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Abstract

As a certified defensive technique, randomized smoothing has received considerable
attention due to its scalability to large datasets and neural networks. However,
several important questions remain unanswered, such as (i) whether the Gaussian
mechanism is an appropriate option for certifying `2-norm robustness, and (ii)
whether there is an appropriate randomized (smoothing) mechanism to certify `∞-
norm robustness. To shed light on these questions, we argue that the main difficulty
is how to assess the appropriateness of each randomized mechanism. In this
paper, we propose a generic framework that connects the existing frameworks in
[1, 2], to assess randomized mechanisms. Under our framework, for a mechanism
which can certify a certain extent of robustness, we define the magnitude (i.e.,
the expected `∞ norm) of the random noise it adds as the metric for assessing
its appropriateness. We also derive lower bounds on the metric for the `2-norm
and `∞-norm cases as the criteria for assessment. Based on our framework, we
assess the Gaussian and Exponential mechanisms by comparing the magnitude
of noise added by these mechanisms and the corresponding criteria. We first
conclude that the Gaussian mechanism is indeed an appropriate option to certify
`2-norm robustness. Surprisingly, we show that the Gaussian mechanism is also an
appropriate option for certifying `∞-norm robustness, instead of the Exponential
mechanism. Finally, we generalize our framework to `p-norm for any p ≥ 2. Our
theoretical results are verified by evaluations on CIFAR10 and ImageNet.

1 Introduction
The past decade has witnessed tremendous success of deep learning in handling various learning tasks
like image classification [3], natural language processing [4], and game playing [5]. Nevertheless, a
major unresolved issue of deep learning is its vulnerability to adversarial samples, which are almost
indistinguishable from natural samples to humans but can mislead deep neural networks (DNNs) to
make wrong predictions with high confidence [6, 7]. This phenomenon, referred to as adversarial
attack, is considered to be one of the biggest threats to the deployment of many deep learning
systems. Thus, a great deal of effort has been devoted to developing defensive techniques against it.
However, the majority of the existing defenses are of heuristic nature (i.e., without any theoretical
guarantees), implying that they may be ineffective against stronger attacks. Recent work [8, 9, 10]
has confirmed this concern by showing that most of those heuristic defenses actually fail to defend
strong adaptive attacks. This forces us to shift our attention to certifiable defenses as they can classify
all the samples in a predefined neighborhood of the natural samples with a theoretically-guaranteed
error bound. Among all the existing certifiable defensive techniques, randomized smoothing is
∗The first two authors contributed equally to this work.
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becoming increasingly popular due to its scalability to large datasets and arbitrary networks. [1]
first relates adversarial robustness to differential privacy, and proves that adding noise is a certifiable
defense against adversarial examples. [2] connects adversarial robustness with the concept of Renyi
divergence, and improves the estimate on the lower bounds of the robust radii. Recently, [11]
successfully certifies 49% accuracy on the original ImageNet dataset under adversarial perturbations
with `2 norm less than 0.5.

Despite these successes, there are still several unanswered questions regarding randomized (smooth-
ing) mechanisms†. One such question is, why should we use the Gaussian mechanism for randomized
smoothing to certify `2-norm robustness, or is there any more appropriate mechanism than the
Gaussian mechanism? Another important question is regarding the ability of this method to certify
`∞-norm robustness. If randomized smoothing can certify `∞-norm robustness, what mechanism
is an appropriate choice? All these questions motivate us to develop a framework to assess the
appropriateness of a randomized mechanism for certifying `p-norm robustness.

In this paper, we take a promising step towards answering the above questions by proposing a generic
and self-contained framework, which applies to different norms and connects the existing frameworks
in [1, 2], for assessing randomized mechanisms. Our framework employs the Maximal Relative Rényi
(MR) divergence as the probability distance measurement, and thus, the definition of robustness under
this measurement is named as DMR robustness. Under our framework, we define the magnitude (i.e.,
expected `∞ norm) of the noise required by a mechanism to certify a certain extent of robustness as
the metric for assessing the appropriateness of the mechanism. To be specific, a more “appropriate”
randomized mechanism under this definition refers to a mechanism that can certify a certain extent of
robustness with “less” noise. Given this definition, it is natural to define the assessment criteria as the
lower bounds on the magnitude of the noise required to certify `p-norm (DMR) robustness, in that
we can judge whether a mechanism is an appropriate option based on the gap between the magnitude
of noise needed by the mechanism and the lower bounds.

Inspired by the theory regarding the lower bounds of one-way marginals in differential privacy
models, we prove lower bounds on the noise required for certifying `2-norm and `∞-norm DMR

robustness for arbitrary randomized mechanisms. We demonstrate that the Gaussian mechanism is an
appropriate option by showing the gaps between the required Gaussian noise and the lower bounds
are only O(

√
log d) for both `2-norm and `∞-norm, where d is the dimensionality of the data. Note

that this gap is small for datasets like CIFAR-10 and ImageNet, which indicates that the Gaussian
mechanism is an appropriate option for certifying `2-norm or `∞-norm robustness. Moreover, we also
show that the Exponential mechanism is not an appropriate option for certifying `∞-norm robustness
since the gap scales in O(

√
d). To summarize, our contribution is three-fold:

• We propose a generic and self-contained framework for the assessment of randomized
mechanisms induced by a new definition of robustness, namely DMR robustness, which
connects the existing frameworks such as [1] and [2].

• We define a metric for assessing randomized mechanisms, i.e., the magnitude of the noise
required to certify robustness, and we derive the lower bounds on the magnitude of the noise
required by arbitrary randomized mechanisms to certify `2-norm and `∞-norm robustness
as the criteria for the assessment. Also, we extend this framework to `p-norm for any p ≥ 2.

• We assess the Gaussian mechanism and the Exponential mechanism based on the metric
and the lower bounds (i.e., the criteria). We first conclude that the Gaussian mechanism
is an appropriate option to certify `2-norm robustness. We also show that the Gaussian
mechanism is an appropriate option for certifying `∞-norm robustness, instead of the
Exponential mechanism.

Due to the space limit, all the omitted proofs and some experimental results are included in the
appendix in the Supplementary Material.

2 Related Work
To our knowledge, there are three approaches to certify adversarial robustness standing out recently.
The first approach formulates the task of adversarial verification as an optimization problem and
solves it by tools like convex relaxations and duality [12, 13, 14]. Given a convex set (usually an `p
†In this paper, “randomized mechanism” is an abbreviation for “randomized smoothing mechanism”.
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ball) as input, the second approach maintains a convex outer approximation of all the possible outputs
at each layer by various techniques, such as interval bound propagation, hybrid zonotope, abstract
interpretations, and etc. [15, 16, 17, 18, 19]. The third approach uses randomized smoothing to certify
robustness, which is the main focus of this paper. Randomized smoothing for certifying robustness
becomes increasingly popular due to its strong scalability to large datasets and arbitrary networks
[1, 20, 11, 12, 21]. For this approach, [1] first proves that randomized smoothing can certify the `2
and `1-norm robustness using the differential privacy theory. [20] derives a tighter lower bound on the
`2-norm robust radius based on a lemma on Renyi divergence. [11] further obtains a tight guarantee
on the `2-norm robustness using the Neyman-Pearson lemma. [22] proposes a new framework based
on f-divergence that applies to different measures. [21] combines [11] with adversarial training, and
[23] extends the method in [11] to the top-k classification setting. We note that, compared with
[11], the frameworks proposed in [1, 2] are more general. In the following, we briefly review the
basic definitions and theorems in the frameworks of [1, 2], which helps us demonstrate the inherent
connections between our framework and those two frameworks.

3 Preliminaries
In this section, we first introduce several basic definitions and notations. In general, we denote any
randomized mechanism byM(·), which outputs a random variable depending on the input. We
represent any deterministic classifier that outputs a prediction label by f(·). A commonly-used
randomized classifier can be constructed by g(·) = f(M(·)). We denote a data sample and its label
by x and y, respectively. An `p-norm ball centered at x with radius r is represented by Bp(x, r). We
say a data sample x′ is in the Bp(x, r) iff ‖x′−x ‖p ≤ r. Next, we can detail the frameworks in [1]
and [2], i.e., PixelDP and Renyi-Divergence-based Bound.

PixelDP To the best of our knowledge, PixelDP [1] is the first framework to prove that randomized
smoothing is a certified defense by connecting the concepts of adversarial robustness and differential
privacy. The definition of adversarial robustness in the framework of PixelDP can be stated as follows:

Definition 1 (PixelDP [1]) For any x, and x′ in the Bp(x, r), if a randomized mechanism M(·)
satisfies

∀S ⊆ O, P (M(x) ∈ S) ≤ eεP (M(x′) ∈ S) + δ, (1)

where O denotes the output space ofM(·). Then we can sayM(·) is (ε, δ)-PixelDP.

[1] connects PixelDP with adversarial robustness by the following lemma.

Lemma 1 (Robustness Condition [1]) Suppose G(·) is randomized K-class classifier defined by
G(x) = (G1(x), ...,GK(x)) that satisfies (ε, δ)-PixelDP (in Bp(x, r)). For the ground-truth class
y, if

E(Gy(x)) > e2ε max
i:i6=y

E(Gi(x)) + (1 + eε)δ, (2)

then the classification result (E(G1(x)), ...,E(GK(x))) is robust in Bp(x, r), i.e., ∀x′ ∈ Bp(x, r),
argmaxi E(Gi(x

′)) = y.

Note that the definition of the randomized classifier G(·) is different from the definition of g(·) since
the output of g(·) is a scalar not a vector (prediction label). g(·) is more popular in the follow-up
works such as [2, 11]. [1] mainly utilizes two mechanisms, i.e., Laplace mechanism and Gaussian
mechanism, to guarantee PixelDP. Specifically, adding Laplace noise (i.e., p(z) = 1

2b exp (− |z|b )) to
the data samples can certify (ε, 0)-PixelDP in B1(x, bε) for any x, and adding Gaussian noise (i.e.,
p(z) = 1√

2πσ
exp (− z2

2σ2 )) can certify (ε, δ)-PixelDP in B2(x, σε√
2 log 1.25/δ

) for any x.

Rényi Divergence-based Bound [2] proves a tighter estimate (compared with [1]) on the robust
radii based on the following lemma.

Lemma 2 (Rényi Divergence Lemma [2]) Let P = (p1, p2, ..., pk) andQ = (q1, q2, ..., qk) be two
multinomial distributions. If the indices of the largest probabilities do not match on P and Q, then
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the Rényi divergence between P and Q, i.e., Dα(P ||Q),‡ satisfies

Dα(P ||Q) ≥ − log(1− p(1) − p(2) + 2(
1

2
(p1−α

(1) + p1−α
(2) ))

1
1−α ).

where p(1) and p(2) refer to the largest and the second largest probabilities in {pi}, respectively.

If the Gaussian mechanism is applied to certify `2-norm robustness, then we have the following
bound of the robust radii.

Lemma 3 ([2]) Let f be any deterministic classifier and g(x) = f(x+ z) be its correspond-
ing randomized classifier for samples x ∈ Rd, where z ∼ N (0, σ2Id). Then ∀x′ ∈ Bp(x, r),
argmaxy P (g(x) = y) = argmaxy′ P (g(x′) = y′), i.e., g(·) is robust in Bp(x, r), and the `2 robust
radii r that could be certified is given by

r2 ≤ sup
α>1
−2σ2

α
log(1− p(1) − p(2) + 2(

1

2
(p1−α

(1) + p1−α
(2) ))

1
1−α ). (3)

p(1) and p(2) refer to the largest and the second largest probabilities in {pi}, where pi is the probability
that g(x) returns the i-th class, i.e., pi = P (g(x) = i).

4 Framework Overview
In this section, we present a generic framework based on the Definition 2, 3, and 4, for assessing
randomized mechanisms. According to Definition 3, our framework applies to any `p-norm. More-
over, we show that our proposed framework connects the existing general frameworks in [1, 2] by
Theorem 4.1 & 4.2. Also, we note that it is difficult to involve the framework in [11] since [11]
restricts the additive noise of the randomized mechanism to be isotropic such as Gaussian noise,
while in our framework, we do not need to specify the type of additive noise.

4.1 Main Definitions
Under our framework, the definition of adversarial robustness is induced by maximal relative Rényi
divergence (MR divergence), namely DMR robustness, so we start from introducing the definition of
MR divergence.

Definition 2 (Maximal Relative Rényi Divergence) The Maximal Relative Rényi Divergence
DMR(P‖Q) of distributions P and Q is defined as

DMR(P‖Q) = max
α∈(1,∞)

Dα(P‖Q)

α
, (4)

where Dα(P‖Q) is the Rényi Divergence between P and Q. Using DMR as the probability measure,
we can define adversarial robustness as follows:

Definition 3 (DMR Robustness) We say a randomized (smoothing) mechanismM(·) is (r,DMR, ‖·
‖p, ε)-robust if for any x

∀x′ ∈ Bp(x, r),max{DMR(M(x),M(x′)), DMR(M(x′),M(x))} ≤ ε. (5)

If a randomized smoothing classifier g(·) satisfies the above equation, we can say it is a
(r,DMR, ‖ · ‖p, ε)-robust classifier or it certifies (r,DMR, ‖ · ‖p, ε)-robustness.

A property of DMR robustness we use throughout this paper is its postprocessing property, which
can be stated as follows:

Corollary 1 (Postprocessing Property) Let g(x) = f(M(x)) be a randomized classifier, where
f(·) is any deterministic function (classifier). g(·) is (r,DMR, ‖ · ‖, ε)-robust ifM(·) is (r,DMR, ‖ ·
‖, ε)-robust.

This postprocessing property can be easily proved by Dα(f(M(x))‖f(M(x′))) ≤
Dα(M(x)‖M(x′)) for any α ∈ (1,∞) [24]. This property allows us to only concentrate on
the randomized mechanismM(·) without considering the specific form of the deterministic classifier
f(·), and therefore makes the framework applicable to an arbitrary neural network.
‡For α ∈ (1,∞), Dα(P ||Q) is defined as Dα(P ||Q) = 1

α−1
logEx∼Q(P (x)

Q(x)
)α.
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4.2 Connections between DMR robustness and the existing frameworks
The framework defined by Definition 2 & 3 is generic since it is closely connected with the existing
ones [1, 2]. Here we demonstrate the connections by the following two theorems.

Theorem 4.1 (DMR Robustness & PixelDP) IfM(·) is (r,DMR, ‖ · ‖p, ε)-robust, thenM(·) is
also (ε+ 2

√
log (1/δ)ε, δ)-PixelDP.

We note that the opposite of Theorem 4.1 holds only when δ = 0, which indicates our framework
is a relaxed version of the PixelDP framework. But this should not be a surprise since most of
the following frameworks [2, 11, 22] can somehow be considered more relaxed than the PixelDP
framework and thus yield tighter certified bounds. Similarly, our framework can provide the same
bound on the robust radius as in [2], which is tighter than the bound in [1] (Theorem 4.2).

Theorem 4.2 (DMR Robustness & Rényi Divergence-based Bound) If a randomized classifier
g(·) is (r,DMR, ‖ · ‖p, ε)-robust, then we have ∀x′ ∈ Bp(x, r), argmaxy P (g(x) = y) =
argmaxy′ P (g(x′) = y′) as long as

ε ≤ sup
α>1
− 1

α
log(1− p(1) − p(2) + 2(

1

2
(p1−α

(1) + p1−α
(2) ))

1
1−α ), (6)

where p(1) and p(2) also refer to the largest and the second largest probabilities in {pi}, and pi is the
probability that g(x) returns the i-th class, i.e., pi = P (g(x) = i). Based on the above theorem, we
can derive the same `2 robust radius as in Lemma 3 [2]. We will detail how to derive the `2 robust
radius in Section 5.

An interpretation of Theorem 4.1 and 4.2 is that, as long as we can use a randomized mechanism
with a certain amount of noise to certify DMR robustness, we can use the same mechanism with the
same amount of noise to certify PixelDP and the Rényi Divergence-based bound. Thus, Theorem 4.1
and 4.2 indicate the assessment results based on the metric defined in Section 4.3 is very likely to
generalize to the other frameworks.

4.3 Assessment of Randomized Mechanisms
Since there are infinite randomized mechanisms, a natural problem is to determine whether a certain
randomized mechanism is an appropriate option to certify adversarial robustness. However, we note
that all the previous work [2, 11, 21] overlook this problem and assume the Gaussian mechanism
to be an appropriate mechanism for certifying `2-norm robustness without sufficient assessment.
While in this paper, we attempt to provide a solution to this problem under our proposed framework.
Specifically, we define a metric to assess randomized mechanisms as follows:

Definition 4 Specify a p-norm, a robust radius r, and an epsilon ε, the magnitude (expected `∞-
norm) of the noise required by a randomized mechanismM(x) = x+ z to certify (r,DMR, ‖ · ‖p, ε)-
robustness is defined as the metric to assess the appropriateness ofM(·).

We define this metric for assessing randomized mechanisms because the accuracy of neural networks
tends to decrease as the magnitude of the noise added to the inputs increases. Note that if the
magnitude of the noise required for a randomized classifier is too large, the accuracy of its predictions
on clean samples will be very low, then robustness will be useless§. Given the above metric, we also
need criteria to assess the (relative) appropriateness of a randomized mechanism. In this paper, we
employ the lower bounds on the magnitude of the noise required by any randomized mechanism to
certify certain (r,DMR, ‖ · ‖p, ε)-robustness as the criteria. We consider a randomized mechanism
as an appropriate option if the gap between the magnitude of the additive noise required by this
mechanism and the corresponding lower bound is small. In the following, we will provide the lower
bounds for `2-norm and `∞-norm, i.e., the two most popular norms, and assess the appropriateness
of the Gaussian and Exponential mechanisms for certifying `2-norm and `∞-norm robustness. In
Appendix, we generalize our framework to `p-norm for any p ≥ 2.

5 Assessing Mechanisms for Certifying `2-norm Robustness
In this section, we first elaborate on how the Gaussian mechanism certifies DMR robustness, and
then provide the lower bound on the magnitude of the additive noise required by any randomized

§Certified robustness only guarantees the predictions of the perturbed samples and the predictions of their
clean samples are the same.

5



mechanism (M(x) = x+ z) to certify `2-norm robustness. By comparing the magnitude of the
additive noise required by the Gaussian mechanism with the lower bound, we conclude that the
Gaussian mechanism is an appropriate option to certify `2-norm robustness.

Theorem 5.1 (Gaussian Mechanism for Certifying `2-norm robustness) Let f be any determin-
istic classifier and g(x) = f(M(x)) be its corresponding randomized classifier for the sample
x ∈ Rd, whereM(x) = x+ z with z ∼ N (0, σ2Id). Then, g(·) is (r,DMR, ‖ · ‖2, r

2

2σ2 )-robust.

According to Theorem 4.2, if we substitute ε with r2

2σ2 , r can be given by r2 ≤
supα>1− 2σ2

α log (1− p1 − p2 + 2( 1
2 (p1−α

1 + p1−α
2 ))

1
1−α ), which is same as the bound in [2]

(Lemma 3). To provide a criterion for assessment of randomized mechanisms in the `2-norm
case, we prove a lower bound on the magnitude of the noise z required by any randomized mech-
anismM(x) = x+ z to ensure thatM(x) (as well as f(M(x))) is (r,DMR, ‖ · ‖2, ε)-robust. As
mentioned in Section 4.3, if the magnitude of the additive Gaussian noise is close to the lower bound,
then the Gaussian mechanism is considered as an appropriate option. The lower bound is given by
the following theorem.

Theorem 5.2 (`2-norm Criterion for Assessment) For any ε ≤ O(1), if there is an (r,DMR, ‖ ·
‖2, ε)-robust randomized mechanismM(x) = x+ z : Rd 7→ Rd such that,

E[‖ z ‖∞] = EM‖M(x)− x ‖∞ ≤ α, (7)

for some α ≤ O(1), then it must be true that α ≥ Ω( r√
ε
). In another word, Ω( r√

ε
) is the lower

bound of the (expected) magnitude of the random noise, i.e., the `2-norm criterion.

Note that proving this theorem on Rd 7→ Rd is non-trivial, which is detailed in Appendix. Theorem
5.2 indicates that the (expected) magnitude of the additive noise should be at least Ω( r√

ε
) to certify

(r,DMR, ‖ · ‖2, ε)-robustness. For the Gaussian mechanism, the required magnitude of the additive
noise is O(σ

√
log d) according to [25], which is O( r√

ε

√
log d) to guarantee (r,DMR, ‖ · ‖2, ε)-

robustness, according to Theorem 5.1. This means that the gap between the Gaussian mechanism and
the potential optimal mechanism is bounded by O(

√
log d).

Remark 1 We say Gaussian mechanism is an appropriate option because O(
√

log d) is small for
most commonly-used datasets. For instance, for CIFAR-10 (d = 3072),

√
loge d ≈ 2.83, and for

ImageNet (d = 150528),
√

loge d ≈ 3.45.

Equivalently, if we fix the expected `∞-norm of the additive noise as α, the largest radius r that can
be certified by any (r,DMR, ‖ · ‖2, ε)-robust randomized mechanisms is upper bounded by O(α

√
ε),

and the robust radius certified by Gaussian mechanism is O( α
√
ε√

log d
). The upper bound O(α

√
ε) can

be simply derived by transforming α ≥ Ω( r√
ε
) in Theorem 5.2. For the Gaussian mechanism, since

α = O(σ
√

log d) and ε =
√

r2

2σ2 according to Theorem 5.1, r = O( α
√
ε√

log d
)¶.

6 Assessing Mechanisms for Certifying `∞-norm Robustness
In this section, we first discuss the possibility of using the Exponential mechanism, an analogue
of the Gaussian mechanism in the `∞-norm case, to certify `∞-norm robustness. Then, we prove
the lower bound on the magnitude of the additive noise required by any randomized mechanism to
certify `∞-norm robustness. By comparing the magnitude of the noise required by the Exponential
mechanism with the lower bound, we conclude that the Exponential mechanism is not an appropriate
option to certify `∞-norm robustness. Surprisingly, we find that the Gaussian mechanism is a more
appropriate option than the Exponential mechanism to certify `∞-norm robustness.

We first recall the form of the density function of Gaussian noise: p(z) ∝ exp(−‖ z ‖
2
2

σ2 ). Based on this,
we conjecture that, to certify `∞-norm robustness, we can sample the noise using the Exponential
mechanism, an analogue of the Gaussian mechanism in the `∞-norm case:

p(z) ∝ exp (−‖ z ‖∞
σ

). (8)

¶The theoretical results of the robust radii are verified by experiments.
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We show in the following theorem that randomized smoothing using the Exponential mechanism
can certify (r,DMR, ‖ · ‖∞, r

2

2σ2 )-robustness, which is seemingly an extension of the `2-norm case.
However, the certified radius r is O(1/d), which implies that it is unscalable to high-dimensional
data, i.e., The Exponential mechanism should not be an appropriate mechanism to certify `∞-norm
robustness. This conclusion is further verified by our assessment method, which will be detailed later.

Theorem 6.1 (Exponential Mechanism for Certifying `∞-norm Robustness) Let f be any deter-
ministic classifier and g(x) = f(M(x)) be its corresponding randomized classifier for sample
x ∈ Rd, where M(x) = x+ z with z sampled from Exponential mechanism. Then, g(·) is
(r,DMR, ‖ · ‖∞, rσ )-robust and also (r,DMR, ‖ · ‖∞, r

2

2σ2 )-robust.

According to Theorem 4.2, if we substitute ε with r
σ or r2

2σ2 , then r can be given by r ≤
supα>1−σ

α log (1− p(1) − p(2) + 2( 1
2 (p1−α

(1) + p1−α
(2) ))

1
1−α ), or r2 ≤ supα>1− 2σ2

α log(1− p(1) −
p(2) + 2( 1

2 (p1−α
(1) + p1−α

(2) ))
1

1−α ). Comparing this result and Theorem 5.1, we can see that randomized
smoothing via the Exponential mechanism certifies a region with (almost) the same radius as that
certified by the Gaussian mechanism in the `2-norm case, indicating similarity in their robustness
guarantees. However, the following corollary shows that the magnitude of the noise required by the
Exponential mechanism is much larger than that of the Gaussian mechanism in the `2-norm case.

Corollary 2 For the Exponential mechanism that can guarantee Theorem 6.1, Ez[‖ z ‖∞] = dσ.

Equivalently, if we fix the expected `∞-norm of the additive noise as α, according to Theorem 6.1,
the robust radius r certified by Exponential mechanism is max{O( εαd ), O(

√
2εα
d )}¶, which is very

small for high-dimensional datasets. The following theorem further shows that there is a huge gap
between the noise required by the Exponential mechanism and the lower bound, indicating that the
Exponential mechanism is probably not an appropriate option for certifying `∞-norm robustness.

Theorem 6.2 (`∞-norm Criterion for Assessment) For ε ≤ O(1), if there is an (r,DMR, ‖ ·
‖∞, ε)-robust mechanismM(x) = x+ z : Rd 7→ Rd that satisfies

E[‖ z ‖∞] = EM‖M(x)− x ‖∞ ≤ α,

it must be true that α ≥ Ω( r
√
d√
ε

). In another word, Ω( r
√
d√
ε

) is the lower bound of the expected
magnitude of the required noise, i.e., the criterion.

According to Corollary 2 and Theorem 6.1, for Exponential mechanism, its required magnitude of
noise is O( dr√

ε
) to guarantee (r,DMR, ‖ · ‖2, ε)-robustness. Compared with Theorem 6.2, we can

see that the gap between the magnitude of the noise required by the Exponential mechanism and the
lower bound is O(

√
d), which can be very large for high-dimensional datasets. Therefore, we can

conclude that the Exponential mechanism is probably not an appropriate mechanism for certifying
`∞-norm robustness. Surprisingly, the following theorem shows that the Gaussian mechanism is an
appropriate choice for certifying (r,DMR, ‖ · ‖∞, ε)-robustness.

Theorem 6.3 (Gaussian Mechanism for Certifying `∞-norm robustness) Let r, ε > 0 be some
fixed number andM(x) = x+ z with z ∼ N (0, dr

2

2ε Id). Then,M(·) is (r,DMR, ‖ · ‖∞, ε)-robust,
and E[‖ z ‖∞] = EM‖M(x)− x ‖∞ is upper bounded by O( r

√
d log d√
ε

).

From Theorem 6.2 and 6.3, we can see that the gap between the magnitude of the noise required by
the Gaussian mechanism and the lower bound is also O(

√
log d). Thus, we can say the Gaussian

mechanism is a more appropriate option to certify `∞-norm robustness (see Remark 1). Equivalently,
if we fix the expected `∞-norm of the additive noise as α, the robust radius is O(

√
εα√

d log d
)¶.

Remark 2 Note that in the previous sections we only consider `2-norm and `∞-norm robustness and
the corresponding mechanisms because `2-norm and `∞-norm are the two most important norms.
But actually, we can extend our framework to `p-norm for any p ≥ 2. See Section D in Appendix.
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7 Experiments
Datasets and Models Our theories are verified on two widely-used datasets, i.e., CIFAR10 and
ImageNet‖. We follow [11, 21] to use a 110-layer residual network and a ResNet-50 as the base
models for CIFAR10 and ImageNet. The certified accuracy for radius R is defined as the fraction
of the test set whose certified radii are larger than R, and predictions are correct. We note that the
lower bounds (criteria) are not verifiable by experiments since we are still not sure if there exist
any randomized mechanism that can achieve those lower bounds. So in the following, we mainly
verify the theoretical results regarding the Gaussian mechanism and the Exponential mechanism. We
provide more details about the numerical method and more experimental results compared to the
other frameworks in Appendix in the supplementary material.

Empirical Results In the following, we verify our framework by comparing our theoretical results
of the `2/`∞ robust radii with the `2/`∞ radii at which the Gaussian/Exponential mechanism can
certify 40 ∼ 60% accuracy in the experiments. Note that in the previous literature, 40 ∼ 60%
robust accuracy is considered as a reasonably good performance [26, 11]. Besides, selecting another
reasonable accuracy does not affect the verification results too much because what our theories
characterize are the asymptotic behaviors rather than the exact values of the robust radii.

In Fig. 1, we demonstrate the results of the Gaussian mechanism for certifying `2-norm robust-
ness. The red dashed lines show that the Gaussian mechanism can certify 40 ∼ 60% accuracy at
`2 radius = 0.34 (CIFAR-10, d = 3072) and `2 radius = 0.29 (ImageNet, d = 150568), i.e.,
approximately 1/

√
log d. These results verify that the `2 radius certified by the Gaussian mechanism

is O( α
√
ε√

log d
)∗∗. We also argue that, O( α

√
ε√

log d
) is the scale of the largest certified `2 radius (i.e.,

σ
2 (Φ−1(p(1))− Φ−1(p(2)))) in the previous literature since the `∞-norm of the Gaussian noise α is
O(σ
√

log d). This argument is verified by Fig. 3 & 4 in Appendix.

Fig. 2 shows that the Gaussian mechanism certifies 40 ∼ 60% accuracy at `∞ radius = 6e− 3 on
CIFAR-10 (d = 3072) and `∞ radius = 1.1e− 3 on ImageNet (d = 150568), i.e., approximately
O(1/

√
d log d). These results verify that the `∞ radius certified by the Gaussian mechanism is

O(
√
εα√

d log d
). Fig. 2 also shows that the Exponential mechanism certifies approximately 40 ∼ 60%

accuracy at `∞ radius = 1.5e− 4 on CIFAR-10 and `∞ radius = 7e− 6 on ImageNet, i.e., approxi-
matelyO(1/d). These results verify that the `∞ robust radius certified by the Exponential mechanism
scales in O(α

√
ε

d ) or O(
√

2εα
d ). If we compare the performance of the Gaussian mechanism and

the Exponential mechanism in Fig. 2, we can see that the Gaussian mechanism is a much more
appropriate option than for certifying `∞-norm robustness. It is worth noting that the performance
of the Gaussian mechanism can be better with the bound proved in [11], which is comparable to
the other state-of-the-art approaches introduced in Section 2. We detail some results regarding the
comparison in Appendix.

Figure 1: Certify `2-norm robustness by the Gaussian mechanism: certified accuracy for CIFAR-10
(left two) and ImageNet (right two). Models: noisy training [11] & smooth-adv training [21].

8 Conclusion
In this paper, we present a generic and self-contained framework, which connects the existing
frameworks such as [1, 2], for assessing randomized mechanisms. Under our framework, we define
the magnitude of the noise required by a randomized mechanism to certify a certain extent of
robustness as the metric for assessing this mechanism. We also provide the lower bounds on the
magnitudes of the required noise as the assessment criteria. Comparing the noise required by the
Gaussian and Exponential mechanism and the criteria, we conclude that (i) The Gaussian mechanism
‖Pixel value range is [0.0, 1.0]
∗∗α ≤ O(1), and ε ≤ O(1).

8



Figure 2: Certify `∞-norm robustness by the Gaussian/Exponential mechanism: certified accuracy
for CIFAR-10 (left two) and ImageNet (right two). Model: smooth-adv training [21].

is an appropriate option to certify `2-norm and `∞-norm robustness. (ii) The Exponential mechanism
is not an appropriate mechanism to certify `∞-norm robustness, although it seems an analogue of the
Gaussian mechanism in the `∞-norm case.

Broader Impact Statement

Since this work is a study on the core theory & framework to understand the randomized smoothing
method and model robustness, we do not figure out any substantial ethic issue regarding this work.
However, it might lead to several societal consequences. On the positive side, it can help the industry
to assess a randomized smoothing mechanism before using them in a deep learning model for
improving model robustness. Besides, it can motivate researchers to understand the ability and
limitations of the randomized smoothing method. On the negative side, although the randomized
smoothing method achieves state-of-the-art performance among certified defensive techniques, some
of our theoretical results (e.g., the lower bounds of the additive noise to certify robustness) indicate
its limitations. These limitations might give the potential adversaries more confidence to attack deep
learning models with adversarial examples.
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To make the paper more readable, we first review some definitions about differential privacy [27].

Definition 5 Given a data universe X , we say that two datasets D,D′ ⊂ X are neighbors if
they differ by only one entry, which is denoted by D ∼ D′. A randomized algorithmM is (ε, δ)-
differentially private (DP) if for all neighboring datasets D,D′ and all events S the following
holds

P (M(D) ∈ S) ≤ eεP (M(D′) ∈ S) + δ.

Definition 6 A randomized algorithmM is (α, ε)-Rényi differentially private (DP) if for all neigh-
boring datasets D,D′ the following holds

Dα(M(D)‖M(D′)) ≤ ε.

A Omitted Proofs in Section 4

Proof [Proof of Theorem 4.1] According to Definition 2, for a fixed x, we have ∀x′ ∈ Bp(x, r) and
any α ∈ (1,∞),

Dα(M(x)||M(x′)) < αε.

Therefore,M(·) satisfies (α, αε)-Rényi DP. According to the following lemma, i.e.,

Lemma 4 ([28]) If a randomized mechanism is (α, ε)-Rényi DP, then it is (ε+ log(1/δ)
α−1 , δ)-DP for

any δ > 0,

we haveM(·) is (αε+ log(1/δ)
1−α , δ)-DP, for all α ∈ (1,+∞). Since

min
α∈(1,+∞)

{αε+ log(1/δ)/(α− 1)} β=α−1
= min

β∈(0,∞)
{ε(1 + β +

log(1/δ)

εβ
)}

= ε+ 2
√

log (1/δ)ε.

Thus, by the definition of Approximate Differential Privacy (Definition 5), in total we have for any x,
x′ ∈ Bp(x, r), and any event S

P (M(x′) ∈ S) ≤ eε+2
√

log (1/δ)εP (M(x) ∈ S) + δ.

Thus by Definition 1,M(·) is (ε+ 2
√

log (1/δ)ε, δ) Pixel-DP.

Proof [Proof of Theorem 4.2] Recall that Lemma 2 indicates that we have argmaxy P (g(x) = y) =
argmaxy′ P (g(x′) = y′) as long as

Dα(g(x)||g(x′)) < sup
α>1
− log (1− p(1) − p(2) + 2(

1

2
(p1−α

(1) + p1−α
(2) ))

1
1−α ).

Thus we just need to prove that the above condition holds. Since g(·) is (r,DMR, ‖ · ‖p, ε)-robust,
for any x and ‖x′−x ‖p ≤ r we have

Dα(g(x)||g(x′)) < αε.

If we also have the additional condition:

ε ≤ sup
α>1
− 1

α
log (1− p(1) − p(2) + 2(

1

2
(p1−α

(1) + p1−α
(2) ))

1
1−α ),

then Dα(g(x)||g(x′)) < supα>1− log (1− p(1) − p(2) + 2( 1
2 (p1−α

(1) + p1−α
(2) ))

1
1−α ). Thus, the

additional condition to guarantee argmaxy P (g(x) = y) = argmaxy′ P (g(x′) = y′) can be stated
as ε ≤ supα>1− 1

α log (1− p(1) − p(2) + 2( 1
2 (p1−α

(1) + p1−α
(2) ))

1
1−α ).
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B Omitted Proofs in Section 5

Proof [Proof of Theorem 5.1] By the postprocessing property we just need to showM(x) = x+ z

is (r,DMR, ‖ · ‖2, r
2

2σ2 ) robust.

Fix any x, we have for any x′ ∈ B2(x, r) and α ∈ (1,∞)

Dα(M(x)‖M(x′)) = Dα(N (x, σ2Id)‖N (x′, σ2Id))

=
α‖x′−x ‖22

2σ2
≤ r2

2σ2
.

Proof [Proof of Theorem 5.2] We first show that, in order to prove Theorem 5.2, we only need to
prove Theorem B.1. Then we show that, to prove Theorem B.1, we only need to prove Theorem B.2.
Finally, we give a formal proof of Theorem B.2.

Theorem B.1 For some ε = O(1) and d ≤ O(r2), if there is a (r,DMR, ‖ · ‖2, ε) randomized
(smoothing) mechanismM(x) = x+ z : [0, r

2
√
d
]d 7→ Rd such that for any x ∈ [0, r

2
√
d
]d,

E[‖ z ‖∞] = E[‖M(x)− x ‖∞] ≤ α

for some constant α = O(1). Then it must be true that α ≥ Ω( r√
ε
).

For anyM(x) : Rd 7→ Rd, in Theorem B.1, we only consider the expected `∞-norm of the noise
added byM(x) on x ∈ [0, r

2
√
d
]d. Thus, the α in Theorem B.1 should be less than or equal to the α

in Theorem 5.2 (on x ∈ Rd). Therefore, the lower bound for the α in Theorem B.1 (i.e., Ω( r√
ε
)) is

also a lower bound for the α in Theorem 5.2. That is to say, if Theorem B.1 holds, then Theorem 5.2
also holds true.

Next, we show that if Theorem B.2 holds, then Theorem B.1 also holds.

Theorem B.2 For some ε = O(1) and d ≤ O(r2), if there is a (r,DMR, ‖·‖2, ε)-robust randomized
(smoothing) mechanismM(x) = x+ z : [0, r

2
√
d
]d 7→ [0, r

2
√
d
]d such that for any x ∈ [0, r

2
√
d
]d

E[‖ z ‖∞] = E[‖M(x)− x ‖∞] ≤ α

for some constant α = O(1). Then it must be true that α ≥ Ω( r√
ε
).

For anyM(x) : [0, r
2
√
d
]d 7→ Rd considered in Theorem B.1, there exists a (r,DMR, ‖ · ‖2, ε)-robust

randomized mechanismM′′(x) : [0, r
2
√
d
]d 7→ [0, r

2
√
d
]d considered in Theorem B.2 such that for all

x ∈ [0, r
2
√
d
]d

E[‖M′′(x)− x ‖∞] ≤ E[‖M(x)− x ‖∞].

To prove the above statement, we first let a = r
2
√
d

andM′(x) = min{M(x), a}, where min is
a coordinate-wise operator. Now we fix the randomness ofM(x) (that isM(x) is deterministic),
and we assume that ‖M(x) − x ‖∞ = |Mj(x) − xj |, ‖M′(x) − x ‖∞ = |M′i(x) − xi|. If
Mi(x) < a, then by the definitions, we have ‖M′(x)− x‖∞ = |M′i(x)− xi| = |Mi(x)− xi| ≤
‖M(x) − x ‖∞. If Mi(x) ≥ a, then we have |M′i(x) − xi| = |a − xi|. Since xi ∈ [0, a] and
Mi(x) ≥ a, |Mi(x) − xi| ≥ |a − xi|. ‖M(x) − x ‖∞ ≥ |Mi(x) − xi| ≥ |a − xi|. Thus,
E[‖M′(x)− x ‖∞] ≤ E[‖M(x)− x ‖∞].

Then, we letM′′(x) = max{M′(x), 0} where max is also a coordinate-wise operator. We can use
a similar method to prove that E[‖M′′(x)− x ‖∞] ≤ E[‖M′(x)− x ‖∞] ≤ E[‖M(x)− x ‖∞] i.e.,
the α in Theorem B.2 should be less than or equal to the α in Theorem B.1. Also we can see that
M′′(x) = max{0,min{M(x), a}} = x+ max{−x,min{z, a − x}}, which meansM′′ is also
(r,DMR, ‖ · ‖2, ε)-robust randomized mechanism due to the postprocessing property. Therefore, the
lower bound for the α in Theorem B.2 (i.e., Ω( r√

ε
)) is also a lower bound for the α in Theorem B.1.
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Finally, we give a proof of Theorem B.2.

We consider a special case: let X = {x1,x2, · · · ,x2d} = {0, r
2
√
d
}d. Since for all xi,xj , i, j ∈ [2d],

‖xi−xj ‖2 ≤ r,M is (r,DMR, ‖ · ‖2, ε)-robust on {0, r
2
√
d
}d. According to Theorem 4.1,M is

also (ε+ 2
√

log (1/δ)ε, δ)-PixelDP. Thus, we haveM(·) is (ε+ 2
√

log (1/δ)ε, δ) DP on X .

Let us first connect the lower bound of one-way marginal (i.e., mean estimation) with the lower
bound studied in Theorem B.2. Suppose an n-size dataset X ∈ Rn×d, the one-way marginal is
h(D) = 1

n

∑n
i=1Xi, where Xi is the i-th row of X . In particular, when n = 1, one-way marginal is

just the data point itself, and thus, the condition in Theorem B.2 can be rewritten as

EM‖M(D)− h(D)‖∞ ≤ α. (9)

Based on this connection, we first prove the case where r = 2
√
d, and then generalize it to any r. For

r = 2
√
d, the conclusion reduces to α ≥ Ω(

√
d
ε ). To prove this, we employ the following lemma,

which provides a one-way margin estimation for all DP mechanisms.

Lemma 5 (Theorem 1.1 in [29]) For every ε ≤ O(1), every 2−Ω(n) ≤ δ ≤ 1
n1+Ω(1) and every

α ≤ 1
10 , ifM : ({0, 1}d)n 7→ [0, 1]d is (ε, δ)-DP and E[‖M(D) − h(D)‖∞] ≤ α, then we have

n ≥ Ω(

√
d log 1

δ

εα ).

Setting n = 1, ε = ε+ 2
√
ε log 1

δ in Lemma 5, we can see that if E[‖M(x)− x ‖∞] ≤ α, then we
must have

1 ≥ Ω(

√
d log 1

δ

(ε+ 2
√
ε log 1

δ )α
) ≥ Ω(

√
d√
α2ε

),

where the last inequality is due to the fact that
√

log 1
δ

ε+2
√
ε log 1

δ

≥ Ω( 1√
ε
), since ε ≤ O(1). Therefore, we

have the following theorem,

Theorem B.3 For some ε ≤ O(1), if there is a (2
√
d,DMR, ‖ · ‖2, ε)-robust randomized mechanism

M : {0, 1}d 7→ [0, 1]d satisfies that for all x ∈ {0, 1}d

E‖M(x)− x ‖∞ ≤ α, (10)

for some constant α = O(1). Then 1 ≥ Ω(
√

d
εα2 ).

Now we come back to the proof for any r. Note that if a (r,DMR, ‖ · ‖2, ε)-robust mechanismM
satisfies

EM‖M(xi)− xi ‖∞ ≤ α,

then we have

EM‖
2
√
d

r
M(xi)−

2
√
d

r
xi ‖∞ ≤

2
√
d

r
α.

SinceM(x) = x+ z : [0, r
2
√
d
]d 7→ [0, r

2
√
d
]d is (r,DMR, ‖ · ‖2, ε) robust, thus 2

√
d
r M : [0, 1]d 7→

[0, 1]d is still (r,DMR, ‖ · ‖2, ε) robust. By Theorem B.3 with α = 2
√
d
r α ≤ O(1), we have

1 ≥ Ω(
r√
εα2

), i.e., α ≥ Ω(
r√
ε
). (11)
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C Omitted Proofs in Section 6

Proof [Proof of Theorem 6.1] We first prove thatD∞(g(x)‖g(x′)) ≤ r
σ for all x′ ∈ B∞(x, r). Since

‖x′−x ‖∞ ≤ r, for any y,

p(y−x)

p(y−x′)
=

exp(−‖y−x ‖∞
σ )

exp(−‖y−x′ ‖∞
σ )

≤ exp(
‖y−x′ ‖∞ − ‖y−x ‖∞

σ
) ≤ exp(

‖x′−x ‖∞
σ

) ≤ exp(
r

σ
).

Since

Dα(g(x)‖g(x′)) < D∞(g(x)‖g(x′)) = E[log
p(x)

p(x′)
] ≤ r

σ
<
r

σ
α,

∀α ∈ (1,+∞), g(·) is (r,DMR, ‖ · ‖∞, rσ )-robust. Also, based on the following lemma,

Lemma 6 ([30]) Let P and Q be two probability distributions satisfying D∞(P‖Q) ≤ ε and
D∞(Q‖P ) ≤ ε. Then, Dα(P‖Q) ≤ 1

2ε
2α,

we have Dα(g(x)‖g(x′)) ≤ 1
2 ( rσ )2α, i.e., g(·) is (r,DMR, ‖ · ‖∞, r

2

2σ2 )-robust.

Proof [Proof of Corollary 2] Define the distribution D on [0,∞) to be Z ∼ D, meaning Z = ‖ z ‖∞
for z ∼ p(z), where p(z) is defined in Eq.(8). The probability density function of D is given by

pD(Z) ∝ Zd−1 exp(−Z
σ

),

which is obtained by integrating the probability density function in Eq. (8) over the infinity ball of
radius Z with surface area d2dZd−1 ∝ Zd−1. pD is the Gamma distribution with shape d and mean
σ, and thus E[z] = dσ.

Proof [Proof of Theorem 6.2] Similar to the proof of Theorem 5.2, in order to prove Theorem 6.2,
we only need to prove the following theorem:

Theorem C.1 For some ε = O(1) and r = Ω(1), if there is a (r,DMR, ‖ · ‖∞, ε) randomized
(smoothing) mechanism M(x) = x+ z : [0, r2 ]d 7→ [0, r2 ]d such that for any x ∈ [0, r2 ]d, the
following holds

E[‖ z ‖∞] = E[‖M(x)− x ‖∞] ≤ α

for some constant α = O(1). Then it must be true that α ≥ Ω( r
√
d√
ε

).

Assume that we have a set of data points X = {x1,x2 · · · ,x2d} = {0, r2}
d. Since ‖xi−xj ‖∞ ≤ r,

thus we haveM is (r,DMR, ‖ · ‖∞, ε)-robust on {0, r2}
d. According to Theorem 4.1,M is also

(ε + 2
√

log (1/δ)ε, δ)-PixelDP. Thus, it is (ε + 2
√

log (1/δ)ε, δ)-DP on X . We first consider the
case where r = 2. By Lemma 2 with n = 1 and ε = ε+ 2

√
ε log 1/δ we have a similar result as in

Theorem B.3:

Theorem C.2 For some ε ≤ O(1), if there is a (2, DMR, ‖ · ‖∞, ε)-robust randomized mechanism
M : {0, 1}d 7→ [0, 1]d satisfies that for all x ∈ {0, 1}d

E‖M(x)− x ‖∞ ≤ α, (12)

for some constant α = O(1). Then 1 ≥ Ω(
√

d
εα2 ).

For general r, if for any (r,DMR, ‖ · ‖∞, ε) robust randomized mechanismM(·) : [0, r2 ]d 7→ [0, r2 ]d

we have
E[‖M(x)− x ‖∞] ≤ α,

that is
E[‖2

r
M(x)− 2

r
x ‖∞] ≤ 2

r
α.
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This indicates that 2
rM(·) : [0, 1]d 7→ [0, 1]d is (r,DMR, ‖ · ‖∞, ε). Thus by Theorem C.2 with

α = 2
rα we have

1 ≥ Ω(

√
d√

ε(2/rα)2
),

thus we have Theorem C.1.

Proof [Proof of Theorem 6.3] By simple calculation we have

Dα(N (x,
dr2

2ε
Id)‖N (x′,

dr2

2ε
Id)) =

αε‖x−x′ ‖22
dr2

≤ αdε‖x−x′ ‖2∞
dr2

≤ αε.

Therefore, M(x) = x+ z with z ∼ N (0, dr
2

2ε Id) is (r,DMR, ‖ · ‖∞, ε)-robust. The bound of

E[‖ z ‖∞] can be easily proved by substituting σ in O(σ
√

log d) [25] with σ =
√

dr2

2ε .

D Extension to `p-norm robustness for Any p ∈ [2,∞)

In previous sections, we studied `2-norm and `∞-norm robustness. As we mentioned earlier, our
framework can be applied to general norm. In this section, we will study the general `p-norm
robustness with p ≥ 2. Just as the previous sections, here we first investigate the `p-norm criteria for
assessment.

Theorem D.1 Given p ≥ 2, for some ε = O(1) and p
√
d ≤ O(r), if there is a (r,DMR, ‖ · ‖p, ε)

randomized (smoothing) mechanismM(x) = x+ z : Rd 7→ Rd such that

E[‖ z ‖∞] = E[‖M(x)− x ‖∞] ≤ α

for some constant α = O(1). Then it must be true that α ≥ Ω( rd
1
2
− 1
p√

ε
). When p→∞, according to

Theorem 6.2, α ≥ Ω( rd
1
2√
ε

)

Proof [Proof of Theorem D.1] The proof is also almost the same as that of Theorem 5.2. Following
the proof of Theorem 5.2, we can only constrain on the case whereM(x) = x+ z : [0, r

2
p√
d
]d 7→

[0, r
2
p√
d
]d.

Assume we have a set of data points X = {x1, · · · ,x2d} = {0, r
2
q√
d
}d. Since we have for any

i, j ∈ [2d], ‖xi−xj ‖p ≤ r, thus by Theorem 4.1 we haveM is (ε+ 2
√
ε log 1/δ, δ) PixelDP. And

thus, it is (ε+ 2
√
ε log 1/δ, δ) DP on X .

We first consider the case where r = 2 q
√
d, then we extend to the general case. When r = 2 q

√
d, like

Theorem B.3, we have

Theorem D.2 For some ε ≤ O(1), if a (2 q
√
d,DMR, ‖ · ‖p, ε)-robust randomized mechanismM :

{0, 1}d 7→ [0, 1]d satisfies that for all x ∈ {0, 1}d

E‖M(x)− x ‖∞ ≤ α, (13)

then 1 ≥ Ω(
√

d
εα2 ).

Now for any (r,DMR, ‖ · ‖p, ε) robust mechanismM : [0, r
2
p√
d
]d 7→ [0, r

2
p√
d
]d, if we have

E[‖ z ‖∞] = E[‖M(x)− x ‖∞] ≤ α,
then we have

E[‖2 p
√
d

r
M(x)− 2 p

√
d

r
x ‖∞] ≤ 2 p

√
d

r
α.
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Here we note that 2
p√
d

r M : {0, 1}d 7→ [0, 1]d and it is also (r,DMR, ‖ · ‖p, ε) robust, and also
2
p√
d

r α ≤ O(1). Thus by Theorem D.1 we have

1 ≥ Ω(

√
d

ε(2 p
√
d/rα)2

)

Thus we have α ≥ Ω( rd
1
2
− 1
p√

ε
).

Remark 3 First, we can see that when p = 2, Theorem D.1 is the same as Theorem 5.2. Thus, we
can see it as a generalization of the previous theorem. Secondly, Theorem D.1 indicates that for a
certain extent of robustness, the magnitude of the noise we add should be at lease Ω(d

1
2−

1
p ), which

will quite large when in the high dimensional case. This means that for `p-norm robustness with
p > 2, random smoothing mechanisms are not appropriate to high dimensional data. Or, we call it
as the curse of dimensionality on random smoothing mechanism for certifying `p(p ≥ 2) robustness.

Next, we show that based on the above criteria for `p-norm robustness, Gaussian mechanism is an
appropriate option. Since the gap between the lower bound in the criteria and the magnitude of
Gaussian mechanism is just O(

√
log d).

Theorem D.3 (Gaussian Mechanism for Certifying `p-norm robustness) Let r, ε > 0 be some

fixed number and M(x) = x+ z with z ∼ N (0, d
1− 2

p r2

2ε Id). Then, M(·) is (r,DMR, ‖ · ‖p, ε)-

robust, and E[‖ z ‖∞] = EM‖M(x)− x ‖∞ is upper bounded by O( rd
1
2
− 1
p
√

log d√
ε

).

Proof [Proof of Theorem D.3] By simple calculation we have

Dα(N (x,
d1− 2

p r2

2ε
Id)‖N (x′,

d1− 2
p r2

2ε
Id)) =

αε‖x−x′ ‖22
d1− 2

p r2
≤
αd1− 2

p ε‖x−x′ ‖2p
d1− 2

p r2
≤ αε.

Therefore,M(x) = x+ z with z ∼ N (0, d
1− 2

p r2

2ε Id) is (r,DMR, ‖ · ‖p, ε)-robust. The bound of

E[‖ z ‖∞] can be easily proved by substituting σ in O(σ
√

log d) [25] with σ =

√
d

1− 2
p r2

2ε .

E Additional Details & Results

E.1 Numerical Method

We first detail the numerical method for the experiments in the following. The certification algorithm
is first detailed in Alg. 1. Here we highlight the sampling method for the Exponential mechanism.
Due to the high dimensionality of samples in real world applications, directly sampling z ∼ p(z) as in
Eq. 8 by the Markov Chain Monte Carlo (MCMC) algorithm requires a large number of random-walks
that can incur high computational cost. To alleviate this issue, we adopt an efficient sampling method
from [31] that first samples R from Gamma(d+ 1, σ) and then samples z from [−R,R]d uniformly.
The complexity of this sampling algorithm is only O(d).

E.2 Additional Experiment Results

`2-norm Case In Fig. 3, we can see that, although [11] proves a tighter bound than ours, it also
certifies approximately 40 ∼ 60% accuracy at `2 radius = 0.34 (CIFAR-10, d = 3072) and
`2 radius = 0.29 (ImageNet, d = 150568), i.e., O(1/

√
log d). Even after using the advanced

training method in [21], the scale of the robust radii is still O(1/
√

log d), as shown in Fig. 4.

`∞-norm Case Note that it seems obvious that the Gaussian mechanism is an appropriate mecha-
nism to certify `2-norm robustness since [11, 2, 21] have achieved the state-of-the-art certification
results compared with the other methods in the `2-norm case. However, in the `∞-norm case, it is a
little counterintuitive that the Gaussian mechanism is also an appropriate choice, which performs
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Algorithm 1 Certifying `2/`∞-norm Robustness
Require: Input x, a classifier f(·), parameter σ > 0, number of samples for estimating confidence

interval n.
Sample n samples from the Gaussian/Exponential mechanism {zi}i=1...n

Output ci = f(x+ zi), and estimate the distribution of ci, i.e., pj = #{ci=j}i=1...n

n
if Choose the Gaussian mechanism then

Compute the robust radius by r2 = supα>1(− 2σ2

α log (1− p1 − p2 + 2( 1
2 (p1−α

1 + p1−α
2 ))

1
1−α ))

1
2

else if Choose the Exponential mechanism then
ra = supα>1 − 2σ2

α log (1− p1 − p2 + 2( 1
2 (p1−α

1 + p1−α
2 ))

1
1−α )

rb = supα>1(− 2σ2

α log(1− p(1) − p(2) + 2( 1
2 (p1−α

(1) + p1−α
(2) ))

1
1−α ))

1
2

r∞ = max{ra, rb}
end if
For the Gaussian mechanism, `2 robust radius is r2, and `∞ robust radius is

√
r2
2/d. For the

Exponential mechanism, `∞ robust radius is r∞.

Figure 3: Certify `2-norm robustness by the Gaussian mechanism [11]

Figure 4: Certify `2-norm robustness by the Gaussian mechanism and the adversarial training method
in [21]

much better than the Exponential mechanism. In the Table 1, we compare the `∞-norm certification
results of the Gaussian mechanism and the other two representative approaches. Although [11] and
the DMR framework perform slightly worse than [14] or [17] on CIFAR10, they are more scalable
to high-dimensional datasets like ImageNet. So we can say their `∞-norm certification results are
comparable. Besides, in Fig. 5 & 6, we show that the Gaussian mechanism certifies approximately
40 ∼ 60% accuracy at `∞ radius = 6e− 3 on CIFAR-10 and `∞ radius = 1.1e− 3 on ImageNet,
which are also approximately O(1/

√
d log d) for both datasets.

All in all, the empirical results indicate the theorems proved under our framework are valid and very
likely to generalize to the other frameworks.
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Model CIFAR-10 IMAGENET
`∞ Acc at 2/255 Standard Acc `∞ Acc at 1/255 Standard Acc

Cohen et al. [11] (Gaussian) 47.0% 74.8% (σ = 0.25) 27.4% 57.2% (σ = 0.5)
DMR Framework (Gaussian) 42.4% 69.6% (σ = 0.5) 24.4% 45.2% (σ = 1.0)

Wong et al. [14] (Single model) 53.9% 68.3% - -
IBP [17] 50.0% 70.2% - -

Table 1: Comparing the performance of the Gaussian mechanism with the other works in the `∞ case

Figure 5: Certify `∞-norm robustness by the Gaussian mechanism [11]

Figure 6: Certify `∞-norm robustness by the Gaussian mechanism and the adversarial training
method in [21]
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