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Abstract

Instead of learning with pointwise loss functions,
learning with pairwise loss functions (pairwise learn-
ing) has received much attention recently as it is
more capable of modeling the relative relationship
between pairs of samples. However, most of the
existing algorithms for pairwise learning fail to take
into consideration the privacy issue in their design.
To address this issue, previous work studied pair-
wise learning in the Differential Privacy (DP) model.
However, their utilities (population errors) are far
from optimal. To address the sub-optimal utility
issue, in this paper, we proposed new (ε, δ) or ε-
DP algorithms for pairwise learning. Specifically,
when the loss functions are Lipschitz, smooth and
strongly convex, we show that the output of our al-
gorithm achieves an expected population error of
O( 1

n +
d log 1

δ

n2ε2 ) and O( 1
n + d2

n2ε2 ) for (ε, δ)-DP and
ε-DP, respectively, where n is the sample size and
d is the dimension of the underlying space. More-
over, for general convex case, the output of our
algorithm achieves an expected population error of

O( 1√
n

+

√
d log 1

δ

nε ) and O( 1√
n

+ d
nε ) for (ε, δ)-DP

and ε-DP, respectively. It is also notable that these
upper bounds are optimal (i.e., match the lower
bounds).

1 Introduction
As an important family of learning problems, pairwise learn-
ing has drawn much attention recently. Since pairwise
learning involves loss functions depending on pairs of sam-
ples, it shows great advantage in modeling the relative re-
lationship between pairs of samples over traditional point-
wise learning (e.g., classification), in which the loss func-
tions only take individual samples as the input. In practice,
many learning tasks can be categorized as pairwise learning
problems. For instance, metric learning [Huai et al., 2019;
Suo et al., 2018] aims to learn a distance metric from a given
collection of pair of similar/dissimilar samples that preserves

∗The first two authors contributed equally to this paper.

the distance relation among the data, which can be formulated
as a pairwise learning problem.

Although the importance of pairwise learning has been rec-
ognized in many real-world applications, there is still a privacy
issue among the current learning algorithms. Among exist-
ing privacy-preserving strategies, differential privacy (DP)
[Dwork et al., 2006], as a rigorous notion for data privacy,
can provide very rigid privacy and utility guarantee. While
DP pointwise learning has been extensively studied in the
last decade, starting from [Chaudhuri and Monteleoni, 2009;
Wang and Xu, 2019a; Wang et al., 2017; Wang et al., 2019;
Wang et al., 2020; Wang and Xu, 2019b; Wang et al., ;
Bassily et al., 2014; Bassily et al., 2019; Bassily et al., 2019;
Feldman et al., 2020]. DP pairwise learning is still not well un-
derstood. [Shang et al., 2014; Hay et al., 2017] considered the
DP for rank aggregation which combines multiple ranked lists
into a single rank, their problem cannot be generalized to all
pairwise loss functions. [Li et al., 2020] proposed differential
pairwise privacy for secure metric learning but utility (gener-
alization) analysis is not given. Recently, [Huai et al., 2020]
first studied the problem under both of the online and offline
settings, and provided some preliminary theoretical results,
which is extended by [Yang et al., 2021] to the non-smooth
case. However, the problem has not been completely under-
stood, yet. As we can see from Table 1, there is still a huge gap
between their upper bounds of the population error and their
corresponding lower bounds in both of the strongly convex
and general convex cases, which means that their utilities are
far from optimal. Motivated by this, our question is,

For the problem of differentially private pairwise learning,
can we find private estimators whose population errors match
their corresponding lower bounds, for strongly convex and
general convex loss cases, in (ε, δ)/ε-DP model?

Here we provide the affirmative answer of the previous
question, and we summarize our theoretical results in Table 1.
In details, the contributions of this paper can be summarized
as follows:

• Firstly, we consider the pairwise learning problem with
Lipschitz, smooth and strongly convex loss functions.
We propose an algorithm, which is based on the stability
of the Projected Gradient Descent method, and show that
its output could achieve an expected population error
of O( 1

n +
d log 1

δ

n2ε2 ) and O( 1
n + d2

n2ε2 ) (if we omit other



Method (ε, δ)-DP ε-DP
Upper Bound Lower Bound Upper Bound Lower Bound

Strongly
Convex

[Huai et al., 2020] O(
√
d√
nε

)
Ω( 1

n + d
n2ε2 )

–
Ω( 1

n + d2

n2ε2 )
This Paper O( 1

n + d
n2ε2 ) O( 1

n + d2

n2ε2 )

Convex
[Huai et al., 2020; Yang et al., 2021] O(

√
d√
nε

)
Ω( 1√

n
+
√
d

nε )
– Ω( 1√

n
+ d

nε )
This Paper O( 1√

n
+
√
d

nε ) O( 1√
n

+ d
nε )

Table 1: A summary of previous results and contributions of this paper, here we assume the loss functions are Lipschitz and Lipschitz smooth.
All the bounds are for population error and all omit and other factors (such as the diameter of the constraint set). The low bounds in [Bassily et
al., 2019] are for pointwise loss functions, since pointwise loss is a special case of pairwise loss, thus these lower bounds still hold for pairwise
loss case.

terms) for (ε, δ)-DP and ε-DP, respectively, where n is the
sample size and d is the dimensionality of the underlying
space. As we can see from Table 1, these bounds match
their corresponding lower bounds, which means they are
optimal.

• Then we study the problem with general Lipschitz and
smooth convex loss functions. Unlike the strongly convex
case, direct using our previous idea of proof to general
convex case can only achieve a sub-optimal population
error. To overcome the challenge, motivated by [Feld-
man et al., 2020] and our previous idea, we propose an
algorithm whose output could achieve an expected pop-

ulation error of O( 1√
n

+

√
d log 1

δ

nε ) and O( 1√
n

+ d
nε ) for

(ε, δ)-DP and ε-DP, respectively. And these upper bounds
are optimal.

2 Preliminaries
We say that two datasets D,D′ are neighbors if they differ by
only one entry, which is denoted as D ∼ D′.
Definition 1 (Differential Privacy [Dwork et al., 2006]). A
randomized algorithm A is (ε, δ)-differentially private (DP) if
for all neighboring datasets D,D′ and for all events S in the
output space of A, we have Pr(A(D) ∈ S) ≤ eεPr(A(D′) ∈
S) + δ. When δ = 0, A is ε-differentially private.

Different from the pointwise loss function ` : C × D 7→ R,
a pairwise loss function is a function on pairs of data records,
i.e., ` : C ×D ×D 7→ R, where D is the data universe. Given
a dataset D = {z1, z2, · · · , zn} ⊆ Dn and a loss function
`(·; ·, ·), its empirical risk can be defined as:

L(w;D) =
1

n(n− 1)

n∑
i=1

∑
j 6=i

`(w; zi, zj). (1)

When the data samples are drawn i.i.d from an unknown un-
derlying distribution P onD, we also have the population risk,
which is

LP(w) = Ezi,zj∼P,zi 6=zj [`(w; zi, zj)]. (2)

Similar to the definition of DP pointwise learning [Bassily et
al., 2014], we can define DP pairwise learning as follows.
Definition 2. Let C ⊆ Rd be a convex, closed and bounded
constraint set,D be a data universe, and ` : C×D×D 7→ R be

a pairwise loss function. Also, let D = {z1 = (x1, y1), z2 =
(x2, y2), · · · , zn = (xn, yn)} ⊆ Dn be a dataset with data
records {xi}ni=1 ⊂ Rd and labels (responses) {yi}ni=1 ⊂
[−1, 1]n. Differentially private (DP) pairwise learning is to
find a private estimator wpriv ∈ Rd so that the algorithm is
(ε, δ) or ε differential privacy and the error is minimized, where
the error for an estimator w can be measured by either the op-
timality gap ErrD(w) = L(w;D)−minw∈C L(w;D) or the
population error ErrP(w) = LP(w)−minw∈C LP(w).

In the experiments section we will conduct experiments
on metric learning and AUC maximization, with or without
`2-norm regularization, for strongly convex or general convex
case. Next, we will give a brief review on these two problems.
Example 1: Metric Learning [Cao et al., 2016] The goal
here is to learn a Mahalanobios metric M2

W (x, x′) = (x −
x′)TW (x− x′) using loss function `(W ; z, z′) = φ(yy′(1−
M2
W (x, x′)), where y, y′ ∈ {−1,+1} and φ(x) is the logistic

function i.e., φ(x) = log(1 + e−x). The constraint set C is
C = {W : W ∈ Sd, ‖W‖F ≤ 1}, where Sd is the set of d× d
positive symmetric matrices.
Example 2: AUC Maximization [Zhao et al., 2011] The
goal here is to maximize the area under the ROC curve for a
linear classification problem with the constraint of ‖w‖2 ≤ 1.
Here `(w; z, z′) = φ((y − y′)h(w;x, x′)) and h(w;x, x′) =
wT (x− x′), where y, y′ ∈ {−1,+1}.

3 Strongly Convex Case
Assumption 1: We assume the loss function `(·; z, z′) is
G-Lipschitz, L-smooth and α-strongly convex.

The idea of our algorithm is motivated by the `2-norm
sensitivity of the Projected Gradient Descent (PGD) method
for the empirical risk function. For PGD method, its `2-norm
sensitivity corresponds to its stability, which has been studied
in [Hardt et al., 2016] for pointwise loss functions. Motivated
by this, we generalize to pairwise loss functions. Based on its
sensitivity and the Gaussian mechanism, we have Algorithm 1.
The guarantee of DP is mainly based on the following lemma:

Lemma 1. For any D ∼ D′, if we denote w′t, t ∈ [T ] as the
parameters which correspond to wt in Algorithm 1 performed
on D′, then under Assumption 1, with η ≤ 2

L+α , we have for
all t ∈ [T ],

‖wt − w′t‖2 ≤
8G

αn
. (3)



Algorithm 1 DP Gradient Descent-SC (DPGDSC)
Input: D = {zi}ni=1 ⊂ Rd, privacy parameters ε, δ,
empirical risk L(w;D), initial parameter w0, step size
η ≤ 2

L+α and number of iterations T (will be specified
later).

1: for t = 1, 2, · · · , T do
2: Let wt = ΠC(wt−1 − η∇L(w;D)), where ΠC is the

projection onto the set C.
3: end for
4: When δ > 0, return w̃T = wT +ζ , where ζ ∼ N (0, σ2Id)

and σ =
8
√

2 ln(1.25/δ)G

αnε .
5: When δ = 0, return w̃T = wT + ζ, where ζ =

(ζ1, · · · , ζd) with ζi ∼ Lap(λ) and λ = 8G
√
d

αnε .

Theorem 1. Under Assumption 1, when the step size η ≤
2

L+α , Algorithm 1 is (ε, δ)-DP when δ > 0 and ε-DP other-
wise. Moreover, if we let T = Õ(Lα log n), then when δ > 0,
we have

EA,DErrP(w̃T ) ≤ O(
‖C‖22LG2d log 1/δ

α2n2ε2
+
G2

αn
).

When δ = 0, we have

EA,DErrP(w̃T ) ≤ O(
‖C‖22LG2d2

α2n2ε2
+
G2

αn
).

Where ‖C‖2 is the diameter of the set C and Õ omits other log-
arithmic factors, EA,D means that the expectation takes over
the randomness of the algorithm A and the data distribution
D ∼ Pn.
Remark 1. For pointwise loss functions, [Zhang et al., 2017]
provided an output perturbation method based on the `2-norm
sensitivity of the PGD method. Although the ideas of these
two algorithms are similar, there are still several differences on
the utility guarantees. Firstly, [Zhang et al., 2017] only showed
that its output could achieve the optimal rate for optimality gap
in the strongly convex case. However, as [Bassily et al., 2019]
said, optimal optimality gap of an estimator cannot guarantee
its population error is also optimal. In this paper, we propose a
new approach to show that our output achieves the optimal rate
for the population error, which has not been studied previously.
And this approach could might be used to other problems.
Second, in the general convex case, as [Zhang et al., 2017]
said, their algorithm could only achieve a sub-optimal rate,
even for the optimality gap. While in the later section we will
use the idea of our approach to design an algorithm whose
output could achieve the optimal rate for population error (see
Section 4 for details).

For poinwise loss case, there are mainly three approaches
on showing the population errors for a given estimator wpriv.
The first approach is to directly transfer the optimality gap to
population error via some existing lemmas, such as [Bassily
et al., 2014; Chan et al., 2011]. However, as [Bassily et al.,
2014] mentioned, this approach could only achieve a sub-
optimal rate, see Section F of Appendix in [Bassily et al.,
2014] for details. The second approach is based on the online-
to-batch method, which has been used in [Huai et al., 2020] for

pairwise loss. However, as we said previously, this approach
could also only achieve a sub-optimal rate of population error.
The third type of approaches is proposed by [Bassily et al.,
2019] recently, which is based on the uniform stability of the
Differentially Private Batch SGD method. However, [Bassily
et al., 2019] only studied the case where the loss function is
pointwise and general convex, it is unknown whether their
algorithm can be extended to the pairwise loss functions or
strongly convex loss functions. Our new method could be seen
as an extension of the above third method. Specifically, for the
output, its population error can be decomposed into the sum
of its generalization error and its optimality gap [Shen et al.,
2020; Yang et al., 2021]. Motivated by this, we bound the the
optimality gap of the output via the stability of the algorithm,
i.e., the the `2-norm sensitivity of the PGD method.

4 General Convex Case
Motivated by the idea in the previous section, one question is
whether we can generalize it to the general convex case.
Assumption 2: For any pair z, z′ ∈ D, we assume the loss
function `(·; z, z′) is convex, G-Lipschitz, and L-smooth.

The most direct problem is that whether we can use the same
idea of Algorithm 1, i.e., perturbing the output of PGD method.
We show that it is possible. However, the population error
of our output is only sub-optimal in the general convex case,
which is quite different compared with the strongly convex
case.

In the next, we propose a simple method and show that for
(ε, δ)-DP, instead of perturbing the output of the PGD method,
perturbing the gradient by Gaussian noise in each iteration
of PGD method could directly achieve the optimal rate of
population error. It is notable that although many previous
paper also studied Algorithm 2 [Bassily et al., 2014], most
of them only considered the optimality gap. However, in this
paper we focus on the optimality of population error.

Algorithm 2 DP Gradient Descent (DPGDC2)
Input: D = {zi}ni=1 ⊂ Rd, privacy parameters ε, δ > 0; em-
pirical risk L(w;D), initial parameterw0, step size η ≤ 2

L and
number of iterations T .

1: for t = 1, 2, · · · , T do
2: Let wt = ΠC(wt−1− η(∇L(w;D) + ζi)), where ζi ∼

N (0, σ2Id) with σ =
4G
√

1.25T log 1/δ

nε
3: end for
4: Return w̄T =

∑T
i=0

w0+···+wT
T+1

Theorem 2. Under Assumption 2, Algorithm 2 is
(ε, δ)-DP. Moreover, we have the following by setting
T = min{n, n2ε2

d log 1/δ} and η = G
‖C‖2

√
T

if L ≤
‖C‖2
2G min{n, nε√

d log 1/δ
}

EA,DErrP(w̄T ) ≤ O(G‖C‖2(
1√
n

+

√
d log 1/δ

nε
)).



While Algorithm 2 is succinct, there are still many issues.
Firstly, Theorem 2 only holds for (ε, δ)-DP model, it is un-
known whether we can extend to ε-DP model. Secondly, we
can see that in Algorithm 2 the privacy budget is evenly split
across iterations. However, as we know when the iteration
number increases, our estimator will be closed to the optimal
one and the gradients start to decrease and need to be mea-
sured more accurately in order for the optimization to continue
making progress. This means that an adaptive privacy budget
allocation may has preferable practical performance to a fixed
allocation, as long as the total privacy cost is the same.

To address the above two issues, we propose a new method
which is based on [Feldman et al., 2020]. The idea is that,
for poinwise loss functions in the non-private case, compared
with the PGD method, recently some work such as [Hazan
and Kale, 2014; Feldman et al., 2020] showed that a variant of
PGD, which is called the Epoch PGD method, could achieve
an improved bound of generalization error. The basic idea of
Epoch PGD is that, we first divide the whole dataset into sev-
eral disjoint subsets; in each epoch, we run the PGD method
for several iterations on one of these subsets; then we take the
current parameter as the initial parameter of the next epoch.
Motivated by this, we propose a DP version of the Epoch
PGD method (for convenience here we assume n = 2k for
some positive integer k). We have the following theoretical
guarantees.

Theorem 3. Under Assumption 2, when the step size η ≤ 2
L ,

Algorithm 3 is (ε, δ)-DP when δ > 0 and ε-DP otherwise.
Moreover, when δ > 0, we have the following result by setting
η = ‖C‖2

G min{ 4√
n
, ε√

d log 1/δ
}

EA,DErrP(w̃T ) ≤ O(G‖C‖2(
1√
n
+

√
d log 1/δ

nε
)).

When δ = 0, setting η = ‖C‖2
G

min{ 4√
n
, ε
d
} we have

EA,DErrP(w̃T ) ≤ O(G‖C‖2(
1√
n
+

d

nε
)).

Remark 2. Compared with Algorithm 2, Algorithm 3 could
achieve the optimal rate for both (ε, δ)-DP and ε-DP models.
Moreover, since the stepsize in each epoch is varied and the
magnitude of the noise depends on the stepsize, the noise we
added in each epoch is different and adaptive. More specifi-
cally, as we can see from Theorem 3, when the sample size is
large enough, the stepsize ηi will be very small and it will be
decayed to 4−iη in the i-th epoch, this means that it will be
closed to 0, and thus the noise we add will be closed to 0 when
the iteration number increases. This means that the practical
performance of Algorithm 3 will be better than Algorithm 2,
we will verify this conclusion in the experimental part.

5 Experiments
Datasets
We use two real-world datasets that are widely adopted in
pairwise learning tasks. These datasets are the Diabetes dataset
and the Diabetic Retinopathy dataset, which have also been
used in [Huai et al., 2020].

Algorithm 3 DP Epoch Gradient Descent (DPEGD)
Input: D = {zi}ni=1 ⊂ Rd, privacy parameters ε, δ, em-
pirical risk L(w;D), initial parameter w0, step size η ≤
2
L .
1: Let k = log2 n, we divide the dataset D into k disjoint

subsets {D1, · · · , Dk}, where each Di has ni = 2−in
samples for i < k, and Dk contains all the left data sam-
ples.

2: for i = 1, 2, · · · , k do
3: Let ηi = 4−iη.
4: Run the PGD method (Step 1-3 in Algorithm 4) for

L(·;Di) on the constraint set C and we take wi−1 as
the initial parameter. Specifically, we set the fixed
stepsize as ηi and the iteration number as ni. Let w̄i be
the average parameter after ni iterations.

5: When δ > 0, let wi = w̄i + ζi, where ζi ∼ N (0, σ2Id)

and σ =
4
√

2 ln(1.25/δ)Gηi
ε

6: When δ = 0, letwi = w̄i+ζi, where ζi = (ζ1, · · · , ζd)
with each ζj ∼ Lap(λ) and λ = 4Gηi

√
d

ε
7: end for
8: Return wk

Performance measures
To evaluate the performance of the proposed algorithms, we
use the following measures:

• Classification Accuracy: For metric learning task, we
calculate the classification accuracy that is defined as the
percentage of the correctly classified samples in the test
set. The less the classification accuracy, the worse the
performance of the proposed algorithm. In this paper,
the KNN classifier is adopted to assign labels to the test
samples. For the KNN classifier, we set K to be 3.

• AUC Score: For AUC maximization task, we report the
AUC score [Zhao et al., 2011] for each of the proposed
algorithms over every adopted dataset. A larger AUC
value means that the corresponding AUC maximization
algorithm can generate more accurate results.

Baseline methods
As we mentioned before, [Huai et al., 2020] is the only work
on DP pairwise learning, thus we use OffPairStrC and Off-
PairC proposed in [Huai et al., 2020] for strongly convex and
convex case as our baselines for private algorithms, respec-
tively. We will also follow [Huai et al., 2020] and use variants
of OffPairStrC and OffPairC, which do not add any noise,
as non-private baseline methods. In these experiments, we
will choose different ε. And for (ε, δ)-DP model, we will set
δ = 1

n .

Experimental settings
In this paper we studied both of the strongly convex and gen-
eral convex cases. To conduct experiments for strongly convex
case, we add an additional Frobenius norm or `2-norm regular-
ization term with some λ > 0 to the original problem of metric
learning and AUC maximization respectively to make the loss
be strongly convex. We set λ = 10−3 for AUC maximization
and λ = 10−2 for metric learning.



(a) δ = 1
n

(b) δ = 0

Figure 1: AUC maximization: Results for different training size in
strongly convex case on Diabetes dataset, where ε = 0.8.

Metric Learning
In Table 2 we perform the results for different training sample
size, with fixed privacy budget ε = 1. And in Table 3 we show
the results for different privacy budget, with fixed training
sample size n = 512. Compared with previous methods, our
algorithms show better performance under all the four different
settings:

• In the strongly convex case and δ > 0, DPGDSC (Algo-
rithm 1) performs better than OffPairStrC and the differ-
ence of accuracy between them increases as the training
size increases, and it will be closed to the non-private
case. Furthermore, if we fix the training size and change
the parameter ε, we can see from Table 3 that DPGDSC
maintains its advantage over OffPairStrC.

• When the loss function is convex and δ > 0, DPGDC2
(Algorithm 2) shows an improvement in comparison with
OffPairC. Especially, it has significant improvement on
the Diabetes dataset. In addition, DPEGD (Algorithm 3)
has better performance than OffPairC and DPGDC2 on
both datasets. Moreover, from Table 3 we can see under
different ε, DPEGD outperforms other methods.

• In the strongly convex case in the ε-DP model, although
the improvement is limited, we can still see that our new
algorithm is slightly better than the best known method.
Moreover, as shown in Table 3, except for some cases,
most of the results show that DPGDSC has a better per-
formance than OffPairStrC.

• Finally, we can see that, when the loss function is convex
and in the ε-DP model, DPEGD outperforms OffPairC
under different ε or different training sample size.

AUC Maximization
For AUC maximization, Table 4 shows the results on Diabetes
and Diabetic Retinopathy datasets for different ε with fixed
n = 256. Figure 1, 2, 3 and 4 shows the results for different
sample size in strongly convex or general convex case, under
(ε, δ) or ε-DP model respectively, with fixed ε = 0.8. From
these results, we can get almost the same conclusions as in the
metric learning case. Moreover, from Figure 1(b) and 3(b), we
can see when the loss function is strongly convex and in the
ε-DP model, the performance of DPGDSC is much better than
OffPairStrC, while the difference of accuracy between these
two methods is quite small in the metric learning task.

(a) δ = 1
n

(b) δ = 0

Figure 2: AUC maximization: Results for different training size in
general convex case on Diabetes dataset, where ε = 0.8.

(a) δ = 1
n

(b) δ = 0

Figure 3: AUC maximization: Results for different training size in
strongly convex case on Diabetic Retinopathy dataset, where ε = 0.8.

(a) δ = 1
n

(b) δ = 0

Figure 4: AUC maximization: Results for different training size in
general convex case on Diabetic Retinopathy dataset, where ε = 0.8.



Loss function Algorithm Training size
Diabetes Diabetic Retinopathy

128 256 512 128 256 512
Strongly
convex
δ 6=0

Non-private 71.40% 72.39% 72.88% 62.82% 63.84% 65.01%
OffPairStrC 63.69% 64.55% 64.63% 60.72% 62.14% 63.59%
DPGDSC 64.03% 64.68% 65.85% 59.72% 62.82% 65.13%

General
convex
δ 6=0

Non-private 71.73% 72.52% 72.97% 61.57% 63.86% 65.03%
OffPairC 64.20% 64.64% 65.87% 60.94% 62.85% 63.29%
DPGDC2 71.30% 71.91% 72.46% 62.32% 63.09% 64.35%
DPEGD 71.29% 72.21% 72.84% 62.95% 65.21% 66.36%

Strongly
convex
δ=0

Non-private 71.71% 71.99% 72.56% 62.39% 63.13% 65.49%
OffPairStrC 64.37% 65.64% 66.77% 59.32% 61.00% 61.78%
DPGDSC 64.51% 65.28% 67.16% 59.48% 61.07% 62.01%

General
convex
δ=0

Non-private 71.80% 72.47% 72.80% 61.84% 63.42% 65.31%
OffPairC 64.97% 65.58% 67.28% 59.55% 60.70% 61.77%
DPEGD 70.37% 71.16% 71.24% 63.41% 64.51% 66.54%

Table 2: Metric learning: Experimental results on Diabetes and Diabetic Retinopathy dataset for different training sizes with fixed ε = 1.

Loss function Dataset Algorithm ε ε
0.2 0.5 0.8 1.0 1.5 2.0

Strongly
convex
δ 6=0

Diabetes OffPairStrC 63.49% 63.50% 63.93% 63.44% 63.53% 64.26%
DPGDSC 64.18% 64.92% 65.72% 63.91% 64.01% 64.29%

Diabetic
Retinopathy

OffPairStrC 60.30% 60.40% 60.47% 63.44% 63.53% 64.26%
DPGDSC 60.63% 61.81% 62.57% 63.91% 64.01% 64.29%

General
convex
δ 6=0

Diabetes
OffPairC 63.59% 63.63% 63.97% 63.71% 63.96% 65.07%
DPGDC2 71.72% 70.61% 72.11% 71.05% 70.83% 71.36%
DPEGD 71.46% 71.49% 71.66% 71.32% 71.50% 71.45%

Diabetic
Retinopathy

OffPairC 60.21% 60.29% 60.71% 63.71% 63.96% 65.07%
DPGDC2 61.27% 61.79% 60.87% 71.05% 70.83% 71.36%
DPEGD 62.58% 62.84% 62.89% 71.32% 71.50% 71.45%

Strongly
convex
δ=0

Diabetes OffPairStrC 64.28% 64.49% 64.53% 64.38% 64.40% 64.84%
DPGDSC 64.45% 64.84% 64.84% 64.63% 64.79% 64.81%

Diabetic
Retinopathy

OffPairStrC 59.54% 59.57% 59.60% 64.38% 64.40% 64.84%
DPGDSC 59.60% 59.70% 59.50% 64.63% 64.79% 64.81%

General
convex
δ=0

Diabetes OffPairC 64.34% 64.38% 64.49% 64.09% 64.29% 64.30%
DPEGD 70.28% 70.49% 70.51% 70.48% 70.59% 70.82%

Diabetic
Retinopathy

OffPairC 59.54% 59.59% 59.80% 64.09% 64.29% 64.30%
DPEGD 62.87% 62.84% 62.87% 70.48% 70.59% 70.82%

Table 3: Metric learning: Experimental results on Diabetes and Diabetic Retinopathy dataset for different ε with fixed n = 128.

Loss function Dataset Algorithm ε ε
0.5 0.8 1.0 2.0

Strongly convex
δ 6= 0

Diabetes OffPairStrC 53.71% 56.05% 59.52% 64.93%
DPGDSC 63.26% 63.92% 64.46% 65.51%

Diabetic
Retinopathy

OffPairStrC 56.33% 59.27% 62.92% 67.01%
DPGDSC 65.65% 66.30% 67.23% 67.04%

General convex
δ 6= 0

Diabetes
OffPairC 52.01% 52.62% 54.51% 57.44%
DPGDC2 52.94% 53.09% 54.61% 59.96%
DPEGD 64.52% 64.47% 64.41% 64.37%

Diabetic
Retinopathy

OffPairC 50.08% 52.90% 54.27% 62.92%
DPGDC2 54.37% 58.06% 60.03% 60.44%
DPEGD 66.19% 66.21% 66.29% 66.09%

Strongly convex
δ = 0

Diabetes OffPairStrC 50.65% 56.45% 59.94% 64.13%
DPGDSC 59.16% 62.98% 62.67% 64.63%

Diabetic
Retinopathy

OffPairStrC 52.24% 54.74% 57.54% 66.25%
DPGDSC 62.75% 64.56% 65.47% 66.94%

General convex
δ = 0

Diabetes OffPairC 50.25% 50.90% 52.57% 60.13%
DPEGD 59.16% 64.35% 64.50% 64.47%

Diabetic
Retinopathy

OffPairC 52.26% 50.13% 51.43% 58.06%
DPEGD 66.34% 66.50% 66.04% 66.38%

Table 4: AUC maximization: Experimental results on Diabetes and Diabetic Retinopathy dataset for different ε, where n = 256
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A More Definitions
Definition 3 (Gaussian Mechanism). Given any function q : Xn → Rd, the Gaussian mechanism is defined asMG(D, q, ε) =

q(D)+Y,where Y is drawn from Gaussian DistributionN (0, σ2Id) with σ ≥
√

2 ln(1.25/δ)∆2(q)

ε . Here ∆2(q) is the `2-sensitivity
of the function q, i.e., ∆2(q) = supD∼D′ ||q(D)− q(D′)||2. Gaussian mechanism preserves (ε, δ)-differential privacy.

Definition 4 (Laplacian Mechanism). Given any function q : Xn → Rd, the Laplacian mechanism is defined asMG(D, q, ε) =

q(D) + (Y1, Y2, · · · , Yd), where each Yi is i.i.d. drawn from a Laplacian Distribution Lap(∆1(q)
ε ), where ∆1(q) is the `1-

sensitivity of the function q, i.e., ∆1(q) = supD∼D′ ||q(D)− q(D′)||1. For a parameter λ, the Laplacian distribution has the
density function: Lap(x|λ) = 1

2λ exp(−xλ ). Laplacian Mechanism preserves ε-differentially private.

Definition 5. A loss function ` : Rd × D × D 7→ R is G-Lipschitz over w, if for any z, z′ ∈ D and w,w′ ∈ Rd, we have
|`(w; z, z′)− `(w′; z, z′)| ≤ G||w − w′||2.

Definition 6. A loss function ` : Rd ×D ×D 7→ R is L-(Lipschitz) smooth over w if for any z, z′ ∈ D and w,w′ ∈ Rd, we
have ||∇`(w; z, z′)−∇`(w′; z, z′)||2 ≤ L||w − w′||2.

Definition 7. A loss function ` : Rd ×D ×D 7→ R is α-strongly convex over w, if for any z, z′ ∈ D and w,w′ ∈ Rd, we have
||∇`(w; z, z′)−∇`(w′; z, z′)||2 ≥ α||w − w′||2.

B Related Work
Since pairwise learning could be seen as a generalization of pointwise learning, we first briefly review some previous work on
Differentially Private pointwise learning (which is also called DP Empirical Risk Minimization). DP pointwise learning has been
extensively studied in the last decade, starting from [Chaudhuri and Monteleoni, 2009]. A number of approaches exist for this
problem, which can be roughly classified into three categories. The first type of approaches is to perturb the output of a non-DP
algorithm. [Chaudhuri and Monteleoni, 2009] first proposed output perturbation approach which is extended by [Zhang et al.,
2017]. However, as [Chaudhuri and Monteleoni, 2009] mentioned, output perturbation approach can only achieve sub-optimal
bound of the optimality gap and it is unknown whether we can extend to the pairwise loss case. The second type of approaches is
to perturb the objective function [Chaudhuri and Monteleoni, 2009], we referred to it as objective perturbation approach. However,
this approach needs to exactly solve the problem which is inefficient, and it is still unknown whether we can extend to the pairwise
loss case. The third type of approaches is to perturb gradients in first order optimization algorithms, such as [Wang and Xu, 2019a;
Wang et al., 2017; Wang et al., 2019; Wang et al., 2020; Wang and Xu, 2019b; Wang et al., ]. However, as [Bassily et al., 2014;
Bassily et al., 2019] mentioned, while this approach could achieve the optimal rate of the optimality gap, its population error is
only sub-optimal. [Bassily et al., 2019; Feldman et al., 2020] studied the optimal rate of the population error of DP pointwise
learning. However, it is unknown whether we can extend to the pairwise loss case, and there is no experimental study on their
algorithms.

For DP pairwise learning, as we mentioned previously, it is still not well understood. [Shang et al., 2014; Hay et al., 2017]
considered the DP for rank aggregation which combines multiple ranked lists into a single rank, their problem is incomparable
with ours. [Li et al., 2020] proposed differential pairwise privacy for secure metric learning but utility (generalization) analysis is
not given. [Huai et al., 2020] first studied the theoretical behaviors of DP pairwise learning, however, as we mentioned in Table
1, their results are sub-optimal.

C Omitted Proofs

C.1 Proof of Lemma 1
For convenience, we denote that D and D′ differ in the k-th sample, that is D = {z1, · · · , zk, · · · , zn) and D =
{z1, · · · , z′k, · · · , zn). To proof the lemma, we first proof the following lemma.

Lemma 2. Denote G(w) = w − η∇L(w;D), then under Assumption 1, for any w,w′ we have

‖G(w)−G(w′)‖2 ≤ (1− Lαη

L+ α
)‖w − w′‖2.

Proof of Lemma 2. Since the functionL(w;D) isL-smooth and α strongly convex, we have that the function φ(w) = L(w;D)−
α
2 ‖w‖

2
2 is L− α smooth. Thus it is 1

L−α co-coercive [Nesterov, 2013]. Thus we have for any w′

〈∇L(w;D)−∇L(w′;D), w − w′〉 ≥ Lα

L+ α
‖w − w′‖22 +

1

L+ α
‖∇L(w;D)−∇L(w′;D)‖22.



Thus we have

‖G(w)−G(w′)‖22
= ‖w − w′‖22 + η2‖∇L(w;D)−∇L(w′;D)‖22 − 2η〈∇L(w;D)−∇L(w′;D), w − w′〉

≤ (1− 2ηLα

L+ α
)‖w − w′‖22 − (

2η

L+ α
− η2)‖∇L(w;D)−∇L(w′;D)‖22

≤ (1− ηLα

L+ α
))2‖w − w′‖22,

where the last inequality is due to that η ≤ 2
L+α and

√
1− x ≤ 1− x

2 when x ∈ [0, 1].

Next, let’s back to our proof. We denote G′(w) = w − η∇L(w;D′) where D′ ∼ D. Since we have wt = ΠCG(wt−1) and
w′t = ΠCG

′(w′t−1), thus,

‖wt − w′t‖2 ≤ ‖G(wt−1)−G′(w′t−1)‖2
≤ ‖G(wt−1)−G(w′t−1)‖2 + ‖G(w′t−1)−G′(w′t−1)‖2.

The first inequality is due the following lemma:
Lemma 3. For any w,w′ ∈ Rd and a closed convex set C ∈ Rd, we have

‖ΠC(w)−ΠC(w
′)‖2 ≤ ‖w − w′‖2.

Proof. Denote b = ΠC(w) and b′ = ΠC(w
′). Since b and b′ are in C, so the segment bb′ is contained in C, thus we have for all

t ∈ [0, 1], ‖(1− t)b+ tb′ − w‖2 ≥ ‖b− w‖2. Thus

0 ≤ d

dt
‖tb+ (1− t)b′ − w‖22|t=0 = 2〈b′ − b, b− w〉

Similarly, we have 〈b−b′, b′−w′〉 ≥ 0. Now consider the functionD(t) = ‖(1−t)b+tw−(1−t)b′−tw′‖22 = ‖b−b′+t(w−w′+
b′−b)‖22, which is a quadratic function in t. And by the previous two inequalities we haveD′(0) = 2〈b−b′, w−w′+b′−b〉 ≥ 0.
Thus D(·) is a increasing function on [0,∞), thus D(1) ≥ D(0) which means ‖w − w′‖2 ≥ ‖b− b′‖2.

For the second term, by definition and G-Lipschitz property we have

‖G(w′t−1)−G′(w′t−1)‖2 ≤ ‖
η

n(n− 1)

∑
i6=k

(∇`(w′t−1; zi, zk)−
∑
i6=k

∇`(w′t−1; zi, z
′
k))‖2

+ ‖ η

n(n− 1)

∑
i 6=k

(∇`(w′t−1; zk, zi)−
∑
i 6=k

∇`(w′t−1; z′k, z
′
i))‖2

≤ 4η

n
G.

Thus, combining with Lemma 2 we have

‖wt − w′t‖2 ≤ (1− Lαη

L+ α
)‖wt−1 − w′t−1‖2 +

4Gη

n
(4)

Also we know w0 = w′0, thus we have

‖wt − w′t‖2 ≤ (
4Gη

n
)

t−1∑
i=0

(1− Lαη

L+ α
)i ≤ 8G

nα
,

where the last inequality is due to 1− Lαη
L+α ≤ 1− αη

2 and η ≤ 2
L+α ≤

1
α .

C.2 Proof of Theorem 1
First we will show the optimality gaps of the output in Theorem 1, which are just followed by the converge rate of the PGD
method and the noise we added.

By Lemma 1, Gaussian mechanism and Laplacian mechanism, it is obvious to see that Algorithm 1 is (ε, δ) or ε-DP, we will
omit details.

Denote w∗ = arg minw∈C L(w;D). The proof of the optimality gap is quite simple. We first focus on it. By the converge rate
of the Projected Gradient Descent for strongly convex function (such as [Nesterov, 2013]) we have when η ≤ 2

L+α

L(wT ;D)− L(w∗;D) ≤ L

2
exp(−2ηαGT

L+ α
)‖w0 − w∗‖2.



Since L(w;D) is L-smooth we have

EL(w̃T ;D)− L(wT ;D) ≤ E〈ζ,∇L(wT ;D)〉+
L

2
E‖ζ‖22 =

L

2
E‖ζ‖22

where the last inequality is due to the mean of ζ is zero. And by the expectation of the Guassian and Laplacian distribution, we
have our optimlaity gapd by taking T = Õ(Lα log n).

Next we focus on the proof of the population errors. Before that we give some definitions related to the stability of an algorithm
A for pairwise learning, which was studied in [Elisseeff et al., 2005] for pointwise loss functions, here we generalize to pairwise
loss case.
Definition 8. For a randomized algorithm A (we denote its output as A(D) if its input dataset is D), we call it is uniformly
stable with β > 0 if for all neighboring datasets D ∼ D′, we have

sup
(z,z′)∈D×D

E[`(A(D); z, z′)− `(A(D′); z, z′)] ≤ β.

Here the expectation is taken over the randomness of Algorithm A.
Thus, by Lemma 1 and the Lipschitz property we can easily get the following lemma.

Lemma 4. Under Assumption 1, the PGD method is uniformly stable with 8G2

αn .
Next, we will show that if an algorithm A is uniform stable, then it also has bounded generalization error.

Lemma 5. For a randomized algorithm A, if it is uniformly stable with β > 0, then we have the following generalization error:

|EA,D[L(A(D);D)− LP(A(D))]| ≤ 2β. (5)

Proof of Lemma 5. Let D = (z1, · · · , zn) and D̃ = (z̃1, · · · , z̃n) be two datasets where each sample is i.i.d. sampled from P .
We also denote D(i) = (z1, · · · , zi−1, z̃i, zi+1, · · · , zn) and D(i, j) = (z1, · · · , z̃j , · · · , zi−1, z̃i, zi+1, · · · , zn). Thus we have

EDEAL(A(D);D) = EDEA[
1

n(n− 1)

∑
i 6=j

`(A(D); zi, zj)]

= ED̃EDEA[
1

n(n− 1)

∑
i 6=j

`(A(D(i, j)); z̃i, z̃j)]

= ED̃EDEA[
1

n(n− 1)

∑
i 6=j

`(A(D); z̃i, z̃j)] + ∆

= EDEA[LP(A(D))] + ∆,

where ∆ satisfies

∆ =
1

n(n− 1)

∑
i 6=j

ED̃EDEA[`(A(D(i, j)); z̃i, z̃j)− `(A(D); z̃i, z̃j)]

=
1

n(n− 1)

∑
i 6=j

ED̃EDEA[`(A(D(i, j)); z̃i, z̃j)− `(A(D(i)); z̃i, z̃j)

+ `(A(D(i)); z̃i, z̃j)− `(A(D); z̃i, z̃j)]

≤ 2β,

where the last inequality is due to the definition of uniformly stability.

The next lemma shows that for any estimator w, we can decompose its population error into the sum of generalization error
and optimality gap.
Lemma 6. For a randomized algorithm A, and any fixed w ∈ C we have the following inequality,

EA,DLP(A(D))− LP(w) ≤ EA,D[L(A(D);D)− L(w;D)] + |ED,A[L(A(D);D)− LP(A(D))]|.
Specifically, when w = arg minw∈C LP(w) we have

EA,DErrP(A(D)) ≤ EA,DErrD(A(D)) + |ED,A[L(A(D);D)− LP(A(D))]|. (6)

Proof of Lemma 6 . We have

LP(A(D))− LP(w) ≤ LP(A(D))− L(A(D);D)

+ L(A(D);D)− L(w;D) + L(w;D)− LP(w).

Since w is fixed we have ED[L(w;D)− LP(w)] = 0. Take the expectation and we have the proof.



Thus, from Lemma 4, 5 and 6 we can see that if an algorithm is uniformly stable, then the population risk of its output could
be upper bounded by the sum of its stability and its optimality gap.

Proof of Theorem 1. To prove Theorem 1, the key observation is that, in Lemma 4 we showed that the PGD method for pairwise
loss is 8G2

αn uniformly stable. Thus, adding some noise to its output will still be 8G2

αn uniformly stable, i.e., Algorithm 1 will still
be 8G2

αn uniformly stable. Thus, combining with the optimlaity gap of w̃T in Theorem 1, when δ > 0 (the similar to the case of
δ = 0) we have

EA,DErrP(w̃T ) ≤ EAErrD(w̃T ) +
16G2

αn
≤ O(

‖C‖22LG2d log 1/δ

α2n2ε2
+
G2

αn
).

C.3 A Sub-optimal Algorithm

Algorithm 4 DP Gradient Descent Convex (DPGDC)
Input: D = {zi}ni=1 ⊂ Rd, privacy parameters ε, δ, empirical risk L(w;D), initial parameter w0, step size η ≤ 2

L and number
of iterations T .

1: for t = 1, 2, · · · , T do
2: Let wt = ΠC(wt−1 − η∇L(w;D)), where ΠC is the projection onto the set C.
3: end for
4: Denote wTavg = w1+···+wT

T .

5: When δ > 0, return w̃T = wTavg + ζ, where ζ ∼ N (0, σ2Id) and σ =
4
√

2 ln(1.25/δ)GTη

nε .

6: When δ = 0, return w̃T = wTavg , where ζ = (ζ1, · · · , ζd) with ζi ∼ Lap(λ) and λ = 4GηT
√
d

nε .

Motivated by Algorithm 1, we propose Algorithm 4, which is based on the `2-norm sensitivity of the PGD method for general
convex loss functions.

Just as in Lemma 1, we first show that under Assumption 2, the `2-norm sensitivity of PGD method is bounded.
Lemma 7. For any D ∼ D′, if we denote w′t, t ∈ [T ] as the parameters which correspond to wt in Algorithm 4 performed on
D′, then under Assumption 2, with η ≤ 2

L , we have for all t ∈ [T ],

‖wt − w′t‖2 ≤
4ηGt

n
, (7)

thus we have ‖wTavg − w′Tavg‖2 ≤
4ηGT
n .

Proof of Lemma 7. The idea of proof is similar as in the proof of Lemma 1. First we have

‖G(w)−G(w′)‖22
= ‖w − w′‖22 + η2‖∇L(w;D)−∇L(w′;D)‖22 − 2η〈∇L(w;D)−∇L(w′;D), w − w′〉

≤ ‖w − w′‖22 − (
2η

L
− η2)‖∇L(w;D)−∇L(w′;D)‖22

≤ ‖w − w′‖22,
where the first inequality is due to the fact that L-Lipschitz smooth implies

〈∇L(w;D)−∇L(w′, D), w − w′〉 ≥ 1

L
‖∇L(w;D)−∇L(w′;D)‖22.

and the last inequality is due to η ≤ 2
L .

Next, let’s back to our proof. We denote G′(w) = w − η∇L(w;D′) where D′ ∼ D. Since we have wt = ΠCG(wt−1) and
w′t = ΠCG

′(w′t−1), thus,

‖wt − w′t‖2 ≤ ‖G(wt−1)−G′(w′t−1)‖2
≤ ‖G(wt−1)−G(w′t−1)‖2 + ‖G(w′t−1)−G′(w′t−1)‖2

≤ ‖wt−1 − w′t−1‖22 +
4ηG

n
,

where the last inequality in the proof of Lemma 1. Thus, since we have w0 = w′0 we can get the proof by induction.



Theorem 4. Under Assumption 2, when the step size η ≤ 2
L , Algorithm 1 is (ε, δ)-DP when δ > 0 and ε-DP otherwise.

Moreover, when δ > 0, we have 1

EErrP(w̃T ) ≤ O(
‖w0 − w∗‖22

ηT
+
ηG2T 2d log 1/δ

n2ε2
+
G2ηT

n
).

We note that the upper bound of the population error in Theorem 4 is strictly greater than Ω( 1√
n

+
√
d

nε ), which means it is
sub-optimal.

Proof of Theorem 4 . The idea of proof is almost the same as in the proof if Theorem 1, by the standard converge rate analysis
of the Projected Gradient Descent (one can refer to [Nesterov, 2013]) we have

L(wT ;D)− L(w∗;D) ≤ O(
‖w0 − w∗‖22

ηT
).

And by the L-smooth property we have

EL(w̃T , D)− L(wT , D) ≤ E〈ζ,∇L(wT , D)〉+
L

2
E‖ζ‖22.

Thus, in total we have for (ε, δ)-DP,

ErrD(w̃T ) ≤ O(
‖w0 − w∗‖22

ηT
+
ηG2T 2d log 1/δ

n2ε2
).

And for ε-DP we have

ErrD(w̃T ) ≤ O(
‖w0 − w∗‖22

ηT
+
ηG2T 2d2

n2ε2
).

For population error, by Lemma 7 we know that Algorithm 4 is uniform stability with 4GηT
n , thus by Lemma 4, 5 and 6 and

combining with the optimality gap we have for (ε, δ)-DP,

EA,DErrP(w̃T ) ≤ O(
‖w0 − w∗‖22

ηT
+
ηG2T 2d log 1/δ

n2ε2
+
G2ηT

n
),

and for ε-DP we have

EA,DErrP(w̃T ) ≤ O(
‖w0 − w∗‖22

ηT
+
ηG2T 2d2

n2ε2
+
G2ηT

n
).

Next, we will state that O(
‖w0−w∗‖22

ηT + ηG2T 2d log 1/δ
n2ε2 + G2ηT

n ) cannot be upper bounded by O( 1√
n

+
√
d

nε ) (the same for ε-DP).

We can easily see that if ηT = O(
√
T ) we have O(

‖w0−w∗‖22
ηT + ηG2T 2d log 1/δ

n2ε2 + G2ηT
n ) = O( 1√

n
+ d

nε2η ). However, η cannot

be O(
√
d
ε ) since we assume η ≤ 2

L .

C.4 Proof of Theorem 2
The proof of (ε, δ)-DP is just by the advanced composition theorem and Gaussian mechanism, we omit it here. We first focus on
the optimality gap of the output, for convenience we denote f(·) = L(·;D) and w∗ = arg minw∈C L(w;D). We first show the
following lemma,
Lemma 8. For any x, if we denote x∗ = ΠC(x) = arg miny∈C ‖y − x‖22, then we have for any z ∈ C, 〈x∗ − x, z − x∗〉 ≥ 0.

The proof is just by the optimlaity condition of x∗ to the function ‖y − x‖22. In each iteration, take x = wt − η∇(f(wt) + ζi)
and x∗ = wt+1 we have ∀z

〈wt+1 − wt + η∇(f(wt) + ζt), z − wt+1〉 ≥ 0. (8)
Now, by the L-smooth property we have

f(wt+1)− f(wt)

≤ 〈∇f(wt) + ζt, wt+1 − wt〉+
L

2
‖wt+1 − wt‖22 − 〈ζt, wt+1 − wt, 〉

≤ 〈∇f(wt) + ζt, wt+1 − wt〉+ (
L

2
+

1

4η
)‖wt+1 − wt‖22 + η‖ζt‖22

≤ 〈∇f(wt) + ζt, wt+1 − w∗〉+ 〈∇f(wt) + ζt, w
∗ − wt〉+ (

L

2
+

1

4η
)‖wt+1 − wt‖22 + η‖ζt‖22

≤ 〈∇f(wt) + ζt, wt+1 − w∗〉+ 〈ζt, w∗ − wt〉+ (
L

2
+

1

4η
)‖wt+1 − wt‖22 + η‖ζt‖22,

1Here we omit the case where δ = 0, see Appendix for the complete statement.



where the last inequality is due to 〈∇f(wt), w
∗ − wt〉 ≤ f(w∗) − f(wt) ≤ 0. Sinec ζt is independent with wt, we have

E〈ζt, w∗ − wt〉 = 0, thus,

Ef(wt+1) ≤ f(wt) + 〈∇f(wt) + ζt, wt+1 − w∗〉

+ (
L

2
+

1

4η
)‖wt+1 − wt‖22 + ηE‖ζt‖22,

In (8) take z = w∗ we have 〈∇f(wt) + ζt, wt+1 − w∗〉 ≤ 1
η 〈wt+1 − wt, w∗ − wt+1〉. Thus we have

Ef(wt+1) ≤ f(wt) +
1

η
〈wt+1 − wt, w∗ − wt+1〉+ (

L

2
+

1

4η
)‖wt+1 − wt‖22 + ηE‖ζt‖22

≤ f(wt) +
1

2η
(‖wt+1 − wt + w∗ − wt+1‖22 − ‖‖wt+1 − wt‖22 − ‖w∗ − wt+1‖22)

+ (
L

2
+

1

4η
)‖wt+1 − wt‖22 + ηE‖ζt‖22

≤ f(wt) +
1

2η
(‖wt − w∗‖22 − ‖w∗ − wt+1‖22) + ηE‖ζt‖22,

where the last inequality is due to 1
2η − (L2 −

1
4η ) ≥ 0 since η ≤ 1

2L . Take the sum from 1 to T we have

f(w̄T )− f(w∗) ≤ f(w1) + · · ·+ f(wT )

T
− f(w∗)

≤ O(
‖w0 − w∗‖22

2ηT
+
ηTdG2 log 1/δ

n2ε2
). (9)

The above is our optimality gap. Also, by Lemma 7 we know that the stability of Algorithm 2 is the same as the the original
PGD. Thus, the stability of Algorithm 2 is G2ηT

n . Combine with the optimality gap and by Lemma 6 we have that the population
error of w̄T satisfies

ED,AErrP(w̄T ) ≤ O(
‖C‖22
ηT

+
ηTdG2 log 1/δ

n2ε2
+
G2ηT

n
)

Thus, take η = ‖C‖2
G
√
T
≤ 1

2L and T = min{n, n2ε2

d log 1/δ} we have the result.

C.5 Proof of Theorem 3
For the proof of DP. Since we partite the whole dataset into several disjoint parts, and in each epoch we perform an (ε, δ)/ε-DP
algorithm on one subset, thus we know the whole procedure will be (ε, δ)/ε-DP. In each epoch, since we run the PGD method
for T = ni iterations, thus, by Lemma 7 we can see the `2-norm sensitivity if the average parameter is 4GηiTi

ni
= 4Gηi. Thus, by

Gaussian/Laplacian mechanism we know for the subset Di, in the i-th epoch the algorithm is (ε, δ)/ε-DP.
To proof the population error, we first focus on each epoch. We first provide the following result:

Lemma 9. Under Assumption 2, consider the Projected Gradient Descent method with initial parameter w0, fixed stepsize η
and iteration number T , assume in the t-the iteration we have wt, then for any w ∈ C we have

L(w̄T ;D)− L(w;D) ≤ O(
‖w0 − w‖22

ηT
+ ηG2), (10)

where w̄T = w0+w1+w2+···+wT
T+1 .

Proof of Lemma 9. For convenience, we denote f(·) = L(·;D). Since f is convex, we have f(y) ≥ f(x) + 〈∇f(x), y − x〉 or
f(x)− f(y) ≤ 〈∇f(x), x− y〉. Take x = wt and y = w we have

f(wt)− f(w) ≤ 〈∇f(wt), wt − w〉.
We denote w̃t = wt − η∇f(wt), that is∇f(wt) = wt−w̃t

η . Thus we have

f(wt)− f(w) ≤ 1

η
〈wt − w̃t, wt − w〉

=
1

2η
(‖wt − w‖22 + ‖wt − w̃t‖22 − ‖w̃t − w‖22)

=
1

2η
(‖wt − w‖22 − ‖w̃t − w‖22) +

η

2
‖∇f(wt)‖22



where the first equality is due to 〈a − b, a − c〉 =
‖a−c‖22+‖a−b‖22−‖b−c‖

2
2

2 for any a, b, c, and the last equality is due to
∇f(wt) = wt−w̃t

η .

Since wt+1 = ΠC(w̃t) and w ∈ C, we have ‖w̃t − w‖22 ≥ ‖wt+1 − w‖22. Thus we have

f(wt)− f(w) ≤ 1

2η
(‖wt − w‖22 − ‖wt+1 − w‖22) +

η

2
G2

Sum t = 0, · · · , T and take the average we have the result.

Now we focus on the i-th epoch, since by Lemma 7 we know the `2-norm sensitivity of each parameter is 4tηG
n , thus the

`2-norm sensitivity of the their average, i.e., w̄i, is 4GTiη
ni

= 4Gη. Thus, by Lemma 9 and 6 we have for any w ∈ C

ELP(w̄i)− LP(w) ≤ O(
‖wi−1 − w‖22

ηT
+ ηG2). (11)

Now lets back to our proof. We have (denote w∗ = arg minw∈C LP(w) )

LP(wk)− LP(w∗) = LP(wk)− LP(w̄k)︸ ︷︷ ︸
A

+

k∑
i=2

(LP(w̄i)− LP(w̄i−1))︸ ︷︷ ︸
B

+LP(w̄1)− L(w
∗)︸ ︷︷ ︸

C

For term A, by the Lipschitz property we have

ELP(wk)− LP(w̄k) ≤ E‖wk − w̄k‖2 ≤ GE‖ζk‖2.

For each term of B by (11) and take w = w̄i−1 we have

ELP(w̄i)− LP(w̄i−1) ≤ O(
‖wi−1 − w̄i−1‖22

ηini
+ ηiG

2) = O(
E‖ζi‖22
ηini

+ ηiG
2) (12)

For term C, by (11) and take w = w∗ we have

LP(w̄1)− L(w
∗) ≤ O(

‖w1 − w∗‖22
η1n1

+ η1G
2) = O(

‖C‖22
η1n1

+ η1G
2). (13)

Thus, combing with (11), (12) and (13) we have

ELP(wk)− LP(w∗) ≤ O(GE‖ζk‖2 +
‖C‖22
η1n1

+ η1G
2 +

k∑
i=2

(
E‖ζi‖22
ηini

+ ηiG
2) (14)

Now, we analyze the case of (ε, δ)-DP, it is almost the same for ε-DP. Specifically, we have E‖ζi‖22 = O(
dG2η2i log 1/δ

ε2 ). Thus,

GE‖ζk‖2 ≤
√
E‖ζk‖22 = O(

√
d log 1/δηG2

nε
) = O(‖C‖2G(

√
d log 1/δ

n1.5ε
+

1

n
)). (15)

where the second inequality is due to η = ‖C‖2
G min{ 1√

n
, ε√

d log 1/δ
}. And

‖C‖22
η1n1

+ η1G
2 = O(

‖C‖22
ηn

+ ηG2)

= O(‖C‖2G(
1

n
max{

√
n,

√
d log 1/δ

ε
+

1√
n

))

≤ O(‖C‖2G(
1√
n

+

√
d log 1/δ

nε
))



where the second inequality is due to η = ‖C‖2
G min{ 1√

n
, ε√

d log 1/δ
}

k∑
i=2

(
E‖ζi‖22
ηini

+ ηiG
2) = O(

k∑
i=2

(
dG2η2

i log 1/δ

ηiniε2
+ ηiG

2)

= O(

k∑
i=2

‖C‖222−i

nη
+ 4−i

‖C‖2G√
n

)

= O(

k∑
i=2

(2−i(
‖C‖22
nη

+
‖C‖2G√

n
))

≤ O(

∞∑
i=2

(2−i‖C‖2G(
1

n
max{

√
n,

√
d log 1/δ

ε
+

1√
n

))

≤ O(‖C‖2G(
1√
n

+

√
d log 1/δ

nε
))

Thus, combine with the previous three bounds into (14) we have our result.
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