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Abstract
In this paper, we study the Principal Component
Analysis (PCA) problem under the (distributed)
non-interactive local differential privacy model.
For the low dimensional case, we show the op-
timal ratefor the private minimax risk of the k-
dimensional PCA using the squared subspace dis-
tance as the measurement. For the high dimen-
sional row sparse case, we first give a lower bound
on the private minimax risk, . Then we provide
an efficient algorithm to achieve a near optimal up-
per bound. Experiments on both synthetic and real
world datasets confirm the theoretical guarantees of
our algorithms.

1 Introduction
Principal Component Analysis (PCA) is a fundamental tech-
nique for dimension reduction in statistics, machine learning,
and signal processing. As of today, it remains as one of the
most commonly used tools in applications, especially in so-
cial sciences [Costello and Osborne, 2005], financial econo-
metrics [Aït-Sahalia and Xiu, 2017], medicine [Barber et al.,
1975], and genomics [Lu and Xu, 2013].
With the rapid development of information technologies,

big data now ubiquitously exist in our daily life, which need
to be analyzed (or learned) statistically by methods like re-
gression and PCA. However, due to the presence of sensitive
data (especially those in social science, biomedicine and ge-
nomics) and their distributed nature, such data are extremely
difficult to aggregate and learn from. Consider a case where
health records are scattered across multiple hospitals (or even
countries), it is challenging to process the whole dataset in a
central server due to privacy and ownership concerns. A bet-
ter solution is to use some differentially private mechanisms to
conduct the aggregation and learning tasks. Differential Pri-
vacy (DP) (Dwork et al., 2006b) is a commonly-accepted cri-
terion that provides provable protection against identification
and is resilient to arbitrary auxiliary information that might be
available to attackers.
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Currently, there are mainly two user models available for
differential privacy: the central model and the local one. In
the central model, data are managed by a trusted central en-
tity which is responsible for collecting them and for deciding
which differentially private data analysis to perform and to re-
lease. A classical application of this model is the one of col-
lecting census data. In the local model instead, each individ-
ual manages his/her proper data and discloses them to a server
through some differentially private mechanisms. The server
collects the (now private) data of each individual and com-
bines them into a resulting data analysis. A classical example
of this model is the one aiming at collecting statistics from
user devices like in the case of Google’s Chrome browser [Er-
lingsson et al., 2014], and Apple’s iOS-10 [Near, 2018].

In the local model, two basic types of protocols are often
used: interactive and non-interactive. [Smith et al., 2017]
have recently investigated the power of non-interactive differ-
entially private protocols. This type of protocols is more natu-
ral for the classical use cases of the local model: both projects
from Google and Apple use the non-interactive model. More-
over, implementing efficient interactive protocols in such ap-
plications is more difficult due to the latency of the network.
Despite being used in industry, the local model has been much
less studied than the central one. Part of the reason for this is
that there are intrinsic limitations in what one can do in the lo-
cal model. As a consequence, many basic questions, that are
well studied in the central model, have not been completely
understood in the local model, yet.

In this paper, we study PCA under the non-interactive local
differential privacy model and aim to answer the following
main question.

What are the limitations and the (near) optimal algo-
rithms of PCA under the non-interactive local differential
privacy model?

We summarize our main contributions as follows:
1. We first study the k-subspace PCA problem in the low

dimensional setting and show that the minimax risk
(measured by the squared subspace distance) under �
non-interactive local differential privacy (LDP) is lower
bounded byΩ( �1�k+1pk

(�k−�k+1)2n�2
), where p is the dimensional-

ity of the data and n is the number of data records. More-
over, we prove that the term Ω( pkn�2 ) is optimal.

2. An undesirable issue of the above result is that the er-



ror bound could be too large in high dimensions (i.e.,
p ≫ n). In such scenarios, a natural approach is to im-
pose some additional structural constraints on the lead-
ing eigenvectors. A commonly used constraint is to as-
sume that the leading eigenvectors are row sparse, which
is refereed as sparse PCA in the literature and has been
studied intensively in recent years [Vu et al., 2013b; Cai
et al., 2013; Vu et al., 2013a]. Thus, for the high dimen-
sional case, we consider the sparse PCA under the non-
interactive local model and show that the private mini-
max risk (measured by the squared subspace distance) is
lower bounded by Ω( �1�k+1

(�k−�k+1)2
ks log p
n�2 ), where �1, �k and

�k+1 are eigenvalues and s is the sparsity parameter of
the eigenvectors. We also give an algorithm to achieve a

near optimal upper bound of O
( �21
(�k−�k+1)2

s2 log p
n�2

)

.

2 Related Work
There is a vast number of papers studying PCA under differen-
tial privacy, starting from the SULQ framework [Blum et al.,
2005], [Dwork et al., 2014; Chaudhuri et al., 2013; Jiang et
al., 2016; Gonem and Gilad-Bachrach, 2018; Ge et al., 2018;
Balcan et al., 2016]. We compare only those private PCA re-
sults in distributed settings.

For the low dimensional case, Balcan et al. [Balcan et al.,
2016] studied the private PCA problem under the interactive
local differential privacy model and introduced an approach
based on the noisy power method. They showed an upper
bound which is suitable for general settings, while ours is
mainly for statistical settings. It is worth pointing out that the
output in [Balcan et al., 2016] is only an O(k)-dimensional
subspace, instead of an exact k-dimensional subspace; thus
their result is incomparable with ours. Moreover, we provide,
in this paper, a lower bound on the � non-interactive private
minimax risk.

For the private high dimensional sparse PCA, the work
most closely related to ours is the one by Ge et al. [Ge
et al., 2018]. The authors in this paper proposed a noisy
iterative hard thresholding power method, which is an in-
teractive LDP algorithm and proved an upper bound of
O
( �1�k
(�k−�k+1)2

s(k+log p)

n(1−�
1
4 )

)

for their method, where � is a param-

eter related to �. Specifically, they showed that there exists
some ’Privacy Free Region’. However, several things need to
be pointed out. Firstly, our method is for general � ∈ (0, 1]
and non-interactive settings, while Ge et al. considered the
interactive setting with more restricted �. Secondly, the as-
sumptions in our paper are less strict than the ones in [Ge et
al., 2018]. Finally, we provide a lower bound on the private
minimax risk.

The optimal procedure in our paper is based on perturbing
the covariance by Gaussian matrices, which has been studied
in [Dwork et al., 2014]. However, there are some major dif-
ferences; firstly, we show the optimality of our algorithm un-
der the non-interactive local model using subspace distance
as the measurement, while [Dwork et al., 2014] showed the
optimality under the (�, �) central model using variance as the
measurement. It is notable that in [Dwork et al., 2014] the au-

thors also provided an upper bound on the subspace distance.
However, the lower bound is still unknown. Secondly, while
the optimal algorithm for the low dimensional case is quite
similar, we extend it to the high dimensional case. The op-
timal procedure in the high dimensional sparse case is quite
different from that in [Dwork et al., 2014]. Thirdly, in this pa-
per,since we focus the statistical setting while [Dwork et al.,
2014] considered the general setting, the upper bound results
are incomparable.

3 Preliminaries
3.1 Classical Minimax Risk
Since all of our lower bounds are in the form of private min-
imax risk, we first introduce the classical statistical minimax
risk before discussing the locally private version.

Let  be a class of distributions over a data universe  .
For each distribution P ∈  , there is a deterministic function
�(P ) ∈ Θ, whereΘ is the parameter space. Let � ∶ Θ×Θ ∶↦
ℝ+ be a semi-metric function on the space Θ and Φ ∶ ℝ+ ↦
ℝ+ be a non-decreasing function withΦ(0) = 0 (in this paper,
we assume that � is the subspace distance and Φ(x) = x2
unless specified otherwise).

We further assume that {Xi}ni=1 are n i.i.d observations
drawn according to some distribution P ∈  , and �̂ ∶ n ↦
Θ is some estimator. Then, the minimax risk in metricΦ◦� is
defined by the following saddle point problem:

n(�(),Φ◦�) ∶= inf
�̂
sup
P∈

EP [Φ(�(�̂(X1,⋯ , Xn), �(P ))],

where the supremum is taken over distributions P ∈  and
the infimum over all estimators �̂.

3.2 Local Differential Privacy and Private
Minimax Risk

Since we consider the non-interactive local model in this pa-
per, we will follow the definitions in [Duchi et al., 2013].
We assume that {Zi}ni=1 are the private observations trans-

formed from {Xi}ni=1 through some privacy mechanisms.
When Zi depends only on Xi, the mechanism is called non-
interactive and in this case we have a simpler form for the con-
ditional distributions Qi(Zi ∣ Xi = xi). We now define local
differential privacy by restricting the conditional distribution.
Definition 1 ([Duchi et al., 2013]). For a given privacy pa-
rameter �, � > 0, we say that the random variable Zi is
an (�, �) non-interactively locally differentially private (LDP)
view of Xi if for any xi, x′i ∈  :

Qi(Zi ∈ S ∣ Xi = xi) ≤ e�Qi(Zi ∈ S ∣ Xi = x′i) + �.

When � = 0, we call it � non-interactively LDP view. We
say that the privacy mechanismQ = {Qi}ni=1 is (�, �) (�) non-
interactively locally differentially private (LDP) if each Zi is
an (�, �) (�) non-interactively LDP view.

For a given privacy parameter � > 0, let � be the set of
conditional distributions that have the �-LDP property. For a



given set of samples {Xi}ni=1, let {Zi}
n
i=1 be the set of obser-

vations produced by any distribution Q ∈ � . Then, our es-
timator will be based on {Zi}ni=1, that is, �̂(Z1,⋯ , Zn). This
yields a modified version of the minimax risk:
n(�(),Φ◦�,Q) = inf

�̂
sup
P∈

EP [Φ(�(�̂(Z1,⋯ , Zn), �(p))].

From the above definition, it is natural to seek the mechanism
Q ∈ � that has the smallest value for the minimax risk. This
allows us to define functions that characterize the optimal rate
of estimation in terms of privacy parameter �.
Definition 2. Given a family of distributions �() and a pri-
vacy parameter � > 0, the � non-interactive private minimax
risk in the metric Φ◦� is:

Nint
n (�(),Φ◦�, �) ∶= inf

Q∈�
n(�(),Φ◦�,Q),

where � is the set of all � non-interactively locally differen-
tially private mechanisms.

3.3 Locally Private k-dimensional PCA
LetX ∈ ℝp a random vector with mean 0 and covariance ma-
trixΣ. k-dimensional PCA is to find a k dimensional subspace
that optimizes the following problem:

minE‖(Ip − Π)X‖

2
2, s.t.  ∈ Gp,k,

where Gp,k is the Grassmann manifold of k-dimensional sub-
spaces of ℝp, and Π is the projection of . There always
exists at least one solution; consider Σ =

∑p
j=1 �jvjv

T
j ,

where �1 ≥ �2 ≥ ⋯ , �p ≥ 0 are the eigenvalues of Σ and
v1, v2,⋯ , vp ∈ ℝp are the corresponding eigenvectors. If
�k ≥ �k+1, then the k-dimensional principal subspace of Σ,
i.e. the subspace  spanned by v1,⋯ , vk solves the above
optimization problem, where the orthogonal projector of 
is given by Π = VkV T

k , where Vk = [v1,⋯ , vk] ∈ Vp,k,
Vp,k is the set of all p × k orthogonal matrices. For simplicity
we denote  = col(Vk), where col(M) denotes the subspace
spanned by the columns vectors ofM .
In practice, Σ is unknown, and the only thing that we

have is the set of observation data records {X1,⋯ , Xn},
which are i.i.d sampled from X. Thus, the problem of (non-
interactively) locally differentially private PCA is to find a k-
dimensional subspace priv which is close to  , where the
algorithm that outputs priv must be � (non-interactively) lo-
cally differentially private. After obtaining a private estimator
priv, there are multiple ways to measure the success, such as
variance guarantee [Dwork et al., 2014], low rank approxima-
tion error [Kapralov and Talwar, 2013], etc. In this paper, we
will use the subspace distance as the measurement [Dwork et
al., 2014; Ge et al., 2018].
Let  and  ′ be two k-dimensional subspaces in ℝp. Also

denote by E and F , respectively, the orthogonal matrix cor-
responds to  and  ′. That is, E = V V T and F = WW T

for some orthogonal matrices V ∈ Vp,k andW ∈ Vp,k. Then,
the squared subspace distance between  and  ′ is defined by
the following [Stewart, 1990]:

‖ sinΘ( , ′)‖2F = ‖E − F‖2F =
1
2
‖V V T −WW T

‖

2
F ,

where ‖ ⋅ ‖F is the Frobenious norm. For simplicity, we will
overload notation and write sinΘ( , ′) = sinΘ(V ,W ).

4 Low Dimensional Case
In this section, we focus on the general case and always as-
sume n ≥ p. We first derive a lower bound of the � non-
interactive private minimax risk using the squared subspace
distance as the measurement. By the definition of the �-
private minimax risk, it is important to select an appropriate
class of distributions.

4.1 Class of Distributions
We assume that the observations {Xi}ni=1 satisfies: X =

Σ
1
2Z, where Z ∈ ℝp is a random vector satisfying equations

EZ = 0 and Var(Z) = Ip. Also, Z is sub-Gaussian and
‖Z‖ 2 ≤ 1 where

‖Z‖ 2 ∶= sup
v∶‖v‖2≤1

inf{C > 0,E exp |< Z, v >
C

|

2 ≤ 2},

which means that all the one-dimensional marginals of Xi
have sub-Gaussian tails. We need to note that this assumption
on X is commonly used in many papers on PCA in statistical
settings, such as [Vu et al., 2013b; Ge et al., 2018].

In the study of private PCA, it is always assumed that the
l2 norm of each Xi is bounded by 1, as in [Dwork et al.,
2014][Ge et al., 2018]. For convenience, we relax this as-
sumption in the followingway; for the random vectorX ∈ ℝp,
we assume that ‖X‖2 ≤ 1with a probability at least 1−e−Ω(p).

Next, we give assumptions on the population covariance
matrix Σ. Firstly, we assume that for the target k-dimensional
subspace, �k−�k+1 > 0 so that the principal subspace is well
defined. Next, we define the effective noise variance, which
is proposed in [Vu et al., 2013b] and [Cai et al., 2013]:

�2k(�1, �2,⋯ , �p) ∶=
�1�k+1

(�k − �k+1)
. (1)

For a given constant �2 > 0, we assume that �2k ≤ �2. Also,
we denote the collection of distributions by (k, �2).

4.2 Main Results
The next theorem shows a lower bound of � non-interactive
private minimax risk under squared subspace distance.
Theorem 1. Let {Xi}ni=1 be samples from P ∈ (k, �2). If
p
4 ≤ k ≤ 3p

4 , � ∈ (0, 12 ] and n ≥ Ω
( 1
�2

�1�k+1
(�k−�k+1)2

min{k, p −

k}
)

, then the � non-interactive private minimax risk in the
metric of squared subspace distance satisfies:

Nint
n (((k, �2)),Φ◦�, �) ≥ Ω

( �1�k+1
(�k − �k+1)2

kp
n�2

)

.

Remark 1. We note that for the non-private case, the min-
imax risk is lower bounded by Ω

( �1�k+1
(�k−�k+1)2

kp
n

)

[Cai et al.,
2013]. Thus, in this case, the impact of the local differential
privacy is to change the number of efficient sample from n to
n�2. However, the collection of the considered distributions
needs another assumption which says that ‖X‖2 is bounded
by 1 with high probability. This is not necessary in the non-
private case [Cai et al., 2013], but needed in ours for showing
the upper bound.



We also note that in the central differential privacy model,
[Dwork et al., 2014] showed that the lower bound of the k-

dimensional PCA is Ω̃(
kp log( 1� )
n2�2 ) for (�, �)-differential privacy.

However, this lower bound is measured by the variance of
X = (XT

1 , X
T
2 ,⋯ , XT

n )
T ∈ ℝn×p, not the squared subspace

distance used in this paper. Although [Dwork et al., 2014]
gave an upper bound of O( kp log(1∕�)

(�2k−�
2
k+1)n

2�2
) in the general set-

ting using the squared subspace distance as measurement, it
is still unknown whether the bound is optimal. Also, their
lower bound omits the parameters related to the eigenvalues.
For the � differential privacy in the central model, [Chaudhuri
et al., 2013] showed that the lower bound is Ω( p2

n2�2(�1−�2)2
)

in the special case of k = 1. However, it is still unknown
for the general case of k. Thus, from the above discussion,
we can see that the lower bound of � non-interactively locally
differentially private PCA is similar to the (�, �) differentially
private PCA in the central model.

One of the main questions is whether the lower bound in
Theorem 1 is tight. In the following, we show that the term
Ω( pkn�2 ) is tight. By our definition of the parameter space, we
know that for any X ∼ P ∈ (�2, k), ‖X‖2 ≤ 1 with high
probability. Thus, we always assume that the event of each
‖Xi‖2 ≤ 1 holds. Note that this assumption also appears in
[Ge et al., 2018; Dwork et al., 2014; Balcan et al., 2016]. The
idea is the same as in [Dwork et al., 2014], where each Xi
perturbs its covariance and aggregates the noisy version of
covariance, see Algorithm 1 for details.
Theorem 2. For any �, � > 0, Algorithm 1 is (�, �) (non-
interactively) locally differentially private. Furthermore, with
probability at least 1 − e−C1 − 1

pC2
, the output satisfies:

‖ sinΘ(Ṽk, Vk)‖2F ≤ O
(
�21kp log(1∕�)

(�k − �k+1)2n�2
)

, (2)

where C1, C2 are some universal constants.

Algorithm 1 Local Gaussian Mechanism
Input: data records {Xi}ni=1 ∼ P n for P ∈ (�2, k),
and for i ∈ [n], ‖X‖2 ≤ 1. �, � are the privacy parame-
ters.
1: for Each i ∈ [n] do
2: Denote X̃iX̃T

i = XiXT
i + Zi, where Zi ∈ ℝp×p is a

symmetric matrix where the upper triangle ( including
the diagonal) is i.i.d samples from (0, �21 ); here �

2
1 =

2 ln(1.25∕�)
�2 , and each lower triangle entry is copied from

its upper triangle counterpart.
3: end for
4: Compute S̃ = 1

n
∑n
i=1 X̃iX̃T

i .
5: Output col(Ṽk) where Ṽk ∈ ℝp×k is the principal rank k

subspace of S̃.

In Theorem 7 of [Dwork et al., 2014], the authors provided
a similar upper bound for the (�, �)-differential privacy in the

central model. However, they need to assume that the eigen-
values satisfy the condition �2k − �

2
k+1 = !(

√

p), which is not
needed in our Theorem 2.

From Theorems 1 and 2, we can see that there is still a gap
of O( �1

�k+1
) between the lower and upper bounds. We leave

it as an open problem to determine whether these bounds are
tight or not.

5 High Dimensional Sparse Case
From Theorem 1, we can see that for the high dimensional
case, i.e. p ≫ n, the bound in (2) becomes trivial. Thus, to
avoid this issue, we need some additional assumption on the
parameter space. One of the commonly used assumption is
sparsity. There are many definitions of sparsity on PCA and
we use the row sparsity in this paper, which has also been
studied in [Vu et al., 2013b; Cai et al., 2013; Ge et al., 2018].

We first define the (2, 0)-norm of a p × k matrix A as the
usual l2 norm of the vector of row-wise l0 norms of A:

‖A‖2,0 ∶= ‖(‖a1∗‖2, ‖a2∗‖2,⋯ , ‖ap∗‖2)‖0, (3)
where aj∗ denotes the j-th row of A. Note that ‖ ⋅‖2,0 is coor-
dinate independent, i.e. ‖AO‖2,0 = ‖A‖2,0 for any orthogonal
matrix O ∈ ℝk×k. We define the row sparse space as follows.
Definition 3. Let s be the sparsity level parameter satisfying
the condition of k ≤ s ≤ p. The s-(row) sparse subspace is
defined as follows
0(s) = {Col(U ), U ∈ ℝp×k and orthogonal , ‖U‖2,0 ≤ s}.

We define our parameter space, (s, k, �2), to be the same
as in the previous section with an additional condition that
 ∈0(s), where  is the k-dimensional principal subspace
of covariance matrix Σ.

Below, we will first derive a lower bound of the non-
interactive locally differentially private PCA in the high di-
mensional sparse case.
Theorem 3. Let {Xi}ni=1 be the observations sampled from
a distribution P ∈ (s, k, �2). If the privacy parameter � ∈
(0, 12 ], n ≥ C(s − k)�

2(k+log p)
�2 for a universal constant C > 0,

and 2k ≤ s − k ≤ p − k, then for all k ∈ [p] satisfying the
condition of k ≤ p− 4, the � non-interactive private minimax
risk in the metric of squared subspace distance satisfies the
following

Nint
n (((s, k, �2), �) ≥ Ω

( �1�k+1
(�k − �k+1)2

s(k + log p)
n�2

)

.

Note that in the non-private case, the optimal minimax risk
is O

( �1�k+1
(�k−�k+1)2

s(k+log p)
n

)

. Thus, same as in the low dimen-
sional case, the impact of the privacy constraint is to change
the efficient samples from n to n�2.

Next, we consider the upper bound. In the non-private case,
the optimal procedure is to solve the following NP-hard opti-
mization problem [Vu et al., 2013b]:

max < S,UUT >

subject to UTU = Ik, U ∈ ℝp×k and ‖U‖2,0 ≤ s, (4)



where S is the empirical covariance matrix. Our upper bound
is based on (4). However, instead of solving (4) on the per-
turbed version of the empirical covariance matrix, we perturb
the covariance matrix and solve the following optimization
problem on the convex hull of the constraints in (4), that is:

X̂ = argmax < S̃,X > −�‖X‖1,1 (5)
subject to X ∈ k ∶= {X ∶ 0 ⪯ X ⪯ I and Tr(X) = k},

where < S,X >= Tr(SXT ). Note that the constraints in (5),
which is called Fantope [Bhatia, 2013][Vu et al., 2013a], is the
convex hull of the constrains in (4). Also, since the constraints
in (5) only guarantees that the rank of the output is ≥ k, the
output X̂ needs not to be a matrix with exact rank of k. Thus,
in order to obtain a proper k-dimensional subspace, we just
output the k-PCA of X̂.

Algorithm 2 Local Gaussian Mechanism-High Dimension
Input: data records {Xi}ni=1 ∼ P n for P ∈ (s, �2, k), and
for i ∈ [n], ‖X‖2 ≤ 1. �, � are privacy parameters. � > is a
constant.
1: for Each i ∈ [n] do
2: Denote X̃iX̃T

i = XiXT
i + Zi, where Zi ∈ ℝp×p is a

symmetric matrix where the upper triangle ( including
the diagonal) is i.i.d samples from (0, �21 ); here �

2
1 =

2 ln(1.25∕�)
�2 , and each lower triangle entry is copied from

its upper triangle counterpart.
3: end for
4: Compute S̃ = 1

n
∑n
i=1 X̃iX̃T

i .
5: Get the optimal solution X̂ in (5) or do as the followings
6: Setting Y (0) = 0, U (0) = 0
7: for t = 1, 2,⋯ do
8: X(t+1) = k (Y (t) − U (t) +

S̃
� )

9: Y (t+1) = �∕�(X(t+1) + U (t)) where  is the entry-
wise soft thresholding operator defined as �∕�(x) =
sign(x) max(|x| − �∕�, 0).

10: U (t+1) = U (t) +X(t+1) − Y (t+1)
11: Return Y (t)
12: end for
13: Let k-dimensional principal component of X̂ or Y (t) be

Ṽk, output ̂ = col(Ṽk).

Theorem 4. For any given 0 < �, � < 1, if {Xi}ni=1 ∼ P
n for

P ∈ (s, �2, k) and ‖X‖2 ≤ 1 for all i ∈ [n], then the solu-
tion to the optimization problem (5) is (�, �) non-interactive
locally differentially private. Moreover, if let V̂k denote the
k-dimensional principal component subspace of X̂ and set
� ≤ O(�1

√

log p
n�2 ), then with probability at least 1 − 2

p2 −
1
pc ,

the following holds

‖ sinΘ(V̂k, Vk)‖2F ≤ O
(

�21
(�k − �k+1)2

s2 log p
n�2

)

,

where c is a universal constant.

Since the optimization problem (5) is convex, we can follow
the approach in [Vu et al., 2013a] to solve it by using ADMM
method (see Algorithm 2 for the details).

Comparing with the lower bound of the private minimax
risk in Theorem 3, we can see that the bound in Theorem 4 is
roughly larger than the optimal rate by a factor of O( �1

�k+1
s
k ).

This means that the upper bound is only near optimal [Vu
et al., 2013a]. A remaining open problem is to determine
whether it is possible to get a tighter upper bound that does
not contain the term of sk in the gap.

6 Experiments

Dataset Size s Error

cancer RNA-Seq (801, 20531)
10 3.162
20 3.381
40 3.668

Leukemia (72, 7128)
10 3.162
20 3.435
40 3.701

Colon cancer (60, 2000)
10 2.449
20 3.058
40 3.228

isolet5 (1559, 617)
10 1.441
20 2.023
40 2.508

lung (203, 3312)
10 2.858
20 3.464
40 3.901

NIPS (11463, 5811)
10 3.643
20 3.881
40 4.472

Table 1: Results with different sparsity s for LDP-High dimensional
PCA on real world datasets. For all the datasets, the target dimen-
sions k is set to be k = 10 and � = 2.

6.1 Low Dimensional Case
For synthetic datasets, we generate the data samples {Xi}ni=1
independently from a multivariate Gaussian distribution
 (0,Σ), where Σ = �

5p(�+1))V V
T + 1

5p(�+1)Ip for V ∈ Vp,k. It
can be shown that ‖Xi‖2 ≤ 1 ∀i ∈ [n] with high probability
(see supplemental material). We choose n = 105, p = 40,
k = {5, 10, 15, 20}, � = 0.5, � = 10−4, and � = 1. For real
world datasets, we run Algorithm 1 on Covertype and Buzz
datasets [Dheeru and Karra Taniskidou, 2017] with normal-
ized rows for each dataset. The error is measured by the sub-
space distance ‖V̂kV̂ T

k − VkV T
k ‖F . For each experiment, we

repeat 20 times and take the average as the final result.
Figure 1 is the result for the synthetic datasets. Figure indi-

cates that 1) the error deceases as the sample size increases or
� increases (i.e., becomes less private); 2) the error increases
as the dimensionality p increases or the dimensionality k of
the target subspace increases.



Figure 1: LDP-PCA in high dimensional case on synthetic datasets. The left one is for different target dimensions k over sample size n with
fixed � = 2 and p = 400. The middle one is for different dimensions with fixed n = 2000 and � = 2. The right one is for different level of
privacy with fixed n = 2000 and p = 400.

Figure 2: LDP-PCA in high dimensional case on synthetic datasets. The left one is for different target dimensions k over sample size n with
fixed � = 2 and p = 400. The middle one is for different dimensions with fixed n = 2000 and � = 2. The right one is for different level of
privacy with fixed n = 2000 and p = 400.

6.2 High Dimensional Case
For the high dimensional case, we consider the same distri-
butions as in the low dimensional case and generate the tar-
get subspace V in the following way. For a given sparsity
parameter s, we first generate a random orthogonal matrix
Ṽ ∈ ℝs×k, then pad it with rows of zeros, and finally ran-
domly permute thematrix. We set k = 10, n = 2000, p = 400,
s = {15, 20, 40, 80} and � = 1.
Besides the synthetic datasets, we also test our algorithm

on some real world datasets in [Dheeru and Karra Taniskidou,
2017] and [Li et al., 2017]. We can see that 1) as the term of kn
increases (n decreases), the error increases accordingly; 2) the
error slightly increases when the dimensionality p increases,
which is due to the fact that the upper bound in Theorem 4
depends only logarithmically on p (i.e., log p); 3) the error
decreases when � increases. Table 1 and 2 show the results of
the error with different sparsity and privacy, respectively.
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