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Abstract
Although releasing crowdsourced data brings many
benefits to the data analyzers to conduct statisti-
cal analysis, it may violate crowd users’ data pri-
vacy. A potential way to address this problem is to
employ traditional differential privacy (DP) mech-
anisms and perturb the data with some noise before
releasing them. However, considering that there
usually exist conflicts among the crowdsourced data
and these data are usually large in volume, directly
using these mechanisms can not guarantee good
utility in the setting of releasing crowdsourced data.
To address this challenge, in this paper, we pro-
pose a novel privacy-aware synthesizing method
(i.e., PrisCrowd) for crowdsourced data, based on
which the data collector can release users’ data with
strong privacy protection for their private informa-
tion, while at the same time, the data analyzer can
achieve good utility from the released data. Both
theoretical analysis and extensive experiments on
real-world datasets demonstrate the desired perfor-
mance of the proposed method.

1 Introduction
In recent years, crowdsourcing has emerged as a popular and
fast paradigm to solve many challenging data analysis tasks.
Through the power of the crowd, the data collectors (e.g., hos-
pitals, foundations and government agencies) can easily ob-
tain large amounts of useful information. At the same time,
the proliferation of new information techniques enables these
data collectors to easily share their data that are collected from
a crowd of users (e.g., patients, customers) with researchers or
data analyzers. From such a wealth of shared data, researchers
or data analyzers can discover useful knowledge or patterns
to improve the quality of products, the management of pub-
lic health, and so on. For example, in healthcare applications,
the adverse events about a new drug can be easily collected by
the hospitals from different patients. If the hospitals are will-
ing to share these medical data, it would be very useful for the
drug makers or medical research institutions to understand the
efficacy of the drug.

Although the sharing of crowdsourced data brings many
benefits, it may introduce privacy issues [Miao et al., 2015;

Shi and Wu, 2017; Miao et al., 2017; Feng et al., 2017]. Con-
sidering the above example, the hospital aims to collect the
adverse events about a new drug from different patients. The
patients usually trust the hospital and are willing to provide all
the requested information. But if the hospital directly releases
the patients’ medical data to the drug makers, the private in-
formation of patients would be disclosed. Without effective
privacy-preserving mechanisms, the patients may not allow
their data to be released. Thus, it is essential to address how
to enable the data collectors to release the crowdsourced data
without disclosing users’ private information.

Among existing privacy-preserving techniques, differential
privacy (DP) has drawn significant attention as it can pro-
vide very rigorous privacy and utility guarantee [Dwork et
al., 2006]. However, this technique has several practical lim-
itations when it is applied in the setting of releasing crowd-
sourced data. First of all, since the crowdsourced data on an
object (e.g., the new drug) are usually collected from multiple
users or sources, there inevitably exist conflicts among these
data. The reasons include incomplete views of observations,
environment noise, different knowledge bases and even the in-
tent to deceive, etc. Directly applyingDP on these data can not
eliminate the conflicts, and this will certainly degrade the ac-
curacy of the data analysis results. Additionally, DP is usually
achieved by adding noise following the Laplace or exponen-
tial mechanisms [Dwork et al., 2006]. The noise scale intro-
duced by the Laplace mechanism is proportional to the num-
ber of data records, and such noise may make the data useless
considering that crowdsourced dataset usually contains large
amounts of data records. Although the noise introduced by
the exponential mechanism does not depend on the number
of data records, it depends on the domains of the input data
[Dwork et al., 2014], which may also make the crowdsourced
data useless because these data usually have large domains.

To address the above challenges, in this paper, we propose
a novel sampling-based privacy-aware synthesizing method
for crowdsourced data (PrisCrowd). In this method, the data
collector first learns the underlying patterns (i.e., densities)
of the data for the objects through assigning each user a fine
grainedweight (or reliability degree) on each object. Then, for
each object, the data collector samples a set of candidate syn-
thetic data from the learned density. Finally, these synthetic
data are subjected to our proposed privacy test, and the data
collector only releases the synthetics that can pass the privacy



test. The proposed method can not only extract high quality
crowdsourced data via differentiating each user’s fine grained
reliability degrees on different objects but also achieve DP
without injecting noise to the data. Both theoretical analysis
and extensive experiments on real-world datasets are provided
to verify the desirable performance of the proposed method.
2 Problem Setting
This paper considers a data releasing scenario, where a crowd
of users and a data collector are involved. The users (or data
sources) are the individuals (e.g., patients, customers) who
can observe some objects (e.g., drugs, commodities) and pro-
vide claims for them. The data collector is an individual or in-
stitution (e.g., a hospital, an online store) who can collect the
claims for these objects from a crowd of users and then release
these claims to the public either voluntarily or for financial in-
centives. Here, we assume that the collector is trusted and the
security threats mainly come from the public.

Problem formulation. Suppose there are N objects  =
{oi}Ni=1 which are observed by M users  = {1, 2, ...,M}.
For each object oi, the claims of users are denoted as i =
{xi,s}s∈i

, where xi,s represents the claim provided by user
s for object oi and i represents the set of users who pro-
vide claims for this object. The claims collected by the data
collector from all users are denoted as  = {i}Ni=1, whichneed to be released to the public. Our goal in this paper is
to design a mechanism based on which the data collector can
release users’ claims with strong privacy protection for their
private information, while at the same time, the data analyzer
can achieve good utility from the released data.
3 Preliminary
Definition 1 (Differential Privacy [Dwork et al., 2006]). A
randomized algorithm  is (�, �)-differentially private if for
all neighboring datasets D,D′ ∈ n and for all events S in
the output space of, the following holds: Pr((D) ∈ S) ≤
e� Pr((D′) ∈ S) + �.
The kernel density estimation (KDE) is a statistically-sound

method to estimate a continuous distribution. Suppose there
are n independent observations X = {x1, ..., xn} ∈ ℝd fol-
lowing an unknown true density f ∗(x). The standard KDE
f̃ (x) for the estimation of f ∗(x) at those points is defined as
f̃ (x) = 1

n
∑n
i=1(x, xi). The following assumption will be

used throughout the paper.
Assumption 1. For a vector xi ∈ ℝd , we assume that the ker-
nel function satisfies (x, xi) = (x − xi). Furthermore,
(x−xi) is essentially a bump centered at xi. More specif-
ically, we take (x) = ||

− 12(− 12 z), where the kernel
 itself is a probability density with zero mean and identity
covariance and satisfying lim

‖x‖→∞ ‖x‖d(x) = 0.
Common choices for  that satisfy the above assumption

include Gaussian and Epanechinikov kernels. As an example,
Fig. 6 visualizes the construction of the standard KDE of 5
data points (black circles) using the well-knownGaussian ker-
nel that is defined as (x − xi) = ( 1

√

2�ℎ
)d exp(− ‖x−xi‖2

2ℎ2 ),

where ℎ is the bandwidth. The red curves are the component
densities, and each red curve is a scaled version of the nor-
mal density curve centered at a datum. The standard KDE is
obtained by summing these five scaled components.
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Figure 1: An example for the standard KDE
4 Methodology
4.1 Overview
To achieve the goal described in Section 2, we propose a
novel privacy-aware synthesizing method for crowdsourced
data (i.e., PrisCrowd), which contains two phases. In the first
phase, we propose to use the weighted KDE as an intermedi-
ate representation of the raw data. This intermediate repre-
sentation can well capture the statistical properties of the raw
data. In the second phase, we first sample a set of candidate
synthetic claims from the learned densities in the first phase,
then each of these candidate claims is subjected to the pro-
posed privacy test. If the claim passes the privacy test, it will
be released, otherwise it will be discarded. The flowchart of
the proposed two-phase method is shown in Fig. 2.

Figure 2: Privacy-aware synthesizing for crowdsourced data
4.2 Weighted KDE-based Data Representation
In order to share “wealth” data with the data analyzer, the
data collector first needs to learn the characteristics or the un-
derlying patterns of original data, i.e., the informative den-
sity distributions of objects. To estimate the density for each
object, the standard kernel density estimation (KDE) can be
adopted. Additionally, since different users may provide dif-
ferent claims for the same object, the reliability degrees (or
weights) of these users should be taken into account when
estimating the densities [Li et al., 2014b; Li et al., 2014a;
Li et al., 2016;Miao et al., 2019]. However, the standardKDE
cannot differentiate the importance of users (i.e., user reliabil-
ity degrees). In order to learn users’ reliability and compute
the densities of objects simultaneously, we propose a novel
method which can estimate users’ global and local weights,
and then combine them to learn objects’ informative density
distributions. A user’s global weight reflects his capability to
provide truthful information for all the objects, and the local
weights represent that this user may have different confidence
when providing claims for different objects. The advantage of
the proposed method is that it can estimate reasonable relia-
bility for each user, and in turn, learn the accurate informative
density distributions for objects.



∙ Global Weight Estimation. To evaluate the overall im-
portance of users, the data collector assigns a global weight
gs ∈ ℝ to each user s. Meanwhile, we can obtain a global
density f gi for each object oi, which should be close to the
distribution of claims from reliable users. The distribution of
the input claims i can be obtained by i

(x,i) (x ∈ ℝ is
a variable), i.e., the kernel function associated with a repro-
ducing kernel Hilbert space i. To minimize the weighted
deviation from the estimated density Q = {f gi (x)}

N
i=1 to the

multi-user input  = {i}Ni=1, we propose the following op-
timization framework

min
G,Q

∑

s∈
gs

∑

i∈s

di
(i

(x, xi,s), f
g
i (x)) (1)

s.t.
∑

s∈
exp(gs) = 1,

where s denotes the set of objects observed by user
s, G = {gs}s∈ and the normalized squared loss
di

(i
(⋅, ⋅), f gi (x)) is defined as di

(i
(x, xi,s), f

g
i (x)) =

‖i
(x, xi,s) − f

g
i (x)‖

2
i
.The global loss function (i.e., Eq.

(1)) extends the framework in [Li et al., 2014b] from real
space to Hilbert space. We can use an iterative procedure to
solve it. Specifically, in the k-th iteration, gs is updated as

g(k+1)s = − log

∑

i∈s di
(i

(x, xi,s), f
g(k)
i (x))

∑

s′∈
∑

i∈s′
di

(i
(x, xi,s′ ), f

g(k)
i (x))

,

(2)
where f g(k)i (x) =

∑

t∈i
g(k)t i

(x, xi,t)∕(
∑

t∈i
g(k)t ). Eq.

(2) shows that a user’s global weight is inversely proportional
to the distance between its claims and the estimated global
densities at the log scale. Users whose claims are close to the
derived global densities will have higher global weights.
∙LocalWeight Estimation. As described above, each user

may have different confidence when providing claims for dif-
ferent objects. Thus, we need to model the local weight of
each user on every object, which will in turn help to infer the
accurate density estimations. A potential way to achieve this
is to establish a square loss function. However, it leads to a
problem that each user would receive the same local weight,
and the trustworthiness of the claims provided by different
users would be equal. In order to address this problem, we
use Hampel loss function [Hampel, 2011]

�q1,q2,q3 (y) =

⎧

⎪

⎨

⎪

⎩

y2∕2, 0 ≤ y < q1
q1y − q21∕2, q1 ≤ y < q2
q1(y−q3)2

2(q2−q3)
+ q1(q2+q3−q1)

2
, q2 ≤ y < q3

q1(q2 + q3 − q1)∕2, q3 ≤ y,

where q1 < q2 < q3 are predefined nonnegative parameters.
These parameters allow us to decrease the trustworthiness of
“bad” claims and increase that of “good” ones for each object,
so the importance of users can be well distinguished.

Since we incorporate users’ reliability into estimating the
local densities, the local kernel density of object oi can be
defined as f li (x) =

∑

s∈i
li,si

(x, xi,s), where li,s is the

local weight of the user s on object oi. Thus, the objective
function for estimating li = {li,s}s∈i

is
J (li) = minli

∑

s′∈i

� (‖i
(x, xi,s′ ) −

∑

s∈i

li,si
(x, xi,s)‖),

(3)
where ‖⋅‖ denotes the difference between users’ claims and
the estimated local density f li (x). This objective function is
not convex, i.e., Eq. (3) does not have a closed form solu-
tion. Fortunately, it is possible to approximate li = {li,s}s∈iwith a standard iteratively re-weighted least squares (IRWLS)
algorithm. The iterative procedure for computing {li,s}s∈i

is

l(k+1)i,s =
� (‖i

(x, xi,s) −
∑

t∈i
l(k)i,t i

(x, xi,t)‖)
∑

s′∈i
� (‖i

(x, xi,s′ ) −
∑

t∈i
l(k)i,t i

(x, xi,t)‖)
,

(4)
where k denotes the number of iterations. Eq. (4) shows
that users would receive lower weights when they provide
“bad” claims which deviate largely from the center f li (x) =
∑

t∈i
li,ti

(x, xi,t).
∙ Combined Weight Estimation. For each user s, to mea-

sure the consistency degree of the global and local weights
(i.e., gs and li,s), we define amixture weight, named combined
weight ci,s. To learn the combinedweight, the relative entropy
is employed, which minimizes the information loss between
user’s global weight and local weight. The smaller the relative
entropy value of those weights, the higher the degree of their
consistency. The objective of the combined model is

min
{ci,s}s∈i

∑

s∈i

ci,s log
ci,s
li,s

+
∑

s∈i

ci,s log
ci,s
gs
.

s.t.
∑

s∈i

ci,s = 1, ci,s ≥ 0.
(5)

By solving Eq. (5), we can obtain the combined weight ci,s
of user s on the object oi as ci,s =

√

li,sgs∕(
∑

t∈i

√

li,tgt).
Based on the learned combined weights, we can obtain the
density of object oi which is the weighted sum of claims in
Hilbert space and is given as

fi(x) =
∑

s∈i

√

li,sgs
∑

t∈i

√

li,tgt
i

(x, xi,s). (6)

4.3 Privacy Test-based Synthetics Release
To provide strong privacy protection for users’ private infor-
mation, in this section, we propose a privacy test-based syn-
thetics release method, which contains two steps: Candidate
synthetics generation and Privacy test for candidate synthet-
ics. In the first step, we sample a set of synthetic claims from
the learned density in Eq. (6) as the candidate data to release.
Then, in the second step, these sampled synthetics are sub-
jected to a privacy test. If a synthetic claim passes the test, it
will be released, otherwise it will be discarded.

Candidate Synthetics Generation. We first discuss how
to generate the synthetic claims ̃i for each object oi. Specif-ically, we generate each element in ̃i as follows:
1. Select a random integer s ∈ i with probability ci,s;



2. Generate a synthetic claim x̃i,s through sampling from
the probability distribution i

(x, xi,s).
Here ci,s can be treated as the sampling probability that deter-
mines whether xi,s is selected or not. In this step, we aim to se-
lect some seed data (e.g., xi,s) and then probabilistically trans-form them into the synthetic data. The sampling mechanism
used here can increase the uncertainty of the adversary about
whether a user’s data is in the released dataset or not, and thus
it can help to protect users’ privacy to some extent. How-
ever, it is not enough to only use the sampling mechanism,
directly releasing the sampled data can still violate users’ pri-
vacy [Gehrke et al., 2012]. To tackle this problem, we design
the following privacy test mechanism to further prevent users’
private information from being disclosed.

Privacy Test for Candidate Synthetics. To prevent an ad-
versary from deducing that a particular claim ini is more re-
sponsible for generating the released synthetic data than other
claims, the following randomized privacy test mechanism is
proposed. Each candidate synthetic data in ̃i is subjected to
the randomized privacy test, and it is released only when it
passes this test.

Suppose k ≥ 1 and  > 1 are the privacy parameters, and
�0 is the randomness parameter. Let (⋅) denote the above
synthetic data generation procedure, which samples a candi-
date synthetic based on a seed data. Given xi,s ∈ i, we use
Pr{x̃i,s = (xi,s)} to denote the probability that a synthetic
data x̃i,s is generated based on (⋅). Then the privacy test
procedure for x̃i,s is described as follows:
1. Randomize k by adding a noise: k̃ = k + z, where z ∼
Lap(1∕�0) is sampled from the Laplace Distribution.

2. Let a ≥ 0 be the integer that satisfies the inequalities
−a−1 < Pr{x̃i,s =(xi,s)} ≤ −a.

3. Let k′ be the number of records xi,s′ ∈ i that satisfies
−a−1 < Pr{x̃i,s =(xi,s′} ≤ −a.

4. If k′ ≥ k̃, x̃i,s passes the test, otherwise it fails.
Note that k′ denotes the number of possible data seeds that

can generate x̃i,s with a probability value falling into a very
stringent interval [−a−1, −a]. The threshold parameter k̃
prevents releasing sensitive synthetic data. Under this ran-
domized privacy test, a candidate synthetic data is released
only when there are at least k̃ possible data seeds that can
generate x̃i,s. Intuitively, the larger the value of k, the largerthe number of the possible seed data that are indistinguish-
able from xi,s. Also, the less the value of  , the more dif-
ficult to distinguish xi,s from other possible seed data. Al-
gorithm 1 summarizes the proposed privacy test-based syn-
thetics release procedure, in which m denotes the number of
synthetic claims that need to be released for object oi.
4.4 Theoretical Analysis
Consistency Analysis. In Section 4.3, we generate the syn-
thetic claims for object oi by sampling from the mixture dis-
tribution fi(x), i.e., x̃i,s ∼ fi(x). After obtaining the dataset
̃i = {x̃i,s}ms=1, a basic question here is that how well the
generated dataset can reflect the original density function

Algorithm 1 Private test-based synthetics release for oi
Input: {ci,s}s∈i

, i = {xi,s}s∈i
, k,  , �0, and m

Output: The synthetic dataset ̃i that can be released
1: ̃i = ∅2: while |̃i| < m do
3: Select a random integer s ∈ i with probability ci,s;4: Generate a synthetic claim x̃i,s based on the probability

distribution i
(x, xi,s);5: Conduct randomized privacy test for x̃i,s;6: if x̃i,s passes the privacy test then

7: ̃i = ̃i
⋃

{x̃i,s};8: end if
9: end while
10: return ̃i;
fi(x). Since each x̃i,s is sampled from fi(x) independently,
the density function over {x̃i,s}ms=1 can be denoted as f̃i(x) =
1
m
∑m
s=1i

(x, x̃i,s). In Theorem 1, we provide the expected
squared L2-norm distance between fi(x) and f̃i(x).
Theorem 1. Under Assumption 1 for i

with the diago-
nal bandwidth matrix i = ℎ̂2Id , we further assume that
the support of (z) satisfies ‖z‖ ≤ 1. Then, the expected
squared L2-norm distance between fi(x) and f̃i(x), i.e., J =
E[∫ (fi(x) − f̃i(x))2dx], satisfies

J ≤ 4Aℎ̂ + A2ℎ̂2V + B
mℎ̂d

+ ABV
mℎ̂d−1

, (7)

where A = supx∈ℝd ‖∇fi(x)‖, B = ∫ ((z))2dz and V is the
volume of the support of fi(x). The expectation is respected
to {x̃i,s}ms=1 ∼ fi(x). This theorem is a general result for d
dimensional case, in this paper, the value of d is 1.
Privacy Analysis. Next, we conduct privacy analysis for

Algorithm 1. Based on Theorem 2, we know that the proposed
algorithm is differentially private.
Theorem 2. Note that the input parameters of Algorithm 1
include {ci,s}s∈i

, k ≥ 1,  > 0, and �0. For any neigh-
boring datasets i and  ′

i such that |i|, | ′
i| ≥ k and

any integer 1 ≤ t < k, we have that Algorithm 1 is (�, �)-
differentially private, where � = �0+log(1+ 

t
maxs∈i ci,s
mins∈i ci,s

), � =

|i|maxs∈i
ci,se−�(k−t).

Remark 1. Note that the proposed Algorithm 1 is different
from the mechanism in [Bindschaedler et al., 2017]. The
probability of choosing the seed xi,s is non-uniform in Algo-
rithm 1 while that is uniform in [Bindschaedler et al., 2017].
The non-uniform property may generate different parameters
of differential privacy. When maxs∈i

ci,s = mins∈i
ci,s =

1∕|i| (i.e., we uniformly sample the seed xi,s), the above
Theorem 2 is actually Theorem 1 in [Bindschaedler et al.,
2017]. Thus, Theorem 2 in our paper is a generalization of
Theorem 1 in [Bindschaedler et al., 2017]. Although the main
idea of the proof for Theorem 2 is similar to that in [Bind-
schaedler et al., 2017], the details are quite different: in [Bind-
schaedler et al., 2017] the proof consider  ′

i = i
⋃

{xi,s′}as the neighborhood dataset while ours consider  ′
i = {i −

{xi,s}}
⋃

{xi,s′} as the neighborhood dataset. That is becauseif we add one data record, the probability of sampling seeds,



i.e., {ci,s}, will be totally changed. So the proof in [Bind-
schaedler et al., 2017] cannot satisfy our case.
5 Experiments
Performance measure. To evaluate the performance of our
method, we adopt the following two measure metrics.

• ISE: The integrated squared error (ISE) is defined as:
∑N
i=1 ∫

+∞
−∞ (fi − f̃i)2dx, where fi and f̃i are respectivelythe original density and the density derived from the syn-

thetic data for object oi.
• SISE: The squared integrated squared error (SISE) is de-

fined as: ∑N
i=1(∫

+∞
−∞ (fi− f̃i)2dx)2. Compared with ISE,

SISE tends to penalize more on the large distance and
less on the small distance.

Since the goal of the collector is to release the data whose
pattern is similar to the true underlying pattern for the objects,
the lower the ISE or SISE, the better the method.

Datasets. We adopt the following three real-world datasets
to evaluate the performance of the proposed method.

• Population Dataset [Pasternack and Roth, 2010; Wan et
al., 2016]. It is about the population information of some
cities at different years, and it contains 2,344 users and
1,124 objects.

• Stock Dataset [Li et al., 2012]. This dataset consists of
1000 stock symbols and 16 properties. In this experi-
ment, we only adopt the properties whose data type is
continuous. Totally, there are 55 users and 5,521 objects
in this dataset.

• Indoor Floorplan Dataset [Li et al., 2014a]. It is col-
lected when constructing the indoor floorplans, which is
a representative example of social sensing applications.
The objects are the hallway segments of a building, the
task here is to measure the distances of these segments
with the inertial sensors built in the smartphone. It con-
sists of 247 users and 129 objects.

Baselines. Here, we adopt two baselines, i.e. Basic and
Uniform. In the Basic method, the data collector adds three
level noise to the original data: � = 0.1 (Strong), � = 1 (nor-
mal) and � = 10 (Weak). In the Uniform method, the col-
lector treats all users equally and the entities’ densities are
learned with the uniformly weighted kernel density estima-
tion. Here, the synthetic data generation and the privacy tests
procedures are the same with those in our proposed method.

Case study. In our proposedmethod, we take into consider-
ation users’ fine grained weights (i.e., the combined weights)
when estimating objects’ densities. In order to investigate the
advantages of the users’ combined weights, we conduct case
studies on the three real-world datasets. For each dataset, we
randomly select two objects as the cases, and then estimate
their densities. The estimated densities are shown in Fig. 3.
The red line in each subfigure represents the density estimated
based on users’ combined weights. The black line represents
the result estimated only based on the global weight of each
user. We also conduct estimations without considering user
quality, i.e., treating all users equally, and the estimated den-
sity for each object is represented with the green line. The

results in Fig.3 show that the densities estimated based on
users’ combined weights are the closest to the true densities
which are represented with the blue lines. Additionally, we
show the claims of each object in this figure with magenta
circles and crosses. We can see that some claims (i.e., the
magenta crosses) are far away from others (i.e., the magenta
circles). These claims are usually provided by the users with
low weights, and they can be treated as outliers when estimat-
ing each object’s density. The results in this figure show that
the density estimation method based on the combined weight
is more robust to outliers than the methods which only adopt
users’ global weights or treat all users equally. In other words,
the estimated density for each object based PrisCrowd can
well reflect the underlying true density of this object.
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Figure 3: Case study on real-world datasets. (a) and (b): the two
cases for Population dataset. (c) and (d): the two cases for Stock
dataset. (e) and (f): the two cases for Indoor Floorplan dataset.

Accuracy comparison. As described in Section 4, instead
of publishing the raw data collected from the users, the data
collector releases the synthetic claimswhich are sampled from
the estimated densities to the public. In this experiment, we
evaluate the accuracy (or quality) of the published synthetic
data and explore whether these data can well reflect the un-
derlying true densities of the objects. Here we assume that
the data collector releases 30 synthetic claims for each object
to the public. The parameters  and k are set as 4 and 5 re-
spectively. In order to evaluate the accuracy of the synthetic
claims, we first derive the density (i.e., f̃i) of each object fromthe synthetic data, and then calculate ISE and SISE for each
dataset. The results are shown in Table 1, from which we
can see the proposed approach performs much better than the
baseline methods on all real-world datasets. That is to say, the
synthetic data generated based on our proposed method could
well preserve the characteristics of the underlying pattern for
the objects, so the data analyzers could achieve much better
utility from the published data. Additionally, the results in Ta-
ble 1 also show that the advantages of our proposed approach
on the Stock dataset is larger than that on the Population and
Indoor Floorplan datasets. The reason is that there are more
outlying data points in the Stock dataset, and our proposed ap-
proach is robust to these outliers while the baseline methods
are very sensitive to them.

The effect of the number of sampled claims. In our pro-
posed method, the data collector needs to release the synthetic
claims which are sampled from the estimated densities. Thus,
the number of sampled claims for each object plays an impor-



Measure Method Pupulation Stock Indoor
PrisCrowd 0.479 1.699 1.051
Uniform 0.628 17.628 1.220

ISE Basic(Strong) 1.183 12.799 1.943
Basic(Normal) 1.119 9.867 1.937
Basic(Weak) 0.866 2.125 1.882
PrisCrowd 6.209 11.430 8.405
Uniform 8.502 47.217 11.112

SISE Basic(Strong) 12.013 40.420 15.111
Basic(Normal) 11.768 35.391 15.046
Basic(Weak) 10.149 15.412 14.723

Table 1: Accuracy comparison on the real-world datasets
tant role during the data releasing procedure. In this experi-
ment, we evaluate the effect of the number of sampled claims
for each object on the performance of the proposed method.
Here we vary the number of the sampled claims for each ob-
ject from 1 to 30 and then calculate the ISE and SISE on the
three real-world datasets. The results are shown in Figure 4,
from which we can see the ISE and SISE gradually get flat-
tened with the increase of the number of the sampled claims
for each object. Take the population dataset as an example,
when the number of sampled claims is lager than 10, the val-
ues of ISE and SISE are almost the same. That is to say, the
released data generated based on our proposed method could
well reflect the underlying patterns of the objects even only a
few claims are sampled for each object.
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Figure 4: Accuracy w.r.t. Number of Sampled Claims on Real-world
Datasets. (a) and (b): Population. (c) and (d): Stock. (e) and (f):
Indoor Floorplan.

Computational Cost. Next we evaluate the computational
cost of the synthetic claims generation procedure, i.e., the sec-
ond phase in our proposed method. In this experiment, we
only generate synthetic claims for the objects whose ground
truths can be achieved from the original datasets, and con-
sider two scenarios, i.e., with privacy tests and without pri-
vacy tests. Then we vary the number of the sampled claims
for each object from 1 to 30. The running time of the synthetic
claims generation procedure for the three datasets is shown in
Fig. 5, from which we can see the running time in the two sce-
narios is approximately linear with respect to the number of
sampled objects for each object. Additionally, the results also
show that the privacy test step introduce extra computational
cost during the released data generation procedure. This is be-
cause each candidate synthetic data record needs to be tested
in the privacy test step such that strong privacy protection can

be guaranteed for users’ raw data. Since good utility can be
achieved based on our proposed method even only a few syn-
thetic claims are generated for each object, the computational
cost is tolerable in practice.

0 5 10 15 20 25 30

Number of Sampled Claims

0

50

100

150

200

250

300

350

R
u

n
n

in
g

 T
im

e 
(s

)

With privacy tests

Without privacy tests

(a)
0 5 10 15 20 25 30

Number of Sampled Claims

0

50

100

150

200

250

R
u

n
n

in
g

 T
im

e 
(s

)

With privacy tests

Without privacy tests

(b)
0 5 10 15 20 25 30

Number of Sampled Claims

0

30

60

90

120

R
u

n
n

in
g

 T
im

e 
(s

)

With privacy tests

Without privacy tests

(c)
Figure 5: Running time vs. number of sampled claims for each ob-
ject. (a): Population. (b): Stock. (c): Indoor Floorplan.

6 Related Work
Recently, various differential private data release approaches
have been proposed. Those methods can be roughly parti-
tioned into two categories: the interactive ones and the non-
interactive ones. In an interactive method [Li et al., 2010;
Hardt and Rothblum, 2010; Roth and Roughgarden, 2010], a
data analyzer can pose queries via a private mechanism, and a
dataset owner answers these queries in response. In the non-
interactive framework [Nissim et al., 2007; Bindschaedler
and Shokri, 2016; Blum et al., 2013; Wang et al., 2018;
Wang et al., 2019], a data owner releases the private version
of the original data. Once data are published, the owner has
no further control over the published data.

The method in our paper is non-interactive. The typical
approach to protect data privacy in the non-interactive con-
text is to directly add noise, which is taken by [Bindschaedler
and Shokri, 2016; Blum et al., 2013]. These works are either
computationally infeasible on high-dimensional data, or prac-
tically ineffective because of their large utility costs. There
are also some other works [Bindschaedler and Shokri, 2016]
which release private data without adding noise, but they are
unsuitable to be used in the newly appearing crowdsourcing
setting considered in this paper where multi-sources provide
multi-observations for multi-objects.

7 Conclusions
In this paper, we propose a novel privacy-aware synthesizing
method for crowdsourced data. Based on this method, the
data collector can release the crowdsourced data with strong
privacy protection for users’ private information, while at the
same time, the data analyzer can achieve good utility from the
released data. Both theoretical analysis and extensive exper-
iments on real-world datasets verify the effectiveness of the
proposed method.
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A An example for KDE
As an example, Fig. 6 visualizes the construction of the stan-
dard KDE of 5 data points (black circles) using the well-
known Gaussian kernel that is defined as (x − xi) =
( 1
√

2�ℎ
)d exp(− ‖x−xi‖2

2ℎ2 ), where ℎ is the bandwidth. The red
curves are the component densities, and each red curve is a
scaled version of the normal density curve centered at a da-
tum. The standard KDE is obtained by summing these five
scaled components.
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Figure 6: An example for the standard KDE

B Proof of Theorem 1
This section will prove Theorem 1, of which the proof pro-
cedure will utilize the results of Lemma 1 and 2. Let T1 =
∫ (f̃i(x) − fi(x))fi(x)dx, and T2 = ∫ (E[f̃ 2i (x)] − f

2
i (x))dx.Then, we have

Δfi = E[∫ (fi(x) − f̃i(x))
2dx]

= ∫ f 2i (x)dx − 2 ∫ E[f̃i(x)]fi(x)dx + ∫ f̃ 2i (x)dx
= ∫ f 2i (x)dx − 2 ∫ E([f̃i(x)] − fi(x))fi(x)dx
−2 ∫ f 2i (x)dx + ∫ (f̃ 2i (x) − f

2
i (x))dx + ∫ f 2i (x)dx

= −2 ∫ E([f̃i(x)] − fi(x))fi(x)dx + ∫ (E[f̃ 2i (x)] − f
2
i (x))

= −2T1 + T2,
Since Δfi = E[∫ (fi(x) − f̃i(x))2dx] ≥ 0, we have Δfi =

−2T1 + T2 = |−2T1 + T2| ≤ |−2T1| + |T2| = |2T1| + |T2|.Combining the results of Lemmas 1 and 2 which provide
the upper bounds for T1 and T2, gives us the followings result.
Δfi ≤ |2T1| + |T2| ≤ 2Aiℎ̃i + 2Aiℎ̃i + A2i ℎ̃

2
i Vi +

�B
|̃i|ℎ̃di

+
�AiBVi
|̃i|ℎ̃d−1i

= 4Aiℎ̃i + A2i ℎ̃
2
i Vi +

�B
|̃i|ℎ̃di

+ �AiBVi
|̃i|ℎ̃d−1i

.

Thus, it is clear that fi and f̃i will be close if |̃i| is large
enough and if ℎ̃i is chosen properly as a function of |̃i|.
Below we will denote x̃i,s = 1

|̃i|
.

Lemma 1. Let T1 be T1 = ∫ E([f̃i(x)] − fi(x))fi(x)dx.
Then, |T1| ≤ Aiℎ̃i.
Proof. T1 = ∫ E([f̃i(x)] − fi(x))fi(x)dx
= ∫ (E[

∑

s∈̃i
l̃i,s̃i

(x − x̃i,s)] − fi(x))fi(x)dx
= ∫ (

∑

s∈̃i
l̃i,s ∫ ̃i

(x− x̃i,s)fi(x̃i,s)dx̃i,s−fi(x))fi(x)dx

≤ ∫ (
∑

s∈̃i
l̃i,s|∫ ̃i

(x − x̃i,s)fi(x̃i,s)dx̃i,s −
fi(x)|)fi(x)dx
≤ ∫ (

∑

s∈̃i
l̃i,sAiℎ̃i)fi(x)dx = ∫ (Aiℎ̃i)fi(x)dx = Aiℎ̃i.

Lemma B.3 and that ∫ fi(x)dx = 1 are used in the last
line.
Lemma 2. Let T2 be as in above, and let Vi be the volume
of the support of fi. Then, T2 ≤ 2Aiℎ̃i + A2i ℎ̃

2
i Vi +

�B
|̃i|ℎ̃di

+
�AiBVi
|̃i|ℎ̃d−1i

.

Proof. Since f̃i(x) = ∑

s∈̃i
l̃i,s̃i

(x − x̃i,s), then f̃ 2i (x) =
∑

s≠t l̃i,s l̃i,t̃i
(x−x̃i,s)̃i

(x−x̃i,t)+
∑

s l̃
2
i,s

2
̃i
(x−x̃i,s). For

convenience, we drop the ̃i subscript and denote ̃i
(x −

x̃i,s) as (x̃i,s), Then, T2 can be simplified as follows:
T2 = ∫ (E[f̃ 2i (x)] − f

2
i (x))dx

= ∫ (E[
∑

s≠t l̃i,s l̃i,t(x̃i,s)(x̃i,t) +
∑

s l̃
2
i,s

2(x̃i,s)] −
f 2i (x))dx
= ∫ (

∑

s≠t l̃i,s l̃i,t ∫ ∫ (x̃i,s)(x̃i,t)f (x̃i,s)f (x̃i,t)dx̃i,sdx̃i,t
+
∑

s l̃
2
i,s ∫ 2(x̃i,s)fi(x̃i,s)dx̃i,s −

∑

s≠t l̃i,s l̃i,tf
2
i (x) −

∑

s l̃
2
i,sf

2
i (x))dx

= ∫ (
∑

s≠t l̃i,s l̃i,t[∫ ∫ (x̃i,s)(x̃i,t)f (x̃i,s)f (x̃i,t)dx̃i,sdx̃i,t
−f 2i (x)] +

∑

s l̃
2
i,s ∫ 2(x̃i,s)fi(x̃i,s)dx̃i,s−

∑

s l̃
2
i,sf

2
i (x))dx

≤ ∫ (
∑

s≠t l̃i,s l̃i,t(2Aiℎ̃ifi(x) + A2i ℎ̃
2
i ) +

∑

s l̃
2
i,sB(fi(x) +

Aiℎ̃i)ℎ̃−di )dx
= 2Aiℎ̃i + A2i ℎ̃

2
i Vi +

�B
|̃i|ℎ̃di

+ �AiBVi
|̃i|ℎ̃d−1i

.
In the above, we have made use of Lemmas B.4 and the fact

that∑s≠t l̃i,s l̃i,t ≤ 1. And, 0 ≤ � ≤ |̃i|.
Lemma 3. For i, let Ai = supx∈R‖∇fi(x)‖. Then
‖∫ ̃i

(x − y)fi(y)dy − fi(x)‖ ≤ Aiℎ̃i.
Proof. The proof of this lemma contains the following two
steps. Firstly, let x, y ∈ ℝ such that ‖x − y‖ ≤ ℎ̃i. And,
Ai = supx∈ℝ‖∇fi(x)‖. Define a function � ∶ [0, 1] → ℝ,
�(t) = (1 − t)x + ty. Then, we have
|fi(y) − fi(x)| = |fi(s(1)) − fi(�(0))| = |∫ 10

d
dtfi(�(t))dt|

= |∫ 10 ∇fi(�(t)) ⋅ �
′(t)dt| = |∫ 10 ∇fi(�(t)) ⋅ (y − x)dt|

≤ |∫ 10 ∇fi(�(t)) ⋅ (y − x)dt| ≤ |∫ 10 ∇fi(�(t)) ⋅ (y − x)dt|
≤ ∫ 10 Aiℎ̃idt = Aiℎ̃i,In the above, we have made use of the Holder and Cauchy-

Schwarz inequalities. Based on this, we then have
|∫ ̃i

(x − y)fi(y)dy − fi(x)| = |∫ ̃i
(x − y)[fi(y) −

fi(x)]dy|
≤ ∫ ̃i

(x−y)|fi(y)−fi(x)|dy ≤ ∫ ̃i
(x−y)Aiℎ̃idy =

Aiℎ̃i.In the above, the fact that ∫ ̃i
(⋅) = 1 is used. We have

also made use of the fact that in the support of̃i
(⋅), we have



that ‖y − x‖ ≤ ℎ̃i and therefore that |fi(y) − fi(x)| ≤ Aiℎ̃iapplies.
Lemma 4. We have

|∫ ∫ ̃i
(x − y)K̃i

(x − z)f (y)f (z)dydz − f 2i (x)|

≤ 2Aℎ̃ifi(x) + Aiℎ̃2i , (8)

∫ 2
̃i
(x − y)fi(y)dy ≤ B(fi(x) + Aiℎ̃i)ℎ̃−di . (9)

Proof. Firstly, the proof procedure of (8) is as follows.
= |(∫ ̃i

(x− y)fi(y)dy)(∫ ̃i
(x− z)fi(z)dz) − f 2i (x)|

= |(∫ ̃i
(x − y)fi(y)dy)2 − f 2i (x)|

= |(∫ ̃i
(x − y)fi(y)dy − fi(x))(∫ ̃i

(x − y)fi(y)dy +
fi(x))|.
≤ Aiℎ̃i(2fi(x) + Aiℎ̃i) = 2Aiℎ̃ifi(x) + A2i ℎ̃

2
i .In the above product, the upper bound of the first term is

Aiℎ̃i. The second term is upper bounded by 2fi(x) + Aiℎ̃i
since we can get ∫ ̃i

(x − y)fi(y)dy ≤ fi(x) + Aiℎ̃i from
Lemma 3.

Secondly, we will prove (9). Based on Lemma 3, we know
that within the integrand’s support, |fi(y) − fi(x)| ≤ Aiℎ̃i,
so that fi(y) ≤ fi(x) + Aiℎ̃i. Also, ̃i

(z) = ℎ̃−1i (ℎ̃−1i z).Then, we have
∫ 2

̃i
(x − y)fi(y)dy ≤ ∫ 2

̃i
(x − y)(fi(x) + Aiℎ̃i)dy

= (fi(x) + Aiℎ̃i) ∫ 2(z)dz = (fi(x) +
Aiℎ̃i)ℎ̃−1i ∫ ℎ̃−1i 2(ℎ̃−1i z)dz
= (fi(x) + Aiℎ̃i)ℎ̃−1i ∫ 2(w)dw = B(fi(x) + Aiℎ̃i)ℎ̃−di .
In the above, a change of variables is used, i.e., w =

ℎ̃−1i Idz.
C Proof of Theorem 2
We consider two neighbor datasets D and D′ with size n, we
assumeD = {x1, x2,⋯ , xn} andD′ = {x1, x2,⋯ , xn−1, x′n},that is D′ = D − {xn}

⋃

{x′n}. We denote Pd(y) = Pr{y =
(d)} for data record d and the data universe as . Also we
denote the Algorithm 1 as  . Our will show the differential
privacy for  following [Bindschaedler et al., 2017].

Now we fix y, where y ∈ . The records in a dataset D∗
can be partitioned by Id(y), where Id(y) is the unique integerwhich satisfies −Id (y)−1 < Pd(y) ≤ −Id (y). If Pd(y) = 0,
then we denote Id(y) as ∅, thus we can define the partition setfor i as Ci(D∗, y) = {d ∶ d ∈ D∗, Id(y) = i}.
Lemma 5. For any datasetD∗, if the seed is in partition set for
i. The the probability of passing the privacy test is giving by:
pt(D∗, i, y) = Pr{L ≥ k − |Ci(D∗, y)|} where L ∼ Lap( 1�0 ).

Nowwe assume xn falls in partition set of j while x′n falls inpartition set of k(if either of them falls into ∅ the proof is the
same), W.L.O.G we assume j ≠ k( the same proof for j = k).
We now denote p(s) is the probability we choose the i-th data
record, s ∈ D as the seed of generating the synthetic reord.

Thus, it is only depend on the position of the data in D and
not dependent on the data record it self, in Algorithm 1, it is
just p(xi,j) = ci,j
Lemma 6. For any dataset D∗ and data record y ∈ , we
have

Pr{ = y} =
∑

i≥0
(

∑

s∈Ci(D∗,y)
p(s)Ps(y))pt(D∗, i, y). (10)

Proof.
Pr{ = y} =

∑

s∈D∗
Pr{s is the seed, (D∗) = y} (11)

=
∑

s
Pr{select s as the seed}Pr{(D∗, s, y) passes the test}

(12)
=
∑

s
p(s)Ps(y)Pr{y passes the test} (13)

=
∑

i≥0
(

∑

s∈Ci(D∗,y)
p(s)Ps(y))pt(D∗, i, y) (14)

We now denote
q(D∗, i, y) = (

∑

s∈Ci(D∗,y)
p(s)Ps(y))pt(D∗, i, y).

Lemma 7. For D′, D as above,
e−�0pt(D, i, y) ≤ pt(D′, i, y) ≤ e�0pt(D, i, y). (15)

Proof. If i ≠ j, k, that means Ci(D, y) = Ci(D′, y), so we
have pt(D, i, y) = pt(D′, i, y).
If i = j, that means |Ci(D′, y)| = |Ci(D, y)| + 1(since x′nfalls in), by the property of Laplace distribution we have:

pt(D, i, y) = Pr{L ≥ k − |Ci(D, j)|}
≤ Pr{L ≥ k − |Ci(D, y)| − 1}
≤ e�0Pr{L ≥ k − |Ci(D, j)|}

That is pt(D, i, y) ≤ pt(D′, i, y) ≤ e�0pt(D, i, y).
If i = k, we have the same e−�0pt(D, i, y) ≤ pt(D′, i, y) ≤

pt(D, i, y). Thus in total we have
e−�0pt(D, i, y) ≤ pt(D′, i, y) ≤ e�0pt(D, i, y).

Lemma 8. For all i ≠ j, k
q(D, i, y) = q(D′, i, y) (16)

For i = j, we have
q(D, i, y) ≤ q(D′, i, y) (17)

Furthermore, if |Cj(D, y)| ≤ t,
q(D′, i, y) ≤ te−�0(k−t)max p(s) (18)

Otherwise,
q(D′, i, y) ≤ e�0 [1 +

rmax p(s)
tmin p(s)

]q(D, i, y) (19)
For i = k, we have when |Ck(D, y)| > t

q(D, i, y) ≤ e�0 [1 +
rmax p(s)
tmin p(s)

]q(D′, i, y) (20)
Otherwise q(D, k, y) ≤ te−�0(k−t)max p(s) and also

q(D′, i, y) ≤ q(D, i, y) (21)



Proof. (16) is oblivious since for i ≠ j, k we have Ci(D, y) =
Ci(D′, y), also by the proof of Lemma 7 we have ptt(D, i, y) =
pt(D′, i, y). When i = j, we have

q(D, i, y)

= pt(D, i, y)
∑

s∈Ci(D,y)
p(s)Ps(y)

≤ pt(D′, i, y)(
∑

s∈Ci(D,y)
p(s)Ps(y) + p(x′n)Px′n (y))

= q(D′, i, y)

If |Ci(D, y)| < t, since pt(D′, i, y) = Pr{L ≥
k − |Ci(D′, y)|} ≤ Pr{L ≥ k − t} = 1

2e
−�0(k−t),

we have q(D′, i, y) ≤ e−�0(k−t)
∑

s∈Ci(D′,y) Ps(y)p(s) ≤
te−�0(k−t)max p(s), which is (18). If |Ci(D, y)| ≥ t, then we
have

q(D′, i, y)

= pt(D′, i, y)
∑

s∈Ci(D′,y)
p(s)Ps(y)

≤ e�0pt(D, i, y)(
∑

s∈Ci(D,y)
p(s)Ps(y) + p(x′n)Px′n (y)) (22)

By definition, we know Px′n (y) ≤ Ps(y) for every s ∈
Ci(D, y), so we have

Px′n (y) ≤
r

|Ci(D, y)|
∑

s∈Ci(D,y)
Ps(y)

≤ r
t

∑

s∈Ci(D,y)
Ps(y)

Also, by the definition of p(s), we have p(x′n)
p(s) = p(xn)

p(s) ≤
max p(s)
min p(s) . Thus, we have the following

p(x′n)Px′n ≤
 max p(s)
tmin p(s)

∑

s∈Ci(D,y)
p(s)Ps(y) (23)

Take it into (22), we have when q(D′, i, y) ≤
e�0 [1 +  max p(s)

tmin p(s) ]pt(D, i, y)(
∑

s∈Ci(D,y) p(s)Ps(y)) =

e�0 [1 +  max p(s)
tmin p(s) ]q(D, i, y), which is (19).When i = k, it is the same as i = j as we just change the role

ofD,D′, by assumptionwe haveCk(D′, y) = Ck(D, y)−{xn},so we have when |Ck(D, y)| > t,
q(D, k, y)

= pt(D, k, y)
∑

s∈Ck(D,y)
p(s)Ps(y)

= pt(D, k, y)(
∑

s∈Ck(D′,y)
p(s)Ps(y) + p(xn)Pxn (y))

≤ e�0pt(D′, k, y)[1 +
 max p(s)
tmin p(s)

]
∑

s∈Ck(D′,y)
p(s)Ps(y)

= e�0pt(D′, k, y)[1 +
 max p(s)
tmin p(s)

]q(D′, k, y) (24)

When |Ck(D, y)| ≤ t,
q(D, k, y)

= pt(D, k, y)
∑

s∈Ck(D,y)
p(s)Ps(y)

≤ te−�0(k−t)max p(s) (25)
Others are the same as i = j, we omit the proof.

The following is the key lemma similar with Lemma 5 in
[Bindschaedler et al., 2017].
Lemma 9. For parameters k ≥ 1,  > 1 and �0 > 0. Take
dataset D,D′ as above. Then for ant integer 1 ≤ t < k
and synthetic record y ∈ , we have: Pr{ (D)} ≤ e�0 [1 +
rmax p(s)
tmin p(s) ]Pr{ (D

′)} + te−�0(k−t)max p(s), and Pr{ (D′)} ≤
e�0 [1 + rmax p(s)

tmin p(s) ]Pr{ (D)} + te
−�0(k−t)max p(s).

Proof. By definition we have: Pr{ (D)} =
∑

i≠j,k q(D, i, y) + q(D, j, y) + q(D, k, y), and
Pr{ (D′)} =

∑

i≠j,k q(D′, i, y) + q(D′, j, y) + q(D′, k, y).
Since ∑

i≠j,k q(D, i, y) =
∑

i≠j,k q(D′, i, y) and also
by Lemma 8, we have q(D, j, y) ≤ q(D′, i, y) and
q(D, k, y) ≤ e�0 [1 + rmax p(s)

tmin p(s) ]q(D
′, i, y) + te−�0(k−t)max p(s).

Thus, we have the following
Pr{ (D)} ≤ e�0 [1 +

rmax p(s)
tmin p(s)

]Pr{ (D′)}

+ te−�0(k−t)max p(s).

The later proof of Theorem 2 is the same as in [Bind-
schaedler et al., 2017], we omit them.

D Experimental Setup
In this section, we give the detailed description of the adopted
dataset and performance measure.

Performance Measure. To evaluate the performance of
the proposed method, we adopt the following two measure
metrics.

• ISE: The integrated squared error (ISE) is a widely
adopted measure metric which can measure the distance
between the densities derived from the synthetic data
and the objects’ true densities. It is defined as: ISE =
∑
i=1 ∫

+∞
−∞ (f ∗i −f̃i)

2dx, where f ∗i and f̃i are respectivelythe true density and density derived from the synthetic
data for entity oi. ISE tends to penalize more on the small
distances.

• SISE: The squared integrated squared error (SISE) is an-
other metric which can be adopted to measure the dis-
tance between the derived densities and the objects’ true
densities, and it is defined as: SISE =

∑
i=1(∫

+∞
−∞ (f ∗i −

f̃i)2dx)2. Compared with ISE, SISE tends to penalize
more on the large distance and less on the small distance.



Since the goal of the collector is to release the data whose
pattern is similar to the true underlying pattern for the objects,
the less the ISE or SISE, the better the method.
Datasets. In this experiment, we adopt the following three

real-world datasets to evaluate the performance of the pro-
posed mechanism.

• Population Dataset [Pasternack and Roth, 2010; Wan
et al., 2016]. It is about the population information of
some cities at different years. We process this dataset
with the method adopted in [Wan et al., 2016]. We first
remove the objects whose claims are all the same and
keep only the latest claim for the same user and the same
object. Then we remove the obviously-wrong objects
whose claims are lager than 108. This dataset contains
2,344 users and 1,124 objects.

• Stock Dataset [Li et al., 2012]. This dataset is collected
from 55 users by the authors of [Li et al., 2012] on each
weekday in July 2011. It consists of 1000 stock symbols
and 16 properties. In this experiment, we only adopt the
properties whose data type is continuous. Totally, there
are 55 users and 5,521 objects in this dataset.

• Indoor Floorplan Dataset [Li et al., 2014a]. It is col-
lected when constructing the indoor floorplans, which is
a representative example of social sensing applications.
The objects are the hallway segments of a building, the
task here is to measure the distances of these segments
with the inertial sensors built in the smartphone. It con-
sists of 247 users and 129 object.

E Experiments on Simulated Datasets
In this section, we evaluate the performance of PrisCrowd on
the simulated datasets. We first introduce the data generation
procedure, and then report the experimental results on these
datasets.

Data Generation. We first generate 30 users and 50 ob-
jects. We assume that 30 ∗ p users are marked as “unreliable”
and the rest 30 ∗ (1−p) users are marked as “reliable”, where
p is the percentage of the unreliable users. For each object,
the claims provided by reliable users are generated from the
Gaussian distribution N(�1 = 5, �1 = 0.5), and the claims
provided by unreliable users are generated from the uniform
distribution U (�2 = 0, �3 = 10). In this way, the reliable
users always provide high quality claims while the unreliable
users may provide many extreme claims (i.e., outliers) for the
objects.

Accuracy Comparison. In this experiment, we generate
five simulated datasets via varying p from 0.1 to 0.5, and then
evaluate the accuracy of the released claims generated based
on our proposed method. Here we still assume that the data
collector samples 30 claims for each object in the synthetic
data generation procedure. The calculated ISE and SISE for
these datasets are shown in Table 2. These results show that
our proposed method performs much better than the baseline
methods in all cases. The reason is that we take into consid-
eration the fine grained weights of the users in the proposed
method so that it can be more robust to the outlying claims

Table 2: Results on the Simulated Datasets
p Methods ISE SISE

PrisCrowd 4.758 14.991
Uniform 11.302 23.576

p=0.1 Basic(Strong) 20.297 31.857
Basic(Normal) 20.282 31.845
Basic(Low) 20.268 31.834
PrisCrowd 4.842 15.327
Uniform 12.393 24.668

p=0.2 Basic(Strong) 20.679 32.155
Basic(Normal) 20.669 32.155
Basic(Low) 20.594 32.137
PrisCrowd 4.860 15.325
Uniform 14.613 26.929

p=0.3 Basic(Strong) 21.348 32.671
Basic(Normal) 21.342 32.666
Basic(Low) 21.298 32.633
PrisCrowd 4.866 15.380
Uniform 16.703 28.742

p=0.4 Basic(Strong) 21.650 32.901
Basic(Normal) 21.615 32.850
Basic(Low) 21.571 32.817
PrisCrowd 7.475 18.203
Uniform 18.833 30.579

p=0.5 Basic(Strong) 22.236 33.320
Basic(Normal) 22.226 33.243
Basic(Low) 22.205 33.236

than the baseline methods. Additionally, the results in this ta-
ble also show that the increase of the value of p (i.e., the per-
centage of the unreliable users) degrades the performance of
all the methods. This is mainly because more outlying claims
are involved in the collected data when the percentage of the
unreliable users increases.
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