
Faster Constrained Linear Regression via Two-step Preconditioning

Di Wang Jinhui Xu

Department of Computer Science and Engineering,
State University of New York at Buffalo,

Buffalo, New York 14260-2500, USA
Email: {dwang45,jinhui}@buffalo.edu

Abstract

In this paper, we study the large scale constrained linear regression problem and propose a two-step preconditioning method, which
is based on some recent developments on random projection, sketching techniques and convex optimization methods. Combining
the method with (accelerated) mini-batch SGD, we can achieve an approximate solution with a time complexity lower than that of
the state-of-the-art techniques for the low precision case. Our idea can also be extended to the high precision case, which gives an
alternative implementation to the Iterative Hessian Sketch (IHS) method with significantly improved time complexity. Experiments
on benchmark and synthetic datasets suggest that our methods indeed outperform existing ones considerably in both the low and
high precision cases.

Keywords: linear regression, gradient descent, random projection

1. Introduction

Linear regression with convex constraints is a fundamental
problem in Machine Learning, Statistics and Signal Process-
ing, since many other problems, such as SVM, LASSO, signal
recovery [1], can be all formulated as constrained linear regres-
sion problems. Thus, the problem has received a great deal
of attentions from both the Machine Learning and Theoretical
Computer Science communities. The problem can be formally
defined as follows,

min
x∈W

f (x) = ‖Ax − b‖22,

where A is a matrix in Rn×d with d < n < ed, W is a closed
convex set and b ∈ Rn is the response vector. The goal is to
find an x ∈W such that f (x) ≤ (1 + ε) minx∈W f (x) or f (x) −
minx∈W f (x) ≤ ε, where ε is the approximation error.

Roughly speaking, there are two types of methods to solve
the problem. The first type of techniques is based on Stochastic
Gradient Descent (SGD). Recent developments on first-order
stochastic methods, such as Stochastic Dual Coordinate Ascent
(SDCA) [2], Stochastic Variance Reduced Gradient (SVRG) [3]
and Katyusha [4], have made significant improvements on the
convergence speed of large scale optimization problems in both
theory and practice [5], which provide the potential for us to
obtain faster solution to our problem.

The second type of techniques is based on randomized lin-
ear algebra. Among them, random projection and sketching are
commonly used theoretical tools in many optimization prob-
lems as preconditioner, dimension reduction or sampling tech-
niques to reduce the time complexity. This includes low rank
approximation [6], SVM [7], column subset selection [8] and

lp regression (for p ∈ [1, 2]) [9; 10]. Thus, it is very tempt-
ing to combine these two types of techniques to develop faster
methods with theoretical or statistical guarantee for more con-
strained optimization problems. Recently, quite a number of
works have successfully combined the two types of techniques.
For example, [11] proposed faster methods for Ridge Regres-
sion and Empirical Risk Minimization, respectively, by using
SVRG, Stochastic Gradient Descent (SGD) and low rank ap-
proximation. [12] achieved guarantee for Empirical Risk Mini-
mization by using random projection in dual problem.

In this paper, we revisit the preconditioning methods for solv-
ing large-scale constrained linear regression problem, and pro-
pose a new method called two-step preconditioning. Com-
bining this method with some recent developments on large
scale convex optimization problems, we are able to achieve
faster algorithms for both the low (ε ≈ 10−1 ∼ 10−4) and high
(ε ≤ 10−10) precision cases. Specifically, our main contribu-
tions can be summarized as follows.

1. For the low precision case, we first propose a novel algo-
rithm called HDpwBatchSGD (i.e., Algorithm 2) by com-
bining the method of two step preconditioning with mini-
batch SGD. Mini-batch SGD is a popular way for improv-
ing the efficiency of SGD. It uses several samples, instead
of one, in each iteration and runs the gradient descent up-
dating on all these samples (simultaneously). Ideally, we
would hope for a factor of r speed-up on the convergence
if using a batch of size r. However, this is not always pos-
sible for general case. Actually in some cases, there is
even no speed-up at all when a large-size batch is used
[19; 20; 21]. A unique feature of our method is its optimal
speeding-up with respect to the batch size, i.e. the iteration
complexity will decrease by a factor of b if we increase the

Preprint submitted to Neurocomputing December 15, 2019

Method Complexity for Unconstrained Complexity for General Constraint Set Precision

[13] O
!
nd log(d

ε
) + d3 log n log d + d3 log n

ε

"
O
#
nd log n + poly(d, 1

ε2
)
$

Low

pwSGD[14] O
!
nd log n + d3 log n log d + d3 log(1

!)
ε

"
O
!
nd log n + d3 log n log d + poly(d) log(1

!)
ε

"
Low

HDpwBatchSGD O
!
nd log n + d2 log n

ε2
+

d3 log n
rε2

"
O
!
nd log n + d2 log n

ε2
+

poly(d) log n
rε2

"
Low

HDpwBatchAccSGD O
!
nd log n + d2 log n

ε
+

d3 log n
rε + rd2 log 1

ε

"
O
!
nd log n + d2 log n

ε
+

poly(d) log n
rε + rpoly(d) log 1

ε

"
Low

[15; 16] O
#
nd log d

ε
+ d3 log d

$
— High

IHS [17] O
#
nd log d log 1

ε
+ d3 log 1

ε

$
O
#
(nd log d + poly(d)) log 1

ε

$
High

Preconditioning+SVRG (pwSVRG) (Alogrithm 7) O
#
nd log n + (nd + d3) log 1

ε

$
O
#
nd log n +

%
nd + poly(d)

&
log 1

ε

$
High

pwGradient O
#
nd log n + (nd + d3) log 1

ε

$
O
#
nd log n +

%
nd + poly(d)

&
log 1

ε

$
High

Table 1: Summary of the time complexity of several linear regression methods for finding xt such that ||Axt − b||22 − ||Ax∗ − b||22 ≤ ε||Ax∗ − b||22. For sketching based
methods, we use the Subsampled Randomized Hadamard Transform (SRHT) [18] as the sketch matrix. All methods run in sequential environment. r is an input in
our method. ’—’ means not applicable.

batch size by a factor of b.

We also use the two-step preconditioning method and
Multi-epoch Stochastic Accelerated mini-batch SGD pro-
posed in [22] to obtain another slightly different algo-
rithm called HDpwBatchAccSGD (i.e., Algorithm 3 and
4), which has the time complexity lower than that of the
state-of-the-art technique [14] and HDpwBatchSGD.

2. The optimality on speeding-up in HDpwBatchSGD and
HDpwBatchAccSGD further inspires us to think about
how it will perform if using the whole gradient, i.e. pro-
jected Gradient Descent, which leads to another algorithm
called pwGradient (i.e., Algorithm 6). We find that it ac-
tually allows us to have an alternative implementation of
the Iterative Hessian Sketch (IHS) method [17], which is
arguably the state-of-the-art technique for the high preci-
sion case. Particularly, we are able to show that one step
of sketching is sufficient for IHS, instead of a sequence of
sketchings used in the current form of IHS. This enables
us to considerably improve the time complexity of IHS.

3. Finally, we implement our algorithms and test them on
both large synthetic and real benchmark datasets. Nu-
merical results confirm our theoretical analysis of HDpw-
BatchSGD, HDpwBatchAccSGD and pwGradient. Also,
our methods outperform existing ones in both low and high
precision cases.

This paper is a substantially extended version of our previ-
ous work appeared in AAAI’18 [23]. The following are the
main added contents. Firstly, we add detailed algorithms of
HDpwBatchAccSGD and pwSVRG, which have not been dis-
cussed in [23] (see Algorithm 3, 4 and 7). Secondly, we pro-
vide the proofs for all theorems and lemmas. Thirdly, we ex-
pand the previous work by validating our results with addi-

tional synthetic and real world datasets. More specifically, for
the low precision case, we add experimental results for HD-
pwBatchAccSGD and show its superiority in the low preci-
sion case, compared with other existing methods and HDpw-
BatchSGD. For the high precision case, we provide compar-
isons with more large scale real datasets and show that our
method is faster. We also conduct experimental studies on the
relative error with different sketch size.

The rest of the paper is organized as follows. Section 2 in-
troduces some related work. Section 3 gives some background
on random projection and stochastic gradient descent. Section
4 describes our proposed algorithms for the low precision case.
Section 5 presents our algorithm for the high precision case.
Finally, we experimentally study our methods in Section 6, and
conclude them in Section 7.

2. Related Work

There is a vast number of papers studying the large scale con-
strained linear regression problem from different perspectives,
such as [24; 25]. We mainly focus on those results that have
theoretical time complexity guarantees (note that the time com-
plexity cannot depend on the condition number of A, such as
[26]), due to their similar natures to ours. We summarize these
methods in Table 1.

For the low precision case, [13] directly uses sketching with
a very large sketch size of poly(1

ε2
), which is difficult to deter-

mine the optimal sketch size in practice (later, we show that
our proposed method avoids this issue). The state-of-the-art
technique is probably the one in [14], which presents an algo-
rithm for solving the general lp regression problem and shares
with ours the first step of preconditioning. Their method then
applies the weighted sampling technique, based on the lever-
age score and SGD, while ours first conducts a further step of

2

preconditioning, using uniform sampling in each iteration, and
then applies mini-batch SGD. Although their paper mentioned
the mini-batch version of their algorithm, there is no theoretical
guarantee on the quality and convergence rate, while our meth-
ods provide both and runs faster in practice. Also we have to

note that, in the case of O(log(1
!)
ε

) ≥ log n, the time complex-
ity of HDpwBatchAccSGD is less than it in pwSGD theoreti-

cally when we set the batchsize r = O(
'

poly(d) log n
ε log(1/ε)). [27] also

uses mini-batch SGD to solve the linear regression problem.
Their method is based on importance sampling, while ours uses
the much simpler uniform sampling; furthermore, their conver-
gence rate heavily depends on the condition number and batch
partition of A, which means that there is no fixed theoretical
guarantee for all instances.

For the high precision case, unlike the approach in [15], our
method can be extended to the constrained case. Compared
with IHS [17], ours uses only one step of sketching and thus
has a lower time complexity when ε ≤ 1

n . Although a similar
time complexity can be achieved by using the two-step precon-
ditioning method and SVRG (see Algorithm 7), our method pw-
Gradient performs better in practice. We notice that [28] has re-
cently studied the large scale linear regression with constraints
via (Accelerated) Gradient Projection and IHS. But there is no
guarantee on the time complexity, and it is also unclear how
to choose the best parameters. For these reasons, we do not
compare their results with ours here.

3. Preliminaries

Let A be a matrix in Rn×d with ed > n > d and d = rank(A)
(note that our proposed methods can be easily extended to the
case of d > rank(A)), and Ai and A j be its i-th row (i.e.,
Ai ∈ R1×d) and j-th column, respectively. Let ‖A‖2 and ‖A‖F
be the spectral norm and Frobenius norm of A, respectively,
and σmin(A) be the minimal singular value of A.

We first give the formal definition of the problem to be stud-
ied throughout the paper.

Large Scaled Constrained Linear Regression. Let A ∈ Rn×d

be a dataset of size n represented as a matrix, where each data
record has d dimensions. The dataset is also associated with a
response vector b ∈ Rn. The objective is to solve the following
optimization problem

min
x∈W

f (x) = ‖Ax − b‖22,

where W is some (un)bounded constraint set, such as ℓ1 or
ℓ2 norm ball. For a given approximation error ε, the goal is
to find an x ∈ W such that f (x) ≤ (1 + ε) minx∈W f (x) or
f (x)−minx∈W f (x) ≤ ε with as less time complexity as possible,
where the time complexity should depend only on n, d and ε.

Then, we give several definitions and lemmas that will be
used throughout this paper.

3.1. Randomized Linear Algebra
We first give the definition of (α, β, 2)-conditioned matrix.

Note that it is a special case of (α, β, p)-well conditioned basis
in [25].

Definition 1 (((α,β,2)-conditioned) [14])). A matrix U ∈ Rn×d

is called (α,β,2)-conditioned if ‖U‖F ≤ α and for all x ∈ Rd×1,
β‖Ux‖2 ≥ ‖x‖2, i.e., σmin(U) ≥ 1

β
.

Note that if U is an orthogonal matrix, it is (
√

d,1,2)-
conditioned. Thus we can view an (α,β,2)-conditioned matrix
as a generalized orthogonal matrix.

The purpose of introducing the concept of (α, β, 2)-
conditioned is for obtaining in much less time a matrix which
can approximate the orthogonal basis of matrix A. Clearly, if we
directly calculate the orthogonal basis of A, it will take O(nd2)
time. However, we can get an (O

#√
d),O(1), 2

$
-conditioned

matrix U from A (called (O
#√

d),O(1), 2
$
-conditioned basis of

A) in o(nd2) time, through Algorithm 1 by using the sketch
matrix. That is, we first calculate S A and perform the QR-
decomposition of S A. Note that in practice we can just set O(1)
as a small constant and return R instead of AR−1, since comput-
ing AR−1 needs O(nd2) time.

Definition 2 (Sketch Matrix). A (random) matrix S ∈ Rs×n is
called a sketch matrix for A, if for all x ∈ Rd with high proba-
bility

(1 − O(1))‖Ax‖2 ≤ ‖S Ax‖2 ≤ (1 + O(1))‖Ax‖2,

where O(1) is a sufficiently small constant.

Algorithm 1 Constructing (O(
√

d),O(1),2)-conditioned basis
of A

1: Construct a sketch matrix S ∈ Rs×n with n > s > d (see
Table 2 for details on constructing the matrix) that satisfies
the following condition with high probability, ∀x ∈ Rd,

(1 − O(1))‖Ax‖2 ≤ ‖S Ax‖2 ≤ (1 + O(1))‖Ax‖2,

2: [Q,R]=QR-decomposition(SA), where Q ∈ Rs×d is an
orthogonal matrix. Then AR−1 is an O

#√
d),O(1), 2

$
-

conditioned basis of A.
3: return AR−1 or R

Next, we give the definition of Randomized Hadamard
Transform [18], which is the tool to be used in the second step
of our preconditioning.

Definition 3. (Randomized Hadamard Transform) M = HD ∈
Rn×n is called a Randomized Hadamard Transform, where n is
assumed to be 2s for some integer s, if D ∈ Rn×n is a diagonal
Rademacher matrix (that is, each Dii is drawn independently
from {1,−1} with probability 1/2), and H ∈ Rn×n is an n × n
Walsh-Hadamard Matrix scaled by a factor of 1/

√
n, i.e.,

H =
1
√

n
Hn,Hn =

(
H n

2
H n

2

H n
2
−H n

2

)
,H2 =

(
1 1
1 −1

)
.

3

Randomized Hadamard Transform has two important fea-
tures. One is that it takes only O(n log n) time to multiply a
vector, and the other is that it can “spread out” orthogonal ma-
trices.

Since an (α,β,2)-conditioned matrix can be viewed as an ap-
proximate orthogonal matrix, an immediate question is whether
an (α,β,2)-conditioned matrix can also achieve the same result.
We answer this question by the following theorem, which is
interesting in its own right.

Theorem 1. Let HD be a Randomized Hadamard Transform,
and U ∈ Rn×d be an (α,β,2)-conditioned matrix. Then, the fol-
lowing holds for any constant c > 1:

Pr
*

max
i=1,2,...,n

‖(HDU)i‖2 ≥
#
1 +
+

8 log(cn)
$ α
√

n

,
≤ 1

c
. (1)

In order to proof Theorem 1, we need the following lemma
on the tail bound of Lipschitz convex function on Rademacher
random vector.

Lemma 2. (Lipschitz Tail Bound [29]) Let f be a convex
function on vectors having L-Lipschitz property, and ε be a
Rademacher vector. Then for any t ≥ 0, the following inequality
holds

Pr { f (ε) ≥ E f (ε) + Lt} ≤ e−
t2
8 .

Proof. Consider a fixed row index j ∈ {1, 2, . . . , n}. Let

f (x) = ‖eT
j Hdiag(x)U‖2 = ‖xT diag(eT

j H)U‖2.

Then f (x) is convex and

‖ f (x) − f (y)‖ ≤ ‖x − y‖2‖diag(eT H)‖2‖U‖2 ≤
α
√

n
‖x − y‖2.

Since each entry of H is either −1√
n or 1√

n . Thus f (x) is α√
n -

Lipschitz. By the fact that f (ε) is a Rademacher function, we
have

E f (ε) ≤ [E f 2(ε)]
1
2 = (E‖εT diag(eT

j H)U‖22)
1
2 = ‖diag(eT

j H)U‖F
≤ ‖diag(eT

j H)‖2‖U‖F ≤
α
√

n
.

Then by Lemma 2, taking t =
+

8 log(cn) and the union for all
arrow indices, we have the theorem.

By Theorem 1, we can make each row of HDU have no more
than one value with high probability. Since α = O(

√
d), the

norm of each row will small when n ≫ d after preconditioning
by the Ramdomized Hadamard Transform. Also since H,D are
orthogonal, we have ‖HDUy − HDb‖2 = ‖Uy − b‖2 for any
y ∈ Rd.

3.2. SGD and Mini-batch SGD for Strongly Smooth Convex
Functions

Consider the following general case of a convex optimization
problem: minx∈W F(x) = Ei∼D fi(x), where i is drawn from the
distribution of D = {pi}ni=1 andW is a closed convex set. We
assume the following.

Assumption 1. F(·) is L-Lipschitz. That is, for any x, y ∈W,

‖∇F(x) − ∇F(y)‖2 ≤ L‖x − y‖2.

Assumption 2. F(x) has strong convexity parameter µ, i.e.,

〈x − y,∇F(x) − ∇F(y)〉 ≥ µ‖x − y‖22,∀x, y ∈W.

3.2.1. SGD
Now let the Stochastic Gradient Descent (SGD) update in the

(k + 1)-th iteration be

xk+1 = arg min
x∈W
ηk〈∇ fik (xk), x − xk〉 +

1
2
‖x − xk‖22 (2)

= PW(xk − ηk∇ fik (xk))

where ik is drawn from the distribution D, x0 is the initial num-
ber, and PW is the projection operator. If we denote

x∗ = arg min
x∈W

F(x),σ2 = sup
x∈W

Ei∼D‖∇ fi(x) − ∇F(x)‖22,

then we have the following theorem, given in [30].

Theorem 3. If Assumption 1 holds, after T iterations of the
SGD iterations of (2) with fixed step-size

η = min

-
......../

1
2L
,

0
D2
W

2Tσ2

1
222222223 , (3)

where DW =
'

maxx∈W
1
2‖x‖22 −minx∈W

1
2‖x‖22. Then the in-

equality EF(xavg
T)−F(x∗) ≤ 3

√
2DWσ√

T
is true, where xavg

T =
!T

i=1 xi

T .
Which means after

T = Θ
-
..../

D2
Wσ

2

ε2

1
22223 (4)

iterations, we have EF(xavg
T) − F(x∗) ≤ ε.

3.2.2. Mini-batch SGD
Instead of sampling one term in each iteration, mini-batch

SGD samples several terms in each iteration and takes the aver-
age. Below we consider the uniform sampling version,

min
x∈W

F(x) =
1
n

n4

i=1

fi(x). (5)

Note that for a mini-batch of size r, let τ denote the sampled
indices and

gτ =
5

i∈τ ∇ fi(x)
r

,

where each index in τ is i.i.d uniformly sampled. Then, we
have σ2

batch = supx∈W Eτ‖gτ − ∇F(x)‖22 ≤
σ2

r . This means that
the variance can be reduced by a factor of r if we use a sample
of size r.

Remark 1. Note that our mini-batch sampling strategy is dif-
ferent from the one in [27], which is to partition all the indices
into ⌈ n

r ⌉ groups and samples only within one group in each it-
eration.

4

4. Two-step Preconditioning Mini-batch SGD

4.1. Main Idea

The main idea of our algorithm is to use two steps of precon-
ditioning to reform the problem in the following way,

min
x∈W
‖Ax − b‖22 = min

y∈W′
‖Uy − b‖22 (6)

= ‖HDUy − HDb‖22 =
1
n

n4

i=1

n‖(HDU)iy − (HDb)i‖22, (7)

whereW′ in the first equality is the convex set corresponding
toW and the second equality is due to the fact that matrix HD
is orthogonal. Below we discuss the idea behind these reformu-
lations.

The first step of the preconditioning (6) is to obtain U, an
(O
#√

d),O(1), 2
$
-conditioned basis of A (i.e., U = AR−1; see

Algorithm 1), which means that the function in problem (6) is
an O(d)-smooth (actually it is O(1)-smooth, see Table 2) and
O(1)-strongly convex function. The reason for using matrix U
is as the follows: If we directly use the (Stochastic) Gradient
Descent methods to the problem, the number of needed itera-
tions will depend on the condition number of A, i.e., κA, which
could be quite large and thus make the algorithm slow. Hence,
one way to avoid this is to reformulate the problem by using
other regular matrix, instead of A. The most direct way is to
use the orthogonal matrix of A, i.e., UA. That is, we can refor-
mulate the problem as follows

min
x∈W
‖Ax − b‖22 = min

y∈W′′
‖UAy − b‖22.

Let A = UARA, where UA ∈ Rn×d,RA ∈ Rd×d. Then, we know
that the optimal y∗ = RAx∗. Thus, it is sufficient to approximate
y∗. Since the condition number of UA is O(1), it is better to
solve the latter optimization problem. However, since getting
UA,RA needs O(nd2) time, it is impractical in the large scale
setting. Fortunately, as we discussed before, we can get an
(O(
√

d),O(1),2)-conditioned basis of A and U which approx-
imate UA in o(nd2) time with condition number O(1). Thus, we
will use U instead of UA, which is the main idea of (6).

The second step of the preconditioning (7) is to use Random-
ized Hadamard Transform to ‘spread out’ the row norm of U
(by Theorem 1). The reason for spreading out the row norm is
the following: we now want to use SGD to solve (6). However,
it is well known that the non-uniform sampling w.r.t to the ℓ2-
norm of the rows of U is better than uniformly sampling [14]
and the time for computing the norm of rows is O(nd2). We
use HD as a precondition matrix to make the norm of each row
in HDU almost the same. Thus, uniformly sampling will be
almost the same as the non-uniform sampling w.r.t the norm of
rows with time complexity O(nd log n).

After applying the two-step preconditioning, we use mini-
batch SGD with uniform sampling for each iteration. We can
show x∗ = R−1y∗, where y∗ = arg miny∈W′ ‖HDUy − HDb‖22, .

Algorithm 2 HDpwBatchSGD(A,b,x0,T ,r,η,s)
Input: x0 is the initial point, r is the batch size, η is the fixed
step size, s is the sketch size, and T is the iteration number.

1: Compute R ∈ Rd×d which makes AR−1 an (O(
√

d),O(1), 2)-
conditioned basis of A as in Algorithm 1 by using a sketch
matrix S with size s × n.

2: Compute HDA and HDb, where HD is a Randomized
Hadamard Transform.

3: for t ← 1, . . .T do
4: Randomly sample an indices set τt of size r, where each

index in τt is i.i.d uniformly sampled.
5: Denote cτt as

cτt =
2n
r

4

j∈τt

(HDA)T
j · [(HDA) jxt−1 − (HDb) j]

=
2n
r

(HDA)T
τt
· [(HDA)τt xt−1 − (HDb)τt]

6: Let

xt = arg min
x∈W

1
2
‖R(xt−1 − x)‖22 + η〈cτt , x〉

= PW
#
xt−1 − ηR−1(R−1)T cτt

$

7: end for
8: return xavg

T =
!T

i=1 xi

T

4.2. Method of HDpwBatchSGD

The main steps of our algorithm are given in the following
Algorithm 2.

Note that the way of updating xt in Algorithm 2 is equivalent
to the updating procedure of yt for the reformulated problem
(7) (i.e., set y0 = R−1x0, then use mini-batch SGD and let xt =

R−1yt). However, there are several benefits if we update xt in
Step 6 directly.

1. Directly updating the term yt by solving (7) needs addi-
tional O(nd2) time since we have to compute AR−1 = U,
while updating xt+1 can avoid that, i.e., it is sufficient to
just compute R.

2. In practice, the domain setW of x is much more regular
than the domain set of y, i.e.,W′ in (7). Thus, it is easier
to solve the optimization problem in Step 6.

In the above algorithm, Step 1 is the same as the first step of
pwSGD in [14]. But the later steps are quite different. Par-
ticularly, our algorithm does not need to estimate the approx-
imate leverage score of U for computing the sampling proba-
bility in each iteration. It uses the much simpler uniform sam-
pling, instead of the weighted sampling. By doing so, we need
to compute HDA and HDb, which takes only O(nd log n) time,
is much faster than the O(nd2) time required for exactly com-
puting the leverage score of U, and costs approximately the
same time (i.e., O(nnz(A) log n)) for computing the approxi-
mate leverage score. The output is also different as ours is the

5

average of {xi}Ti=1. Also, we note that in the experiment section,
[14] uses the exact leverage score instead of its approximation.

By Theorem 1 and 3, we can get an upper bound on σ2 and
our main result (note that supx∈W ‖Ax − b‖22 in the result is de-
termined by the structure of the original problem and thus is
assumed to be a constant here).

Theorem 4. Let A be a matrix in Rn×d, r be the batch size and
b be a vector in Rd. Let f (x) denote ‖Ax − b‖22. Then with some
fixed step size η in (3), we have

E f (xavg
T) − f (x∗) ≤ 3

√
2DWσ√

rT
, (8)

where σ2 = O(d log(n) supx∈W ‖Ax−b‖22) with high probability.
That is, after T = Θ(d log n

rε2) iterations, the output of Algorithm
2 ensures E[f (xavg

T) − f (x∗)] ≤ ε with high probability (at least
0.9).

Before we give the proof of Theorem 4, we first provide the
following lemma.

Lemma 5. After two steps of preconditioning as in (6), (7),
the following holds with high probability (approximately 0.9)
for the stochastic optimization problem: min g(y) = Ei∼D′gi(y),
where gi(y) = n‖(HDU)iy−(HDb)i‖22, g(y) = ‖HDUy−HDb‖22,
i ∼ D′ is uniformly sampled from {1, 2, . . . , n}, and U is an
(α, β, 2)-conditioned basis of A.

µ ≥ 2
β2 , (9)

sup ‖(HDU)i‖22 ≤ α2
#
1 +
+

8 log 10n
$2
, (10)

σ2 ≤ 4α2
#
1 +
+

8 log(10n)
$2

sup
y∈W′

g(y) (11)

= 4α2
#
1 +
+

8 log(10n)
$2

sup
x∈W
‖Ax − b‖22 (12)

where the constant 10 comes from Theorem 3 with c = 10.

Proof. We know µ = 2σ2
min(HDU) = 2σ2

min(U) ≥ 2
β2 which is

due to U is an (α, β, 2)-conditioned basis of A. By Theorem 1,
we know that with probability at least 0.9, the norm of each row
of HDU is smaller than α√

n

#
1 +
+

8 log 10n
$
. Hence, we have

sup
τi

‖(HDU)τi‖22 ≤
α2

n

#
1 +
+

8 log 10n
$2
.

For σ2 = supy∈W′ Ei∼D‖∇gi(y)−∇g(y)‖22, we have the following

with probability at least 0.9,

σ2 = sup
y∈W′

E j∼D‖2n(HDU)T
j ·
#
(HDU) jy − (HDb) j

$
‖22

− ‖2(HDU)T · ((HDU)y − HDb) ‖22

= 4n
n4

j=1

‖((HDU)T
j ·
#
(HDU) jy∗ − (HDb) j

$
‖22

− 4‖(HDU)T · ((HDU)y − HDb) ‖22
≤ 4n sup ‖(HDU) j‖22 · ‖HDUy∗ − HDUb‖22
− σmin(HDU)2 · ‖((HDU)y − HDb)‖22

≤ 4n
α2

n

#
1 +
+

8 log(10n)
$2

sup
y∈W′

g(y).

Where the last inequality comes from Theorem 1 and
σmin(HDU) = O(1).

Proof of Theorem 4. Consider {yi}Ti=1 updated by Lemma 5 with
y0 = Rx0. We first show by mathematical induction that yi =

Rxi and y∗ = Rx∗ for all i. Clearly, by the definition of yi, this is
true for i = 0. Assume that it is true for i = k. In the (k + 1)-th
iteration, we assume that the i-th sample in the k-th iteration is
obtained by using SGD. Then, we have (denote m = n

r)

yk+1 = arg min
y∈W′
η〈∇gτk (yk), y〉 + 1

2
‖y − yk‖22

= arg min
y∈W′

2mη
4

j∈τk

((HDU) jR−1xk − (HDb) j)(HDA)T
j R−1y

+
1
2
‖y − Rxt‖22.

From Steps 5 and 6, we know that

xk+1 = arg min
x∈W

2mη
4

j∈τk

#
(HDA) jxk − (HDb) j

$
· (HDA) jx

+
1
2
‖Rx − Rxt‖22,

where W = R−1W′. From above, we know that xk+1 =

R−1yk+1. This means that yi = Rxi is true for all i. Next, by using
the variance in the mini-batch SGD, we know the σ2

batch =
σ2

r ,
where σ2 is as in Lemma 5. Then by Theorem 3 we get
Eg(yavg

T) − g(y∗) ≤ 3
√

2DW′σ√
rT

, replacing yT = RxT , y
avg
T = Rxavg

T
and DW′ = DW (by the definition), we get the proof.

The time complexity of our algorithm can be easily obtained
as

time(R) + O
(
nd log n + timeupdate ×

d log n
rε2

)
,

where time(R) is the time for computing R in Step 1. Different
sketch matrices and their time complexities for getting R are
shown in Table 2. Step 2 takes O(nd log n) time. timeupdate is
the time for updating xt+1 in Steps 5 and 6. Step 5 takes O(rd)
time, while Step 6 takes poly(d) time since it is just a quadratic
optimization problem in d dimensions. Thus, if we use SRHT

6

as the sketching matrix S , the overall time complexity of our
algorithm is

O
(
nd log n + d3 log d log n + (poly(d) + rd)

d log n
rε2

)
. (13)

Moreover, in the unconstrained case, the time complexity will

be O
!
nd log n + d2 log n

ε2
+

d3 log n
rε2

"
. Comparing with the state-of-

the-art result, i.e., pwSGD [14], which has the time complexity

O
!
nd log n + d3 log d log n + poly(d) log(1

!)
ε

"
, ours is much faster

in the case of O(log npoly(d)
ε

) ≤ r and poly(d) ≥ O(log n
ε

). How-
ever, as we will see, our method always outperform the batch
version of pwSGD with some batchsize in practice, see experi-
ment section for details.

Table 2: Time complexity for computing R in Algorithm 1 with different sketch
matrices [14].

Sketch Matrix Time Complexity κ(AR−1)

Gaussian Matrix O
!
nd2
"

O(1)

SRHT [18] O
!
nd log d + d3 log d log n

"
O(1)

CountSketch
[31]

O
!
nnz(A) + d4

"
O(1)

Sparse l2 Embed-
ding [32]

O
!
nnz(A) log d + d3 log d

"
O(1)

4.3. Further Reducing the Time Complexity

Although Theorem 4 has the advantage of optimality on
the batchsize, it does not make use of the properties of O(1)-
strongly convexity and condition number L

µ
= O(1) of the prob-

lem after the two-step preconditioning Eq (7). Actually, we
can apply a different first-order method to achieve an ε-error in
Θ(d log n

rε + log(1
ε
)) iterations, instead of Θ(d log n

rε2) iterations as in
Theorem 4. The preconditioning steps are the same, and the
optimization method is the multi-epoch stochastic accelerated
gradient descent, which was proposed in [33; 22] (see Algo-
rithm 3). In stead of using Theorem 3, we will use the follow-
ing lemma whose proof was given in [22].

Lemma 6 ([22]). If Assumptions 1 and 2 hold and ε < V0, then

after O
!'

L
µ

log(V0
ε

) + σ
2

µε

"
iterations of stochastic accelerated

gradient descent with O
#
log(V0

ε
)
$

epochs, the output of multi-
epoch stochastic accelerated gradient descent pS in Algorithm
3 satisfies EF(pS) − F(x∗) ≤ ε, where V0 is a given bound such
that F(x0) − F(x∗) ≤ V0.

Thus, we can use a two-step preconditioning and multi-epoch
stochastic accelerated mini-batch gradient descent to obtain an
algorithm (called HDpwBatchAccSGD) similar to Algorithm
2, as well as the following theorem, see Algorithms 3 and 4 for
details. We have the following Theorem, whose proof is similar
to it for Theorem 4.

Algorithm 3 Multi-epoch Stochastic Accelerated Gradient De-
scent [30]
Input: p0 ∈ W is the initial point, and a bound V0 such that
F(x0) − F(x∗) ≤ V0 is given, S is the epoch number.

1: for s = 0, 1, · · · S do
2: Run Ns iterations of Stochastic Accelerated Gradient

method with x0 = ps−1,αt =
2

t+1 , qt = αt, and ηt = ηst,
where

Ns = max

67778
7779

4

0
2L
µ
,

64σ2

3µV02−s

:777;
777<
,

ηs = min

67778
7779

1
4L
,

0
3V02−(s−1)

2µσ2Ns(Ns + 1)2

:777;
777<

3: Set ps = x̂Ns , where x̂Ns is get from step 1.
4: end for
5: return ps

Theorem 7. Let A be a matrix in Rn×d, r be the batch size and
b be a vector in Rd. Let f (x) denote ‖Ax − b‖22, and ε < V0

be a fixed number. Then, after O(log(V0
ε

) + d log n
rε) iterations of

stochastic accelerated gradient descent with S = O(log(V0
ε

))
epochs of HDpwBatchAccSGD, the output pS satisfies the fol-
lowing inequality with high probability

EF(pS) − F(x∗) ≤ ε.

Moreover, if using SRHT as the sketching matrix, the total time
complexity is

O
%
nd log n + d3 log d log n+

d2 log n
ε

+
poly(d) log n

rε
+ rpoly(d) log

1
ε

&
. (14)

Also, if the batchsize r satisfies r2 = O
#

poly(d) log n
ε log(1/ε)

$
, the time

complexity becomes

O

-
........../
nd log n +

d2 log n
ε

+
poly(d)

'
log n log(1

ε
)

√
ε

1
22222222223
,

which is less than (13), and less than pwSGD if O
!

log(1
!)
ε

"
≥

log n.

5. High Precision Case: Improved Iterative Hessian Sketch

Now, we go back to our results on time complexity in (13)
and (14). One benefit of these results is that the ε term in
the time complexity is independent of n and depends only on
poly(d) and log n. Thus, if directly using the Variance Reduced
methods developed in recent years (such as [3]) to the con-
strained linear regression problem, we can obtain a time com-
plexity of O

#%
n + κ

&
poly(d) log 1

ε

$
, where the ε term is log(1

ε
)

7

Algorithm 4 HDpwBatchAccSGD(A,b,x0,r,s, V0,S)

Input: x̃0 = X̂0 = x0 are the initial points, r is the batch size,
η is the fixed step size, s is the sketch size, S is the number of
epochs and bound V0 satisfies F(x0) ≤ V0.

1: Compute R ∈ Rd×d which makes AR−1 an O(
√

d),O(1), 2)-
conditioned basis of A as in Algorithm 1 by using a sketch
matrix S with size s × n.

2: Compute HDA and HDb, where HD is a Randomized
Hadamard Transform.

3: Run Multi-epoch Stochastic Accelerated Gradient Descent
(Algorithm 3) with x0, V0, L = O(1),µ = O(1) and with S
epochs, where the step of Stochastic Accelerated Gradient
Descent is as following:

4: Randomly sample an indices set τt of size r, where each
index in τt is i.i.d uniformly sampled.

5: Updata as the followings:

cτt = 2
n
r

(HDA)T
τt
· [(HDA)τt xt−1 − (HDb)τt],

x̃t = (1 − qt)x̂t−1 + qt xt−1,

xt = arg min
x∈W

*
ηt[〈cτt , x〉 +

µ

2
‖R(x̃t − x)‖22] +

1
2
‖R(x − xt−1)‖22

,

x̂t = (1 − αt)x̂t−1 + αt xt

return ps

instead of poly(1
ε
) and κ is the condition number of A. Com-

paring with the ε term in these methods, we know that HDpw-
BatchSGD and HDpwBatchAccSGD are more suitable for the
low precision and large scale case.

Recently, [17] introduced the Iterative Hessian Sketch (IHS)
method to solve the large scale constrained linear regression
problem (see Algorithm 5). IHS is capable of achieving high
precision, but needs a sequence of sketch matrices {S t}Tt=1
(which seems to be unavoidable due to their analysis) to en-
sure the linear convergence with high probability. Ideally, if
we could use just one sketch matrix, it would greatly reduce
the running time. The need of using a less number of sketch
matrices do arise in applications. For example, it is possible
that matrix A is too large in size (e.g., in large scale image (like
CT image) reconstruction problems) and may not be able to fit
into memory or even need to be constructed on the fly due to
its prohibited size [28]; in such scenarios, reducing the num-
ber of sketch matrices could significantly lower the number of
I/O operations and thus considerably speed up the computation.
In this section, we show that by adopting our two-step precon-
ditioning strategy, it is indeed possible to use only one sketch
matrix in IHS to achieve the desired linear convergence with
high probability, see pwGradient (Algorithm 6).

Our pwGradient method uses the first step of precondition-
ing (i.e., Step 1 of Algorithm 2) and then performs (projected)
gradient decent (GD) method directly, instead of the mini-batch
SGD in Algorithm 2 (note that we do not need the second step
of preconditioning since the matrix HD is an orthogonal ma-
trix). Since the condition number after preconditioning is O(1)

(see Table 2), by the convergence rate of GD, we know that
only O(log 1

ε
) iterations are needed to attain an ε-solution. For-

mally, we have the following theorem.

Algorithm 5 IHS(A,b,x0,s, T) [1]
Input: x0 is the initial point, T is the iteration number and s is
the sketch size.

1: for t = 0, 1, · · · ,T − 1 do
2: Generate an independent sketch matrix S t+1 ∈ Rs×n as

in Algorithm 1. Compute the matrix M = S t+1A.
3: Perform the updating

xt+1 = arg min
x∈W

1
2
‖M(x − xt)‖22 + 〈AT (Axt − b), x〉

= PW
#
xt − M−1(M−1)T AT (Axt − b)

$

4: end for
5: return xT

Algorithm 6 pwGradient(A,b,x0,s, η, T)
Input: x0 is the initial point, s is the sketch size, T is the itera-
tion number and η is the step size.

1: Compute R ∈ Rd×d which makes AR−1 an O(
√

d),O(1), 2)-
conditioned basis of A as in Algorithm 1 by using a sketch
matrix S with size s × n.

2: for t = 0, 1, · · · ,T − 1 do
3: Perform the updating

xt+1 = arg min
x∈W

1
2
‖R(x − xt)‖22 + η〈2AT (Axt − b), x〉

= PW
#
xt − 2ηR−1(R−1)T AT (Axt − b)

$
.

4: end for
5: return xT

Theorem 8. Let f (x) = ‖Ax − b‖22. Then, for some step size
η = O(1) in pwGradient, the following holds,

f (xt) − f (x∗) ≤ %1 − O
%
1
&&t (f (x0) − f (x∗)) (15)

with high probability.

One major advantage of our method is that the time complex-
ity is much lower than that of IHS, since it needs only one step
of sketching. For example, in the unconstrained case, if SRHT
is used as the sketch matrix, the complexity of our method be-
comes

O
(
nd log n + d3 log d log n + (nd + d3) log

1
ε

)
, (16)

while the time complexity of IHS with SHRT sketch matrix is
O
#
nd log d log 1

ε
+ d3 log 1

ε

$
. Thus, our method is always better

than IHS if ε satisfies the condition of ε ≤ 1
n , i.e., when the error

8

is small as in the high precision large scale case. Also, it is no-
table that if we use other sketch matrics, such as CountSketch,
the time complexity will be

O
(
nnz(A) + d4 + (nd + d3) log

1
ε

)
,

which is always less than that in IHS. We will verify this in the
experiment section.

Proof. Similar to the proof of Theorem 4, we can show that the
updating step is just performing the projected gradient descent
operations on ‖AR−1y − b‖22 and thus xt+1 = R−1yt+1. Since the
condition number of U = AR−1 is O(1), by the convergence rate
of gradient descent on strongly convex functions [34] and with
step size η = O(1), we know that

f (xt) − f (x∗) = ‖Uyt − b‖22 − ‖Uy∗ − b‖22

≤ 2σ2
max(U)

2
(1 − O(1))2k ‖y0 − y∗‖22.

By the strongly convexity property, we know that

2σ2
min(U)
2

‖y0 − y∗‖22 ≤ ‖Uy0 − b‖22 − ‖Uy∗ − b‖22 = f (x0)− f (x∗).

Also, by κ(U) = O(1) (see Table 2). Thus, we have the theorem.

Below we reveal the relationship between IHS and pwGradi-
ent. Particularly, we will show that when η = 1

2 , the updating in
pwGradient with sketching matrix S has the same form as that
in IHS with {S t}T−1

t=0 = S . This is due to the fact that if we let
QR be the QR-decomposition of S t+1A = S A, we have

(QR)−1
#
(QR)−1

$T
= (R)−1(R−1)T ,

which is due to the fact that matrix Q is an orthogonal matrix.
Although they look alike, there are still some differences.

1. The ideas behind them are quite different. IHS is based on
sketching the Hessian in each iteration and uses the second
order methods of the optimization problem, while ours is
based on preconditioning the original problem and uses the
first-order methods. Thus, we need an additional step size
η, while IHS does not require it. As we can see from the
above discussion and experiments, η = 1

2 is sufficient for
our algorithm pwGradient to achieve good performance.

2. One advantage of IHS is that it can explore the underlying
geometric structure of the constraint setW ⊆ Rd. Since it
uses the sketching idea to solve the optimization problem

min
x∈W

1
2n
‖A(x − xt)‖22 − xT AT (b − Axt)

in each iteration, that is, to solve the sketched optimization
problem

min
x∈W

1
2s
‖S tA(x − xt)‖22 − xT AT (b − Axt).

By using the sharpness result of the sketch size in [1; 17],
the authors show that the sketch size of S depends only on
the Gaussian Width ofW (see [17] for details). However,
since the sketch matrix in our paper is to construct a well-
conditioned matrix, the size will not be depending on the
Gaussian width. Thus, the sketch size s in our method is
theoretically different from that of IHS. It is possible that
IHS could have a smaller size s. However, as it will be
shown in experiments, our method is faster even if IHS
has a smaller sketch size.

6. Numerical Experiments

In this section we present some experimental results on our
proposed methods. We will mainly focus on the iteration com-
plexity and running time. Experiments confirm that our pro-
posed algorithms are indeed faster than those existing ones. The
algorithms are implemented using CountSketch as the sketch
matrix S ∈ Rs×n in the step for computing R−1 due to its fast
constructing time. The Matlab code of CountSketch can be
found in [35]. Below is a rephrase of our methods.

• HDpwBatch, i.e. Algorithm 2. We use the optimal step
size as described in Theorem 3 (note that we assume that
the step size is already known in advance).

• HDpwBatchAcc, i.e. Algorithm 3 and 4. We use the way
of choosing step size in tfocs1.

• pwGradient, i.e. Algorithm 6. As we discussed in previ-
ous section, setting η = 1

2 as the step size is enough.

6.1. Baseline of Experiments

Table 3: Summary of Datasets used in the experiments.

Dataset Rows Columns κ(A) Sketch Size

Syn1 105 20 108 1000
Syn2 105 20 1000 1000
Syn3 106 40 105 4000
Syn4 106 10 105 20000
Syn5 5×106 50 105 20000
IJCNN 91701 22 6.9 2000
Year 5×105 90 3000 20000
Covertype(short) 5.8 ×

104
8 27.2 10000

Buzz 5×105 77 108 20000
HT Sensor 9×105 12 277 20000
SUSY 5×106 19 84 60000
Gas methane 4.1 ×

106
19 7600 40000

Gas CO 4.1 ×
106

19 8100 40000

HEPMASS 7×106 29 6.77 60000

1http://cvxr.com/tfocs/

9

Algorithm 7 pwSVRG(A,b,x0,s, η, T , m, r)
Input: x0 is the initial point, r is the batch size, s is the sketch
size, T is the outer iteration number, m is the inner iteration
number and η is the step size.

1: Compute R ∈ Rd×d which makes AR−1 an O(
√

d),O(1), 2)-
conditioned basis of A as in Algorithm 1 by using a sketch
matrix S with size s × n.

2: Compute HDA and HDb, where HD is a Randomized
Hadamard Transform.

3: Let x0
0 = x0.

4: for t = 0, 1, · · · ,T − 1 do
5: Let gt = 2AT ‖Axt+1

0 − b‖2.
6: for s = 0, 1, · · · ,m − 1 do
7: Randomly sample an indices set τs of size r, where

each index in τs is i.i.d uniformly sampled.
8: Let

ct
τs
=

2n
r

(HDA)T
τs
· [(HDA)τs xt

s − (HDb)τs]

ct
τ0
=

2n
r

(HDA)T
τs
· [(HDA)τs xt

0 − (HDb)τs].

9: Perform the updating

xt
s+1 = PW

#
xs − ηR−1(R−1)T (ct

τs
− ct
τ0
+ gt)
$
.

10: end for
11: Set xt+1

0 = xt
m

12: end for
13: return xT

0

In both the low and high precision cases, we select some
widely recognized algorithms with guaranteed time complex-
ities for comparisons. We measure the performance of methods
by the wall-clock time or iteration number. For each experi-
ment, the initial value x0 is set to be the zero vector and we test
every method 10 times and take the average as the final results.

For the low precision case, we choose pwSGD [14], which
has the best known time complexity, and use the optimal step
size of their method. We need to note that the theoretical guar-
antee of pwSGD is for SGD with batchsize r = 1. Here we will
use the the mini-batch version of pwSGD, which has also been
studied in [14] in the experiments. Thus, we call the method as
pwBatchSGD. We choose SGD and Adagrad as the standard
first order method for comparisons (the code for SGD and Ada-
grad can be found in [36]), and use the batch version of both
methods.

For the high precision case, besides IHS, we also use a
method called pwSVRG for comparison, which uses our two-
step preconditioning first and then performs SVRG with differ-
ent batch sizes (the related method can be found in [15]), see
Algorithm 7. We use pwSVRG, instead of SVRG, due to the
fact that the condition number of the considered datasets are
very high, which means that directly using SVRG or related
methods could lead to rather poor performance; thus we do not
use them for comparison (although [28] used SAGA for com-

parison, it was done after normalizing the datasets).

The y-axis of each plot is the relative error ‖Axt−b‖22−‖Ax∗−b‖22
‖Ax∗−b‖22

in the low precision case and the log relative error
log(‖Axt−b‖22−‖Ax∗−b‖22

‖Ax∗−b‖22
) in the high precision case. Table 3 is a

summary of the datasets and the recommended sketch size for
our methods. The real world datasets come from [37] and [38].
For IHS, we first run it with 3

4 and 1
2 of the recommended sketch

size and then select the best one. The sketch size of IHS can be
theoretically smaller than ours, as discussed in the previous sec-
tion. We note that selecting an appropriate sketch size is very
important, as it will be shown in the discussion section that the
methods may perform poorly if the size is too small and are
costly if it is too large.

The synthetic datasets are generated as follows. We first
generate a Gaussian vector x∗ as the response vector and let
b = Ax∗ + e, where e is a Gaussian noise with standard variance
of 0.1. The design matrix A is of the form A = UΣVT , where
U ∈ Rn×d and V ∈ Rd×d are random orthogonal matrices and
Σ ∈ Rd×d controls the condition number κ(A).

We consider both the constrained and unconstrained cases
with ℓ1 and ℓ2 norm ball as the constraints. For the constrained
case, we first generate an optimal solution for the unconstrained
case, and then set it as the radius of the balls. Note that such a
setting also appears in existing work [14] and [28].

We run all the numerical experiments on a Macbook Pro
with 2.3 GHz Intel Core i5 and 8 GB RAM, MATLAB version
R2018a.

6.2. Results For Low Precision Case

6.2.1. Synthetic datasets
Figure 1 shows the iteration complexity for achieving a given

relative error ε with different batch sizes in HDpwBatchSGD.
As we can see from Figure 1, the iteration number decreases
as the batch size increasing. Specifically, we can see that the
iteration number decreases by a factor of 2 if the batch size
increases by the same factor, which supports our analysis of
HDpwBatchSGD, i.e. Theorem 4.

Figure 2, 3, 4 show the comparisons with other existing low
precision methods on the synthetic datasets with or without
the ℓ1 and ℓ2 norm balls as the constraints. The figures indi-
cate that with the same batch size r, the HDpwBatchAccSGD
method has the shortest running time among all the methods.
Also, when the batch size becomes larger, the HDpwBatchSGD
method takes less time to achieve the target relative error. Com-
pared with the state-of-art result pwSGD, our methods are much
faster. All these advantages of our method have already been
predicted in Theorem 4 and 8.

6.2.2. Real world datasets
For the low precision case, we examine our methods on the

IJCNN, Year and Covertype datasets. Note that for the Cover-
type dataset, we use the first 8 columns as the matrix A and the
9-th column as the response vector b. The results are shown in
Figure 5, 6 and 7, respectively. From the figures, we can see
that most of the findings from the synthetic datasets still hold

10

for the real datasets. We notice that there are some cases where
pwbatchSGD can outperform our method (such as in Figure 5).
This is due to the fact that when the batchsize is too small, the
time complexity of our method is larger, as mentioned in the
previous section.

To summarize, we list the time when the relative error is
less than 10−3 for different low precision methods on different
datasets. See Table 4 for details.

6.3. Results For High Precision Case

6.3.1. Synthetic datasets
For the high precision case, we test our methods on Syn3,

Syn4 and Syn5, and plot the results in Figure 8, 9 and 10, re-
spectively. From the result of the unconstrained case (Figure
8), we can see that our method pwGradient outperforms IHS,
and is almost 2× faster, which supports the theoretical analysis
given in Theorem 8.

6.3.2. Real world datasets
We also evaluate our high precision methods on Year, Buzz,

HT Sensor, SUSY, Gas Sensor and HEPMASS datasets. Fig-
ure 11, 12 and 13 are the results for Year, Buzz, and HT Sensor,
respectively. Figure 14, 15 and 16 show the result of other
datasets. From the results, we can see that all findings from
the synthetic datasets are still true for the real world datasets.
We also note that for the datasets Gas Sensor methane,
Gas Sensor CO and HEPMASS, the method pwSVRG does
not perform well in the case constrained by the ℓ1 and ℓ2 norm
balls.

To summarize, we list the time when the relative error is
less than 10−10 for different high precision methods on differ-
ent datasets. See Table 5 for details.

From the experimental results, we can see that they all sup-
port our theoretical claims.

7. Conclusion and Discussion

In this paper, we studied the large scale constrained linear
regression problem, and presented new methods for both the
low and high precision cases, using some recent developments
in random projection, sketching and optimization. For the low
precision case, our proposed methods have lower time com-
plexity than the state-of-the-art technique. For the high pre-
cision case, our method considerably improves the time com-
plexity of the Iterative Hessian Sketch method. Experiments
on synthetic and benchmark datasets confirm that our methods
indeed run much faster than the existing ones.

There are still some open problem left and we leave them as
future research.

1. From a theoretical point of view, one open problem is to
determine whether there exists even faster algorithms for
the problem. Also, it would be interesting to establish
lower bounds on the time complexity for achieving a so-
lution with ε relative error for both low and high precision
cases.

2. Our methods need to perform a convex set projection op-
eration in each iteration. However, as shown in [39], pro-
jection onto some convex set could be quite costly in many
scenarios. To resolve such an issue, a possible approach is
to combine our two-step preconditioning method with the
Frank-wolfe method. However, it is known that there are
still cases where even Frank-wolfe methods are not appli-
cable. To deal with this problem, recently [40; 41] consid-
ered the first order methods which use fewer or only one
projection step under some mild assumptions on the con-
strained set. Thus, another possible approach is to com-
bine our methods with these techniques. Also, it would be
interesting to consider the case where the constraint set is
non-convex, such as ℓ0-norm ball.

3. From a practical point of view, although our methods per-
form well, there are still some issues for further improve-
ment. Firstly, in the low precision case, we use the opti-
mal stepsize in our algorithms, which is often unknown in
practice. Thus, it is important to find a way to choose an
appropriate stepsize. Secondly, both HDpwBatchSGD and
HDpwBatchAccSGD need to choose a proper batchsize
for optimal performance. It is still unknown how to choose
the best batchsize. Thirdly, our methods need a systematic
way to choose the sketch size. To determine such a value,
we tested HDpwBatch, HDpwBatchAcc and pwGradient
on the Year and Syn3 datasets with different sketch sizes
for the unconstrained case (see Figure 17 and 18). From
the experiments, we can see that when the sketch size is
too small, these methods perform poorly, which is due to
the failure of constructing a well-conditioned basis (Def-
inition 1). However, if the sketch size is too large, the
method will be very costly (especially for the high preci-
sion case). Thus, a better strategy is needed to determine
the proper sketch size.

8. Acknowledgments

This research was supported in part by National Science
Foundation (NSF) through grants IIS-1422591, CCF-1422324,
and CCF-1716400. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the au-
thors and do not necessarily reflect the views of NSF.

References

[1] M. Pilanci, M. J. Wainwright, Randomized sketches of convex programs
with sharp guarantees, IEEE Transactions on Information Theory 61 (9)
(2015) 5096–5115.

[2] S. Shalev-Shwartz, T. Zhang, Stochastic dual coordinate ascent methods
for regularized loss minimization, Journal of Machine Learning Research
14 (Feb) (2013) 567–599.

[3] R. Johnson, T. Zhang, Accelerating stochastic gradient descent using pre-
dictive variance reduction, in: Advances in Neural Information Process-
ing Systems, 2013, pp. 315–323.

[4] Z. Allen-Zhu, Katyusha: The first direct acceleration of stochastic gradi-
ent methods, in: Proceedings of the 49th Annual ACM SIGACT Sympo-
sium on Theory of Computing, ACM, 2017, pp. 1200–1205.

11

Dataset Constraint HDpwBatchAcc HDpwBatch r = 4000 HDpwBatch r = 2000 pwBatch r = 4000 Adagrad r = 4000

Syn1
Unconstrained 2.21 2.43 3.47 2.45 –
ℓ1 norm 2.06 2.57 1.83 4.05 –
ℓ2 norm 0.83 1.06 2.36 5.52 –

Syn2
Unconstrained 1.13 1.21 1.32 1.54 –
ℓ1 norm 3.05 3.13 4.47 5.82 –
ℓ2 norm 0.86 1.02 2.01 3.51 –

Syn3
Unconstrained 38.7 49.1 56.3 75.8 –
ℓ1 norm 19.8 19.9 24.7 45.4 –
ℓ2 norm 15.31 15.38 24.7 37.6 –

IJCNN
Unconstrained 1.17 1.15 1.46 1.26 –
ℓ1 norm 2.63 4.15 4.17 5.44 –
ℓ2 norm 4.56 – 4.50 – –

Year
Unconstrained 33.5 49.3 – 47.1 –
ℓ1 norm 24.2 25.3 28.8 30.3 –
ℓ2 norm – – – 40.0 –

Covertype(short)
Unconstrained 6.18 7.43 – 7.46 –
ℓ1 norm 9.03 9.55 9.53 – –
ℓ2 norm 3.95 4.13 5.08 – –

Table 4: Comparison of different low precision methods by using the time (/s) when the relative error is less than 10−3.

Dataset Constraint pwGradient IHT pwSVRG r = 2000 pwSVRG r = 4000 pwSVRG r = 1000

Syn3
Unconstrained 0.93 1.92 7.40 7.44 7.42
ℓ1 norm 1.61 1.65 10.1 25.6 9.73
ℓ2 norm 2.42 2.43 – – –

Syn4
Unconstrained 4.22 11.6 – – –
ℓ1 norm 3.26 3.57 23.8 27.6 20.4
ℓ2 norm 2.45 4.34 – 29.4 24.2

Syn5
Unconstrained 7.23 16.9 42.5 46.1 36.3
ℓ1 norm 9.72 10.2 33.4 36.8 29.6
ℓ2 norm 8.46 8.41 – 43.2 27.2

Year
Unconstrained 0.71 1.32 7.21 9.11 8.06
ℓ1 norm 1.13 1.21 9.71 11.6 8.63
ℓ2 norm 1.04 1.08 10.8 11.3 8.53

Buzz
Unconstrained 0.56 0.95 6.34 6.81 5.39
ℓ1 norm 0.974 0.976 7.80 9.36 6.34
ℓ2 norm 1.35 0.20 12.5 16.6 15.2

HT Sensor
Unconstrained 0.26 0.24 1.25 1.37 1.14
ℓ1 norm 0.27 0.38 1.61 1.92 1.70
ℓ2 norm 0.42 0.46 1.37 1.82 1.96

SUSY
Unconstrained 0.91 1.67 12.4 16.2 14.8
ℓ1 norm 0.19 0.24 11.3 11.3 11.2
ℓ2 norm 2.16 2.71 11.7 12.7 12.7

Gas Sensor methane
Unconstrained 0.16 0.30 17. 1 17.0 18.3
ℓ1 norm 0.30 0.33 – – –
ℓ2 norm 3.85 5.02 – – –

Gas Sensor CO
Unconstrained 0.15 0.27 14.0 14.0 14.0
ℓ1 norm 2.95 2.47 – – –
ℓ2 norm 3.22 4.27 – – –

HEPMASS
Unconstrained 2.67 2.54 32.3 23.4 27.1
ℓ1 norm 4.38 5.07 – – –
ℓ2 norm 4.17 5.08 – – –

Table 5: Comparison of different high precision methods by using the time (/s) when the relative error is less than 10−10.

12

Figure 1: Iteration number of HDpwBatchSGD with different batch size r on (from left to right) datasets Syn1, Syn2 and Syn3 (unconstrained case).

Figure 2: Experimental results on synthetic datasets for the unconstrained low precision case. From left to right is for Syn1, Syn2 and Syn3, respectively.

Figure 3: Experimental results on synthetic datasets for low precision case with ℓ1 norm constraint. From left to right is for Syn1, Syn2 and Syn3, respectively.

13

Figure 4: Experimental results on synthetic datasets for low precision case with ℓ2 norm constraint. From left to right is for Syn1, Syn2 and Syn3, respectively.

Figure 5: Experimental results on real datasets for the unconstrained low precision case. From left to right is for IJCNN, Year and Covertype(short), respectively.

Figure 6: Experimental results on real datasets for low precision case with ℓ1 norm constraint. From left to right is for IJCNN, Year and Covertype(short),
respectively.

14

Figure 7: Experimental results on synthetic datasets for low precision case with ℓ2 norm constraint. From left to right is for IJCNN, Year and Covertype(short),
respectively.

Figure 8: Experimental results on synthetic datasets for the unconstrained high precision case. From left to right is for Syn3, Syn4 and Syn5, respectively.

Figure 9: Experimental results on synthetic datasets for high precision case with ℓ1 norm constraint. From left to right is for Syn3, Syn4 and Syn5, respectively.

15

Figure 10: Experimental results on synthetic datasets for high precision case with ℓ2 norm constraint. From left to right is for Syn3, Syn4 and Syn5, respectively.

Figure 11: Experimental results on real datasets for the unconstrained high precision case. From left to right is for Year, Buzz and HT Sensor dataset, respectively.

Figure 12: Experimental results on real datasets for high precision case with ℓ1 norm constraint. From left to right is for Year, Buzz and HT Sensor dataset,
respectively.

16

Figure 13: Experimental results on synthetic datasets for high precision case with ℓ2 norm constraint. From left to right is for Year, Buzz and HT Sensor dataset,
respectively.

Figure 14: Experimental results on real datasets for the unconstrained high precision case. From left to right is for SUSY, Gas Sensor methane, Gas Sensor CO
and HEPMASS, respectively.

Figure 15: Experimental results on real datasets for high precision case with ℓ1 norm constraint. From left to right is for SUSY, Gas Sensor methane, Gas Sensor CO
and HEPMASS, respectively.

17

Figure 16: Experimental results on synthetic datasets for high precision case with ℓ2 norm constraint. From left to right is for SUSY, Gas Sensor methane,
Gas Sensor CO and HEPMASS, respectively.

Figure 17: Experimental results on Syn3 dataset for methods with differnent sketch size. From left to right is for HDpwBatchSGD, HDpwBatchAccSGD and
pwGradient respectively.

Figure 18: Experimental results on Year dataset for methods with differnent sketch size. From left to right is for HDpwBatchSGD, HDpwBatchAccSGD and
pwGradient respectively.

18

[5] D. Wang, M. Ye, J. Xu, Differentially private empirical risk minimization
revisited: Faster and more general, in: Advances in Neural Information
Processing Systems, 2017, pp. 2722–2731.

[6] C. Musco, C. Musco, Randomized block krylov methods for stronger and
faster approximate singular value decomposition, in: Advances in Neural
Information Processing Systems, 2015, pp. 1396–1404.

[7] S. Paul, C. Boutsidis, M. Magdon-Ismail, P. Drineas, Random projections
for support vector machines., in: AISTATS, Vol. 3, 2013, p. 4.

[8] C. Boutsidis, P. Drineas, M. Magdon-Ismail, Near-optimal column-based
matrix reconstruction, SIAM Journal on Computing 43 (2) (2014) 687–
717.

[9] A. Dasgupta, P. Drineas, B. Harb, R. Kumar, M. W. Mahoney, Sampling
algorithms and coresets for ℓp regression, SIAM Journal on Computing
38 (5) (2009) 2060–2078.

[10] D. Durfee, K. A. Lai, S. Sawlani, ℓ1 regression using lewis weights pre-
conditioning and stochastic gradient descent, in: S. Bubeck, V. Perchet,
P. Rigollet (Eds.), Proceedings of the 31st Conference On Learning The-
ory, Vol. 75 of Proceedings of Machine Learning Research, PMLR, 2018,
pp. 1626–1656.

[11] A. Gonen, F. Orabona, S. Shalev-Shwartz, Solving ridge regression using
sketched preconditioned svrg, in: International Conference on Machine
Learning, 2016, pp. 1397–1405.

[12] L. Zhang, M. Mahdavi, R. Jin, T. Yang, S. Zhu, Recovering the optimal
solution by dual random projection., in: COLT, 2013, pp. 135–157.

[13] P. Drineas, M. W. Mahoney, S. Muthukrishnan, T. Sarlós, Faster least
squares approximation, Numerische Mathematik 117 (2) (2011) 219–249.

[14] J. Yang, Y.-L. Chow, C. Ré, M. W. Mahoney, Weighted sgd for ℓp regres-
sion with randomized preconditioning, in: Proceedings of the Twenty-
Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM,
2016, pp. 558–569.

[15] V. Rokhlin, M. Tygert, A fast randomized algorithm for overdetermined
linear least-squares regression, Proceedings of the National Academy of
Sciences 105 (36) (2008) 13212–13217.

[16] H. Avron, P. Maymounkov, S. Toledo, Blendenpik: Supercharging la-
pack’s least-squares solver, SIAM Journal on Scientific Computing 32 (3)
(2010) 1217–1236.

[17] M. Pilanci, M. J. Wainwright, Iterative hessian sketch: Fast and accurate
solution approximation for constrained least-squares, Journal of Machine
Learning Research 17 (53) (2016) 1–38.

[18] J. A. Tropp, Improved analysis of the subsampled randomized hadamard
transform, Advances in Adaptive Data Analysis 3 (2011) 115–126.

[19] M. Takác, A. S. Bijral, P. Richtárik, N. Srebro, Mini-batch primal and
dual methods for svms., in: ICML (3), 2013, pp. 1022–1030.

[20] R. H. Byrd, G. M. Chin, J. Nocedal, Y. Wu, Sample size selection in
optimization methods for machine learning, Mathematical programming
134 (1) (2012) 127–155.

[21] O. Dekel, R. Gilad-Bachrach, O. Shamir, L. Xiao, Optimal distributed
online prediction using mini-batches, Journal of Machine Learning Re-
search 13 (Jan) (2012) 165–202.

[22] S. Ghadimi, G. Lan, Optimal stochastic approximation algorithms for
strongly convex stochastic composite optimization, ii: shrinking pro-
cedures and optimal algorithms, SIAM Journal on Optimization 23 (4)
(2013) 2061–2089.

[23] D. Wang, J. Xu, Large scale constrained linear regression revisited: Faster
algorithms via preconditioning, in: Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence, New Orleans, Louisiana,
USA, February 2-7, 2018, 2018.

[24] G. Raskutti, M. W. Mahoney, A statistical perspective on randomized
sketching for ordinary least-squares, The Journal of Machine Learning
Research 17 (1) (2016) 7508–7538.

[25] J. Yang, X. Meng, M. W. Mahoney, Implementing randomized matrix
algorithms in parallel and distributed environments, Proceedings of the
IEEE 104 (1) (2016) 58–92.

[26] N. Agarwal, S. Kakade, R. Kidambi, Y. T. Lee, P. Netrapalli, A. Sidford,
Leverage score sampling for faster accelerated regression and erm, arXiv
preprint arXiv:1711.08426.

[27] D. Needell, R. Ward, Batched stochastic gradient descent with weighted
sampling, in: International Conference Approximation Theory, Springer,
2016, pp. 279–306.

[28] J. Tang, M. Golbabaee, M. E. Davies, Gradient projection iterative sketch
for large-scale constrained least-squares, in: D. Precup, Y. W. Teh (Eds.),

Proceedings of the 34th International Conference on Machine Learning,
Vol. 70 of Proceedings of Machine Learning Research, PMLR, Interna-
tional Convention Centre, Sydney, Australia, 2017, pp. 3377–3386.

[29] M. Ledoux, On talagrand’s deviation inequalities for product measures,
ESAIM: Probability and statistics 1 (1997) 63–87.

[30] G. Lan, An optimal method for stochastic composite optimization, Math-
ematical Programming 133 (1) (2012) 365–397.

[31] K. L. Clarkson, D. P. Woodruff, Low-rank approximation and regression
in input sparsity time, Journal of the ACM (JACM) 63 (6) (2017) 54.

[32] M. B. Cohen, Nearly tight oblivious subspace embeddings by trace in-
equalities, in: Proceedings of the twenty-seventh annual ACM-SIAM
symposium on Discrete algorithms, SIAM, 2016, pp. 278–287.

[33] S. Ghadimi, G. Lan, Optimal stochastic approximation algorithms for
strongly convex stochastic composite optimization i: A generic algorith-
mic framework, SIAM Journal on Optimization 22 (4) (2012) 1469–1492.

[34] Y. Nesterov, Introductory lectures on convex optimization: A basic
course, Vol. 87, Springer Science & Business Media, 2013.

[35] S. Wang, A practical guide to randomized matrix computations with mat-
lab implementations, arXiv preprint arXiv:1505.07570.

[36] H. Kasai, Sgdlibrary: A matlab library for stochastic optimization algo-
rithms, The Journal of Machine Learning Research 18 (1) (2017) 7942–
7946.

[37] J. Vanschoren, J. N. van Rijn, B. Bischl, L. Torgo, Openml: Networked
science in machine learning, SIGKDD Explorations 15 (2) (2013) 49–60.

[38] D. Dheeru, E. Karra Taniskidou, UCI machine learning repository (2017).
URL http://archive.ics.uci.edu/ml

[39] M. Jaggi, Revisiting frank-wolfe: Projection-free sparse convex optimiza-
tion., in: ICML (1), 2013, pp. 427–435.

[40] L. Zhang, T. Yang, R. Jin, X. He, O (logt) projections for stochastic opti-
mization of smooth and strongly convex functions, in: International Con-
ference on Machine Learning, 2013, pp. 1121–1129.

[41] T. Yang, Q. Lin, L. Zhang, A richer theory of convex constrained op-
timization with reduced projections and improved rates, arXiv preprint
arXiv:1608.03487.

19

