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Abstract

In this paper, we study the sparse linear regres-
sion problem under the Local Differential Privacy
(LDP) model. We first show that polynomial de-
pendency on the dimensionality p of the space
is unavoidable for the estimation error in both
non-interactive and sequential interactive local
models, if the privacy of the whole dataset needs
to be preserved. Similar limitations also exist
for other types of error measurements and in the
relaxed local models. This indicates that differen-
tial privacy in high dimensional space is unlikely
achievable for the problem. With the understand-
ing of this limitation, we then present two algo-
rithmic results. The first one is a sequential in-
teractive LDP algorithm for the low dimensional
sparse case, called Locally Differentially Private
Iterative Hard Thresholding (LDP-IHT), which
achieves a near optimal upper bound. This algo-
rithm is actually rather general and can be used
to solve quite a few other problems, such as (Lo-
cal) DP-ERM with sparsity constraints and sparse
regression with non-linear measurements. The
second one is for the restricted (high dimensional)
case where only the privacy of the responses (la-
bels) needs to be preserved. For this case, we
show that the optimal rate of the error estimation
can be made logarithmically depending on p (i.e.,
log p) in the local model, where an upper bound is
obtained by a label-privacy version of LDP-IHT.
Experiments on real world and synthetic datasets
confirm our theoretical analysis.

1. Introduction

Linear regression is a fundamental and classical tool for
data analysis, and finds numerous applications in social
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sciences (Marascuilo & Serlin, 1988), genomics research
(Buzkova, 2013) and signal recovery (Bithlmann & Van
De Geer, 2011). One frequently encountered challenge for
such a technique is how to deal with the high dimensionality
of the dataset, such as those in genomics, educational and
psychological research. A commonly adopted strategy for
dealing with such an issue is to assume that the unknown
regression vector is sparse.

Another often encountered challenge for linear regression
is how to handle sensitive data, such as those in social
science. As a commonly-accepted approach for preserving
privacy, differential privacy (Dwork et al., 2006) provides
provable protection against identification and is resilient to
arbitrary auxiliary information that might be available to
attackers. Methods to guarantee differential privacy have
been widely studied, and recently adopted in industry (Near,
2018; Erlingsson et al., 2014; Near, 2018; Tang et al., 2017).

Two main user models have emerged for differential pri-
vacy: the central model and the local one. In the central
model, data are managed by a trusted central entity which is
responsible for collecting them and for deciding which dif-
ferentially private data analysis to perform and to release. A
classical application of this model is the one of census data.
In the local model instead, each individual manages his/her
proper data and discloses them to a server through some dif-
ferentially private mechanisms. The server collects the (now
private) data of each individual and combines them into a
resulting data analysis. A classical example of this model is
the one aiming at collecting statistics from user devices like
in the case of Google’s Chrome browser (Erlingsson et al.,
2014), and Apple’s i0S-10 (Near, 2018; Tang et al., 2017).

Despite being used in industry, the local model has been
much less studied than the central one. Part of the reason for
this is that there are intrinsic limitations in what one can do
in the local model. As a consequence, many basic questions,
that are well studied in the central model, have not been
completely understood in the local model, yet.

To advance our understanding on the local model, we
study, in this paper, the locally differentially private ver-
sion of the sparse linear regression problem, where each
user i € [n] holds a data record (x;, y;) € R? X R. There
are two commonly used ways for measuring the perfor-
mance of this problem, which correspond to two differ-
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ent settings, the statistical learning and the statistical esti-
mation settings. For the first setting, the measurement is
based on the optimization error, i.e. F (P1ivy — mingec F(6),
where F(0) = E(, ,.p({(x,0) — y)*, and P is an unknown
distribution. For the second setting, y is assumed to be
y = (x,0%) + o, where x ~ D, D is a known distribution, ¢
is arandom noise, and 8* € RP? is the to-be-estimated vector
that satisfies the condition of ||0*||, < s. The estimation
error for this setting is represented by the loss of the squared
¢, norm, Le., ||gPriv — 9*||§. In this paper, we will focus on
the latter setting, and assume that x ~ Uniform{+1, —1}7.

Our contributions can be summarized as follows:

* We first present a negative result which suggests that
the e non-interactive private minimax risk of ||§PY —
0*||§ is lower bounded by Q(%) if the privacy of
the whole dataset {(x;, yi)}l'.':1 needs to be preserved.
This indicates that it is impossible to obtain any non-
trivial error bound in high dimensional space (i.e. p >
n). The private minimax risk is still lower bounded
by Q(ﬁ), even in the sequentially interactive local
model. Our proofs are based on a locally differentially
private version of the Fano and Le Cam method (Duchi
et al., 2013; 2018; Duchi & Ruan, 2018). We further
reveal that this polynomial dependency on p cannot be
avoided even if the measurement of the loss function
or definitions of differential privacy is relaxed.

* With the understanding of this limitation, we then pro-
pose an e-sequential interactive LDP algorithm for the
low dimensional sparse case, called Locally Differen-
tially Private Iterative Hard Thresholding (LDP-IHT),
which achieves a near optimal upper bound. Further-
more, we show that the idea of DP-IHT is actually
rather general and can be used to achieve differential
privacy for quite a few other problems. Specifically, it
can be applied to the (Locally) Differentially Private
Empirical Risk Minimization (DP-ERM) problem with
sparsity constraints, and achieves an upper bound that
depends only logarithmically on p (i.e., log p) and the
sparsity parameter of the optimal estimator, making it
suitable for applications in high dimensions. To our
best knowledge, this is the first paper studying DP-
ERM with non-convex constraint set. Another applica-
tion of LDP-IHT is the sparse regression problem with
non-linear measurements (Zhang et al., 2018; Yang
et al., 2016).

* We also give a positive result for high dimensions.
Particularly, we consider the restricted case where only
the responses (labels) are required to be private, i.e., the
dataset {x; }:’:1 is assumed to be public and {y; }:’:1 is
private (note that this is a valid assumption as shown in
(Chaudhuri & Hsu, 2011; Beimel et al., 2013)). For this

case, we propose a general algorithm which achieves
an upper bound of O(%) for the estimation error.
We show that this bound is actually optimal, as the €
non-interactive private minimax risk can also be lower
bounded by gz(“’—%f’ ).

Due to space limit, some background, all the proofs and
additional experiments are left to the Supplemental Material.

2. Related Work

There is a vast number of existing results studying the differ-
entially private linear regression problem (or more generally,
DP-ERM) from different perspectives, such as (Chen et al.,
2016; Barrientos et al., 2019; Wang, 2018; Sheffet, 2017;
Kifer et al., 2012; Smith et al., 2017; Thakurta & Smith,
2013). Below, we focus only on those with theoretical guar-
antees on the error.

For the central model, (Wang, 2018) recently conducted a
comprehensive study, from both theoretical and practical
points of views, on the differentially private linear regression
problem. The author gave upper bounds of the optimization
error in the statistical learning setting and the estimation
error in the statistical estimation setting, as well as a general
lower bound of the optimization error. However, the lower
bound of the estimation error is still unknown. There are
also other works on this problem (we refer the reader to the
Related Work section in (Wang, 2018) for more details). But
all these results are only for the low dimensional case (i.e.
the dimensionality p is a small constant number). Contrarily,
we study mainly, in this paper, the high dimensional sparse
case under the statistical estimation setting and provide
both upper and lower bounds of the estimation error for
the non-interactive and sequentially interactive models. A
couple of results also exist for the high dimensional sparse
linear regression problem in the central model (Kifer et al.,
2012; Talwar et al., 2015); but all of them consider only the
optimization error.

Unlike the central model where tremendous progresses have
been made, linear regression in the local model is still not
well understood. The only known results are (Smith et al.,
2017; Zheng et al., 2017; Duchi et al., 2018; 2013). (Duchi
et al., 2013) studied the low dimensional, non-interactive
private minimax risk of the estimation error for the restricted
case of keeping the responses private, while we consider
the high dimensional case of the problem in the interactive
local model. (Smith et al., 2017) gave the optimal lower

bound of the optimization error, ©(4 /n’j), for the low di-

mensional case which was later improved to 0((%)}1) by
(Zheng et al., 2017; Wang et al., 2018) in the case where the
constraint set is a unit £ norm ball. However, their settings
are different from ours since they all assume that the norm
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of x; is bounded by 1, i.e. ||x;||, < 1, while in our statistical
setting, ||x;|[, = \/E Thus, our results are incomparable
with theirs.

DP-ERM has been studied in (Wang et al., 2019; Wang &
Xu, 2019; Wang et al., 2017; 2018; Duchi et al., 2013; Jain
et al., 2014) under different settings. However, none of these
considered the non-convex constraint case.

3. Preliminaries

In this section, we introduce some definitions that will be
used throughout the paper. More details can be found in
Section A of Supplemental Material or (Duchi et al., 2018).

3.1. Classical Minimax Risk

Since all of our lower bounds are in the form of private mini-
max risk, we first introduce the classical statistical minimax
risk before discussing the locally private version.

Let P be a class of distributions over a data universe X. For
each distribution p € P, there is a deterministic function
0(p) € O, where O is the parameter space. Let p : © X
® :~ R, be a semi-metric function on the space ® and @ :
R, — R, be a non-decreasing function with ®(0) = 0 (in
this paper, we assume that p(x, y) = |x — y| and ®(x) = x?
unless specified otherwise). We further assume that { X; };’=1
are n i.i.d observations drawn according to some distribution
p € P, and O : X" — O be some estimator. Then the
minimax risk in metric ®op is defined by the following
saddle point problem:

M, (6(P), Dop) = inf sup E,[D(p(O(Xy, -, X,), 0(p)],
0 pepP

where the supremum is taken over distributions p € P and
the infimum over all estimators 6.

3.2. Local Differential Privacy and Private Minimax
Risk

Since we will consider the sequential interactive and non-
interactive local models in this paper, we follow the defini-
tions in (Duchi et al., 2013).

We assume that { Z; };‘zl are the private observations trans-
formed from {X i}lf‘zl through some privacy mechanisms.
We say that the mechanism is sequentially interactive, when
it has the following conditional independence structure:

(X Zy, . Zi\}y > 21,2 1L Xj [{Xi.Zy, . Ziy}

for all j # i and i € [n], where Ll means independent
relation. The full conditional distribution can be specified
in terms of conditionals Q;,(Z; | X; = x;, Z;.; = z;.;). The
full privacy mechanism can be specified by a collection

Q = {Qi}7:1'

When Z; is depending only on X;, the mechanism is called
non-interactive and in this case we have a simpler form
for the conditional distributions Q;(Z; | X; = x;). We now
define local differential privacy by restricting the conditional
distribution Q;.

Definition 1 ((Duchi et al., 2013)). For a given privacy
parameter € > 0, the random variable Z; is an € se-
quentially locally differentially private view of X; if for
all zy, z, -+, z;_; and x, x" € X we have the following for
all the events S':

O(Z, €S| X;=x;,Zy.i-1 = Z1:i-1) < o
0(Z, €S| X;=x,Zy._1 =21.21)

We say that the random variable Z; is an € non-interactively
locally differentially private view of X; if
0,(Z, €S| X, =x;)
0,(Z, eS| X;=x)

<€,

We say that the privacy mechanism Q = { Qi};‘= is e-
sequentially (non-interactively) locally differentially private
(LDP) if each Z; is a sequentially (non-interactively) locally
differentially private view.

For a given privacy parameter € > 0, let 9, be the set of
conditional distributions that have the e-LDP property. For
a given set of samples { X }l'.’zl, let { Z; }?=1 be the set of ob-
servations produced by any distribution Q € Q.. Then, our
estimator will be based on {Z; }:.’zl, that is, é(Zl, e, Zy).
This yields a modified version of the minimax risk:

M, (O(P), ®op,Q) :=inf sup E,[D(p(O(Z,, -, Z,),0(p))].
6 pepr

From the above definition, it is natural for us to seek the
mechanism Q € Q, that has the smallest value for the mini-
max risk. This allows us to define functions that characterize
the optimal rate of estimation in terms of privacy parameter
€.

Definition 2. Given a family of distributions 0(P) and a
privacy parameter € > 0, the € sequential private minimax
risk in the metric ®op is:

MU OP), Dop,€) 1= ngg M, (O(P), Dop, ),
where Q. is the set of all € sequentially locally differentially

private mechanisms. Moreover; the € non-interactive private
minimax risk in the metric ®op is:

MY(O(P), Dop, €) Z=Qin£ M, (0(P), Pop, Q),
€ €

where Q. is the set of all € non-interactively locally differ-
entially private mechanisms.
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4. Keeping the Whole Dataset Private
4.1. Lower Bounds of Private Minimax Risk

In this section, we investigate the private minimax risk in the
case where the whole dataset {(x;, y;) }?=1 needs to be locally
private, and show that even if the parameter vector 6* is 1-
sparse, the polynomial dependence on the dimensionality
p in the estimation error cannot be avoided. This implies
that achieving e-LDP for the high dimensional sparse linear
regression problem is unlikely.

We focus on the following collection of samples (x, y) €
{+1, -1}’ X R:

P pc = {Pys | x ~ Uniform{+1, -1}, y={(0,x)+ o,
where o is the random noise satisfying the condition of

|o] < C for some constant C > 0, [|0], < 1, 8[|y < s}.

(D

In the above definition, ¢ is sampled from a bounded
stochastic noise domain such as uniform distribution and
could depend on x.

It is worth noting that there is some difference between our
model (1) and the sub-Gaussian linear model, which is a
classic model in statistics (Raskutti et al., 2011). That is,
here x is assumed to follow a uniform distribution (which is
an often adopted assumption in estimating lower bounds in
differential privacy (Bun et al., 2018b)) in our model, while
it is often sampled from general sub-Gaussian distribution in
a sub-Gaussian model. Even though the uniform distribution
can be viewed as a sub-Gaussian distribution, the way of
using it in our paper is different.

To show the limitations of the problem with respect to the
private minimax risk, we first give some intuition. Con-
sider a raw data record (x;, ;) which is sampled from some
Py, € Py, . Suppose that we want to use a Gaussian or
Laplacian mechanism on (x;, y;) in order to make the algo-
rithm locally differentially private. Then, due to sensitivity,
the 7, or £, norm of (x;, y;) is a polynomial of p. The scale
of the added random noise will also be a polynomial of p,
which makes the final estimation error large.

The following theorem indicates that for some fixed pri-
vacy parameter ¢ € (0, 1), the optimal rate of the ¢ non-
interactive private minimax risk is @(min{1, % D.

Theorem 1. For a given fixed privacy parameter ¢ € (0, %],
the € non-interactive private minimax risk (measured by the
- ||§ metric) of the 1-sparse high dimensional sparse lin-
ear regression problem P, , , needs to satisfy the following
inequality,

_ ... plogp
MYOP, ), 1 1, €) = Qanin{ 1, 2228 2)
p 2 ne?

Moreover, there exists an (€,6) non-interactive LDP
algorithm whose output achieves an upper bound of
O(min{ 1, %}) under the squared ¢5-norm with prob-
ability at least 1 — exp(—C(p)).

With the above theorem, our question now is to determine
whether there are other factors in the local model that might
allow us to avoid the polynomial dependency on p in the
estimation error.

We first consider the necessity of interaction in the model,
since for some problems, such as convex Empirical Risk
Minimization (ERM), there exists a large gap in the esti-
mation error between the interactive and non-interactive
local models (Smith et al., 2017). The following theorem
suggests that even if sequential interaction is allowed in
the local model, the polynomial dependence on p is still
unavoidable. Note that sequential interaction is a commonly
used model in LDP (Duchi et al., 2013; Smith et al., 2017).

Theorem 2. For a given fixed privacy parameter ¢ € (0, %],
the € sequential private minimax risk (measured by the
- ||§ metric) of the 1-sparse high dimensional sparse lin-
ear regression problem P, , , needs to satisfy the following
inequality,

MOPy o). 11 - 2.0 2 Qmin{1, L. )
ne?

Remark 1. Since the lower bound of the non-private min-
imax risk is O(loﬂ) (Raskutti et al., 2011), we conjecture
that the lower bound in Theorem 2 is not tight and the
tightest bound should be O(%), which is the same as
Theorem 1. Later, we will propose a near optimal algorithm
(compared with (3)) in Section 4.2 and leave the problem of
finding a tighter lower bound as future research.

Then, we investigate whether the loss function in the es-
timation error is too strong. For example, if let 0" = e;
and the private estimator oPriv = e; for some i # j, then
by the squared £, norm loss, we have [Py — 9*||§ = 2.
Since it is possible to get |(1, 8P — §*)| = 0, this seems to
suggest that relaxing the loss function could possibly lower
the dependency on p. However, our next theorem gives a
negative answer.

Theorem 3. Consider the loss function L : ® X0 — R,
where L(0,0") = |17(0—0")|. Then, for any fixed e € (0, %],
the € sequential private minimax risk of the loss function L
in the 1-sparse high dimensional sparse linear regression
problem P, , , needs to satisfy the following inequality,

MIO(P) ), L, €) > Q(min{1, \/ Lz Do @
ne
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4.2. Near Optimal Upper Bound for Sequential
Interactive Local Model

With the understanding of the limitation in high dimensions,
we focus, in this section, on the low dimensional sparse case
(.e.,n > Q(:#z)) and propose an € sequential interactive
LDP algorithm that achieves a near optimal upper bound
on the estimation error (compared with (3)). Instead of
considering the 1-sparse case as in Theorem 2, we study
here the general case, that is, {(x;, y))}]_, ~ Py ,, where
Py« ; € Py« , c, and assume that some upper bound of s* is
already known.

Our method is called Locally Differentially Private Iterative
Hard Thresholding (LDP-IHT), which is a locally differen-
tially private version of the traditional iterative hard thresh-
olding method (Blumensath & Davies, 2009). We consider
the following more general optimization problem, with the
intention to extend it to other problems (see Section 6),

. oy L ‘ 2
min L(0; D) = n ;((Xp 0) —y)
st ]l < L 116lly < s. ®)

The key ideas for solving (5) in our Algorithm 1 are the
follows. First, we partition the users into T' groups {.S; }z;l
(where the value of T will be specified later). Then, in the
i-th iteration, each user receives the current estimator 6,_;,
and all users in group .S; conduct the e-LDP randomizer
procedure (Duchi et al., 2018) on their current gradients
xl.T(<x, 0;_1) — y) (see Supplemental Material for details).
After receiving the noisy version of the gradient from each
user, the server runs the iterative hard thresholding algorithm
and produces a new estimator. That is, it executes first a
gradient descent step, and then a truncation step 91,+1 =
Trunc(d,, , s), where the truncation function simply keeps
the largest s entries of 8, (in terms of the magnitude) and
converts the rest of the entries to zero. This can be done by
first sorting {16, 1 };’zl, where 6, ; is the j-th coordinate
of the vector, then keeping the s-largest ones, and making
the entries of all other coordinates 0. Finally, the algorithm
projects Ht’ 1 onto the unit £, norm ball B, .

Before giving the theoretical analysis of Algorithm 1,
we first show the assumption of the partitioned datasets
{XSz }tT:l

Assumption 1. {X s, }th | satisfies the Restricted Isometry
Property (RIP) with parameter 2s + s*, where s = 8s*. That
is, for any v € RP with ||v||y < 2s + s, there exists a

constant 8' which satisfies (1 — 8")||v||* < — 50 ||XS’U||2
1+6 )||U||2f0}’ anyt € [T].
Note that for an m X p matrix X = (xI,-,x)T ~

Uniform{+1, —1}™*P_ it satisfies the RIP condition (with

Algorithm 1 LDP-IHT

Input: Private data records {(x;,y)}_, ~ Ppgs
where Py, € Pg ,c, iteration number T, privacy
parameter €, step size . Set §, = 0. s =
8s*.

1: For t = ,T, define the index set S, =
(- 1)[§J , [—J “ 1} ift = T, then S, =
s:Uu 7).

2: fort=1,2,- Tdo

3:  The server sends 0,_, to all the users. Every use i,
i € §,, conducts the following operation: let V; =
x!'((6,_y.,x;) — y;), compute z; = R(V,), where R,
is the randomizer defined in (Smith et al., 2017) or
(Duchi et al., 2018) and send back to the server.

= 1

4:  The server compute V,_; = S0 Lies, z,~
Perform the gradient descent updating 8, = 0,_; —
v,y 5

6: 0 =Trunc(f,_i,s).

7 6, =argeep, 110 - 0]12.

8: end for

9: Return 61

parameter s*) with probability at least 1 — ¢ if n >
¢6'2(s* log p + In(1/e€)) for some universal constant c
(see Theorem 2.12 in (Rauhut, 2010)). Thus, with prob-
ability at least 1 — &, {X S,}IT: satisfies Assumption 1 if
n > Q(67(Ts* log plog %)). Later, we will see that T =
O(log n). Thus, in order to ensure that Assumption 1 and

n> Q(e%) hold, we need to assume tha lo’;n >

Theorem 4. For any € > 0, Algorithm 1 is € sequentially
interactive LDP. Moreover, under Assumption 1 with §' =

s* 1 .
pse#)y l_f {(xis y[)}:lzl
Py ; € Py, ¢, then by taking s = 8s* and n = O(1), the
output O of the algorithm satisfies

C\/pIng\/f\/S_*) ©)
Vie

with probability at least 1 — i—? for some constant ¢ > 0.

~ Py ,, where

" 1 "
07 — 0%l < (E)T”H ll, + O(

Note that Theorem 4 shows thatif s* = 1, T = O(lo ne? ),
& plogp

then || — 9*||§ (M) Compared with the lower
bound in Theorem 2, it is ‘a near optimal upper bound.

We notice that recently Ge et al. (2018) also used IHT to
distributed DP-sparse PCA. However, compared with theirs,
our method is e-sequentially LDP while theirs is (¢, 6)-fully
interactive LDP. Thus, the algorithms are quite different.
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5. Keeping the Responses Private

In this section, we consider a restricted case where only
the responses or labels (i.e., { y,»}l’;l) are required to be
locally differentially private and all the observations {x;}7_|
are assumed to be public. Preserving the privacy of the
labels has been studied in (Chaudhuri & Hsu, 2011; Beimel
et al., 2013) for private PAC. We also note that keeping
the responses private is related to some issues of physical
sensory data and the sparse recovery problem, which has
been studied in (McMillan & Gilbert, 2018). In this case,
we can actually assume that {xi}l’,'=1 € ({+1,-1}7)" are
fixed, and the collection of probability P , - in (1) is now
reduced to the following model:

P, c = (Pooi. .y | yi = (0%, x;) + 0, where

1611y < 5,110, < 1 and the random noise |6;| < C}. (7)

The following theorem shows that, for every set of data
{ ey}t o if only {y; }7=1 needs to be private, then there
is an (e, 6) non-interactively locally differentially private
algorithm DP-IHT, which yields a non-trivial upper bound
on the squared £, norm of the estimation error (see Algo-
rithm 2). More specifically, the algorithm first perturbs each
y; by Gaussian noise to ensure that it is (e, 6)-LDP. Then,
it performs the classical IHT procedure on the server side.
Note that we can combine our algorithm with the protocol
in (Bun et al., 2018a) to obtain an ¢ non-interactive LDP
algorithm.

Algorithm 2 Label-LDP-IHT
Input: Public dataset {xi};':l, private { y,-}lf’=
where Py., € P b
the number of 1terat10n n is the step size, and s = 8s™. Set
6, =0.

1: for Eachi € [n] do

2: Denote ; = y; + z;, where z; ~ N'(0,06}), 07 =

32C21n(1.25/6)
—_— .

| € Ppegs
€,06 are privacy parameters, T is

3: end for ¢
4: fort=0,1,---, T —1do
= 1 -
5: 91+1 = et - 77(; z:l:](yi - <Xi, 0t>)x,T)
6: 0, =Trunc(f,,,s).
7: 01‘-0—1 - arg@EBI ”9 0[+1”2
8: end for
9: Return 67.
Assumption 2. X = (x], -, xI)T € {—1,+1}"™ satis-

fies the Restricted Isometry Property (RIP) with parameter
2s + s*, where s = 8s*. That is, for any v € RP with
lollg £ 2s + s*, there exists a constant §' which satisfies
(1= 8Hlloll? < SlIXol2 < (4 +8)oll2.

Theorem 5. Forany 0 <e < 1and0 < 6 < 1, Algorithm
2 is (€, 6) (non-interactively) locally differentially private

SJor {y;}! w 1 Moreover, if X satisfies Assumption 2 with

0<é6' < —, then by setting s = 8s™ in Algorithm 2, there is
an n = n(6) which ensures that the output 0y satisfies the
following inequality with probability at least 1 —exp(—n)—l%

Clog(1/6)4/s* logp) ®
Ve

* 1 *
67 — 071> S(E)TIIG ll2+O(

Note that if T = O(log %) in (8), we have ||0; —
s*logp

0*|I% < O(Cz%). Compared with the bounds in Theo-
rem 1 and 2, the dependency on p is reduced from polyno-
mial to logarithmic, which makes it suitable for handling
high dimensional data. We note that the term O(—== slogp ) also
appears in the optimal minimax rate of the high dimensional
sparse sub-Gaussian linear model (Raskutti et al., 2011).

Also note that after obtaining {(x;, yl)}l > Wwe can
get another private estimator, which has the same up-

per bound of O(%), by performing Lasso PV €
arggenr {5 Limy G = (0, %)% + AllOll;}, for some 4 =

O(4/ %) (Negahban et al., 2012). However, we would

like to point out that our algorithm is more practical and can
be extended to the case of non-linear measurements (see
Section D of the Supplemental Material).

With the above theorem, a natural question is to determine
whether the upper bound in Theorem 5 can be further im-
proved. The following theorem (adopted from (Raskutti
et al., 2011)) suggests that it is actually tight as the € non-
interactive local private minimax risk (under the ||-||? metric)

is lower bounded by Q(< il lng)

Theorem 6. Under Assumpnon 2 and for a given fixed

privacy parameter € € (0, %], the € non-interactive local

private minimax risk (under the || - ||*
following inequality if only {y; };’zl
private

metric) satisfies the
needs to be kept locally

Czslogf

Nint 24
M6 " neX(1 +5')})'

5. - 113,€) > Q(min{1

6. Extension to Other Problems

As mentioned earlier, the (Local) DP-IHT method is actu-
ally quite general for achieving differential privacy. In this
section, we extend it to other problems. Specifically, we
use it to the DP-ERM problem under some sparsity con-
straint and the sparse regression problem with non-linear
monotone measurements. Due to space limit, we discuss
here only DP-ERM. Details on other problems can be found
in Section D of the Supplemental Material. We start with
reviewing some definitions of DP-ERM.
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Definition 3 (DP-ERM (Bassily et al., 2014) ). Given a
dataset D = {zy,-,z,} from a data universe X, a loss
function (-, -) and a constraint set C C R?, DP-ERM is to
find xP" v 50 as to minimize the empirical risk, i.e. L(x; D) =
% Z:’zl £(x, z;) with the guarantee of being differentially
private (Dwork et al., 2006). The utility of the algorithm
is measured by the expected excess empirical risk, that is
E4[L(xP™; D)] — min . L(x; D), where the expectation
of A is taking over all the randomness of the algorithm.

In this section, we consider the sparsity-constrained (e, 6)
DP-ERM problem. That is, the constraint set C is defined
as C = {x : ||x|lp £ k}, where ||x||, denotes the number of
non-zero entries in vector x. We note that such a formulation
encapsulates several important problems such as the £-
constrained linear/logistic regression (Bahmani et al., 2013).

We first introduce some assumptions to the loss function,
which are commonly used in the research of ERM under the
sparsity-constrained optimization.

Definition 4 (Restricted Strong Convexity, RSC). A dif-
ferentiable function f(x) is restricted p-strongly convex
with parameter s if there exists a constant p, > 0 such that
for any x,x" with ||x — x'|ly < s, we have f(x) — f(x") —
(VA ), x =x"y 2 B llx = X115,

Definition 5 (Restricted Strong Smoothness, RSS). A differ-
entiable function f(x) is restricted ¢ ;-strong smooth with
parameter s if there exists a constant €, > 0 such that
for any x,x" with ||x — X'||y < s, we have f(x) — f(x") —
(VG x=x') < Zlx = |2

Assumption 3. Denote x* = argmin . L(x;D) and
[[x*|lg = k*. We assume that the objective function L(x; D)
is pg-RSC and €(x, z) is € (-RSS for all z € X with parame-
ter s = 2k + k*. We also assume that ¢ (x, z) is G-Lipshitz
w.r.t €5 normforall z € X.

For the sparsity-constrained DP-ERM problem, we follow
the idea in Algorithm 1 to solve the optimization problem
(5). That is, we first execute a DP-Gradient Descent step and
then perform a hard thresholding operation (see Algorithm
3 for details).

Theorem 7. Under Assumption 3, for any 1 > ¢,6 > 0,

there exists a constant ¢ > 0 which makes Algorithm 3 (e, 0)-
DP. Moreover, if the sparsity level k > (1 + 64K3)k*, where

I . 1 n2e?
Ky =% then by setting n = 7 and T = O(x,log = ),
we have
log nlog pk* log é
EL(x7; D) — L(x*; D) < O( ) 9

n2e?
where the big O-notation omits the terms of G, p, and ¢ .

Remark 2. We note that the upper bound in (9) depends
only logarithmically on p (i.e., logp), rather than polyno-
mially (i.e., Poly(p)) as in general DP-ERM with (strongly)

Algorithm 3 DP-ITHT
Input: Initial point x,, learning rate #, empirical risk
L(x; D), privacy parameters 1 > ¢,6 > 0, and iteration
number 7.

1: fort=0,1,---, T — 1do

2. Let X, = x, — n(VL(x;; D) + z,), where z, ~

12
cT'log -G
N(O, U2Ip), 62 = nz—j

3:  Letx,; =Trun(X,,, k).
4: end for
5: Return xp.

for some constant c.

convex loss functions (Wang et al., 2017; Bassily et al.,
2014). This means that we have obtained a non-trivial up-
per bound for the high dimensional case (p > n) of the
problem. Recently, (Talwar et al., 2015; 2014) also stud-
ied the case of high dimensional DP-ERM with specified
constraint set. However, there are considerable differences.
Firstly, the (Talwar et al., 2015) paper considers only lin-
ear regression and ¢ |-norm Lipshitz with the constraint set
restricted to an ¢|-norm ball. Secondly, the (Talwar et al.,
2014) paper shows that its upper bound depends only on the
Gaussian width of the underlying constraint set, instead of
p. However, their algorithm is based on the mirror descent
method, which needs the constraint set to be convex. But it
is non-convex in our problem. Thus, these previous results
are not comparable with ours.

It would be interesting to find a general condition on the
constraint set such that the upper bound of the problem can
be independent of Poly(p). Also, we note that to achieve the
bound in (9), the gradient complexity of Algorithm 3 needs
to be O(nk,), which is quite large. We leave it as an open
problem to make it more practical.

7. Experiments

7.1. Experiments on Sparse Linear Regression

Data Generation Our data generation process is similar
to the one in (Jain et al., 2014). We first fix a parameter
vector 8* by randomly choosing s* coordinates, with each of
them sampled independently from a uniform distribution in
interval [0, 1], and setting the remaining coordinates/entries
to zero. Then, we generate the data samples using equation
y; = (x;,0%) + 0;, where x; € Uniform{—1,+1}” and ¢; €
Uniform[—-C, C]. We assume C = 0.05 in our experiment.

Experiment Results
107 —6" 1l

6=l
i.e., under varying dimensionality, sparsity and privacy level,

respectively. We run algorithms Label-LDP-IHT with # =
020rn=0.1,s=s*T = [log %],5 = 1073 and a random

normal Gaussian vector as the initial point to obtain 6. For

We compare the relative error, i.e.
, with the sample size » in three different settings,
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Efaton e o

(a) Relative error w.r.t dimensionality

(b) Relative error w.r.t sparsity level

(c) Relative error w.r.t privacy level

Figure 1. Experimental results on sparse linear regression under LDP while keeping the whole dataset private (Algorithm 1).

R

(a) Relative error w.r.t dimensionality

s ¢

(b) Relative error w.r.t sparsity level

"

(c) Relative error w.r.t privacy level

Figure 2. Experimental results on sparse linear regression under LDP while keeping the labels private (Algorithm 2).

(a) Optimality gap w.r.t dimensionality
with fixed s = 10 and € = 2.

(b) Optimality gap w.r.t sparsity level with
fixedp=>54ande =2

e

(c) Optimality gap w.r.t privacy level with
fixed p =54 and s = 10

Figure 3. Experimental results on £,-constrained logistic regression under (e, )-DP (Algorithm 3).

each experiment, we run the algorithm 10 times and take
the one with the lowst relative error as the final value.

Figure 1 and 2 depict the results of Algorithm 1 and 2,
respectively. From Figure 1, we can see that when the
dimensionality and the sparsity level increase or the privacy
parameter e decreases, the relative error increases, especially
when the sample size n is small. When the sample size
increases, the relative error will decreases. From Figure
2, we can learn that when the dimensionality p increases,
unlike Figure 1, it does not cause the relative error to change
significantly. This can be explained by the fact that the error
bound is only logarithmically depending on p. Moreover,
when the privacy parameter increases, the relative error
decreases. These results confirm our theoretical claims.

7.2. Experiments on Sparsity-constrained DP-ERM

In this section, we test Algorithm 3 on a real world
dataset Covertype. Particularly, we study the sparsity-
constrained logistic regression problem with £(w, z) =

log(1 + exp(—y;(w, x;))) + %lelz, where y; is the la-
bel of x;. As pre-processing, the data is first normal-
ized. Since there is no ground truth on real data, we run
the algorithm in (Jain et al., 2014) sufficiently long un-
til |lw, — w112/ lwll, < 10~* and then use the output
L(w;,; D) as the approximate optimal value. With this, we
can calculate the optimality gap of our estimator. In the
experiments, we set A = 1073, 7 = 0.1 and § = 1073, and
use zCDP (Bun & Steinke, 2016) to achieve the (e, 6)-DP.

From Figure 3, we can see that when the dimensionality p in-
creases, the optimality gap does not change too much, which
is due to the fact that the error bound is only logarithmically
depending on p. Also, when the sparsity level increases or
€ decreases, the optimality gap increases. Clearly, all these
experimental results are consistent with Theorem 7.
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