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Abstract

In this paper, we study high dimensional sparse linear regression under the Local
Differential Privacy (LDP) model, and give both negative and positive results. On
the negative side, we show that polynomial dependency on the dimensionality p
of the space is unavoidable in the estimation error under the non-interactive local
model, if the privacy of the whole dataset needs to be preserved. Similar limitations
also exist for other types of error measurements and in the (sequential) interactive
local. This indicates that differential privacy in high dimensional space is unlikely
achievable for the problem. On the positive side, we show that the optimal rate of
the error estimation can be made logarithmically depending on p (i.e., log p) under
the local model, if only the privacy of the responses (labels) is to be preserved,
where the upper bound is obtained by a new method called Differentially Private
Iterative Hard Thresholding (DP-IHT), which is interesting in its own right.

1 Introduction

In the paper, we study the locally differentially private version of the high dimensional sparse linear
regression problem, where each user i ∈ [n] holds a data record (xi, yi) ∈ ℝp × ℝ. There are
two commonly used ways for measuring the performance of this problem, which correspond to
two different settings, the statistical learning and the statistical estimation settings. For the first
setting, the measurement is based on the optimization error, i.e. F (�priv) − min�∈ F (�), where
F (�) = E(x,y)∼ (⟨x,w⟩− y)2, and  is an unknown distribution. For the second setting, y is assumed
to be y = ⟨x, �∗⟩ + �, where x ∼ ,  is a known distribution, � is a random noise, and �∗ ∈ ℝp

is the to-be-estimated vector that satisfies the condition of ‖�∗‖0 = s. The estimation error for this
setting is represented by the loss of the squared l2 norm, i.e., ‖�priv − �∗‖22. In this paper, we will
focus on the latter setting, and assume that x ∼ Uniform{+1,−1}p.

Our contributions can be summarized as follows:

• We first present a negative result which suggests that the � non-interactive private minimax
risk (see Definition 2) of ‖�priv − �∗‖22 is lower bounded by Ω( p log pn�2 ) if the privacy of the
whole dataset {(xi, yi)}ni=1 needs to be preserved. This indicates that it is impossible to
obtain any non-trivial error bound in high dimensional space (i.e. p ≫ n). The private
minimax risk is still lower bounded by Ω( p

n�2 ), even under the sequentially interactive local
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model. Our proofs are based on a locally differentially private version of the Fano and Le
Cam method [3, 4, 5]. We further reveal that this polynomial dependency on p cannot be
avoided even if we relax the measurement of the loss function.

• We then give a positive result for the case where only the responses (labels) are required to
be private, i.e., the dataset {xi}ni=1 is assumed to be public and {yi}ni=1 is private (note that
this is a valid case as shown in [2, 1]). For this case, we propose a general algorithm called
Differentially Private Iterative Hard Thresholding (DP-IHT), whose output can achieve an
upper bound ofO( s log pn�2 ) for the estimation error. We show that this bound is actually optimal,

as the � non-interactive private minimax risk can also be lower bounded by Ω( s log pn�2 ), where

Ω( s log pn ) is the optimal minimax rate of the non-private case [7]. As a general technique for
differential privacy, DP-IHT is interesting in its own right, and can be potentially used to
other problems.

2 Preliminaries

2.1 Classical Minimax Risk

Let  be a class of distributions over a data universe  . For each distribution p ∈  , there is a
deterministic function �(p) ∈ Θ, where Θ is the parameter space. Let � ∶ Θ × Θ ∶→ ℝ+ be a semi-
metric function on the spaceΘ andΦ ∶ ℝ+ → ℝ+ be a non-decreasing function withΦ(0) = 0 (in this
paper, we assume that �(x, y) = |x−y| andΦ(x) = x2 unless specified otherwise). We further assume
that {Xi}ni=1 are n i.i.d observations drawn according to some distribution p ∈  , and �̂ ∶ n → Θ
be some estimator. Then the minimax risk in metric Φ◦� is defined by the following saddle point
problem: n(�(),Φ◦�) ∶= inf �̂ supp∈ Ep[Φ(�(�̂(X1,⋯ , Xn), �(p))], where the supremum is
taken over distributions p ∈  and the infimum over all estimators �̂.

2.2 Local Differential Privacy and Private Minimax Risk

Since we will consider the sequential interactive and non-interactive local models in this paper, we
follow the definitions in [3]. We assume that {Zi}ni=1 are the private observations transformed from
{Xi}ni=1 through some privacy mechanisms. We say that the mechanism is sequentially interactive,
when it has the following conditional independence structure: {Xi, Z1,⋯ , Zi−1} → Zi, Zi ⫫ Xj ∣
{Xi, Z1,⋯ , Zi−1} for all j ≠ i and i ∈ [n], where ⫫ means independent relation. The full conditional
distribution can be specified in terms of conditionals Qi(Zi ∣ Xi = xi, Z1∶i = zi∶i). The full privacy
mechanism can be specified by a collection Q = {Qi}ni=1.

When Zi is depending only on Xi, the mechanism is called non-interactive and in this case we have
a simpler form for the conditional distributions Qi(Zi ∣ Xi = xi). We now define local differential
privacy by restricting the conditional distribution Qi.
Definition 1 ([3]). For a given privacy parameter � > 0, the random variable Zi is an � sequentially
locally differentially private view of Xi if for all z1, z2,⋯ , zi−1 and x, x′ ∈  we have the following
for all the events S:

Qi(Zi ∈ S ∣ Xi = xi, Z1∶i−1 = z1∶i−1)
Qi(Zi ∈ S ∣ Xi = x′i, Z1∶i−1 = z1∶i−1)

≤ e� .

We say that the random variable Zi is an � non-interactively locally differentially private view of Xi
if

Qi(Zi ∈ S ∣ Xi = xi)
Qi(Zi ∈ S ∣ Xi = x′i)

≤ e� .

We say that the privacy mechanism Q = {Qi}ni=1 is �-sequentially (non-interactively) locally differ-
entially private (LDP) if each Zi is a sequentially (non-interactively) locally differentially private
view.

For a given privacy parameter � > 0, let � be the set of conditional distributions that have
the �-LDP property. For a given set of samples {Xi}ni=1, let {Zi}ni=1 be the set of observations
produced by any distribution Q ∈ � . Then, our estimator will be based on {Zi}ni=1, that
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is, �̂(Z1,⋯ , Zn). This yields a modified version of the minimax risk: n(�(),Φ◦�,Q) ∶=
inf �̂ supp∈ Ep[Φ(�(�̂(Z1,⋯ , Zn), �(p))]. This allows us to define functions that characterize the
optimal rate of estimation in terms of privacy parameter �.
Definition 2. Given a family of distributions �() and a privacy parameter � > 0, the � sequential
private minimax risk in the metric Φ◦� is:

Int
n (�(),Φ◦�, �) ∶= inf

Q∈�
n(�(),Φ◦�,Q),

where � is the set of all � sequentially locally differentially private mechanisms. Moreover, the �
non-interactive private minimax risk in the metric Φ◦� is:

Nint
n (�(),Φ◦�, �) ∶= inf

Q∈�
n(�(),Φ◦�,Q),

where � is the set of all � non-interactively locally differentially private mechanisms.

3 Limitations of Keeping Whole Dataset Private

We focus on the following distribution collection of samples (x, y) ∈ {+1,−1}p ×ℝ:

1,p,C = {P� ∣ x ∼ Uniform{+1,−1}p, y = ⟨�, x⟩ + �,
where� is the random noise satisfying the condition of |�| ≤ C, and ‖�‖2 ≤ 1, ‖�‖0 ≤ 1}. (1)

To show the limitations of the private minimax risk, we first give some intuition. Consider a raw data
record (xi, yi) which is sampled from some p� ∈ 1,p,C . Suppose that we want to use a Gaussian or
Laplacian mechanism on (xi, yi) in order to make the algorithm locally differentially private. Then,
due to sensitivity, the l1 or l2 norm of (xi, yi) is a polynomial of p. The scale of the added random
noise will also be a polynomial of p, which makes the final estimation error large.

The following theorem formally shows that for some fixed privacy parameter � ∈ (0, 1), the �
non-interactive private minimax risk is lower bounded by a polynomial of the dimensionality p.

Theorem 1. For a given fixed privacy parameter � ∈ (0, 2335 ], the � non-interactive private minimax
risk in the metric of ‖ ⋅ ‖22 for the 1-sparse high dimensional sparse linear regression problem 1,p,2
needs to satisfy the following inequality, Nint

n (�(1,p,2), ‖ ⋅ ‖22, �) ≥ Ω(min{1,
p log p
n�2 }).

With the above theorem, our question now is to determine whether there are other factors in the local
model that might allow us to avoid the polynomial dependency on p in the estimation error.

We first consider the necessity of interaction in the model, since for some problems, such as convex
Empirical Risk Minimization (ERM), there exists a large gap in the estimation error between
the interactive and non-interactive local models [9]. The following theorem suggests that even
if sequential interaction is allowed in the local model, the polynomial dependence on p is still
unavoidable. Note that sequential interaction is a commonly used model in LDP [3, 9].

Theorem 2. For a given fixed privacy parameter � ∈ (0, 2335 ], the � sequential private minimax risk in
the metric of ‖ ⋅ ‖22 for the 1-sparse high dimensional sparse linear regression problem 1,p,2 needs to
satisfy the following inequality, int

n (�(1,p,2), ‖ ⋅ ‖
2
2, �) ≥ Ω(min{1,

p
n�2 }).

Theorem 3. Consider the loss function L ∶ Θ × Θ → ℝ+, where L(�, �′) = |1T (� − �′)|. Then, for
any fixed � ∈ (0, 2335 ], the � sequential private minimax risk in the loss function L for the 1-sparse
high dimensional sparse linear regression problem 1,p,2 needs to satisfy the following inequality,

int
n (�(1,p,2), L, �) ≥ Ω(min{1,

√

p
n�2

}). (2)

4 Power of Keeping Responses Private

In this section, we consider the restricted case where only the responses or labels (i.e., {yi}ni=1)
are required to be locally differentially private and all the observations {xi}ni=1 are assumed to be
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public. Preserving the privacy of the labels has been studied in [2, 1] for private PAC. We also
note that keeping the responses private is related to some scenarios in physical sensor data and the
sparse recovery problem, which have been studied in [6]. In this case, we can actually assume that
{xi}ni=1 ∈ ({+1,−1}p)n are fixed, and the collection of probability s,p,C in (1) is now reduced
to the following model:  ′s,p,C = {p�(y1,⋯ , yn) ∣ yi = ⟨�∗, xi⟩ + �i,where ‖�‖0 ≤ s, ‖�‖2 ≤
1 and the random noise |�i| ≤ C}.

The following theorem shows that, for every set of data {(xi, yi)}ni=1, if only {yi}ni=1 need to be
private, then there is an (�, �) non-interactively locally differentially private algorithm DP-IHT,
which yields a non-trivial upper bound on the squared l2 norm of estimation error, see Algorithm
1. Before giving the theoretical analysis, we first show the assumption of the public dataset

Algorithm 1 DP-Iterative Hard Thresholding
Input: Public dataset {xi}ni=1, private {yi}ni=1 ∈ P�∗ , where P�∗ ∈  ′s∗,p,C , �, � are privacy parameters,
T is the number of iteration, � is the step size, and s is the parameter to be specified. Set �0 = 0.

1: for Each i ∈ [n] do
2: Denote ỹi = yi + zi, where zi ∼ (0, �21 ), �

2
1 =

32C2 ln(1.25∕�)
�2 .

3: end for
4: for t = 0, 1,⋯ , T − 1 do
5: �̃t+1 = �t − �(

1
n
∑n
i=1(ỹi − ⟨xi, �t⟩)xTi ).

6: �′t+1 = Trunc(�̃t+1, s).
7: �t+1 = arg�∈B1 ‖� − �

′
t+1‖

2
2.

8: end for
9: Return �T .

X = (xT1 ,⋯ , xTn )
T ∈ {+1,−1}n×p.

Assumption 1. X satisfies the Restricted Isometry Property with parameter 2s + s∗, where s = 8s∗.
That is, for any v ∈ ℝp with ‖v‖0 ≤ 2s + s∗, there exists a constant � which satisfies (1 − �)‖v‖2 ≤
1
n‖Xv‖

2
2 ≤ (1 + �)‖v‖

2
2.

Note that if X = (xT1 ,⋯ , xTn )
T ∼ Uniform{+1,−1}n×p, it satisfies the condition with probability ay

least 1 − � if n ≥ c�−2(s∗ log p + ln(1∕�)) with some universal constant c (see Theorem 2.12 in [8]).

Theorem 4. For any 0 < � ≤ 1 and 0 < � < 1, Algorithm 1 is (�, �) (non-interactively) locally
differentially private for {yi}ni=1. Moreover, if {yi}ni=1 ∈ P

n
�∗, where P�∗ ∈  ′s∗,p,C , and X satisfies

Assumption 1 with 0 < � ≤ 2
7 , then by setting s = 8s∗ in Algorithm 1, there is an � = �(�) which

ensures that the output �T satisfies the following inequality

‖�T − �∗‖2 ≤ (
1
2
)T ‖�∗‖2 + O(

C log(1∕�)
√

s∗ log p
√

n�
), (3)

with probability at least 1 − exp(−n) − 2
p .

From the above theorem, an immediate question is that whether the upper bound in Theorem 4 can
be further improved. Unfortunately, the following theorem (adopted from [7]) indicates that the �
non-interactive local private minimax risk in the metric of ‖ ⋅ ‖2 is lower bounded by Ω(C

2s∗ log p
n�2 ),

which means that the upper bound in Theorem 4 is tight.

Theorem 5. Under Assumption 1 and for a given fixed privacy parameter � ∈ (0, 2335 ], the � non-
interactive local private minimax risk for the case of keeping {yi}ni=1 locally private in the metric
‖ ⋅ ‖2 satisfies the following inequality

Nint
n (�( ′s,p,C ), ‖ ⋅ ‖

2
2, �) ≥ Ω

(

min{1,
C2s log ps
n�2(1 + �)

}
)

.
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