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Abstract—We study the problem of Differentially Private
Stochastic Convex Optimization (DP-SCO) with heavy-tailed
data. Specifically, we focus on the ℓ1-norm linear regression
in the ǫ-DP model. While most of the previous work focuses
on the case where the loss function is Lipschitz, here we only
need to assume the variates has bounded moments. Firstly, we
study the case where the ℓ2 norm of data has bounded second
order moment. We propose an algorithm which is based on the
exponential mechanism and show that it is possible to achieve

an upper bound of Õ(
√

d

nǫ
) (with high probability). Next, we

relax the assumption to bounded θ-th order moment with some
θ ∈ (1, 2) and show that it is possible to achieve an upper

bound of Õ(( d

nǫ
)
θ−1

θ ). Our algorithms can also be extended to
more relaxed cases where only each coordinate of the data has
bounded moments, and we can get an upper bound of Õ( d

√

nǫ
)

and Õ( d

(nǫ)
θ−1

θ

) in the second and θ-th moment case respectively.

I. INTRODUCTION

As one of the most fundamental problem in both statistical

machine learning and differential privacy (DP). Stochastic

Convex Optimization under the differential privacy [1] con-

straint, i.e., Differentially Private Stochastic Convex Optimiza-

tion (DPSCO), has received much attentions in recent years

[2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14],

[15]. In DPSCO, we have a loss function ℓ and an n-size

dataset D = {(x1, y1), (x2, y2), · · · , (xn, yn)} where each

pair of the variate and the label/response (xi, yi) is i.i.d. sam-

pled from some unknown distribution D. The goal of DPSCO

is to privately minimize the population risk function LD(w) =
E(x,y)∼D[ℓ(w, x, y))] over a parameter space W ⊆ R

d, i.e., we

aim to design some DP algorithm whose output wpriv makes

the excess population risk LD(wpriv) − minw∈W LD(wpriv)
to be as small as possible with high probability.

Although DPSCO and it empirical form, differentially

Private Empirical Risk Minimization (DPERM), have been

extensively studied for many years and there is a long of

work attacked the problems from different perspectives, most

of those work needs to assume the data distribution is bounded

which indicates that the loss function is Lipschitz, which is

unrealistic and does not always hold in practice. To relax

the Lipschitz assumption, start from [16], there are several

work have studied DPSCO with heavy-tailed data recently,

where the Lipschitz assumption is removed and we only need

to assume that the distribution of the gradient of the loss

function has bounded finite order of moments instead [16],

[17], [18]. However, there are still several open problems in

DP-SCO with heavy-tailed data. For example, previous work

only considered the case where the loss function is smooth.

Moreover, most of those work studied the (ǫ, δ)-DP model

and its behaviors in the ǫ-DP model is still far from well-

understood. Thirdly, all the previous results need to assume

the data or the gradient of the loss has at least bounded

second (order) moments and cannot be extended to a more

relaxed case where it has only θ-th moment with θ ∈ (1, 2).
In this paper, we continue along the directions of these open

problems. Specifically, we study the problem of ℓ1-norm linear

regression (i.e., ℓ(w, x, y) = |〈x,w〉 − y|) with heavy-tailed

data in ǫ-DP model. Our contributions can be summarized as

follows.

• We first consider the case where the second moment of

the ℓ2-norm of the variate x, i.e., E‖x‖22, is bounded.

Specifically, we propose a method which is based on the

exponential mechanism and show that it is possible to

achieve an upper bound of Õ(
√

d
nǫ
) with high probability.

Moreover, instead of the ℓ2-norm, we also consider the

case where each coordinate of x has bounded second

moment, i.e., E|xj |2 <∞ for every j ∈ [d]. We show that

our algorithm could achieve an error bound of Õ( d√
nǫ
).

• We then investigate a relaxed case where the data only

has θ-th moment with θ ∈ (1, 2). First, similar to the

second moment case, we assume that E‖x‖θ2 < ∞ and

show it is possible to achieve a rate of Õ
(

( d
nǫ
)

θ−1

θ

)

. Then,

under the relaxed condition that E|xj |θ < ∞ for every

j ∈ [d], we show that our algorithm could achieve an

error of Õ
(

d

(nǫ)
θ−1

θ

)

. To the best of our knowledge, this

is the first theoretical result of DPSCO with heavy-tailed

data that only has θ-th moment with θ ∈ (1, 2).

II. RELATED WORK

Although there is a long list of work studied either DP-

SCO/DPERM or robust estimation. DPSCO with heavy-tailed

data is not well-understood. Below we will mentioned the

related work on DPSCO with heavy-tailed data and private

and robust mean estimation.

For private estimation for heavy-tailed distribution, [19]

provides the first study on private mean estimation for distribu-
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tions with bounded second moment and proposes the minimax

private rates. Later, [20] also studies the heavy-tailed mean

estimation with a relaxed assumption, which is also studied

by [21], [22] recently. However, due to the complex nature

of ℓ1 regression, the methods for mean estimation cannot be

used to our problem. Moreover, it is unknown whether their

methods could be extended to the case where each coordinate

of the data has only θ-th order moment with θ ∈ (1, 2).

For DPSCO with heavy-tailed data, [16] first studies the

problem by proposing three methods based on different as-

sumptions. The first method is based on the smooth sensitivity

and the Sample-and-Aggregate framework [23]. However, it

needs enormous assumptions and its error bound is quite

large. Their second method is still based on the smooth

sensitivity [24]. However, it needs to assume the distribution

is sub-exponential.[16] also provides a new private estimator

motivated by the previous work in robust statistics. [18]

recently revisits the problem and improves the (expected)

excess population risk for both convex and strongly convex

loss functions. It also provides the lower bounds of the

mean estimation problem in both (ǫ, δ)-DP and ǫ-DP models.

However, as we mentioned earlier, all of those algorithms are

for (ǫ, δ)-DP model and need to assume the loss function is

smooth. Thus, their methods cannot be used to our problem.

Later, [17] studies the problem in the high dimensional space

where the dimension could far greater than the data size. It

focuses the case where the loss function is smooth and the

constraint set is some polytope or some ℓ0-norm ball, which

is quite different with our settings.

III. PRELIMINARIES

Definition 1 (Differential Privacy [1]). Given a data universe

X , we say that two datasets D,D′ ⊆ X are neighbors if

they differ by only one entry, which is denoted as D ∼ D′.
A randomized algorithm A is ǫ-differentially private (DP) if

for all neighboring datasets D,D′ and for all events S in

the output space of A, the following holds Pr(A(D) ∈ S) ≤
eǫPr(A(D′) ∈ S).

Definition 2 (Exponential Mechanism). The Exponential

Mechanism allows differentially private computation over

arbitrary domains and range R, parametrized by a score

function u(D, r) which maps a pair of input data set D

and candidate result r ∈ R to a real valued score. With

the score function u and privacy budget ǫ, the mechanism

yields an output with exponential bias in favor of high scor-

ing outputs. Let M(D, x,R) denote the exponential mecha-

nism, and ∆ be the sensitivity of u in the range R, ∆ =
maxr∈RmaxD∼D′ |u(D, r)− u(D′, r)|. Then if M(D, x,R)
selects and outputs an element r ∈ R with probability pro-

portional to exp( ǫu(D,r)
2∆u

), it preserves ǫ-differential privacy.

Lemma 1. [25] For the exponential mechanism M(D, u,R),
we have

Pr{u(M(D, u,R)) ≤ OPTu(x) −
2∆u

ǫ
(ln |R|+ t)} ≤ e−t.

where OPTu(x) is the highest score in the range R, i.e.

maxr∈R u(D, r).

Definition 3 (DPSCO [2]). Given a dataset D = {z1, · · · , zn}
from a data universe Z where zi = (xi, yi) with a feature

vector xi and a label/response yi are i.i.d. samples from some

unknown distribution D, a convex constraint set W ⊆ R
d,

and a convex loss function ℓ : W × Z 7→ R. Differentially

Private Stochastic Convex Optimization (DPSCO) is to find

wpriv so as to minimize the population risk, i.e., LD(w) =
Ez∼D[ℓ(w, z)] with the guarantee of being DP. The utility

of the algorithm is measured by the excess population risk,

that is LD(wpriv) − minw∈W LD(w) (for convenience we

denote the optimal solution as w∗). Besides the population

risk, we can also measure the empirical risk of dataset D:

L̂(w,D) = 1
n

∑n

i=1 ℓ(w, zi). It is notable that in the high

probability setting, we need to get a high probability excess

population risk. That is given a failure probability 0 < η < 1,

we want get a (polynomial) function f(d, log 1
η
, 1
n
, 1
ǫ
) such

that with probability at least 1 − η (over the randomness of

the algorithm and the data distribution),

LD(w
priv)− LD(w

∗) ≤ O(f(d, log
1

η
,
1

n
,
1

ǫ
)).

In this paper, we mainly focus on ℓ1-norm linear regression:

min
w∈W

LD(w) = E(x,y)∼D|〈x,w〉 − y|, (1)

where the convex constraint set W is bounded with diameter

∆ = maxw,w′∈W ‖w − w′‖2 <∞.

Definition 4 (ζ-Net). Let (T, d) be a metric space. Consider

a subset W ⊂ T and let ζ > 0. A subset S ⊆ W is called an

ζ-net of W if every point in W is within a distance ζ of some

points of S, i.e., ∀x ∈ k, ∃x0 ∈ N : d(x, x0) ≤ ζ. The smallest

possible cardinality of an ζ-net of W is called the covering

number of W and is denoted by N (W , d, ζ). Equivalently,

covering number is the smallest number of closed balls with

centers in K and radii ζ whose union covers W .

Lemma 2 ([26]). For the Euclidean space (Rd, ‖ · ‖2), and

a bounded subset W ⊆ R
d with the diameter ∆. Then its

covering number N (W , ζ) ≤ (3∆
ζ
)d.

IV. MAIN METHODS

A. Bounded second moment case

In this section we consider the case of bounded second mo-

ment. As mentioned earlier, in the previous work on DPSCO

with heavy-tailed data, we always assume the distribution of

gradient has bounded moments [16], [17], [18], if the loss

function is smooth. However, for ℓ1 regression, here the loss

function is non-differentiable. Thus, instead of the gradient,

here we will directly assume the second moments of x are

bounded, which implies that the second moments of the sub-

gradient of the loss function are also bounded. In general,

there are two assumptions on the heavy-tailedness of x; one

assumes the distribution of ‖x‖2 has bounded moment; the



other one assumes the distribution of each coordinate of x has

bounded moment. Formally,

Assumption 1. The second moment of ‖x‖2 is bounded by

τ2 = O(1), that is E(x,y)∼D‖x‖22 ≤ τ2.

Assumption 2. The second moment of each coordinate of x

is bounded by τ2 = O(1), that is ∀j ∈ [d],E(x,y)∼Dx
2
j ≤ τ2.

From the above two assumptions we can see that As-

sumption 1 is more restricted than Assumption 2. Before

showing our algorithm, we first provide a brief overview on the

approach of solving the problem (1) in the non-private case,

proposed by [27]. Specifically, instead of study the empirical

risk function of the population risk (1), [27] considers the

following minimization problem of a truncated loss :

min
w∈W

L̂ι(w,D) =
1

nι

n
∑

i=1

ψ(ι|yi − 〈xi, w〉|), (2)

where ι > 0 is a parameter that will be specified later, the

truncation function ψ(·) is a non-decreasing function which

should satisfies the following property:

− log(1− x+
x2

2
) ≤ ψ(x) ≤ log(1 + x+

x2

2
). (3)

Specifically, [27] shows the following result:

Lemma 3 (Corollary 2 in [27]). Under Assumption 1 and

assume the ψ(·) satisfies (3). Then for any given failure

probability η, for some specified ι = ι( 1
n
, d,∆, log 1

η
) in (2),

the optimal solution ŵι of (2) has the following the excess

population risk with probability at least 1− η

LD(ŵι)− LD(w
∗) ≤ Õ

( 1

n
E‖x‖2+ (4)

√

d log 1
η

n
(
1

n2
+ sup

w∈W
E(y − 〈x,w〉)2)

)

= Õ(

√

d log 1
η

n
).

(5)

The previous lemma indicates that solving the problem (2) is

sufficient to solve the ℓ1 regression problem if supw∈W E|y−
〈x,w〉|2 = O(1). To solve the problem (2) differentially

privately, we adapt the following specific form of ψ(·):

ψ(x) =











− log(1− x+ x2

2 ), 0 ≤ x ≤ 1

log 2, x ≥ 1

−ψ(−x), x ≤ 0

(6)

We can easily see (6) satisfies the property in (3). Moreover,

due to the non-decreasing property we can see the function is

upper bounded by log 2. That is, for a fixed w, the sensitivity

of L̂ι(w,D) is bounded by 2 log 2
nι

. Motivated by this, we can

use the exponential mechanism to solve (2) in ǫ-DP model,

see Algorithm 1 for details.

Theorem 1. For any ǫ > 0, Algorithm 1 is ǫ-DP. Moreover,

under Assumption 1, given any failure probability η ∈ (0, 1),

Algorithm 1 Exponential mechanism for ℓ1-regression (sec-

ond moment)

Input: D = {(xi, yi)}ni=1; privacy parameter ǫ; parameters

ι, ζ (will be specified later); truncated empirical risk L̂ι in (2)

with ψ in (6).

1: Find a ζ-net of W with covering number N(W , ζ), denote

it as W̃ζ = {w1, · · · , wN(W,ζ)}.

2: Run the exponential mechanism with the range R = W̃ζ

and the score function u(D,w) = −L̂ι(w,D). That

is, output an w ∈ W̃ζ with probability proportional to

exp(−nιǫL̂ι(w,D)
log 2 ).

for the output w̃ we have the following with probability at

least 1− η for any ι > 0,

LD(ŵι)−LD(w
∗) ≤ O(ζτ+ιζ2τ2+ιτ2∆2+

1

nιǫ
log

N(W , ζ)

ζ
).

Furthermore, by setting ζ = O( 1
n
) and ι = O(

√

d logn log 1

η

nǫτ2 )
we have

LD(ŵι)− LD(w
∗) ≤ O(τ

√

d logn log 1
η

nǫ
). (7)

Moreover, under Assumption 2, set ζ = O( 1
n
) and ι =

O(

√

logn log 1

η

τ2nǫ
) we have

LD(ŵι)− LD(w
∗) ≤ O(τ

√

d2 log n log 1
η

nǫ
), (8)

where Big-O notations omit the term of ∆.

Remark 1. First, notice that since Assumption 1 is more

stronger, there is a gap of O(
√
d) compared with (7) and (8).

Moreover, for the upper bound in (8), it matches the lower

bound of the private mean estimation under Assumption 2 in

[18]. However, it is still unknown whether this lower bound

is optimal for DPSCO with general convex loss. To the best

of our knowledge, this is the first ǫ-DP algorithm which could

achieve the bound of Õ( d√
nǫ
) under the same assumption.

Proof of Theorem 1. The proof of ǫ-DP is due to the sen-

sitivity of the score function is bounded by 2 log 2
nι

and the

exponential mechanism. Next we will proof the utility. For

convenience we denote wζ = argminw∈W̃ζ
L̂ι(w,D) and the

optimal solution of (2) as ŵι. By the utility of exponential

mechanism Lemma 1 and take t = log 1
η

we have with

probability at least 1 − η, −L̂ι(w̃,D) ≥ −L̂ι(wζ , D) −
4 log 2
nιǫ

log N(W,ζ)
η

. That is

L̂ι(w̃,D) ≤ L̂ι(wζ , D) +
4 log 2

nιǫ
log

N(W , ζ)

η
. (9)

For the term L̂ι(w̃,D) in (9) we have the following.

Lemma 4 ([27]). For any given η, we have the following

inequality for all w ∈ W̃ζ with probability at least 1− η



L̂ι(w,D) =
1

nι

n
∑

i=1

ψ(ι|yi − 〈xi, w〉|) ≥ LD(w)

− ι

2
sup
w∈W

E(y − 〈x,w〉)2)− 1

nι
log

N(W , ζ)

η
. (10)

For the term L̂ι(wζ , D) in (9), since W̃ζ is a ζ-net, thus

there exists a w̃ι ∈ W̃ζ such that ‖w̃ι − ŵι‖2 ≤ ζ, where

ŵι = argminw∈W L̂ι(w,D). And by the definition we have

L̂ι(wζ , D) ≤ L̂ι(w̃ι, D). (11)

For the term L̂ι(w̃ι, D) we have the following lemma

Lemma 5 ([27]). For any given η, we have the following

inequality for all w ∈ W̃ζ with probability at least 1− η

L̂ι(w,D) ≤ LD(w)+
ι

2
sup
w∈W

E(y−〈x,w〉)2+ 1

nι
log

N(W , ζ)

η
.

(12)

Thus, combing with (11) and Lemma 5 we have with

probability at least 1− η

L̂ι(wζ , D) ≤ L̂ι(w̃ι, D)

≤ LD(w̃ι) +
ι

2
sup
w∈W

E(y − 〈x,w〉)2 + 1

nι
log

N(W , ζ)

η

≤ LD(ŵι) + ζτ +
ι

2
sup
w∈W

E(y − 〈x,w〉)2 + 1

nι
log

N(W , ζ)

η
,

(13)

where the last inequality is due to

LD(w̃ι)− LD(ŵι) = E[|y − 〈x, w̃ι〉| − |y − 〈x, ŵι〉|]
≤ E|〈x, w̃ι − ŵι〉| ≤ ζE‖x‖2

The relation between LD(ŵι) and LD(w∗) is due to the

following lemma, given by [27],

Lemma 6. For any given failure probability η, under Assump-

tion 1, we have the following with probability at least 1− 2η

LD(ŵι)− LD(w
∗) ≤ 2ζτ

+ ιζ2τ2 +
3ι

2
sup
w∈W

E(y − 〈x,w〉)2 + 1

nι
log

N(W , ζ)

η
.

Thus, taking Lemma 4, (13) and Lemma 6 into (9) we have

with probability at least 1− 4η

LD(w̃)− LD(w
∗) ≤ 3ζτ + ιζ2τ2 +

5ι

2
sup
w∈W

E(y − 〈x,w〉)2

+
3

nι
log

N(W , ζ)

η
+

4 log 2

nιǫ
log

N(W , ζ)

η
. (14)

By logN(W , ζ) ≤ d log 3∆
ζ

and the following inequality we

can complete the proof.

sup
w∈W

E(y − 〈x,w〉)2

≤ E(y−〈x∗, w〉)2+2E‖x‖22 sup
w∈W

‖w−w∗‖22 = O(∆2τ2).

For (8), note that using the same proof we can replace τ by

E‖x‖2 in (14). By Assumption 2 we have E‖x‖2 ≤ τ
√
d and

E‖x‖22 ≤ dτ2. Thus, take ζ = O( 1
n
) and ι = O(

√

logn log 1

η

τ2nǫ
)

we finish the proof.

B. Bounded θ-th moment case

Actually, motivated by [28], for the ℓ1-regression problem,

we can even relax the second moment assumption in As-

sumption 1 and 2 to finite θ-th moment assumptions with

any θ ∈ (1, 2). Similar to the second moment case, here we

consider two cases:

Assumption 3. There exists an θ ∈ (1, 2) such that the θ-th

order moment of x is bounded by τθ <∞ for some constant

τ , 1 that is E(x,y)∼D‖x‖θ2 ≤ τθ = O(1).

Assumption 4. We assume that the second moment of each

coordinate of x is bounded by τθ = O(1), that is ∀j ∈
[d],E(x,y)∼Dx

θ
j ≤ τθ = O(1).

Here our main idea is almost the same as in the bounded

second-order moment case and we will still focus on the

function L̂ι(w,D) in (2). However, here we will adjust the

non-decreasing truncation function ψ : R 7→ R to make it

satisfies the following inequality instead of (3):

− log(1− x+
|x|θ
θ

) ≤ ψ(x) ≤ log(1 + x+
|x|θ
θ

). (15)

Motived by (6), here we use the following specific form for

ψ:

ψ(x) =











− log(1− x+ |x|θ
θ
), 0 ≤ x ≤ 1

log θ, x ≥ 1

−ψ(−x), x ≤ 0

(16)

Algorithm 2 Exponential mechanism for ℓ1-regression (θ-th

moment)

Input: D = {(xi, yi)}ni=1; privacy parameter ǫ; parameters

ι, ζ; truncated empirical risk L̂ι in (2) with ψ in (16).

1: Find a ζ-net of W with covering number N(W , ζ), denote

it as W̃ζ = {w1, · · · , wN(W,ζ)}.

2: Run the exponential mechanism with the range R = W̃ζ

and the score function u(D,w) = −L̂ι(w,D). That

is, output an w ∈ W̃ζ with probability proportional to

exp(−nιǫL̂ι(w,D)
log θ

).

We can easily see it satisfies the inequality in (15). More-

over, its absolute value is upper bounded by log θ. That is the

sensitivity of L̂ι(w,D) is upper bounded by 2 log θ
2nι . Therefore,

we will use the exponential mechanism (see Algorithm 2 for

details) and its output has the following utility.

Theorem 2. For any ǫ > 0, Algorithm 2 is ǫ-DP. Moreover,

under Assumption 3, given failure probability ζ, for the output

1Here we use τθ is for convenience to compare with the second moment
case.



w̃ we have the following with probability at least 1 − ζ for

any ι > 0

LD(w̃)− LD(w
∗) ≤ O

(

ζτ + ιθ−1τθ+

ιθ−1ζθτθ +
1

nιǫ
log

N(W , ζ)

η

)

. (17)

Take ζ = O( 1
n
) and ι = O( 1

τ
(
d log 1

ζ

nǫ
)

1

θ ) we have

LD(ŵι)− LD(w
∗) ≤ Õ(τ(

d log n log 1
ζ

nǫ
)

θ−1

θ ). (18)

Moreover, under Assumption 4, set ζ = O( 1
n
) and ι =

O( 1
τ
(
log n log 1

η

nǫ
)

θ−1

θ ) we have

LD(ŵι)− LD(w
∗) ≤ O(τd(

log n log 1
ζ

nǫ
)

θ−1

θ ). (19)

Proof of Theorem 2. The proof of ǫ-DP is due to the sen-

sitivity of the score function is bounded by 2 log θ
nι

and the

exponential mechanism. Next we will proof the utility. For

convenience we denote wζ = argminw∈W̃ζ
L̂ι(w,D) and the

optimal solution of (2) as ŵι. By the utility of exponential

mechanism Lemma 1 and take t = log 1
η

we have with

probability at least 1 − η, −L̂ι(w̃,D) ≥ −L̂ι(wζ , D) −
4 log θ
nιǫ

log N(W,ζ)
η

. That is

L̂ι(w̃,D) ≤ L̂ι(wζ , D) +
4 log θ

nιǫ
log

N(W , ζ)

η
. (20)

For the term L̂ι(w̃,D) in (20) we have the following inequal-

ity.

Lemma 7 ([28]). For any given ζ, we have the following

inequality for all w ∈ W̃ζ with probability at least 1− η

L̂ι(w,D) =
1

nι

n
∑

i=1

ψ(ι|yi − 〈xi, w〉|)

≥ LD(w) −
ιθ−1

θ
sup
w∈W

E|y − 〈x,w〉|θ − 1

nι
log

N(W , ζ)

η
.

For the term L̂ι(wζ , D) in (20), since W̃ζ is a ζ-net, thus

there exists a w̃ι ∈ W̃ζ such that ‖w̃ι − ŵι‖2 ≤ ζ, where

ŵι = argminw∈W L̂ι(w,D). And by the definition we have

L̂ι(wζ , D) ≤ L̂ι(w̃ι, D). (21)

For the term L̂ι(w̃ι, D) we have the following lemma

Lemma 8. For any given η, we have the following inequality

for all w ∈ W̃ζ with probability at least 1− η

L̂ι(w,D) ≤ LD(w)+
ιθ−1

θ
sup
w∈W

E|y−〈x,w〉|θ+ 1

nι
log

N(W , ζ)

η
.

(22)

Thus, combing with (21) and Lemma 8 we have with

probability at least 1− η

L̂ι(wζ , D) ≤ L̂ι(w̃ι, D)

≤ LD(w̃ι) +
ιθ−1

θ
sup
w∈W

E|y − 〈x,w〉|θ + 1

nι
log

N(W , ζ)

η

≤ LD(ŵι) + ζτ +
ιθ−1

θ
sup
w∈W

E|y − 〈x,w〉|θ + 1

nι
log

N(W , ζ)

η
,

(23)

In the following we will show the relation between LD(ŵι)
and LD(w∗). We first show the following lemma:

Lemma 9 ([28]). With probability at least 1− η,

LD(ŵι)− L̂ι(ŵι, D) ≤ 2ζτ +
(2ι)θ−1

θ
sup
w∈W

E|y − 〈x,w〉|θ

+
(2ι)θ−1ζθ

θ
τθ +

1

nι
log

N(W , ζ)

η

By Lemma 9, the definition of ŵι we have with probability

at least 1− 2η

LD(ŵι) ≤ L̂ι(ŵι, D) + 2ζτ +
(2ι)θ−1

θ
sup
w∈W

E|y − 〈x,w〉|θ

+
(2ι)θ−1ζθ

θ
τθ +

1

nι
log

N(W , ζ)

η

≤ LD(w
∗) + 2ζτ +

(2ι)θ−1

θ
sup
w∈W

E|y − 〈x,w〉|θ

+
2(2ι)θ−1ζθ

θ
τθ +

2

nι
log

N(W , ζ)

η
. (24)

Where the last inequality of (24) is due to the following with

probability 1− η, whose proof is the same as in the proof of

Lemma 8 (we omit it here)

L̂ι(w
∗, D) ≤ LD(w

∗) +
ιθ−1

θ
sup
w∈W

E|y− 〈x,w〉|θ + 1

nι
log

1

η
(25)

Thus, combing with (20) , Lemma 7, (23) and (24) we have

with probability at least 1− 5η

LD(w̃) ≤ LD(w
∗) + 3ζτ +

2(2ι)θ−1

θ
sup
w∈W

E|y − 〈x,w〉|θ

+
2(2ι)θ−1ζθ

θ
τθ +

8 log θ

nιǫ
log

N(W , ζ)

η
(26)

Since logN(W , ζ) ≤ d log 3∆
ζ

, we have

LD(w̃)−LD(w
∗) ≤ O(ζτ+ιθ−1τθ+ιθ−1ζθτθ+

d

nιǫ
log

1

ζη
),

(27)

which is due to that supw∈W E|y − 〈x,w〉|θ ≤ O(E|y −
〈x,w∗〉|θ+E|〈x,w∗−w〉|θ) ≤ O(∆θτθ). Take ι = (

d log 1

ζ

nǫ
)

1

θ

and ζ = 1
n

we can get the proof.

For (19), we can replace τ by E‖x‖2 in (27). Under As-

sumption 4 and use the inequality E‖x‖θ2 ≤ E‖x‖θθ = dτθ , we

have the result by taking ι = O( 1
τ
( log n

nǫ
)

θ−1

θ ) and ζ = O( 1
n
).
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APPENDIX

The following omitted proofs haven been showed in [27]

and [28], we include here for self-completeness.

Proof of Lemma 4. First, note that our truncation function ψ

satisfies ψ(x) ≥ − log(1 − x+ x2

2 ). Thus we have,

E[exp(−
n
∑

i=1

ψ(ι|yi − 〈xi, w〉|))]

≤ E[|Πn
i=1(1− ι|yi − 〈xi, w〉|+

ι2(yi − 〈xi, w〉)2
2

)] (28)

= (E[(1− ι|y − 〈x,w〉| + ι2(y − 〈x,w〉)2
2

)])n

=
(

1− ιLD(w) +
ι2

2
E(y − 〈x,w〉)2

)n

≤ exp
(

n(−ιLD(w) +
ι2

2
E(y − 〈x,w〉)2)

)

, (29)

where (28) is due to the previous inequality and (29) is due

the the inequality 1 + x ≤ ex. By the Chernoff’s method, we

have

Pr{−
n
∑

i=1

ψ(ι|yi − 〈xi, w〉|) ≥

n(−ιLD(w) +
ι2

2
E(y − 〈x,w〉)2) + log

1

η
}

= Pr{exp(−
n
∑

i=1

ψ(ι|yi − 〈xi, w〉|))

≥ exp
(

n(−ιLD(w) +
ι2

2
E(y − 〈x,w〉)2) + log

1

η

)

}

≤ E[exp(−∑n

i=1 ψ(ι|yi − 〈xi, w〉|))]
E[exp

(

n(−ιLD(w) +
ι2

2 E(y − 〈x,w〉)2) + log 1
η

)

]
≤ η.

(30)

Thus, with probability at least 1− η we have

−
n
∑

i=1

ψ(ι|yi − 〈xi, w〉|)

≤ n(−ιLD(w) +
ι2

2
E(y − 〈x,w〉)2) + log

1

η

≤ n(−ιLD(w) +
ι2

2
sup
w∈W

E(y − 〈x,w〉)2) + log
1

η
.

Take the union bound for all w ∈ W̃ζ we complete the proof.

Proof of Lemma 5. First, note the truncation function ψ sat-

isfies ψ(x) ≤ log(1 + x+ x2

2 ). Thus we have

E[exp(
n
∑

i=1

ψ(ι|yi − 〈xi, w〉|))]

≤ E[|Πn
i=1(1 + ι|yi − 〈xi, w〉|+

ι2(yi − 〈xi, w〉)2
2

)] (31)

= (E[(1 + ι|y − 〈x,w〉| + ι2(y − 〈x,w〉)2
2

)])n

=
(

1 + ιLD(w) +
ι2

2
E(y − 〈x,w〉)2

)n

≤ exp
(

n(ιLD(w) +
ι2

2
E(y − 〈x,w〉)2)

)

, (32)

where (31) is due to the previous inequality and (32) is due

the the inequality 1 + x ≤ ex. By the Chernoff’s method,

Pr{
n
∑

i=1

ψ(ι|yi − 〈xi, w〉|)

≥ n(ιLD(w) +
ι2

2
E(y − 〈x,w〉)2) + log

1

η
}

= Pr{exp(
n
∑

i=1

ψ(ι|yi − 〈xi, w〉|))

≥ exp
(

n(ιLD(w) +
ι2

2
E(y − 〈x,w〉)2) + log

1

η

)

}

≤ E[exp(
∑n

i=1 ψ(ι|yi − 〈xi, w〉|))]
E[exp

(

n(ιLD(w) +
ι2

2 E(y − 〈x,w〉)2) + log 1
η

)

]
≤ η.

Thus, with probability at least 1− η we have

n
∑

i=1

ψ(ι|yi − 〈xi, w〉|)

≤ n(ιLD(w) +
ι2

2
E(y − 〈x,w〉)2) + log

1

η

≤ n(ιLD(w) +
ι2

2
sup
w∈W

E(y − 〈x,w〉)2) + log
1

η
.

Take the union bound for all w ∈ W̃ζ we complete the proof.

Proof of Lemma 7. First, note that our truncation function ψ

satisfies ψ(x) ≥ − log(1− x+ |x|θ
θ
). Thus we have,

E[exp(−
n
∑

i=1

ψ(ι|yi − 〈xi, w〉|))]

≤ E[|Πn
i=1(1− ι|yi − 〈xi, w〉|+

ιθ|yi − 〈xi, w〉|θ
θ

)] (33)

= (E[(1 − ι|y − 〈x,w〉| + ιθ|yi − 〈xi, w〉|θ
θ

)])n

=
(

1− ιLD(w) +
ιθ

θ
E|y − 〈x,w〉|θ

)n

≤ exp
(

n(−ιLD(w) +
ιθ

θ
E|y − 〈x,w〉|θ)

)

, (34)



where (33) is due to the previous inequality and (34) is due

the the inequality 1 + x ≤ ex. By the Chernoff’s method, we

have

Pr{−
n
∑

i=1

ψ(ι|yi − 〈xi, w〉|)

≥ n(−ιLD(w) +
ιθ

θ
E|y − 〈x,w〉|θ) + log

1

ζ
}

= Pr{exp(−
n
∑

i=1

ψ(ι|yi − 〈xi, w〉|))

≥ exp
(

n(−ιLD(w) +
ιθ

θ
E|y − 〈x,w〉|θ) + log

1

η

)

}

≤ E[exp(−∑n

i=1 ψ(ι|yi − 〈xi, w〉|))]
E[exp

(

n(−ιLD(w) +
ιθ

θ
E|y − 〈x,w〉|θ + log 1

η

)

]
≤ η.

(35)

Thus, with probability at least 1− η we have

−
n
∑

i=1

ψ(ι|yi − 〈xi, w〉|)

≤ n(−ιLD(w) +
ιθ

θ
E|y − 〈x,w〉|θ) + log

1

η

≤ n(−ιLD(w) +
ιθ

θ
sup
w∈W

E|y − 〈x,w〉|θ) + log
1

η
.

Take the union bound for all w ∈ W̃ζ we complete the proof.

Proof of Lemma 8. First, note the truncation function ψ sat-

isfies ψ(x) ≤ log(1 + x+ |x|θ
θ
). Thus we have

E[exp(

n
∑

i=1

ψ(ι|yi − 〈xi, w〉|))]

≤ E[|Πn
i=1(1 + ι|yi − 〈xi, w〉|+

ιθ|yi − 〈xi, w〉|θ
θ

)] (36)

= (E[(1 + ι|y − 〈x,w〉| + ιθ|yi − 〈xi, w〉|θ
θ

)])n

=
(

1 + ιLD(w) +
ιθ

θ
E|y − 〈x,w〉|θ

)n

≤ exp
(

n(ιLD(w) +
ιθ

θ
E|y − 〈x,w〉|θ

)

, (37)

where (36) is due to the previous inequality and (37) is due

the the inequality 1 + x ≤ ex. By the Chernoff’s method, we

have

Pr{
n
∑

i=1

ψ(ι|yi − 〈xi, w〉|)

≥ n(ιLD(w) +
ιθ

θ
E|y − 〈x,w〉|θ) + log

1

η
}

= Pr{exp(
n
∑

i=1

ψ(ι|yi − 〈xi, w〉|))

≥ exp
(

n(ιLD(w) +
ιθ

θ
E|y − 〈x,w〉|θ) + log

1

η

)

}

≤ E[exp(
∑n

i=1 ψ(ι|yi − 〈xi, w〉|))]
E[exp

(

n(ιLD(w) +
ιθ

θ
E|y − 〈x,w〉|θ) + log 1

η

)

]
≤ η.

Thus, with probability at least 1− η we have

n
∑

i=1

ψ(ι|yi − 〈xi, w〉|) ≤ n(ιLD(w) +
ιθ

θ
E|y − 〈x,w〉|θ) + log

1

η

≤ n(ιLD(w) +
ιθ

θ
sup
w∈W

E|y − 〈x,w〉|θ) + log
1

η
.

Take the union bound for all w ∈ W̃ζ we complete the proof.

Proof of Lemma 9. As we mentioned before, there exists a

w̃ι ∈ W̃ζ such that ‖w̃ι − ŵι‖2 ≤ ζ. This implies that

|yi − 〈xi, ŵι〉| ≥ |yi − 〈xi, w̃ι〉| − |〈xi, w̃ι − ŵι|
≥ |yi − 〈xi, w̃ι〉| − ζ‖xi‖2.

Since ψ is non-decreasing, this implied that

L̂α(ŵι, D) =
1

nι

n
∑

i=1

ψ(ι|yi − 〈xi, ŵι〉|)

≥ 1

nι

n
∑

i=1

ψ(ι|yi − 〈xi, w̃ι〉| − ιζ‖xi‖2).

We then proof the following lemma

Lemma 10. For any w ∈ W̃ζ , with probability at least 1− η,

the following inequality holds:

− 1

nι

n
∑

i=1

ψ(ι|yi − 〈xi, w〉| − ιζ‖xi‖2) ≤ −LD(w) + ζτ

+
(2ι)θ−1

θ
sup
w∈W

E|y−〈x,w〉|θ+(2ι)θ−1ζθ

θ
τθ+

1

nι
log

N(W , ζ)

η
.

Proof of Lemma 10 . The idea of proof is almost the same

as in the proof of Lemma 8. First, note that our truncation



function ψ satisfies the following ψ(x) ≥ − log(1−x+ |x|θ
θ
).

Thus we have,

E[exp(−
n
∑

i=1

ψ(ι|yi − 〈xi, w〉| − ιζ‖xi‖2))]

≤ E[|Πn
i=1(1− ι|yi − 〈xi, w〉|

+ ιζ‖xi‖2 +
ιθ(|yi − 〈xi, w〉| − ζ‖xi‖2)θ

θ
)] (38)

= (E[(1 − ι|y − 〈x,w〉|

+ ιζ‖x‖2 +
ιθ(|y − 〈x,w〉| − ζ‖x‖2)θ

θ
)])n

=
(

1− ιLD(w) + ιζE‖x‖2 +
ιθ

θ
E(|y − 〈x,w〉| − ζ‖x‖2)θ

)n

≤ exp
(

n(−ιLD(w) +
ιθ2θ−1

θ
E|y − 〈x,w〉|θ

+
ιθ2θ−1ζθ

θ
E‖x‖θ2)

)

. (39)

By the Chernoff’s method, we have with probability at least

1− η

−
n
∑

i=1

ψ(ι|yi − 〈xi, w〉| − ιζ‖xi‖2)

≥ −ιLD(w)+
ιθ2θ−1

θ
E|y−〈x,w〉|θ+ ι

θ2θ−1ζθ

θ
E‖x‖θ2+log

1

η
.

Take the union and then we complete the proof.

Thus by Lemma 10 we have with probability at least 1− η

L̂α(ŵι, D) =
1

nι

n
∑

i=1

ψ(ι|yi − 〈xi, ŵι〉|)

≥ 1

nι

n
∑

i=1

ψ(ι|yi − 〈xi, w̃ι〉| − ιζ‖xi‖2)

≥ LD(w̃ι)− ζτ − (2ι)θ−1

θ
sup
w∈W

E|y − 〈x,w〉|θ

− (2ι)θ−1ζθ

θ
τθ − 1

nι
log

N(W , ζ)

η

≥ LD(ŵι)− 2ζτ − (2ι)θ−1

θ
sup
w∈W

E|y − 〈x,w〉|θ

− (2ι)θ−1ζθ

θ
τθ − 1

nι
log

N(W , ζ)

η
, (40)

where (40) is due to

LD(w̃ι)− LD(ŵι) = E[|y − 〈x, w̃ι〉| − |y − 〈x, ŵι〉|]
≤ E|〈x, w̃ι − ŵι〉| ≤ ζE‖x‖2 ≤ ζτ
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