xj(xk − y))2] ≤ τ
when we take w = ek (the k-th basis vector), thus E[(xjxk)2] ≤ O(τ). From this view, Assumption
3 is weaker than Assumption 1. Moreover, in Assumption 1 we need to assume that the term
E[x2

i (〈w, x〉 − y)2] is bounded for each ‖w‖1 ≤ 1, which is hard to be verified and is unnatural
for the linear model compared with the previous work on linear regression with heavy-tailed data
[63, 31].
Theorem 5. Under Assumption 3, for any given probability of failure 0 < ζ < 1, if we set

K = (nε)
1
4

T
1
8

, T = Õ((
√
nελmax(E(xxT ))√

log 1
δ log dT

ζ

)
4
5 ) and ηt−1 = 2

t+2 in Algorithm 2, then with probability at

least 1− ζ,

LD(wT )− min
w∈W

LD(w) ≤ O(
λ

1
5
max(E(xxT ))(

√
log 1

δ log dn
ζ )

4
5

(nε)
2
5

). (9)

6We can adopt the idea in [50] and get the result for ε-DP
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Truncating or shrunking the data to let them has bounded norm (or bounded sensitivity) is a commonly
used technique in previous study on DP machine learning such as [4, 13, 14]. However, all of these
methods need to assume the data distribution is sub-Gaussian so that truncation may not lose too
much information about the original record. Here we generalized to a heavy-tailed case, which may
could be used to other problems. Moreover, the thresholds in the truncation step for sub-Gaussian and
heavy-tailed cases are also quite different. In the sub-Gaussian case, the threshold always depends on
the sub-Gaussian parameter and log n, log d, while in Algorithm 2 we set the threshold as a function
of n, ε and T .

5 Heavy-tailed DP-SCO for Sparse Learning

5.1 Private Heavy-tailed Sparse Linear Regression

In the previous section, we studied DP-SCO over polytope constraint. However, in the high di-
mensional statistics we always assume the underlying parameter has additional structure of sparsity.
Directly solving DP-SCO over `1-norm ball constraint may not provide efficient estimation to the
sparse parameters. In this section, we will focus on sparse learning with heavy-tailed data. Specif-
ically, we will consider two canonical models, one is the sparse linear model, the other one is the
DP-SCO over sparsity constraint, which includes sparse regularized logistic regression and spase
mean estimation. First we consider the sparse linear regression, where for each pair (x, y) we have a
linear model,

y = 〈w∗, x〉+ ι,
here ι is some randomized noise and ‖w∗‖2 ≤ C (for simplicity we assume C = 1) and w∗ is
s∗-sparse.

Similar to the previous section, here we assume Assumption 3 holds. Instead of using DP variants
of the Frank-Wolfe method, here we will adopt a private variant of the iterative hard thresholding
(IHT) method. Specifically, first we will shrunk the original heavy-tailed data, which is similar to
Algorithm 2. After that we will perform the DP-IHT procedure. That is, in each iteration, we fist
calculate the gradient on the shrunken data, and update our vector via the gradient descent. Next, we
perform a DP-thresholding step, provided by [13] (Algorithm 4). That is, we will privately select the
indices with largest s magnitude of the vector, keep the entries of vectors among these indices and let
the remain entries be 0. See Algorithm 3 and 4 for details.

Algorithm 3 Heavy-tailed Private Sparse Linear Regression
1: Input: n-size dataset D = {(xi, yi)}ni=1, loss function `(w, (x, y)) = (〈w, x〉 − y)2, initial

vector w1 satisfies ‖w1‖2 ≤ 1 and is s-sparse, parameters K,T, η0, s (will be specified later),
privacy parameter ε, δ, failure probability ζ. W is the unit `2-norm ball.

2: For each i ∈ [n], we denote a truncated sample x̃i ∈ Rd where for j ∈ [d] x̃i,j =
sign(xi,j) min{|xi,j |,K}, and ỹi = sign(yi) min{|yi|,K}. Denote the truncated dataset as
D̃ = {(x̃i, ỹi)}ni=1.

3: Split the data D̃ into T parts {D̃t}Tt=1, each with m = n
T samples.

4: for t = 1, · · · , T do.
5: Denote wt+0.5 = wt − η0

m

∑
x∈D̃t x̃(〈x̃, wt〉 − ỹ)

6: Let wt+0.75 = Peeling(wt+0.5, Dt, s, ε, δ,
2K2η0(

√
s+1)

m ).

7: Let wt+1 = ΠW(wt+0.75)
8: end for
9: return wT+1.

Theorem 6. For any 0 < ε, δ < 1, Algorithm 3 is (ε, δ)-DP.
Theorem 7. Under Assumption 3, if ‖w∗‖2 ≤ 1

2 , the initial vector w1 satisfies ‖w1 − w∗‖ ≤ O( γµ )

and n is sufficiently large such that n ≥ Õ(
s2M log2 d

ζ log 1
δ

γµ4ε ). Then if we set T = Õ( γµ log n),

K = (nε)
1
4

(sT )
1
4

, s ≥ 72( γµ )2s∗ and η = 2
3γ in Algorithm 3, then with probability at least 1− ζ

LD(wT+1)− LD(w∗) ≤ O(
Mγ4s∗2 log n log2 d

ζ log 1
δ

µ7nε
),

9



where γ = λmax(E(xxT )) and µ = λmin(E(xxT )) and the Big-O notation omits other log terms.

Algorithm 4 Peeling [13]
1: Input: Vector v = v(D) ∈ Rd which depends on the data D, sparsity s, privacy parameter ε, δ,

and noise scale λ.
2: Initialize S = ∅.
3: for i = 1 · · · s do
4: Generate wi ∈ Rd with wi,1, · · · , wi,d ∼ Lap(

2λ
√

3s log 1
δ

ε ).
5: Append j∗ = arg maxj∈[d]\S |vj |+ wi,j to S.
6: end for
7: Generate w̃ ∈ Rd with w̃1, · · · , w̃d ∼ Lap(

2λ
√

3s log 1
δ

ε ).
8: return vS + w̃S .

Remark 3. In Theorem 7, we need to assume that ‖w∗‖2 ≤ 1
2 and the initial vector be close to w∗.

These two conditions guarantee ‖wt+0.75‖2 ≤ 1 in each iteration, which simplify our theoretical
analysis. For sub-Gaussian data, with some other additional assumptions, [13, 60] showed that the
optimal rate is Õ( s

∗ log d
n + (s∗ log d)2

(nε)2 ). Thus, due to the data irregularity, the error now increases to

Õ( s
2 log2 d
nε ). Moreover, we can see although both Algorithm 3 and 2 shrunk the data in the first step,

the threshold value K are quite different, where K = (nε)
1
4

T
1
8

in LASSO and K = (nε)
1
4

(sT )
1
4

in the sparse

linear model. This is due to different trade-offs between the bias, variance in the estimation error and
the noises we added.

5.2 Extending to Sparse Learning

In this section, we extend our previous ideas and methods to the problem of DP-SCO over sparsity
constraints. That is, W is defined as W = {w : ‖w‖0 ≤ s∗}. We note that such a formulation
encapsulates several important problems such as the `0-constrained linear/logistic regression [3].
DP-SCO over sparsity constraints has been studied previously [60, 61, 58, 59]. However, all of the
previous methods need either the loss function is Lipschitz, or the data follows some sub-Gaussian
distribution [13, 14]. In the following we extend to the heavy-tailed case. We first introduce some
assumptions to the loss functions, which are commonly used in previous research on sparse learning.
Definition 7 (Restricted Strong Convexity, RSC). A differentiable function f(x) is restricted ρr-
strongly convex with parameter r if there exists a constant µr > 0 such that for any x, x′ with
‖x− x′‖0 ≤ r, we have f(x)− f(x′)− 〈∇f(x′), x− x′〉 ≥ µr

2 ‖x− x
′‖22.

Definition 8 (Restricted Strong Smoothness, RSS). A differentiable function f(x) is restricted
µs-strong smooth with parameter r if there exists a constant γr > 0 such that for any x, x′ with
‖x− x′‖0 ≤ r, we have f(x)− f(x′)− 〈∇f(x′), x− x′〉 ≤ γr

2 ‖x− x
′‖22.

Assumption 4. We assume that the objective function LD(·) is µr-RSC and `(w, z) is γr-RSS
with parameter r = 2s + s∗, where s = O(( γrµr )2s∗). We also assume for any w ∈ W ′ and each
coordinate j ∈ [d], we have E[(∇j`(w, x))2] ≤ τ = O(1), where τ is some known constant and
W ′ = {w|‖w‖0 ≤ s}.

Many problems satisfy Assumption 4, e.g., mean estimation and `2-norm regularized generalized
linear loss where LD(w) = E[`(y〈w, x〉)] + λ

2 ‖w‖
2
2. If |`′(·)| ≤ O(1), |`′′(·)| ≤ O(1) (such as the

logistic loss) and xj has bounded second-order moment, then we can see it satisfies Assumption 4.

Since now the loss function becomes non-linear, the approach of shrunking the data in Algorithm
3 may introduce tremendous error. However, since in Assumption 4 we have stronger assumptions
on the loss function, we may use the private estimator in Algorithm 1. Thus, our idea is that, we
first perform the robust one-dimensional mean estimator in (2)-(5) to each coordinate of the gradient,
then we use the private selection algorithm to select top s indices, which is the same as in Algorithm
3. Note that [57] also provides a similar method in the low dimensional space. However, the main
difference is that here we do not add noise directly to the vector g̃(wt−1, Dt). Instead, we first
privately select the top s indices and then add noises to the corresponding sub-vector. See Algorithm
5 for details.

10



Algorithm 5 Heavy-tailed Private Sparse Optimization
1: Input: n-size dataset D = {(xi, yi)}ni=1, initial parameter w1 is s-sparse, parameters
s, β, k, T, η (will be specified later), privacy parameter ε, δ, failure probability ζ.

2: Split the data D into T parts {Dt}Tt=1, each with m = n
T samples.

3: for t = 1, · · · , T do.
4: For each j ∈ [d], calculate the robust gradient by (2)-(5), that is

gt−1
j (wt−1, Dt)

=
1

m

∑
x∈Dt

(
∇j`(wt−1, x)

(
1−
∇2
j`(w

t−1, x)

2k2β

)
−
∇3
j`(w

t−1, x)

6k2

)

+
k

m

∑
x∈Dt

Ĉ

(
∇j`(wt−1, x)

k
,
|∇j`(wt−1, x)|

k
√
β

)
.

5: Let vector g̃(wt−1, Dt) ∈ Rd as g̃(wt−1, Dt) =
(gt−1

1 (wt−1, Dt), g
t−1
2 (wt−1, Dt), · · · , gt−1

d (wt−1, Dt)).
6: Denote wt+0.5 = wt − ηg̃(wt−1, Dt)

7: Let wt+1 = Peeling(wt+0.5, Dt, s, ε, δ,
4k
√

2η
m ).

8: end for
9: return wT+1.

Theorem 8. For any 0 < ε, δ < 1, Algorithm 5 is (ε, δ)-DP. Moreover, under Assumption 4, if we set
T = Õ( γrµr log n), s = O(( γrµr )2s∗), β = O(1), η = 2

3γr
and k = Õ(

√
nετ), then with probability

at least 1− ζ,

LD(wT+1)− LD(w∗) ≤ O(
τγ4

rs
∗ 3

2 log n log d
ζ

√
log 1

δ

µ5
rnε

),

where the Big-O notation omits other log terms.

Remark 4. Compared with Theorem 7, we can see here we do not need the assumptions on ‖w∗‖2
and the initial vector. This is due to that we have stronger assumptions on the loss function. Compared
with the bound Õ( s

∗2

nε ) in Theorem 7, it seems like here our bound is lower. However, we note that
they are incomparable due to different assumptions. For example, there is a τ in the bound of Theorem
8, which could also depend on the sparsity s∗ [55]. [58] also studies DP-SCO over sparsity constraint,
it provides an upper bound of Õ( s∗

n2ε2 ) under the assumption that the loss function is Lipschitz.
Moreover, for high dimensional sparse mean estimation and Generalized Linear Model (GLM) with
the Lipschitz loss and sub-Gaussian data, [14, 13] provided optimal rates of Õ( s

∗ log d
n + (s∗ log d)2

(nε)2 ).

We can see that compared with these results, the error bound now becomes to Õ( τs
∗ 3
2

nε ) due to data
irregularity. Moreover, we can see that in the regular data case, the optimal rates of linear regression
and GLM are the same, while in the heavy-tailed data case, there is a gap of Õ(

√
s∗) in the upper

bounds. We conjecture this gap is necessary and will leave it as future research.

In the following we will focus on the lower bound of the loss functions in Theorem 8. Since our
lower bound will be in the form of private minimax risk, we first introduce the classical statistical
minimax risk before discussing its (ε, δ)-private version. More details can be found in [4].

Let P be a class of distributions over a data universe X . For each distribution p ∈ P , there is a
deterministic function θ(p) ∈ Θ, where Θ is the parameter space. Let ρ : Θ × Θ :7→ R+ be a
semi-metric function on the space Θ and Φ : R+ 7→ R+ be a non-decreasing function with Φ(0) = 0
(in this paper, we assume that ρ(x, y) = |x − y| and Φ(x) = x2 unless specified otherwise). We
further assume that D = {Xi}ni=1 are n i.i.d observations drawn according to some distribution
p ∈ P , and θ̂ : Xn 7→ Θ be some estimator. Then the minimax risk in metric Φ ◦ ρ is defined by the
following saddle point problem:

Mn(θ(P),Φ ◦ ρ) := inf
θ̂

sup
p∈P

Ep[Φ(ρ(θ̂(D), θ(p))],
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where the supremum is taken over distributions p ∈ P and the infimum over all estimators θ̂.

In the (ε, δ)-DP model, the estimator θ̂ is obtained via some (ε, δ)-DP mechanism Q. Thus, we can
also define the (ε, δ)-private minimax risk:

Mn(θ(P), Q,Φ ◦ ρ) := inf
Q∈Q

inf
θ̂

sup
p∈P

Ep,Q[Φ(ρ(θ̂(D), θ(p))],

where Q is the set of all the (ε, δ)-DP mechanisms.

To proof the lower bound, we consider the sparse mean estimation problem, i.e., LD(w) =
Ex∼D[‖x − w‖22], where the mean of x, µ(D), is s∗-sparse. Thus, we can see that the popula-
tion risk function satisfies Assumption 4 if we assume Ex2

j ≤ τ for each j ∈ [d]. Moreover, we have
minw∈W LD(w) = 0 which indicates that the excess population risk of w is equal to E‖w−µ(D)‖22.
That is, the lower bound of Theorem 8 reduced to the sparse mean estimation problem. Therefore, it
is sufficient for us to consider the (ε, δ)-private minimax rate for the sparse mean estimation problem
with Ex2

j ≤ τ for each j ∈ [d].

In the non-private case, a standard approach to prove the lower bound of the minimax risk is reducing
the original problem to a testing problem. Specifically, our goal is to identify a parameter θ ∈ Θ from
a finite collection of well-separated points. Given an index set V with finite cardinality, the indexed
family of distributions {Pv, v ∈ V} ⊂ P is said to be a 2γ-packing if ρ(θ(Pv), θ(Pv′)) ≥ 2γ for all
v 6= v′ ∈ V . In the standard hypothesis testing problem, nature chooses V ∈ V uniformly at random,
then draws samples X1, · · ·Xn i.i.d. from the distribution PV . The problem is to identify the index
V . It has been shown that given a 2γ-packing {Pv, v ∈ V} ⊂ P ,

Mn(θ(P),Φ ◦ ρ) ≥ Φ(γ) inf
ψ

P(ψ(D) 6= V ),

where P denotes the probability under the joint distribution of both V and the samples D.

Similar to the non-private case, for the private minimax risk we have

Mn(θ(P), Q,Φ ◦ ρ) ≥ inf
Q∈Q

Φ(γ) inf
ψ

PQ(ψ(θ̂(D)) 6= V ),

where θ̂(D) is the private estimator via some (ε, δ)-DP algorithmQ, where PQ denotes the probability
under the joint distribution of both V , the samples D and θ̂(D).

In the following we will consider a special indexed family of distributions {Pv}v∈V ⊂ P , which
will be used in our main proof. We assume there exists a distribution P0 such that for some fixed
p ∈ [0, 1] we have (1− p)P0 + pPv ∈ P for all v ∈ V . For simplicity for each v ∈ V we define the
following parameter

θv := θ((1− p)P0 + pPv).

We then define the separation of the set {θ}v by

ρ∗(V) := min{ρ(θv, θv′)|v, v′ ∈ V, v 6= v′}.

We have the following lower bound of (ε, δ)-private minimax risk based on the the family of
distributions {(1− p)P0 + pPv}v∈V .

Lemma 3 (Theorem 3 in [4]). Fix p ∈ [0, 1] and define Pθv = (1− p)P0 + pPv ∈ P . Let θ̂ be an
(ε, δ)-DP estimator. Then

Mn(θ(P), Q,Φ ◦ ρ)

≥ Φ(ρ∗(V))
1

|V|
∑
v∈V

Pθv (ρ(θ̂, θv) ≥ ρ∗(V))

≥ Φ(ρ∗(V))
(|V| − 1)( 1

2e
−εdnpe − δ 1−e−εdnpe

1−e−ε )

1 + (|V| − 1)e−εdnpe
. (10)

By Lemma 3 and a set of hard distributions, we have the following result.
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Theorem 9. Consider the class of distributions Ps∗d (τ) as distributions P in the d dimensional space
satisfying that EX∼PX2

j ≤ τ for all xj ∈ [d] and the mean of P , µ(P ) is s∗-sparse. Then the
(ε, δ)-private minimax risk with Φ(x) = x2 and ρ(x1, x2) = ‖x1 − x2‖2 satisfies that

Mn(θ(Ps
∗

d (τ)), Q,Φ ◦ ρ) ≥ Ω(
τ min{s∗ log d, log 1

δ }
nε

). (11)

Thus, for DP-SCO problem under Assumption 4. The information-theoretical lower bound of the
expected population risk in the (ε, δ)-DP model is Ω(

τ min{s log d,log 1
δ }

nε ).

Compared with the upper bound in Theorem 8 and the lower bound in Theorem 9, we can see there is
still a gap of Õ(

√
s∗). It is an open problem that whether we can further improve the upper bound.

For the low dimensional case, [36, 4] showed that the optimal rate of the mean estimation is O( τdnε )
in both ε and (ε, δ)-DP models under the assumption that the gradient of loss has bounded second
order moment. Compared with this here we extend to the high dimensional sparse case.

6 Experiments

In this section we will study the practical behaviours of our previous algorithms on synthetic and real
world datas.

6.1 Data Generation

We will mainly study squared loss and logistic loss, and in the following we first clarify the synthetic
data generation process for different loss functions.

For linear regression, we generate the data via the model y = 〈w∗, x〉+ ι, where ι is some (heavy-
tailed) noise and x is sampled from different (heavy-tailed) distributions (see the following subsections
for details). Since in the previous parts we considered two different settings, we generate w∗ via
different approaches: For the case where the domain is a polytope, we randomly generate a w∗
such that ‖w∗‖1. Thus, W will be the unit `1-norm ball. For sparse linear regression setting, we
first pre-fix the sparsity s∗, then we sample a w form the normal distribution with mean = 0 and
scale = 100 and set random (d − s∗) elements to 0. After that we project the vector to the unit
`2-norm ball and denote the vector after projection as w∗.

For logistic regression, we generate the data as the followings y = sign(sigmoid(z) − 0.5) where
sigmoid(x) = 1

1+e−x is the sigmoid function and z = 〈x,w∗〉 + ζ where ζ is some noise and x is
sampled from different distributions (see the following subsections for details). The generation of the
optimal vector w∗ is the same as in the linear regression case.

For real world data, we will use Blog Feedback data (n = 60021, d = 281), Twitter data
(n = 583, 249, d = 77), Winnipeg data (n = 325834, d = 175) and Year Prediction data
(n = 515, 345, d = 90), which could be found at [21].

6.2 Experimental Settings

Measurements: For all the experiments we will use the excess population risk, i.e., LD(w) −
LD(w∗) as our evaluation measurement. However, since it is impossible to precisely evaluate the
population risk function, here we will use the empirical risk to approximate it. For the real world
data, in the case whereW is some polytope, we use the non-private Frank-Wolfe algorithm to get the
optimal parameter w∗ = arg minw∈W LD(w). We note that all of our experiments are repeated for
at least 20 times, and we the average of the results as our final results.

Initial Vector: For the initial vector, in the polytope case, we randomly sample a w in the unit
`1-norm ball. And in the sparse case, we randomly generate a s∗-sparse vector in the unit `2-norm
ball.

Parameters in Algorithms: Most of the parameters are directly followed by theoretical results.
In Algorithm 1 we set T = b(nε) 1

3 c, ηt = 2
t+2 and s = bnεc. In Algorithm 2 we set T = (nε)

2
5 ,

13



K = (nε)
1
4

T
1
8

and ηt = 2
t+2 . In Algorithm 3 we set s = cs∗, T = blog(n)c,K = ( nεsT )

1
4 and

η = 0.5, where c is some integer which is different under various settings. In Algorithm 5 we set
s = 2s∗, T = blog(n)c, k = c2nε and η = 0.5, where c2 is some integer which is different under
various settings. For (ε, δ)-DP, we set δ = 1

n1.1 .

6.3 Results of Algorithm 1

We first study Algorithm 1 on synthetic data. We start from the experiments on linear regression,
where x is sampled from the log-normal distribution Lognormal(0, 0.6) and ζ ∼ N (0, 0.1) (Note
that a log-normal distribution Lognormal(0, σ2) has the PDF p(w) = 1

wσ
√

2π
exp(− ln2 w

2σ2 )). Figure
1 shows the results: Figure 1(a) studies the excess empirical risk with different dimensions and
privacy parameters ε, under the setting where n = 104. Figure 1(b) reveals the error with different
dimensions and sample sizes with fixed ε = 1. Figure 1(c) studies the difference of empirical risk
between private and non-private case with different sample sizes, where ε = 1 and d = 400.

(a) Sample size n = 104 (b) ε = 1 (c) ε = 1 and d = 400

Figure 1: Results of Algorithm 1 for linear regression with x sampled from log-normal distribution.

Besides the linear regression, we also study the logistic regression with various dimensions, sample
sizes and privacy parameters ε, where x is sampled from Lognormal(0, 0.6) and there is no noise,
see Figure 2 for details.

(a) Sample size n = 104 (b) ε = 1 (c) ε = 1 and d = 400

Figure 2: Results of Algorithm 1 for logistic regression with x sampled from log-normal distribution.

From the results in Figure 1 and 2 we can see that: 1)The dimension of the data does not affect too
much on the error. For example, the errors are almost the same for p = 200 and p = 800 under the
same ε and n. This is due to that theoretically the error is just upper bounded by logarithm, instead of
polynomial, of the dimension. Moreover, when the sample size is larger, the error becomes smaller.
This is due to that the error is disproportionate to sample size. However, the rate of this decrease is
not fast. For example, in Figure 1(b) we can see that the error decreases from 0.14 to 0.03 when the
sample size increases from 104 to 9× 104. This possibly is due to that the error is not proportional
to 1

n , as we showed in Theorem 2. We can also see that when the sample size is large enough, the
private estimator is close to the optimal parameter.

In Figure 3 and 4, we conduct experiments on real world data for linear regression and logistic
regression, respectively. We can see that in most of the cases, the error decreases when the sample
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size or the privacy parameter ε becomes larger. However, compared with the previous results on
synthetic data. The results in real data is unstable. The main reason may be the real data does not
satisfy our assumptions or it is difficult to estimation the second order moment of the data.

(a) Blog (b) Twitter

Figure 3: Results on real data of Algorithm 1 for linear regression.

(a) Winnipeg (b) Year Prediction

Figure 4: Results on real data of Algorithm 1 for logistic regression.

6.4 Results of Algorithm 2

Since Algorithm 2 is only for linear regression, in this section we only conduct experiments on
squared loss. We first study the case where x is sampled from Lognormal(0, 0.6) and ζ ∼ N (0, 0.1).
Figure 5 shows the results: Figure 5(a) studies the excess empirical risk with different dimensions
and privacy parameters ε, under the setting where n = 104. Figure 5(b) studies the excess empirical
risk with different dimensions and sample size, under the setting where ε = 1. Figure 5(c) studies the
difference of empirical risk between private and non-private case with different sample size, where
ε = 1 and d = 200.

(a) Sample size n = 104 (b) ε = 1 (c) ε = 1 and d = 200

Figure 5: Results of Algorithm 2 for linear with x sampled from log-normal distribution.

Besides the log-normal features, in Figure 6 we also study the case where x is sampled from the
Student’s t-distribution with degree of freedoms υ = 10, i.e., its PDF is p(w) = Γ(11/2)√

10πΓ(5)
(1 +
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w2

10 )−5.5, and ζ ∼ N (0, 0.1). Figure 6(a) studies the error with various dimensions and ε. Figure
6(b) studies the error with various sample sizes and ε and Figure 6(c) provides detailed comparisons
between the private and the non-private case.

(a) Sample size n = 105 (b) ε = 1 (c) ε = 1 and d = 200

Figure 6: Results of Algorithm 2 for linear with x sampled from Student’s t-distribution.

(a) Sample size n = 5 × 104 and
s∗ = 20

(b) ε = 1 and s∗ = 20 (c) ε = 1 and n = 5× 104

Figure 7: Results of Algorithm 3 for linear regression with x sampled from Gaussian distribution
and noise sampled from log-normal distribution.

(a) Sample size n = 5 × 104 and
s∗ = 20

(b) ε = 1 and s∗ = 20 (c) ε = 1 and n = 5× 104

Figure 8: Results of Algorithm 3 for linear regression with x sampled from Gaussian distribution
and noise sampled from log-logistic distribution.

From Figure 5 and 6 we can see that we have almost the same phenomenons as in Algorithm 1 in the
previous subsection, which support our previous theoretical analysis. However, there are still some
differences: First, compared with the results in Figure 1 we can see the trends in Figure 5 and 6 are
unstable and non-smooth. Secondly, we can see the errors of Figure 5 are greater than the errors in
Figure 1 under the same setting, which contradict to our previous theoretical results. We conjecture
the main reason is that although the Algorithm 2 is better than Algorithm 1 theoretically, the hidden
constant might be quite large and the sample size is not large enough. We leave it as an open problem
to design more practical algorithms.
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(a) Sample size n = 5 × 104 and
s∗ = 20

(b) ε = 1 and s∗ = 20 (c) ε = 1 and n = 5× 104

Figure 9: Results of Algorithm 3 for linear regression with x sampled from Gaussian distribution
and noise sampled from log-gamma distribution.

6.5 Results of Algorithm 3 and Algorithm 5

We then study the practical behaviors of Algorithm 3. Unlike the previous subsections, in Figure 7
we focus on the sparse linear model where x is sampled from N (0, 5) and the noise is sampled from
Lognormal(0, 0.5). Given fixed n = 5× 104 and sparsity s∗ = 20, Figure 7(a) reveals the relation
between the error and the privacy ε with different dimensions. Figure 7(b) shows the results of the
error w.r.t various sample sizes for different dimensions when ε = 1 and s∗ = 20. Furthermore,
in Figure 7(c) we also investigate the error for different sparsity s∗ with various dimensions under
ε = 1 and n = 5 × 104. In Figure 8 we studied the setting where the feature vector x ∼ N (0, 5)
and the noise sampled from the log-logistic distribution with c = 0.1 (note that the PDF of log-
logistic distribution with c is p(w) = cw−c−1(1 + w−c)−2). And Figure 9 considers the case where
x ∼ N (0, 5) and the noise sampled from the log-gamma distribution with c = 0.5 (note that the PDF
of log-gamma distribution with c is p(w) = exp(cw)−exp(w)

Γ(c) , where Γ(·) is the Gamma function).

In Figure 10 we study Algorithm 5 with the feature vector x ∼ N (0, 5) and the noise sampled from
the logistic distribution with u = 0 and s = 0.5 (note that the PDF of logistic distribution with (u, s)

is p(w) = exp(−(w−u)/s)
s(1+exp(−(w−u)/s))2 ). And in Figure 11 we consider the case where x ∼ Laplace(5) and

the noise is sampled from the log-gamma distribution with c = 0.5.

From the above results we can see that since the upper bound of the error depends on the dimension
logarithmically, increasing the dimension will just lightly affect the error. Moreover, when the sample
size or the privacy parameter increases, the error will decrease, which is the same as in the previous
parts. Finally, when the underlying sparsity s∗ is larger, the error will become larger, and unlike the
dimension, the dependence with the sparsity is not logarithmic. Thus, the sparsity will heavily affect
the error. All of our results support the previous theoretical analysis.

(a) Sample size n = 8000 and s∗ =
20

(b) ε = 1 and s∗ = 20 (c) ε = 1 and n = 8000

Figure 10: Results of Algorithm 5 for regularized logistic regression with x sampled from Gaussian
distribution and noise sampled from log-normal distribution.
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(a) Sample size n = 8000 and s∗ =
20

(b) ε = 1 and s∗ = 20 (c) ε = 1 and n = 8000

Figure 11: Results of Algorithm 5 for regularized logistic regression with x sampled from Laplacian
distribution and noise sampled from log-gamma distribution.

7 Conclusion

In this paper, we studied the problem of Differentially Private Stochastic Convex Optimization (DP-
SCO) in the high dimensional (sparse) setting, where the sample size n is far less than the dimension
of the space d and the underlying data distribution may be heavy-tailed. We first considered the
problem of DP-SCO where the constraint set is some polytope. We showed that if the gradient of
loss function has bounded second order moment, then it is possible to achieve an excess population
risk of Õ( log d

(nε)
1
3

) (with high probability) in the ε-DP model, if we omit other terms. Moreover, for

the LASSO problem, we showed that it is possible to achieve an error of Õ( log d

(nε)
2
5

) in the (ε, δ)-DP

model. Next we studied DP-SCO for sparse learning with heavy-tailed data. We first investigated
the sparse linear model and proposed a method whose output could achieve an estimation error of
Õ( s

∗2 log2 d
nε ), where s∗ is the sparsity of the underlying parameter. Then we studied a more general

problem over the sparsity (i.e., `0-norm) constraint, and show that it is possible to achieve an error of

Õ( s
∗ 3
2 log d
nε ) if the loss function is smooth and strongly convex. Finally, we showed a lower bound of

Õ( s
∗ log d
nε ) for the high dimensional heavy-tailed sparse mean estimation in the (ε, δ)-DP model.

Besides the open problems we mentioned in the previous sections, there are still many other future
work. First, in this paper, we studied the problem under various settings and assumptions and provided
some bounds of the excess population risk. While we showed a lower bound for the high dimensional
heavy-tailed sparse mean problem, we still do not know the lower bounds of other problems. Previous
results on the lower bounds need to assume the data is regular, thus we need new techniques or hard
instances to get those lower bounds in the heavy-tailed setting. Secondly, in the heavy-tailed and low
dimensional case, we know that the bounds of excess population risk may be different in the high
probability form and expectation form [36, 57]. Thus, our question is, in the high dimensional case,
if we relax to the expectation form, can we further improve these upper bounds? Thirdly, we need to
assume the gradient of the loss has bounded second order moment throughout the paper. However,
sometimes this will not be held and the data may only has the 1 + v-th moment with some v ∈ (0, 1)
[52]. Due to this weaker assumption, all the previous methods are failed. Thus, how to extend to this
case in both low dimensional and high dimensional cases?
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A Omitted Proofs

Proof of Theorem 1. In each iteration, by the definition of the robust estimator in (5) we can see that
the after changing a data record (i.e., Dt to D′t) we have ‖g̃(wt−1, Dt)− g̃(wt−1, D′t)‖∞ ≤ 4

√
2s

3m .
Thus for a fixed v ∈ V , the sensitivity of the score function satisfies |u(Dt, v) − u(D′t, v)| =

|〈v, g̃(wt−1, Dt) − g̃(wt−1, D′t)〉| ≤ ‖v‖1‖g̃(wt−1, Dt) − g̃(wt−1, D′t)‖∞ ≤ ‖W‖1 4
√

2s
3m . Thus,

step 6 in Algorithm 1 is ε-DP. Since in each iteration we use a new subset of the data, the whole
algorithm will be ε-DP.

Proof of Theorem 2. Before analyzing the utility, we first provide a general upper bound of the error
of x̂(s, β) in (4).

Lemma 4. Let x1, x2, · · · , xn be i.i.d. samples from distribution x ∼ µ. Assume that there is some
known upper bound on the second-order moment, i.e., Eµx2 ≤ τ . For a given failure probability ζ,
then with probability at least 1− ζ we have

|x̂(s, β)− Ex| ≤ τ

2s
(

1

β
+ 1) +

s

n
(
β

2
+ log

2

ζ
). (12)

Proof of Lemma 4. Let P(R) denote all the probability measures on R, with an appropriate σ-field
tacitly assumed. Consider any two measures v, v0 ∈ P(R), and h : R 7→ R a v0-measurable function.
By [15], it is proved that a Legendre transform of the mapping v 7→ K(v, v0) takes the form of a
cumulant generating function, namely

sup
v

(

∫
h(u)dv(u)−K(v, v0)) = log

∫
exp(h(u))dv0(u), (13)

where the supremum is taken over v ∈ P(R). Following [17] here we use the Kullback divergence
for the Legendre transform of the mapping, so we define

K(v, v0) =

∫
log(

dv

dv0
)dv (14)

if v0 � v, and K(v, v0) = +∞ otherwise.

This identity is a technical tool and the choice of h and v0 are parameters that can be adjusted to
fit the application. In actually setting these parameters, we will follow the technique given by [17],
which is later adapted by [30]. Note the term

φ(
xi + ηixi

s
)

depends on two terms, namely the data xi and the artificial noise ηi (if we fix s). Thus, for convenience
we denote

f(η, x) := φ(
x+ ηx

s
).

By the definition of φ we can see that f : R2 7→ R is measurable and bounded. Next, we denote that

h(η) =

n∑
i=1

f(η, xi)− c(η),

where c(ε) is a term to be determined shortly. Take h(η) into (13) we have

B : = sup
v

(

∫
h(u)dv(u)−K(v, v0))

= log

∫
exp(

n∑
i=1

f(η, xi)− c(η))dv(η),

Taking the exponential of this B and then taking expectation with respect to the sample, we have

E exp(B) = E
∫

(
exp(

∑n
i=1 f(η, xi))

exp(c(η))
)v(η)

=

∫
Πn
i=1E exp(f(η, xi))

exp(c(η))
)v(η)
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The first equality comes from simple log/exp manipulations, and the second equality from taking the
integration over the sample inside the integration with respect to v, valid via Fubini’s theorem. By
setting

c(η) = n logE exp(f(η, x)).
With this preparation done, we can start on the high-probability upper bound of interest:

P (B ≥ log
1

ζ
) = P (exp(B) ≥ 1

ζ
)

= EI(exp(B)ζ ≥ 1)

≤ E exp(B)ζ = ζ,

where the last equality is due to E exp(B) = 1 by setting c(η) = n logEf(η, x). Note that since our
setting of c(η) is such that c(·) is v-measurable (via the measurability of f ), the resulting h is indeed
measurable w.r.t v. Thus by the definition of B we have with probability at least 1− ζ

sup
v

(

∫
h(u)dv(u)−K(v, v0)) ≤ log

1

ζ
.

Take the implicit form of B via h(η) and c(η) and divide by n form both side we have

1

n

∫ n∑
i=1

f(η, xi)dv(η) ≤
∫

logE exp(f(η, x))dv(η) +
K(v, v0) + log 1

ζ

n
. (15)

It is notable that by definition x̂(s, β) in (4) satisfies

x̂(s, β) =
s

n

n∑
i=1

∫
φ(
xi + ηixi

s
)dχ(ηi) =

s

n

∫ n∑
i=1

f(η, xi)dv(η)

≤ s
∫

logE exp(f(η, x))dv(η) +
sK(v, v0) + s log 1

ζ

n
.

In the following we will bound the term of
∫

logE exp(f(η, x))dv(η) and K(v, v0). Starting with
the first term, recall the definition of the truncation function φ(·) in (2) we can it satisfies that for all
u ∈ R

− log(1− u+
u2

2
) ≤ φ(u) ≤ log(1 + u+

u2

2
). (16)

Thus we have ∫
logEf(η, x)dv(η)

=

∫
logE exp(φ(

(1 + η)x

s
)dv(η)

≤
∫

log(1 +
(1 + η)Ex

s
+

(1 + η)2Ex2

2s2
)dv(η)

≤
∫

(
(1 + η)Ex

s
+

(1 + η)2Ex2

2s2
)dv(η)

=
Ex
s

(1 + Eηη) +
Ex2

2s2
Eη(1 + η)2

=
Ex
s

+
Ex2

2s2
(1 +

1

β
). (17)

Where the last equality is due to η ∼ N (0, 1
β ).

For term K(v, v0), it is critical to select an appropriate measure v0 to easily calculate the KL-
divergence. Here we set v0 ∼ N (1, 1

β ). In this case we have

K(v, v0) =

∫ +∞

−∞
log(exp(

β(u− 1)2

2
− βu2

2
))

√
β

2π
exp(−βu

2

2
)du

=

∫ +∞

−∞

(1− 2u)β

2

√
β

2π
exp(−βu

2

2
)du

=
β

2
. (18)
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Thus, combining with (17) and (18) we have with probability at least 1− ζ

x̂(s, β) ≤ Ex+
Ex2

2s
(

1

β
+ 1) +

s

n
(
β

2
+ log

1

ζ
). (19)

Next, we will get a lower bound of x̂(s, β)− Ex. The proof is quite similar as in the above proof.
The main difference is here we set

f(η, x) := −φ(
x+ ηx

s
).

Thus we have

−x̂ =
s

n

n∑
i=1

∫
−φ(

xi + ηixi
s

)dχ(ηi) =
s

n

∫ n∑
i=1

f(η, xi)dv(η)

≤ s
∫

logE exp(f(η, x))dv(η) +
sK(v, v0) + s log 1

ζ

n

≤ s
∫

logE exp(−φ(
x+ ηx

s
))dv(η) +

sK(v, v0) + s log 1
ζ

n

By (16) we have

−x̂ ≤ s
∫

logE exp(−φ(
x+ ηx

s
))dv(η) +

sK(v, v0) + s log 1
ζ

n

≤ s[(−1)

∫
(1 + η)Ex

s
dv(η) +

∫
(1 + η)2Ex2

s2
dv(η)]

+
sK(v, v0) + s log 1

ζ

n

≤ −Ex+
Ex2

2s
(

1

β
+ 1) +

s

n
(
β

2
+ log

1

ζ
).

Thus we have

Ex− x̂(s, β) ≤ τ

2s
(

1

β
+ 1) +

s

n
(
β

2
+ log

1

ζ
) (20)

In total we have with probability at least 1− 2ζ,

|Ex− x̂(s, β)| ≤ τ

2s
(

1

β
+ 1) +

s

n
(
β

2
+ log

1

ζ
). (21)

Since in each iteration, we will use the estimator (4) to each coordinate of the gradient. Taking the
union bound and setting the failure probability ζ = ζ

dT in Lemma 4, and since in each iteration we
use independent samples, we have with probability at least 1− ζ, for each t ∈ [T ]

‖g̃(wt−1, Dt)−∇LD(wt−1)‖∞ ≤
τ

2s
(

1

β
+ 1) +

s

m
(
β

2
+ log

2dT

ζ
). (22)

In the following we will assume (22) holds. We will show the following lemma:

Lemma 5. Assume (22) holds, then with probability at least 1 − ζ, in each iteration t ∈ [T ], for
w̃t−1 we have

〈w̃t−1,∇LD(wt−1) ≤ min
v∈V
〈v,∇LD(wt−1)〉+O(

‖W‖1τ
s

(
1

β
+ 1)

+
‖W‖1sT

n
(β + log

dT

ζ
) +
‖W‖1sT log |V | log T

ζ

nε
). (23)
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Proof of Lemma 5. By the utility of the exponential mechanism (Lemma 1) we have with probabil-
ity at least 1− ζ, in each iteration t ∈ [T ],

〈w̃t−1, g̃(wt−1, Dt)〉 ≤ min
v∈V
〈v, g̃(wt−1, Dt)〉+O(

sT‖W‖1 log |V | log T
ζ

nε
). (24)

For the left side of (24) we have

〈w̃t−1,∇LD(wt−1)− g̃(wt−1, Dt)〉
≤ ‖w̃t−1‖1‖∇LD(wt−1)− g̃(wt−1, Dt)‖∞

≤ ‖W‖1
(τ
s

(
1

β
+ 1) +

s

m
(β + log

2dT

ζ
)
)
. (25)

For the right side of (24), we denote v1 = arg minv∈V 〈v, g̃(wt−1, Dt)〉 and v2 =
arg minv∈V 〈v,∇LD(wt−1)〉, then we have

〈v1, g̃(wt−1, Dt)〉 ≤ 〈v2, g̃(wt−1, Dt)〉

≤ 〈v2,∇LD(wt−1)〉+ ‖W‖1
( τ

2s
(

1

β
+ 1) +

s

m
(
β

2
+ log

2dT

ζ
)
)
. (26)

We can finish the proof by combing with (25), (26) and (24).

Next, we recall the converge rate of Frank-Wolfe method proposed in [34].

Lemma 6 (Theorem 1 in [34]). In the Frank-Wolfe algorithm, suppose in each iteration we get
wt = (1− ηt−1)wt−1 + ηt−1st, where st ∈ W such that

〈st,∇LD(wt−1)〉 ≤ min
s∈W
〈s,∇LD(wt−1)〉+

1

2
χηt−1ΓL. (27)

Where χ > 0 is fixed, ΓL is the curvature constant of the function LD(w) which is bound by
ΓL ≤ α‖W‖1. if LD(·) is α-smooth. If we take ηt−1 = 2

t+2 then

LD(wt)− min
w∈W

LD(w) ≤ 2ΓL
t+ 2

(1 + χ).

Now we will begin to proof Theorem 2. Under the condition of Lemma 5 we can see if χ in Lemma
6 satisfies

1

2
χηt−1α‖W‖1 ≥ O(

‖W‖1τ
s

(
1

β
+ 1) +

‖W‖1sT
n

(β + log
dT

ζ
) +
‖W‖1sT log |V | log T

ζ

nε
)

That is

χ = O(
T

α

(τ
s

(
1

β
+ 1) +

sT

n
(β + log

dT

ζ
) +

sT log |V | log T
ζ

nε

)
),

Then by Lemma 6 we have if η = 2
t+2 then (note that this hold with probability at least 1− 2ζ),

LD(wT )− min
w∈W

LD(w)

≤ O
(α‖W‖1

T
+
‖W‖1τ
s

(
1

β
+ 1) +

‖W‖1sT
n

(β + log
dT

ζ
) +
‖W‖1sT log |V | log T

ζ

nε

)
≤ O

(α‖W‖1
T

+
‖W‖1τ
sβ

+
‖W‖1sTβ log |V | log T

ζ

nε

)
. (28)

Thus, take β = O(1), s = O(
√

nετ

T log
|V |dT
ζ

) we have

LD(wT )− min
w∈W

LD(w) ≤ O
(α‖W‖1

T
+ ‖W‖1

√
τT log |V |dTζ√

nε

)
.
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Taking T = Õ
(
( nεα2

τ log
|V |d
ζ

)
1
3

)
. We can get

LD(wT )− min
w∈W

LD(w) ≤ O
(‖W‖1(ατ log n|V |d

ζ )
1
3

(nε)
1
3

)
. (29)

Proof of Theorem 3. We first show the following lemma.

Lemma 7. Under Assumption 2, for any w ∈ W we have

LD(w)− LD(w∗) ≤ Cψ
2cψ
〈∇LD(w), w − w∗〉.

Proof of Lemma 7 . First, the smoothness of ψ implies that for any s, s∗, we have

ψ(s)− ψ(s∗) ≤ ψ′(s∗)(s− s∗) +
Cψ
2

(s− s∗)2.

Taking s = 〈w, x〉 and s∗ = 〈w∗, x〉, and then taking expectation w.r.t. (x, y), we get

LD(w)− LD(w∗)

≤ Ex,y[ψ′(〈w∗, x〉 − y)〈w − w∗, x〉] +
Cψ
2

E〈w − w∗, x〉2

= 〈∇LP(w∗), w − w∗〉+
Cψ
2

E〈w − w∗, x〉2. (30)

By Assumption 2, we have
∇LP(w∗) = Ex,ξ[ψ′(−ξ)x] = 0.

Thus, we get LP(w)− LP(w∗) ≤ Cψ
2 E〈w − w∗, x〉2. On the other hand, using gradient we have

〈∇LP(w), w − w∗〉 = Ex[Eξψ′(〈w − w∗, x〉 − ξ)〈w − w∗, x〉]
= Ex[h(〈w − w∗, x〉)〈w − w∗, x〉].

By the assumption on function h(·), we get

h(〈w − w∗, x〉)〈w − w∗, x〉 =
h(〈w − w∗, x〉)
〈w − w∗, x〉

〈w − w∗, x〉2

≥ cψ〈w − w∗, x〉2,
where the inequality is due to the fact that h(0) = 0 and h′(0) ≥ cψ .

Taking the expectation, we have

〈∇LP(w), w − w∗〉 ≥ cψEx〈w − w∗, x〉2.
Combing previous inequalities we can finish the proof.

Next, we will verify the loss function satisfies is smooth and has bounded second order moment for
each coordinate of the gradient. For the smooth, we can see that

‖∇2LD(w)‖2 = ‖ExTxψ′′(〈w, x〉 − y)‖2 ≤ Cψλmax(E(xxT )).

For each coordinate j ∈ [d],

E(∇j`(w; z))2 = E[(xjψ
′(〈w, x〉 − y))2] ≤ C2

ψEx2
j = O(C2

ψ).

Similar to Lemma 5, we have with probability at least 1− 2ζ, in each iteration t ∈ [T ], for w̃t−1 we
have

〈w̃t−1,∇LD(wt−1) ≤ min
v∈V
〈v,∇LD(wt−1)〉

+O(
C2
ψ

s
(

1

β
+ 1) +

sT

n
(β + log

dT

ζ
) +

sT log dT
ζ

nε
). (31)
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Denote vt−1 = arg minv∈V 〈v,∇LD(wt−1)〉 and µ = O(
C2
ψ

s ( 1
β +1)+ sT

n (β+log dT
ζ )+

sT log dT
ζ

nε ).
By the smooth property, we have

Cψλmax(E(xxT ))

2
‖wt − wt−1‖22

≥ LD(wt)− LD(wt−1)− 〈LD(wt−1), wt − wt−1〉
= LD(wt)− LD(wt−1)− ηt−1〈∇LD(wt−1), w̃t−1 − wt−1〉
≥ LD(wt)− LD(wt−1)− ηt−1(〈∇LD(wt−1), vt−1 − wt−1〉+ µ).

Thus, we have

LD(wt)− LD(wt−1) + ηt−1〈∇LD(wt−1), wt−1 − w∗〉
≤ LD(wt)− LD(wt−1) + ηt−1〈∇LD(wt−1), wt−1 − vt−1〉

≤
Cψη

2
t−1λmax(E(xxT ))

2
‖W‖21 + ηt−1µ

By Lemma 7 we can get

LD(wt)− LD(wt−1) +
2cψ
Cψ

ηt−1(LD(wt−1)− LD(w∗))

≤
Cψη

2
t−1λmax(E(xxT ))

2
‖W‖21 + ηt−1µ. (32)

Denote ∆t = LD(wt)− LD(w∗), we have

∆t ≤ (1− 2cψ
Cψ

ηt−1)∆t−1 +
Cψη

2
t−1λmax(E(xxT ))

2
‖W‖21 + ηt−1µ.

Let ηt−1 = η for all t. Sum from t = 1 · · ·T we have

∆T ≤ (1− 2cψ
Cψ

η)T∆0 +
Cψ

2cψη

(Cψη2λmax(E(xxT ))

2
+ ηµ

)
≤ Cψ

2cψ

1

ηT
∆0 +

(C2
ψηλmax(E(xxT ))

2cψ
+
Cψ
2cψ

µ

= O
( Cψ

2cψ

1

ηT
+
C2
ψηλmax(E(xxT ))

2cψ
+

C3
ψ

cψsβ
+
CψsTβ log dT

ζ

cψnε

)
.

Note that the second inequality is due to (1 − η)T ≤ 1
ηT , since it is equivalent to ηT ≤ ηT

1−η ≤
(1 + η

1−η )T

Taking β = O(1), s = O(
√
nε√

T log dT
ζ

), η = 1√
T

, and T = Õ(
√

nε
log d

ζ

) we get the result.

Proof of Theorem 4. We can see that after truncating, each entry in x̃i and ỹi satisfies |x̃i,j | ≤
K, |ỹi| ≤ K. Consider a neighboring data of D, D′ and its correspond truncated data D̃′. Then for
each fixed w and v ∈ V we have

|u(D̃, v)− u(D̃′, v)| ≤ ‖W‖1‖g̃(wt−1, D̃)− g̃(wt−1, D̃′)‖∞

≤ 4‖W‖1
n
‖x̃n(〈x̃n, wt−1〉 − ỹn)‖∞ ≤

8‖W‖1K2

n
.

Thus the sensitivity of u(D̃, v) is 8‖W‖1K2

n . And since in each iteration it is ε

2
√

2T log 1
δ

-DP. By the

advanced composition theorem (Lemma 2) we can see the while algorithm is (ε, δ)-DP.

Proof of Theorem 5. The key lemma of the whole proof is the following:
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Lemma 8. Denote g(w) = ∇LD(w) = E[2x(〈w, x〉 − y)]. We have the following inequality with
probability at least 1− ζ:

sup
v∈V

sup
w∈W

|〈v, g̃(w, D̃)− g(w)〉| ≤ O(‖W‖21(

√
M log d

ζ

n
+
K2 log d

ζ

n
+
M

K2
)). (33)

Proof of Lemma 8. We can easily get

sup
v∈V

sup
w∈W

|〈v, g̃(w, D̃)− g(w)〉|

≤ ‖W‖1 sup
w∈W

‖g̃(w, D̃)− g(w)‖∞

≤ ‖W‖1 sup
w∈W

(‖2(
1

n

n∑
i=1

x̃ix̃
T
i − E[xxT ])w‖∞) + ‖2(

1

n

n∑
i=1

x̃iỹ − E[xy])|∞

≤ ‖W‖1 sup
w∈W

max
j∈[d]

(2(
1

n

n∑
i=1

x̃ix̃
T
i − E[xxT ])Tj w) + ‖2(

1

n

n∑
i=1

x̃iỹ − E[xy])|∞

≤ 2‖W‖21
(
‖( 1

n

n∑
i=1

x̃ix̃
T
i − E[xxT ])‖∞,∞︸ ︷︷ ︸
A

+ ‖( 1

n

n∑
i=1

x̃iỹ − E[xy])|∞︸ ︷︷ ︸
B

)
,

where ‖S‖∞,∞ for a d× d matrix S is maxi∈[d],j∈[d] |Sij |. In the following we will bound term A
and B.

First we consider the term A, for simplicity for each j, k ∈ [d] denote σ̂jk = ( 1
n

∑n
i=1 x̃ix̃

T
i )jk =

1
n

∑n
i=1 x̃i,j x̃i,k, σ̃jk = (E[x̃x̃T ])jk = E[x̃j x̃k] and σjk = (E[xxT ])jk = E[xjxk]. We have

|σ̂jk − σjk| ≤ |σ̂jk − σ̃jk|+ |σ̃jk − σjk|.

We know that |x̃j x̃k| ≤ K2 and Var(x̃j x̃k) ≤ Var(xjxk) ≤ E(xjxk)2 ≤M .

By using Bernstein’s inequality (Lemma 9) we have for any t > 0

Pr(|σ̂jk − σjk| ≤ C(

√
Mt

n
+
K2t

n
)) ≥ 1− exp(−t). (34)

Taking the union bound for all k, j ∈ [d] we have

Pr(max
j,k
|σ̂jk − σjk| ≤ C(

√
Mt

n
+
K2t

n
)) ≥ 1− d2 exp(−t). (35)

For the term |σ̃ij − σij | by definition we have there is a university constant C2 > 0,

|σ̃jk − σjk|
= |E[x̃j(x̃k − xk)I(|xk| ≥ K)]|+ |E[(x̃j − xj)I(|xj | ≥ K)xk]|

≤ C2
M

K2
. (36)

To get (36), we have

|σ̃jk − σjk|
= |E[x̃j(x̃k − xk)I(|xk| ≥ K)]|+ |E[(x̃j − xj)I(|xj | ≥ K)xk]|

≤
√

E(x̃j(x̃k − xk))2Pr(|xk|4 ≥ K4) +
√

E((x̃j − xj)xk)2Pr(|xj |4 ≥ K4)

≤ O(
M

K2
),

where the last inequality is due to that E(x̃j(x̃k−xk))2 ≤ 4E(xjxk))2 ≤ 4M and E((x̃j−xj)xk)2 ≤
4E(xjxk))2 ≤ 4M .
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Combing with (36) and (35) we have with probability at least 1− d2 exp(−t),

A ≤ O(

√
Mt

n
+
K2t

n
+
M

K2
). (37)

We can use the same technique to term B, for simplicity for each j ∈ [d] denote σ̂j = 1
n

∑n
i=1 ỹix̃j ,

σ̃j = E[ỹx̃j ] and σj = E[yxj ]. We have

|σ̂j − σj | ≤ |σ̂j − σ̃j |+ |σ̃j − σj |.
Since |x̃j ỹ| ≤ K2 and Var(x̃j ỹ) ≤ Var(xjy) ≤M we have for all j ∈ [d]

Pr(|σ̂j − σ̃j | ≤ C(

√
Mt

n
+
K2t

n
)) ≥ 1− d exp(−t).

Moreover

|σ̃j − σj | ≤ |E[ỹ(x̃j − xj)I(|xj |) ≥ K]|+ |E[xj(ỹ − y)I(|y| ≥ K)]|

≤
√
E((ỹ(x̃j − xj))2Pr(|xj |4 ≥ K4) +

√
E(xj(ỹ − y))2Pr(|y|4 ≥ K4)

≤ O(

√
M

K2
),

we can easily see that with probability at most 1− d exp(−t),

B ≤ O(

√
Mt

n
+
K2t

n
+

√
M

K2
). (38)

Take t = ζ
d3 , we can finish the proof. That is with probability at least 1− ζ

A+B ≤ O(

√
M log d

ζ

n
+
K2 log d

ζ

n
+
M

K2
). (39)

Lemma 9. [[54]] Let X1, · · · , Xn be n be independent zero-mean random variables. Suppose each
|Xi| ≤ s, and E[X2

i ] ≤ r. Then there is a universal constant C such that for all t > 0,

Pr(
1

n

n∑
i=1

Xi > C(
st

n
+

√
rt

n
)) ≤ exp(−t).

Now lets back to the proof of Theorem 5. By using the utility of the exponential mechanism and take
the union for all iterations we have with probability at least 1− ζ,

〈w̃t−1, g̃(wt−1, D)〉 ≤ min
v∈V
〈v, g̃(wt−1, D)〉+O(

‖W‖1K2 log |V |
√
T log 1

δ log T
ζ

nε
). (40)

Using Lemma 5 and Lemma 8 we have with probability at least 1− ζ for all t ∈ [T ],

〈w̃t−1, g(wt−1)〉 ≤ min
v∈V
〈v, g(wt−1)〉+O(

‖W‖1K2 log |V |
√
T log 1

δ log T
ζ

nε

+ ‖W‖21(

√
M log d

ζ

n
+
K2 log d

ζ

n
+
M

K2
)). (41)

Since LD(·) is λmax(E(xxT ))-smooth, we can get its curvature constant is bound by ΓL ≤
λmax(E(xxT ))‖W‖1. Under the condition of Lemma 6 we can see if χ in Lemma 6 satisfies

1

2
χηt−1λmax(E(xxT )) ≥ O(

K2 log |V |
√
T log 1

δ log T
ζ

nε
+‖W‖1(

√
M log d

ζ

n
+
K2 log d

ζ

n
+
M

K2
)).
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That is

χ = O(
T

λmax(E(xxT ))

(K2 log |V |
√
T log 1

δ log T
ζ

nε
+‖W‖1(

√
M log d

ζ

n
+
K2 log d

ζ

n
+
M

K2
)
)
),

Then by Lemma 4 we have if η = 2
t+2 then (note that this hold with probability at least 1− 2ζ),

LD(wT )− min
w∈W

LD(w)

≤ O
(λmax(E(xxT ))

T
+
‖W‖1K2 log |V |

√
T log 1

δ log T
ζ

nε
+ ‖W‖21(

√
M log d

ζ

n
+
K2 log d

ζ

n
+
M

K2
)
)

≤ O(
λmax(E(xxT ))

T
+

√
M log d

ζ

n
+
K2
√
T log 1

δ log dT
ζ

nε
+

1

K2
). (42)

Take K = (nε)
1
4

T
1
8

, and T = Õ((
√
nελmax(E(xxT ))√

log 1
δ log dT

ζ

)
4
5 ). We have

LD(wT )− min
w∈W

LD(w) ≤ O(
λ

1
5
max(E(xxT ))(

√
log 1

δ log dn
ζ )

4
5

(nε)
2
5

). (43)

Proof of Theorem 6. Since in each iteration of Algorithm 3 we use a new data. Thus, it is sufficient
to show it is (ε, δ)-DP in each iteration. The proof is based on a lemma which shows that Algorithm
4 is (ε, δ)-DP:

Lemma 10 (Lemma 3.3 in [13]). If for every pair of neighboring datasets D,D′ we have ‖v(D)−
v(D′)‖∞ ≤ λ, then Algorithm 4 is (ε, δ)-DP.

Thus by Lemma 10, it is sufficient for us to bound the `∞-norm sensitivity of wt+0.75. We have

‖wt+0.75 − w′t+0.75‖∞ ≤
2η0

m
‖x̃(〈x̃, wt〉 − ỹ)‖∞

≤ 2η0

m
(‖x̃〈x̃, wt〉‖∞ + ‖x̃ỹ‖∞) ≤ 2K2η0

m
(
√
s+ 1),

where the last inequality is due to that 〈x̃, wt〉 ≤
√
s‖x̃‖∞ since ‖wt‖2 ≤ 1 and wt is s-sparse.

Proof of Theorem 8. For the guarantee of DP. Since in each iteration of Algorithm 5 we use a new
data. Thus, it is sufficient to show it is (ε, δ)-DP in each iteration. Since we have

‖wt+0.5 − w′t+0.5‖∞ ≤ ‖ηg̃(wt−1, Dt)− ηg̃(wt−1, D′t)‖∞ ≤
4
√

2ηs

3m
.

Thus, by Lemma 10 we can see it is (ε, δ)-DP.

In the following we will proof the utility. For simplicity we will omit the subscript r in ur, λr.

We denote g̃t = g̃(wt−1, Dt) and gt = ∇LD(wt−1). The utility is almost the same as in the proof of
Theorem 7 where wt+0.75 = wt+1 in Algorithm 5 (since there is no projection step). We can follow
its proof and finally get (70) if η = 2

3 , s = 72 γ
2

µ2 s
∗

LD(wt+1)− LD(wt) ≤ (
2s∗

s+ s∗
+

µ

24γ
)(LD(w∗)− LD(wt)) +O(N t +N t

2), (44)

where N t +N t
2 ≤ O(

∑
i∈[s] ‖wi‖2∞ + (2s+ s∗)‖g̃t − gt‖2∞ + s‖w̃‖2∞). Take the union we have

with probability at least 1− ζ for all the iterations,∑
i∈[s]

‖wi‖2∞ + s‖w̃‖2∞ ≤ O(
η2

0s
2k2T 2 log2 Ts

ζ log 1
δ

n2ε2
).
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For the term ‖g̃t − gt‖2∞, by Lemma 4, we have with probability at least 1− ζ, for all t ∈ [T ],

‖g̃t − gt‖2∞ ≤ O(
τ2

k2β2
+
β2T 2k2 log2 dT

ζ

n2
). (45)

Thus,

N t +N t
2 ≤ O(

s2k2T 2 log2 Ts
ζ log 1

δ

γ2n2ε2
+

sτ2

k2β2
+
sβ2T 2k2 log2 dT

ζ

n2
).

Take β = O(1) and k = 4

√
n2ε2τ2

(sT )2 log Ts
ζ

, we have

N t +N t
2 ≤ O(

τs
3
2T log Ts

ζ

√
log 1

δ

γ2nε
).

In total we have for all t ∈ [T ] with probability at least 1− ζ,

LD(wt+1)− LD(w∗) ≤ (1− µ

12γ
)(LD(wt)− LD(w∗)) +O(

s
3
2Tτ log Ts

ζ

√
log 1

δ

γnε
)

LD(wT+1)− LD(w∗) ≤ (1− µ

12γ
)T+1(LD(w1)− LD(w∗)) +O(

τs
3
2T log Td

ζ

√
log 1

δ

µnε
).

Take T = Õ( γµ log n) and s = O(( γµ )2s∗) we have the result.

A.1 Proof of the Lower Bound in Theorem 8

Proof of Theorem 9. Our following proof is inspired by the proof of the lower bound for non-sparse
mean estimation in the (ε, δ)-DP model (Proposition 4 in [4]), where here we extend to the sparse
case.

Let P0 be a point mass distribution supported on X = 0, and for fixed p ∈ [0, 1] let Pv be a
point mass supported on X =

√
τ√
pv where ‖v‖2 ≤ 1 and is s∗-sparse. We will show for any

p ∈ [0, 1], the probability Pθv := (1 − p)P0 + pPv ∈ P . That is due to that µ(Pθv ) =
√
pτv and

EX∼PθvX
2
j = τv2

j ≤ τ . Next we recall the following lemma

Lemma 11. [[47]] For any s ∈ [d], define the set
H(s) := {z ∈ {−1, 0,+1}d | ‖z‖0 = s}

with Hamming distance ρH(z, z′) =
∑d
i=1 1[zj 6= z′j ] between the vectors z and z′. Then, there

exists a subset H̃ ⊂ H with cardinality |H̃| ≥ exp( s2 log d−s
s/2 ) such that ρH(z, z′) ≥ s

2 for all

z, z′ ∈ H̃.

We denote the index set V = 1√
2s
H̃ where H̃ is in Lemma 11. We can see that for any v, v′ ∈ V we

have ‖v − v′‖2 ≥
√

2 and each ‖v‖2 ≤ 1. Thus,

ρ∗(V) := min{ρ(θv, θv′)|v, v′ ∈ V, v 6= v′} ≥
√

2
√
pτ .

Thus by Lemma 3 we have
Mn(θ(P), Q,Φ ◦ ρ)

≥ Φ(ρ∗(V))
(|V| − 1)( 1

2e
−εdnpe − δ 1−e−εdnpe

1−e−ε )

1 + (|V| − 1)e−εdnpe

≥ 2pτ
(|V| − 1)( 1

2e
−εdnpe − δ 1−e−εdnpe

1−e−ε )

1 + (|V| − 1)e−εdnpe

≥ 2pτ
(exp( s2 log d−s

s/2 )− 1)( 1
2e
−εdnpe − δ 1−e−εdnpe

1−e−ε )

1 + (exp( s2 log d−s
s/2 )− 1)e−εdnpe
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where |V| ≥ exp( s2 log d−s
s/2 ) by Lemma 11. Now we set

p =
1

nε
min{s

2
log

d− s
s/2

− ε, log(
1− e−ε

4δeε
)}.

Thus we have
1

2
e−εdnpe − δ 1− e−εdnpe

1− e−ε
≥ 1

4
exp(−ε(np+ 1)),

(exp( s2 log d−s
s/2 )− 1)( 1

2e
−εdnpe − δ 1−e−εdnpe

1−e−ε )

1 + (exp( s2 log d−s
s/2 )− 1)e−εdnpe

≥
(exp( s2 log d−s

s/2 )− 1)( 1
2e
−εdnpe − δ 1

1−e−ε )

1 + (exp( s2 log d−s
s/2 )− 1)e−εdnpe

≥
1
4 exp(−ε(np+ 1))(exp( s2 log d−s

s/2 )− 1)

1 + (exp( s2 log d−s
s/2 )− 1)e−ε(np+1)

≥ 1

8
.

Thus in total we have

Mn(θ(P), Q,Φ ◦ ρ)

≥ τ

4

1

nε
min{s

2
log

d− s
s/2

− ε, log(
1− e−ε

4δeε
)}

= Ω(
τ min{s log d, log 1

δ }
nε

).

Explicit Form of Ĉ(a, b) in (4)

We first define the following notations:

V− :=

√
2− a
b

, V+ =

√
2 + a

b
F− := Φ(−V−), F+ := Φ(−V+)

E− := exp(−
V 2
−
2

), E+ := exp(−
V 2

+

2
),

where Φ denotes the CDF of the standard Gaussian distribution. Then

Ĉ(a, b) = T1 + T2 + · · ·+ T5,

where

T1 :=
2
√

2

3
(F− − F+)

T2 := −(a− a3

6
)(F− + F+)

T3 :=
b√
2π

(1− a2

2
)(E+ − E−)

T4 :=
ab2

2

(
F+ + F− +

1√
2π

(V+E+ + V−E−)

)
T5 :=

b3

6
√

2π

(
(2 + V 2

−)E− − (2 + V 2
+)E+

)
.

Proof of Theorem 7. Before the proof, let us first recall two lemmas related to the output of Algo-
rithm 4.
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Lemma 12 (Lemma 3.4 in [13] ). Let S and {wi}si=1 be defined is Algorithm 4. For every R1 ⊆ S
and R2 ⊆ Sc such that |R1| = |R2| and every c > 0, we have

‖vR2‖22 ≤ (1 + c)‖vR1‖22 + 4(1 +
1

c
)
∑
i∈[s]

‖wi‖2∞,

where v is the input vector of Algorithm 4.

Lemma 13 (Lemma A.3 in [13] ). Consider in Algorithm 4 with input vector ṽ and the index set S.
For any index set I , any v ∈ R|I| which is a subvector of ṽ and v̂ such that ‖v̂‖0 ≤ ŝ ≤ s, we have
that for every c > 0,

‖vS − v‖22 ≤ (1 +
1

c
)
|I| − s
|I| − ŝ

‖v̂ − v‖22 + 4(1 + c)
∑
i∈[s]

‖wi‖2∞.

For simplicity we denote g̃t = 1
m

∑
x∈D̃t x̃(〈x̃, wt〉 − ỹ), gt = E[xT (〈x,wt〉 − y)] = ∇LD(wt),

St = supp(wt), St+1 = supp(wt+1), S∗ = supp(w∗) and It = St+1
⋃
St
⋃
S∗. We can see that

|St| ≤ s, |St+1| ≤ 2 and |It| ≤ 2s + s∗. We also denote W t = 4
∑
i∈[s] ‖wi‖2∞, where {wi} are

the vectors in Algorithm 4 in the t-th iteration. We let γ = λmax(E[xxT ]), µ = λmin(E[xxT ]) and
η0 = η

γ for some η.

Then the smooth Lipschitz property we have

LD(wt+0.75)− LD(wt)

≤ 〈wt+0.75 − wt, gt〉+
γ

2
‖wt+0.75 − wt‖22

= 〈wt+0.75
It − wtIt , gtIt〉+

γ

2
‖wt+0.75

It − wtIt‖22

≤ γ

2
‖wt+0.75

It − wtIt +
η

γ
gtIt‖22 −

η2

2γ
‖gtIt‖22 + (1− η)〈wt+0.75 − wt, gt〉 (46)

First, let us focus on the third term of (46)

〈wt+0.75 − wt, gt〉 = 〈wt+0.75
St+1

⋃
St − w

t
St+1

⋃
St , g

t
St+1

⋃
St〉

= 〈wt+0.75
St+1 − wtSt+1 , gtSt+1〉+ 〈wt+0.75

St\St+1 − wtSt\St+1 , gtSt\St+1〉

= 〈wt+0.75
St+1 − wtSt+1 , gtSt+1〉 − 〈wtSt\St+1 , gtSt\St+1〉. (47)

From the definition we know that wt+0.75 = ŵt+0.75 + w̃St+1 , where ŵt+0.75 = (wt − η0g̃
t)St+1 .

Thus,

〈wt+0.75 − wt, gt〉 = 〈ŵt+0.75
St+1 − wtSt+1 , gtSt+1〉+ 〈w̃St+1 , gtSt+1〉 − 〈wtSt\St+1 − gtSt\St+1〉.

(48)

For the first term in (48) we have

〈ŵt+0.75
St+1 − wtSt+1 , gtSt+1〉 = 〈−η0g̃

t
St+1 , gtSt+1〉 = −η

γ
〈g̃tSt+1 , gtSt+1〉

= −η
γ
‖gtSt+1‖22 −

η

γ
〈g̃tSt+1 − gtSt+1 , gtSt+1〉

≤ −η
γ
‖gtSt+1‖22 +

η

2γ
‖gtSt+1‖22 +

η

2γ
‖g̃tSt+1 − gtSt+1‖22

= − η

2γ
‖gtSt+1‖22 +

η

2γ
‖g̃tSt+1 − gtSt+1‖22. (49)

Take (49) into (48) we have for c > 1

〈wt+0.75−wt, gt〉 ≤ − η

2γ
‖gtSt+1‖22+

η

2γ
‖g̃tSt+1−gtSt+1‖22+c‖w̃St+1‖22+

1

4c
‖gtSt+1‖22−〈wtSt\St+1−gtSt\St+1〉.

(50)
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For the last term of (50) we have

−〈wtSt\St+1 − gtSt\St+1〉 ≤
γ

2η
(‖wtSt\St+1 −

η

γ
gtSt\St+1‖22 − (

η

γ
)2‖gtSt\St+1‖22)

=
γ

2η
‖wtSt\St+1 −

η

γ
gtSt\St+1‖22 −

η

2γ
‖gtSt\St+1‖22. (51)

In Lemma 12, let v = wt − η
γ g̃

t, R2 = St\St+1 and R1 = St+1\St. We have for c > 1

‖wtSt\St+1 −
η

γ
g̃tSt\St+1‖22 ≤ (1 +

1

c
)‖wtSt+1\St −

η

γ
g̃tSt+1\St‖

2
2 + (1 + c)W t.

Since for every c > 1, (1 − 1
c )‖a‖2 − (c − 1)‖b‖22 ≤ ‖a + b‖2 ≤ (1 + 1

c )‖a‖22 + (1 + c)‖b‖22 we
have

(1− 1

c
)‖wtSt\St+1 −

η

γ
gtSt\St+1‖22 − (c− 1)

η2

γ2
‖gtSt\St+1 − g̃tSt\St+1‖22

≤ ‖wtSt\St+1 −
η

γ
g̃tSt\St+1‖22 ≤ (1 +

1

c
)‖wtSt+1\St −

η

γ
g̃tSt+1\St‖

2
2 + (1 + c)W t

≤ (1 +
1

c
)[(1 + 1/c)‖wtSt+1\St −

η

γ
gtSt+1\St‖

2
2 + (1 + c)

η2

γ2
‖gtSt\St+1 − g̃tSt\St+1‖22] + 2(1 + c)W t.

(52)
That is

‖wtSt\St+1 −
η

γ
gtSt\St+1‖22 ≤

(c+ 1)2

c(c− 1)
‖wtSt+1\St −

η

γ
gtSt+1\St‖

2
2

+ (c+
(c+ 1)2

c
)
η

2γ
(‖gtSt\St+1 − g̃tSt\St+1‖22 + ‖gtSt+1\St − g̃

t
St+1\St‖

2
2) +

c(1 + c)

c− 1
W t.

Thus

− 〈wtSt\St+1 − gtSt\St+1〉 ≤
(c+ 1)2

2c(c− 1)

η

γ
‖gtSt+1\St‖

2
2

+
γc(1 + c)

2η(c− 1)
W t− η

2γ
‖gtSt\St+1‖22+

(2c+ 3)η

2γ
(‖gtSt\St+1−g̃tSt\St+1‖22+‖gtSt+1\St−g̃

t
St+1\St‖

2
2).

Thus in (50) we have

〈wt+0.75 − wt, gt〉 ≤ − η

2γ
‖gtSt+1‖22 +

η

2γ
‖g̃tSt+1 − gtSt+1‖22 + c‖w̃St+1‖22

+
1

4c
‖gtSt+1‖22 − 〈wtSt\St+1 − gtSt\St+1〉

≤ − η

2γ
‖gtSt+1‖22 +

η

2γ
‖g̃tSt+1 − gtSt+1‖22 + c‖w̃St+1‖22 +

1

4c
‖gtSt+1‖22 −

η

2γ
‖gtSt+1‖22

+
(c+ 1)2

2c(c− 1)

η

γ
‖gtSt+1\St‖

2
2 +

(2c+ 3)η

2γ
(‖gtSt\St+1 − g̃tSt\St+1‖22 + ‖gtSt+1\St − g̃

t
St+1\St‖

2
2)

=
η

2γ
‖gtSt+1\St‖

2
2 +

η

2γ

3c+ 1

c(c− 1)
‖gtSt+1\St‖

2
2 −

η

2γ
‖gtSt\St+1‖22 −

η

2γ
‖gtSt+1‖22

+
1

4c
‖gtSt+1‖22 +

γc(1 + c)

2η(c− 1)
W t +

η

2γ
‖g̃tSt+1 − gtSt+1‖22 + c‖w̃St+1‖22

+
(2c+ 3)η

γ
(‖gtSt\St+1 − g̃tSt\St+1‖22 + ‖gtSt+1\St − g̃

t
St+1\St‖

2
2)

=
η

2γ
‖gtSt+1\St‖

2
2 −

η

2γ
‖gtSt\St+1‖22 −

η

2γ
‖gtSt+1‖22 +

1

c
(
1

4
+

η

2γ
+

η

2γ

3c+ 1

(c− 1)
)‖gtSt+1‖22

+
γc(1 + c)

2η(c− 1)
W t +

η

2γ
‖g̃tSt+1 − gtSt+1‖22 + c‖w̃St+1‖22 +

(2c+ 3)η

γ
(‖gtSt\St+1 − g̃tSt\St+1‖22 + ‖gtSt+1\St − g̃

t
St+1\St‖

2
2)︸ ︷︷ ︸

Nt

≤ η

2γ
‖gtSt+1\St‖

2
2 −

η

2γ
‖gtSt\St+1‖22 −

η

2γ
‖gtSt+1‖22 + C1

η

γc
‖gtSt+1‖22 +N t, (53)
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where C1 > 0 is some constant. We can easily see that
η

2γ
‖gtSt+1\St‖

2
2 −

η

2γ
‖gtSt\St+1‖22 −

η

2γ
‖gtSt+1‖22 = − η

2γ
‖gtSt\St+1‖22 −

η

2γ
‖gtSt+1

⋂
St‖

2
2

= − η

2γ
‖gtSt+1

⋃
St‖

2
2

In total
〈wt+0.75 − wt, gt〉 ≤ − η

2γ
‖gtSt+1

⋃
St‖

2
2 + C1

η

γc
‖gtSt+1‖22 +N1. (54)

Take (54) into (46) we have

LD(wt+0.75)− LD(wt) ≤ γ

2
‖wt+0.75

It − wtIt +
η

γ
gtIt‖22 −

η2

2γ
‖gtIt‖22 + (1− η)〈wt+0.75 − wt, gt〉

≤ γ

2
‖wt+0.75

It − wtIt +
η

γ
gtIt‖22 −

η2

2γ
‖gtIt‖22 −

(1− η)η

2γ
‖gtSt+1

⋃
St‖

2
2 + C1

(1− η)

c

η

γ
‖gtSt+1‖22

+ (1− η)N t

≤ γ

2
‖wt+0.75

It − wtIt +
η

γ
gtIt‖22 −

η2

2γ
‖gtIt\(St⋃S∗)‖

2
2 −

η2

2γ
‖gt(St⋃S∗)‖

2
2 −

(1− η)η

2γ
‖gtSt+1

⋃
St‖

2
2

+ C1
(1− η)

c

η

γ
‖gtSt+1‖22 + (1− η)N t

≤ γ

2
‖wt+0.75

It − wtIt +
η

γ
gtIt‖22 −

η2

2γ
‖gtIt\(St⋃S∗)‖

2
2 −

η2

2γ
‖gt(St⋃S∗)‖

2
2

− (1− η)η

2γ
‖gtSt+1\(S∗

⋃
St)‖

2
2 + C1

(1− η)

c

η

γ
‖gtSt+1‖22 + (1− η)N t, (55)

where the last inequality is due to St+1\(S∗
⋃
St) ⊆ St+1

⋃
St. Next we will analyze the term

γ
2 ‖w

t+0.75
It − wtIt + η

γ g
t
It‖22 −

η2

2γ ‖g
t
It\(St

⋃
S∗)‖

2
2 in (55). Let R be a subset of St\St+1 such that

|R| = |It\(S∗
⋃
St)| = |St+1\(St

⋃
S∗)|. In Lemma 12, we take v = wt − η

γ g̃
t, R2 = R and

R1 = It\(S∗
⋃
St) we have for c > 1,

‖wtR −
η

γ
g̃tR‖22 ≤ (1 + c)‖(wt − η

γ
g̃t)It\(S∗

⋃
St)‖22 + (1 +

1

c
)W t. (56)

Just as in (52) we have is for c > 1,

(
η

γ
)2‖gtIt\(S∗⋃St)‖

2
2 ≥ (1−1

c
)‖wtR−

η

γ
gtR‖22−cW t−c η

2

γ2
(‖g̃tR−gtR‖22+‖gtIt\(S∗⋃St)−g̃

t
It\(S∗

⋃
St)‖

2
2).

(57)
Then we have

γ

2
‖wt+0.75

It − wtIt +
η

γ
gtIt‖22 −

η2

2γ
‖gtIt\(St⋃S∗)‖

2
2

≤ γ

2
‖w̃St+1‖22 +

γ

2
‖ŵt+0.75

It − wtIt +
η

γ
gtIt‖22 −

γ

2
(1− 1

c
)‖wtR −

η

γ
gtR‖22 +

γc

2
W t

+ c
η2

2γ
(‖g̃tR − gtR‖22 + ‖gtIt\(S∗⋃St) − g̃

t
It\(S∗

⋃
St)‖

2
2) + c

η2

γ2
(‖g̃tR − gtR‖22 (58)

=
γ

2
‖ŵt+0.75

It − wtIt +
η

γ
gtIt‖22 −

γ

2
‖ŵt+0.75

R − wtR +
η

γ
gtR‖22 +

γ

2
‖w̃St+1‖22 +

γc

2
W t

+
γ

2c
‖wtR −

η

γ
gtR‖22 + c

η2

2γ
(‖g̃tR − gtR‖22 + ‖gtIt\(S∗⋃St) − g̃

t
It\(S∗

⋃
St)‖

2
2) (59)

≤ γ

2
‖ŵt+0.75

It\R − wtIt\R +
η

γ
gtIt\R‖

2
2 +

γ

2c
(1 +

1

c
)‖η
γ
gtIt\(S∗

⋃
St)‖

2
2 +

γ

2
‖w̃St+1‖22

+
γc

2
W t +

γ

2c
(1 + c)W t + C2c

η2

2γ
(‖g̃tR − gtR‖22 + ‖gtIt\(S∗⋃St) − g̃

t
It\(S∗

⋃
St)‖

2
2)︸ ︷︷ ︸

Nt1

. (60)
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(58) is due to that [ŵt+0.75
It − (wtIt −

η
γ g

t
It)]St+1 = 0, thus 〈w̃St+1 , ŵt+0.75

It − (wtIt −
η
γ g

t
It)〉 = 0

and (57). (59) is due to ŵt+0.75
R = 0, (60) is due to (56) by the same technique as in (52) and

wtIt\(S∗
⋃
St) = 0. In the following we will consider the first term in (60).

In Lemma 13, take v = wtIt\R −
η
γ g̃

t
It\R, v̂ = w∗, S = St+1 we have for all c > 1

‖ŵt+0.75
It\R − wtIt\R +

η

γ
g̃tIt\R‖

2
2 ≤ (1 +

1

c
)
|It\R| − s
|It\R| − s∗

‖w∗ − wtIt\R +
η

γ
g̃tIt\R‖

2
2 + (1 + c)W t.

Then we have

(1− 1

c
)‖ŵt+0.75

It\R − wtIt\R +
η

γ
gtIt\R‖

2
2 − (c− 1)

η2

γ2
‖gtIt\R − g̃

t
It\R‖

2
2

≤ ‖ŵt+0.75
It\R − wtIt\R +

η

γ
g̃tIt\R‖

2
2

≤ (1 +
1

c
)
|It\R| − s
|It\R| − s∗

‖w∗ − wtIt\R +
η

γ
g̃tIt\R‖

2
2 + (1 + c)W t

≤ (1 +
1

c
)
|It\R| − s
|It\R| − s∗

[(1 +
1

c
)‖w∗ − wtIt\R +

η

γ
gtIt\R‖

2
2 + (1 + c)

η2

γ2
‖gtIt\R − g̃

t
It\R‖

2
2] + (1 + c)W t

That is

‖ŵt+0.75
It\R − wtIt\R +

η

γ
gtIt\R‖

2
2 ≤

(c+ 1)2

c(c− 1)

2s∗

s+ s∗
‖w∗ − wtIt\R +

η

γ
gtIt\R‖

2
2

+
(c+ 1)2

c− 1

η2

γ2
‖gtIt\R − g̃

t
It\R‖

2
2 + c

η2

γ2
‖gtIt\R − g̃

t
It\R‖

2
2 +

(1 + c)c

c− 1
W t

Take c ≥
√

3√
3−
√

2
, and since |It\R| ≤ 2s∗ + s, we have

‖ŵt+0.75
It\R − wtIt\R +

η

γ
gtIt\R‖

2
2 ≤

3

2

2s∗

s+ s∗
‖w∗ − wtIt\R +

η

γ
gtIt\R‖

2
2

+ C3c(‖gtIt\R − g̃
t
It\R‖

2
2 + ‖gtIt\R − g̃

t
It\R‖

2
2 +W t)︸ ︷︷ ︸

Nt3

. (61)

Take (61) into (60) we have

γ

2
‖wt+0.75

It − wtIt +
η

γ
gtIt‖22 −

η2

2γ
‖gtIt\(St⋃S∗)‖

2
2

≤ 3γs∗

2(s+ s∗)
‖w∗ − wtIt\R +

η

γ
gtIt\R‖

2
2 +

γ

2c
(1 +

1

c
)‖η
γ
gtIt\(S∗

⋃
St)‖

2
2 +

γ

2
‖w̃St+1‖22

+N t
1 +N t

3 (62)

=
3γs∗

2(s+ s∗)
‖w∗ − wtIt\R +

η

γ
gtIt\R‖

2
2 +

γ

2c
(1 +

1

c
)‖η
γ
gtSt+1‖22

+
γ

2
‖w̃St+1‖22 +N t

1 +N t
3 (63)

=
3s∗

s+ s∗
(η〈w∗ − wt, gt〉+

γ

2
‖w∗ − wt‖22 +

η2

2cγ
‖gtIt‖22) +

η2

2cγ
(1 +

1

c
)‖gtSt+1‖22

+
γ

2
‖w̃St+1‖22 +N t

1 +N t
3 (64)

≤ 3s∗

s+ s∗
(η(LD(w∗)− LD(wt)) +

γ − ηµ
2
‖w∗ − wt‖22 +

η2

2cγ
‖gtIt‖22) +

η2

2cγ
(1 +

1

c
)‖gtSt+1‖22

+
γ

2
‖w̃St+1‖22 +N t

1 +N t
3︸ ︷︷ ︸

Nt2

. (65)
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Take (65) into (55) we have

LD(wt+0.75)− LD(wt) ≤ γ

2
‖wt+0.75

It − wtIt +
η

γ
gtIt‖22 −

η2

2γ
‖gtIt\(St⋃S∗)‖

2
2 −

η2

2γ
‖gt(St⋃S∗)‖

2
2

− (1− η)η

2γ
‖gtSt+1\(S∗

⋃
St)‖

2
2 + C1

(1− η)

c

η

γ
‖gtSt+1‖22 + (1− η)N t

≤ 3s∗

s+ s∗
(η(LD(w∗)− LD(wt)) +

γ − ηµ
2
‖w∗ − wt‖22 +

η2

2cγ
‖gtIt‖22) +

η2

2cγ
(1 +

1

c
)‖gtSt+1‖22

− η2

2γ
‖gt(St⋃S∗)‖

2
2 −

(1− η)η

2γ
‖gtSt+1\(S∗

⋃
St)‖

2
2 + C1

(1− η)

c

η

γ
‖gtSt+1‖22‖gtSt+1‖22 + (1− η)N t +N t

2.

(66)

We have when c→∞
η2

2cγ
(1 +

1

c
)‖gtSt+1‖22 + C1

(1− η)

c

η

γ
‖gtSt+1‖22 → 0.

Thus, if η ≥ 1
2 there must exits a sufficient large c such that

η2

2cγ
(1 +

1

c
)‖gtSt+1‖22 +

(1− η)

c
(
1

4
+

η

2γ
)‖gtSt+1‖22 ≤

η(1− η)

4γ
‖gtSt+1‖22

≤ η2

4γ
‖gt(St⋃S∗)‖

2
2 +

(1− η)η

4γ
‖gtSt+1\(S∗

⋃
St)‖

2
2 (67)

Thus,

LD(wt+0.75)− LD(wt) ≤ γ

2
‖wt+0.75

It − wtIt +
η

γ
gtIt‖22 −

η2

2γ
‖gtIt\(St⋃S∗)‖

2
2 −

η2

2γ
‖gt(St⋃S∗)‖

2
2

− (1− η)η

2γ
‖gtSt+1\(S∗

⋃
St)‖

2
2 + C1

(1− η)

c

η

γ
‖gtSt+1‖22 + (1− η)N t

≤ 3s∗

s+ s∗
(η(LD(w∗)− LD(wt)) +

γ − ηµ
2
‖w∗ − wt‖22 +

η2

2cγ
‖gtIt‖22)

− η2

4γ
‖gt(St⋃S∗)‖

2
2 −

(1− η)η

4γ
‖gtSt+1\(S∗

⋃
St)‖

2
2 + (1− η)N t +N t

2. (68)

Take η = 2
3 , s = 72 γ

2

µ2 s
∗ so that 3s∗

s+s∗ ≤
µ2

24γ(γ−ηµ) ≤
1
8 . We have

LD(wt+0.75)− LD(wt) ≤ 3s∗

s+ s∗
(η(LD(w∗)− LD(wt)) +

γ − ηµ
2
‖w∗ − wt‖22 +

η2

2cγ
‖gtIt‖22)

− η2

4γ
‖gt(St⋃S∗)‖

2
2 −

(1− η)η

4γ
‖gtSt+1\(S∗

⋃
St)‖

2
2 + (1− η)N t +N t

2

≤ 2s∗

s+ s∗
(LD(w∗)− LD(wt)) +

µ2

48γ
‖w∗ − wt‖22 +

1

36γ
‖gtIt‖22

− 1

9γ
‖gt(St⋃S∗)‖

2
2 −

1

18γ
‖gtSt+1\(S∗

⋃
St)‖

2
2 +O(N t +N t

2)

≤ 2s∗

s+ s∗
(LD(w∗)− LD(wt))− 3

36γ
(‖gt(St⋃S∗)‖

2
2 −

µ2

4
‖w∗ − wt‖22) +O(N t +N t

2) (69)

≤ (
2s∗

s+ s∗
+

µ

24γ
)(LD(w∗)− LD(wt)) +O(N t +N t

2). (70)

Where (69) is due to the following lemma:

Lemma 14. [Lemma 6 in [35]]

|gt(St⋃S∗)‖
2
2 −

µ2

4
‖w∗ − wt‖22 ≥

µ

2
(LD(wt)− LD(w∗)). (71)
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Thus
LD(wt+0.75)− LD(w∗) ≤ (1− 5

72

µ

γ
)(LD(wt)− LD(w∗)) +O(N t +N t

2).

Where

N t +N t
2 ≤ O(

∑
i∈[s]

‖wi‖2∞ + (2s+ s∗)‖g̃t − gt‖2∞ + s‖w̃‖2∞), (72)

where each coordinate of wi, w̃ sampled from ∼ Lap(O(
K2η0sT

√
log 1

δ

nε )). We first bound the term of∑
i∈[s] ‖wi‖2∞ + s‖w̃‖2∞. We recall the following lemma:

Lemma 15 (Lemma A.1 in [13]). For a random vector w ∈ Rd, where wi ∼ Lap(λ), then for any
ζ > 0,

Pr(‖w‖2∞ ≥ 4λ2 log2 1

ζ
log2 k) ≤ ζ.

Take the union we have with probability at least 1− ζ,∑
i∈[s]

‖wi‖2∞ + s‖w̃‖2∞ ≤ O(
K4η2

0s
3T 2 log2 s

ζ log 1
δ

n2ε2
).

For s‖g̃t − gt‖2∞, follow the proof of Lemma 8, we can see that when K = (nε)
1
4

(Ts)
1
4

with probability

at least 1− ζ,

s‖g̃t − gt‖2∞ ≤ O(
sTM log d

ζ

n
+
sT 2K4 log2 d

ζ

n2
+
sM2

K4
) = O(

sTM log d
ζ

nε
).

In total, with probability 1− ζ for each t ∈ [T ],

N t +N t
2 = O(

η2s2T log2 dT
ζ log 1

δ

γ2nε
+
sTM log dT

ζ

nε
) = O(

η2s2TM log2 dT
ζ log 1

δ

γ2nε
). (73)

In the following we will assume the above event holds. We note that by our model for any w

γ‖w − w∗‖22 ≥ LD(w)− LD(w∗) ≥ µ‖w − w∗‖22.
Thus we have

LD(wt+0.75)− LD(w∗) ≤ (1− 5

72

µ

γ
)(LD(wt)− LD(w∗)) +O(

η2s2TM log2 dT
ζ log 1

δ

γ2nε
) (74)

In the following we will show that wt+1 = wt+0.75 for all t. We will use induction, assume
wi+1 = wi+0.75 holds for all i ∈ [t − 1], we will show that it will also true for t. Use (74) for
i ∈ [t− 1] we have

µ‖wt+0.75 − w∗‖22 ≤ LD(wt+0.75)− LD(w∗)

≤ (1− 5

72

µ

γ
)t(LD(w1)− LD(w∗)) +O(

γ

µ

η2s2TM log2 dT
ζ log 1

δ

γ2nε
)

≤ γ(1− 5

72

µ

γ
)t‖w1 − w∗‖22 +O(

γ

µ

η2s2TM log2 dT
ζ log 1

δ

γ2nε
).

When ‖w1 − w∗‖22 ≤ 1
2
µ
γ , and n is large enough such that

n ≥ O(
1

µ3

s2TM log2 dT
ζ log 1

δ

γ2ε
)

Then ‖wt+0.75‖2 ≤ ‖w∗‖2 + 1
2 ≤ 1. Thus wt+1 = wt+0.75. So we have

LD(wT+1)− LD(w∗) ≤ (1− 5

72

µ

γ
)T (LD(w1)− LD(w∗)) +O(

s2TM log2 dT
ζ log 1

δ

µ2γnε
)

Thus, take T = Õ( γµ log n) and s = O(( γµ )2s∗) we have the result.
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