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Abstract. It has been shown recently that many non-convex objective/loss func-
tions in machine learning are known to be strict saddle. This means that finding
a second-order stationary point (i.e., approximate local minimum) and thus es-
caping saddle points are sufficient for such functions to obtain a classifier with
good generalization performance. Existing algorithms for escaping saddle points,
however, all fail to take into consideration a critical issue in their designs, that is,
the protection of sensitive information in the training set. Models learned by such
algorithms can often implicitly memorize the details of sensitive information, and
thus offer opportunities for malicious parties to infer it from the learned models.
In this paper, we investigate the problem of privately escaping saddle points and
finding a second-order stationary point of the empirical risk of non-convex loss
function. Previous result on this problem is mainly of theoretical importance and
has several issues (e.g., high sample complexity and non-scalable) which hinder
its applicability, especially, in big data. To deal with these issues, we propose in
this paper a new method called Differentially Private Trust Region, and show that
it outputs a second-order stationary point with high probability and less sample
complexity, compared to the existing one. Moreover, we also provide a stochastic
version of our method (along with some theoretical guarantees) to make it faster
and more scalable. Experiments on benchmark datasets suggest that our methods
are indeed more efficient and practical than the previous one.

Keywords: Differential Privacy · Empirical Risk Minimization · Private Machine
Learning

1 Introduction

Learning from sensitive data is a frequently encountered challenging task in many data
analytic applications. It requires the learning algorithm to not only learn effectively from
the data but also provide a certain level of guarantee on privacy preserving. As a rigorous
notion for statistical data privacy, differential privacy (DP) has received a great deal
of attentions in the past decade [12, 11]. DP works by injecting random noise into the
statistical results obtained from sensitive data so that the distribution of the perturbed
results is insensitive to any single-record change in the original dataset. A number of
methods with DP guarantees have been discovered and recently adopted in industry [14].
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As a fundamental supervised-learning problem in machine learning, Empirical Risk
Minimization (ERM) has been extensively studied in recent years since it encompasses
a large family of classical models such as linear regression, LASSO, SVM, logistic
regression and ridge regression. Its Differentially Private (DP) version (DP-ERM) can
be formally defined as follows.

Definition 1 (DP-ERM [34]). Given a datasetD = {x1, · · · , xn} from a data universe
X , DP-ERM is to find an estimator wpriv ∈ Rp so as to minimize the empirical risk, i.e.

L(w,D) =
1

n

n∑
i=1

`(w, xi), (1)

with the guarantee of being differentially private, where `(·, ·) is the loss function.
If the loss function is convex, the utility of the private estimator is measured by

the expected excess empirical risk, i.e. EA[L(wpriv, D)]−minx∈Rp L(w,D), where the
expectation of A is taking over all the randomness of the algorithm.

Previous research on DP-ERM has mainly focused on convex loss functions [7] (see the
section of Related Work for more details). However, empirical studies have revealed that
non-convex loss functions typically achieve better classification accuracy than the convex
ones [25]. Furthermore, recent developments in deep learning [17] also suggest that loss
functions are more likely to be non-convex in real world applications. Thus, there is an
urgent need for the research community to shift our focus from convex to non-convex
loss functions. So far, very few papers [37, 34, 31, 28] have considered DP-ERM with
non-convex loss functions. This is mainly due to the fact that finding the global minimum
of a non-convex loss function is NP-hard.

Different from convex loss functions, non-convex functions have adopted a few
different ways to measure the utility. The authors of [37] studied the problem with
smooth loss function and proposed using the `2 gradient-norm of a private estimator,
i.e., ‖∇L(wpriv, D)‖2, to measure the utility, which was then extended in [34, 31] to the
cases of non-smooth loss functions and high dimensional space. It is well known that `2
gradient-norm can estimate only the first-order stationary point (or critical point) 3, and
thus may lead to inferior generalization performance [10]. The authors of [28] are the
first to show that the utility of general non-convex loss functions can also be measured in
the same way as convex loss functions by the expected excess empirical risk. However,
their upper bound O( p

lognε2 ) is quite large compared with the convex case and needs
to assume that n ≥ O(exp(p)), which may not be satisfied in some real-world datasets.
They also showed that for some special loss functions such as sigmoid loss, the bound
can be further improved. But such improvements are dependent on the special structures
or some assumptions of the loss functions and thus cannot be extended to the general
case.

Due to the intrinsic challenge of approximating global minimum and issues related
to saddle points, recent research on deep neural network training [16, 23] and many other
machine learning problems [15, 5] has shifted the attentions to obtaining local minima. It

3 A point w of a function F (·) is called a first-order stationary point (critical point) if it satisfies
the condition of ‖∇F (w)‖ = 0.
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has been shown that fast convergence to a local minimum is actually sufficient for such
tasks to have good generalization performance. This motivates us to investigate efficient
techniques for finding local minima. However, as shown in [2], computing a local
minimum could be quite challenging as it is actually NP-hard for general non-convex
functions. Fortunately, many non-convex functions in machine learning are known to be
strict saddle [15], meaning that a second-order stationary point (or approximate local
minimum) is sufficient to obtain a close enough point to some local minimum. With
this, the authors in [28] used a new way to measure the utility, based on the `2-gradient
norm and the minimal eigenvalue of a Hessian matrix (see Preliminaries section for
details), where the goal is to design an algorithm with the ability of escaping saddle
points and approximating some second-order stationary point. Specifically, they showed
that when n is large enough, the classical differentially private gradient descent method
could escape saddle points and meanwhile output an α-second-order stationary point
(α-SOSP). But their method has several issues, which hamper its applications in big data.
Firstly, their sample complexity (or equivalently error bound) is relatively high. It is not
clear whether it can be improved. Secondly, their method needs to calculate the gradient
and Hessian matrix of the whole objective function in each iteration, which is prohibitive
in large scale datasets. Finally, their result mainly focuses on theoretical development
and does not provide any experimental study. Thus, it is not clear how practical it is.

Our Contributions: To address the aforementioned theoretical and practical issues,
we propose in this paper a new method called Differentially Private Trust Region (DP-
TR) which is capable of escaping saddle points privately. Particularly, we first show that
our algorithm can output an α-SOSP with high probability and less sample complexity
(compared to the one in [28]). To make our method scalable, we then present a stochastic
version of DP-TR called Differentially Private Stochastic Trust Region (DP-STR) with
the same functionality. We show that DP-STR is much faster and has asymptotically the
same sample complexity as DP-TR. Finally, we provide comprehensive experimental
studies on the practical performance of our methods in escaping saddle point under
differential privacy model.

Due to space limit, all proofs are left to the Supplementary Material.

2 Related Work

DP-ERM is a fundamental problem in both machine learning and differential privacy
communities. There are quite a number of results on DP-ERM with convex loss functions,
which investigate the problem from different perspectives. For example, [29, 30, 35]
considered ERM in the non-interactive local model. [21, 27] and [1] investigated the
regret bound in online settings. [36] explored the problem from the perspective of
learnability and stability. The problem has also been well-studied in the offline central
model [7, 8, 4, 34, 20], as well as in high dimensional space [26, 22].

For general non-convex loss functions, as mentioned earlier, existing results have
used three different ways to measure the utility of the private estimator [37, 34, 31,
28]. For `2-gradient norm based utility, [31] provided a comprehensive study following
the work of [37]. However, since the first order stationary points often have inferior
performance to the second order stationary points in practice, which is the focus of this
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paper, their results are incomparable with ours. For the expected excess empirical (or
population) risk based utility, it has been applied only to some special non-convex loss
functions before the work of [28]. For example, [34] showed a near optimal bound for
some special non-convex loss functions satisfying the Polyak-Lojasiewicz condition. [3]
studied the problem of optimizing privately piecewise Lipschitz functions which satisfy
the dispersion condition in online settings. Recently, the authors of [28] provided the
first result for general non-convex functions. However, their bound is loose compared
to the convex case and needs to assume that n ≥ O(exp(p)), which may not hold in
practice.

For the third type of utility (based on the `2-gradient norm and the minimal eigenvalue
of a Hessian matrix), [28] was the first to use it to measure the closeness of the private
estimator to some second order stationary points. Compared with theirs, our proposed
methods improve considerably the sample complexity. More precisely, we show that to
achieve an α-SOSP (see Definition 7 for details), the sample complexity of DP-TR and

DP-STR isO(
p
√

ln 1
δ

α1.75ε ) (omitting other terms), while it isO(
p
√

ln 1
δ

α2ε ) in [28]. Equivalently,

with a fixed data size n, our algorithms yield an O
(
(
p
√

ln 1
δ

nε )
4
7 )

)
-SOSP, while [28] can

output only an O
(
(
p
√

ln 1
δ

nε )
1
2 )

)
-SOSP (with high probability). Moreover, we also show

in experiments that our methods are more efficient and scalable.

3 Preliminaries

In this section, we review some definitions related to differential privacy and some
terminologies and lemmas in optimization.

3.1 Differential Privacy

Informally speaking, DP ensures that an adversary cannot infer whether or not a particular
individual is participating in the database query, even with unbounded computational
power and access to every entry in the database except for that particular individual’s data.
DP considers a centralized setting that includes a trusted data curator, who generates the
perturbed statistical information (e.g., counts and histograms) by using some randomized
mechanism. Formally, it can be defined as follows.

Definition 2 (Differential Privacy [12]). Given a data universe X , we say that two
datasets D,D′ ⊆ X are neighbors if they differ by only one entry, which is denoted
as D ∼ D′. A randomized algorithm A is (ε, δ)-differentially private (DP) if for all
neighboring datasets D,D′ and for all events S in the output space of A, the following
holds

P(A(D) ∈ S) ≤ eεP(A(D′) ∈ S) + δ.

When δ = 0, A is ε-differentially private.

In this paper, we will study only (ε, δ)-DP and use the Gaussian Mechanism [12] to
guarantee (ε, δ)-DP.
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Definition 3 (Gaussian Mechanism). Given any function q : Xn → Rp, the Gaussian
Mechanism is defined as:

MG(D, q, ε) = q(D) + Y,

where Y is drawn from Gaussian Distribution N (0, σ2Ip) with σ ≥
√

2 ln(1.25/δ)∆2(q)

ε ,
and ∆2(q) is the `2-sensitivity of the function q, i.e. ∆2(q) = supD∼D′ ||q(D) −
q(D′)||2. Gaussian Mechanism ensures (ε, δ)-differential privacy.

We will use the sub-sampling property and the advanced composition theorem to
ensure (ε, δ)-DP for the DP-STR algorithm.

Lemma 1 (Advanced Composition Theorem [13]). Given target privacy parameters
0 < ε, δ ≤ 1, to ensure (ε, δ)-DP over T mechanisms, it suffices that each mechanism is
(ε′, δ

2T )-DP, where ε′ = ε

2
√

2T ln(2/δ)
.

Lemma 2 ([4]). Over a domain of datasets Xn, if an algorithm A is (ε, δ)-DP, then
for any n-size dataset D, executing A on uniformly random γn entries of D ensures
(2γε, δ)-DP.

We will use a relaxation of DP called zero-Concentrated Differential Privacy (zCDP)
[6] to guarantee (ε, δ)-DP for our DP-TR method. Due to its optimal composition
proposition, zCDP is easier to analyze and can achieve a tighter bound, compared to
those using the advanced composition theorem to ensure (ε, δ)-DP (Lemma 1)[31].

Definition 4 (zCDP[6]). A randomized mechanism A is ρ-zero concentrated differen-
tially private if for all D ∼ D′ and all α ∈ (1,∞),

Dα(A(D)‖A(D′)) ≤ ρα,

where Dα(A(D)‖A(D′)) is the α-Rényi divergence 4 between the distribution of A(D)
and A(D′).

The following lemma shows the connection between zCDP and (ε, δ)-DP.

Lemma 3 ([6]). If A is ρ-zCDP, then A is (ρ+ 2
√
ρ ln 1

δ , δ)-DP for any δ > 0.

The following lemma says that adding Gaussian noise could also achieve zCDP.

Lemma 4 ([6]). Given any function q : Xn 7→ Rp, the Gaussian MechanismMG(D, q, ε) =

q(D) + Y , where Y is drawn from Gaussian Distribution N (0, σ2Ip) with σ ≥ ∆2(q)√
2ρ

,
is ρ-zCDP.

Similar to DP, zCDP also has the composition property.

Lemma 5 ([6]). LetA be ρ-zCDP andA′ be ρ′-zCDP, then their compositionA′′(D) =
(A(D),A′(D)) is (ρ+ ρ′)-zCDP.

4 Generally, Dα(P‖Q) is the Rényi divergence between P and Q which is defined as

Dα(P‖Q) =
1

α− 1
logEx∼Q(

P (x)

Q(x)
)α.
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3.2 Optimization

We first specify the necessary assumptions on our loss functions that are commonly used
in other related work such as [28, 38, 24].

Assumption 1 We assume that L(·, D) is bounded from below and its global minimum
is achieved at w∗. We let ∆ denote

∆ = L(w0, D)− L(w∗, D),

where w0 is the initial vector of our algorithms.

Assumption 2 We assume that for each x ∈ X , the loss function `(·, x) is G-Lipschitz,
that is, for all w,w′ ∈ Rd

|`(w, x)− `(w′, x)| ≤ G‖w − w′‖2.

We also assume that `(·, x) is M -smooth, that is, for all w,w′ ∈ Rp

‖∇`(w, x)−∇`(w′, x)‖2 ≤M‖w − w′‖2.

Finally, we assume that `(·, x) is twice differentiable and ρ-Hessian Lipschitz, that is,
for all w,w′ ∈ Rp

‖∇2`(w, x)−∇2`(w′, x)‖2 ≤ ρ‖w − w′‖2,

where ‖A‖2 is the spectral norm of a matrix A.
Note that the above assumption indicates that for any w, h ∈ Rp

L(w + h,D) ≤ L(w,D) + 〈∇L(w,D), h〉+ 1

2
hT∇2L(w,D)h+

ρ

6
‖h‖32.

In this paper, we focus on approximating a second order stationary point, which is
defined as follows.

Definition 5. A point w is called a second-order stationary point (SOSP) of a twice
differentiable function F if

‖∇F (w)‖2 = 0 and λmin(∇2F (w)) ≥ 0 ,

where λmin denotes its minimal eigenvalue.

Since it is extremely challenging to find an exact SOSP [15], we turn to its approximation.
The following defintion of α-approximate SOSP relaxes the first- and second-order
optimality conditions.

Definition 6 ([15]).w is anα-second-order stationary point (α-SOSP) orα-approximate
local minimum 5 of a twice differentiable function F which is ρ-Hessian Lipschitz, if

‖∇F (w)‖2 ≤ α and λmin(∇2F (w)) ≥ −√ρα. (2)
5 This is a special version of (ε, γ)-SOSP [15]. Our results can be easily extended to the general

definition. The same applies to the constrained case.
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Based on this, we now formally define our problem of DP-SOSP.

Definition 7 (DP-SOSP). Given α, ε, δ > 0, DP-SOSP is to identify the smallest sample
complexity n(α, p, ε, δ) such that when n ≥ n(α, p, ε, δ), for any dataset D of size n,
there is an (ε, δ)-DP algorithm which outputs an α-SOSP of the empirical risk (1) with
high probability.

Since our ideas are derived from the trust region method proposed in [9], we now
briefly introduce the trust region method. In each step of the trust region method for a
function F (·), it solves a Quadratic Constraint Quadratic Program (QCQP):

hk = arg min
h∈Rd,‖h‖2≤r

〈∇F (wk), h〉+ 1

2
〈∇2F (wk)h, h〉, (3)

where r is called the trust-region radius. Then, it updates in the following way

wk+1 = wk + hk.

Since the function F (w) is non-convex, this indicates that the sub-problem (3) is non-
convex. However, its global minimum can be characterized by the following lemma.

Lemma 6 (Corollary 7.2.2 in [9]). Any global minimum of the problem (3) should
satisfy

(∇2F (wk) + λI)hk = −∇F (wk), (4)

where the dual variable λ ≥ 0 should satisfies the conditions of ∇2F (xk) + λI � 0
and λ(‖hk‖2 − r) = 0.

It is worth noting that in practice sub-problem (3) can be solved by the Lanczos
method efficiently (see [18] for details). For the dual variable λ in Lemma 6, it can be
solved by almost any QCQP solver such as CVX [19].

4 Methodology

In this section, we first introduce our main method, DP-TR, and then extend to its
stochastic version, i.e., DP-STR.

4.1 Differentially Private Trust Region Method

The key idea of our DP-TR is the following. In each iteration, instead of using the
gradient and Hessian of the empirical risk (1) directly to the sub-problem (3), we use
their perturbed versions to ensure DP. That is, we use ∇̃L(wk, D) = ∇L(wk, D) + εk
and ∇̃2L(wk, D) = ∇2L(wk, D) + Hk, where εt is a Gaussian vector and Ht is a
randomized symmetric Gaussian matrix (since a Hessian matrix is symmetric, we need
to add a symmetric random matrix). The main steps of DP-TR are given in Algorithm 1.

For the stopping criteria, we use the dual variable λk and see whether the value
is greater or less than some threshold. This criteria enable the last-term convergence
analysis in Theorem 2.

The following theorem shows that Algorithm 1 is (ε, δ)-DP.
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Algorithm 1 DP-TR
Input: Privacy parameters ε, δ, trust-region radius r, iteration number T (to be specified later),
initial vector w0 and error term α

1: Let φ = (
√
ε+ ln 1

δ
−

√
ln 1

δ
)2.

2: for k = 0, · · · , T − 1 do
3: Denote ∇̃L(wk, D) = ∇L(wk, D) + εk, where εt ∼ N (0, σ2Id) with σ2 = 4G2T

n2φ
.

4: Denote ∇̃2L(wk, D) = ∇2L(wk, D) + Hk, where Ht is a symmetric matrix with its
upper triangle (including the diagonal) being i.i.d samples fromN (0, σ2

2), σ2
2 = 4pM2T

n2φ
,

and each lower triangle entry is copied from its upper triangle counterpart.
5: Solve the following QCQP and get hk and dual variable λk,

hk = arg min
h∈Rd,‖h‖2≤r

〈∇̃L(wk, D), h〉+ 1

2
〈∇̃2L(wk, D)h, h〉,

6: Let wk+1 = wk + hk.
7: if λk ≤ √αρ then
8: Output wα = wk+1.
9: end if

10: end for

Theorem 1. For any ε, δ > 0, Algorithm 1 is (ε, δ)-differentially private under Assump-
tion 2.

The following theorem shows that when the data size n is large enough, then with
high probability the output of Algorithm 1 will be an α-SOSP.

Theorem 2. Under Assumptions 1 and 2, for any given α, if we take r =
√

α
ρ , T =

6
√
ρ∆

α1.5 , then with probability at least 1− ζ − T
pc for some universal constant c > 0 and

ζ > 0, the algorithm outputs a point which is an O(α)-SOSP if n satisfies

n ≥ Ω(
p ln 1

ζ

√
ln 1

δ

α1.75ε
), (5)

where the Big-Ω notation omits the terms of G,M, ρ,∆, ln 1
α .

Remark 1. We note that in the previous work [28], to output an O(α)-SOSP with high

probability, the data size n needs to satisfy n ≥ Ω(
p
√

ln 1
δ

α2ε ), while the dependency on α
in (5) is 1

α1.75 . Thus, we improve the sample size by a factor of O( 1
α0.25 ). Equivalently, if

we fix n, Theorem 2 ensures that Algorithm 1 outputs a point which isO
(
(
p
√

ln 1
δ

nε )
4
7 )

)
-

SOSP, while the previous work in [28] outputs a point which is O
(
(
p
√

ln 1
δ

nε )
1
2 )

)
-SOSP.

We can see that our algorithm yields better approximate SOSP than the previous one.
We leave as open problems to determine whether the sample complexity in (5) can be
further improved and what is the optimal bound of the sample complexity.
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Also, in [28] the number of iterations is T = Õ( 1
α2 ), while Algorithm 1 needs only

O( 1
α1.5 ) iterations. This means that the running time of Algorithm 1 isO(nPoly(p)

α1.5 ), while
it is O(nPoly(p)

α2 ) in [28]. Thus, our algorithm has an improved time complexity for the
term of 1

α compared with the previous one. Moreover, as we will see in the experiment
section, our algorithms is indeed faster than the previous one.

Theorem 2 shows the explicit step size control of the DP-TR method: Since the dual
variable satisfies λk >

√
αρ for all but the last iteration. Thus we can always find a

solution to the trust-region sub-problem (3) in the boundary, i.e., ‖hk‖2 = r, according
to Lemma 6.

4.2 Differentially Private Stochastic Trust Region Method

In the previous section we show that our method DP-TR needs less samples and is
faster than DP-GD proposed in [28]. However, as mentioned in Remark 1, the time
complexities of both algorithms are linearly dependent on the sample size n, which is
prohibitive in large scale datasets. Thus, a natural question is to determine whether it
is possible to design an algorithm that shares the advantages of DP-TR and meanwhile
is scalable. In this section we give an affirmative answer to this question by providing
a stochastic version of DP-TR called Differentially Private Stochastic Trust Region
method (DP-STR).

The key idea of DP-STR is that, instead of evaluating the gradient and Hessian matrix
of the whole function L(w,D) in each iteration, we will uniformly sub-sample two sets
of indices S, T ⊆ [n] and calculate the gradients and Hessian matrix of the loss function
with the samples corresponding to the set S and T , respectively. That is

∇L(wk,S) = 1

|S|
∑
i∈S
∇`(wk, xi), (6)

∇2L(wk, T ) = 1

|T |
∑
i∈T
∇2`(wk, xi). (7)

Then, similar to DP-TR, we add some Gaussian noise and random Gaussian matrix
to ∇L(wk,S) and ∇2L(wk, T ), respectively, to ensure (ε, δ)-DP. See Algorithm 2
for details. Note that since zCDP can not be guaranteed by sub-sampling, we use the
traditional advanced composition theorem Lemma 1 and sub-sampling property Lemma
2 to guarantee (ε, δ)-DP.

Theorem 3. For any 0 < ε, δ < 1, Algorithm 2 is (ε, δ)-differentially private.

Theorem 4. Under Assumptions 1 and 2, for a given α, if we take r =
√

α
ρ , T =

6
√
ρ∆

α1.5 ,

|S| ≥ Ω(
L2 ln p

ζ

α2 ) and |T | ≥ Ω(
M2 ln p

ζ

αρ ) in Algorithm 2, then with probability at least
1− 3ζ − T

pc for some universal constant c > 0 and ζ > 0, the algorithm outputs a point
that is an O(α)-SOSP if n satisfies (5), which is the same as in Theorem 2.
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Algorithm 2 DP-STR
Input: Privacy parameters ε, δ, trust-region radius r, iteration number T , sub-sampling size
|S|, |T | (to be specified later), initial vector w0 and error term α.
1: for k = 0, · · · , T − 1 do
2: Uniformly sub-sample two independent indices sets S, T ⊆ [n] with size |S| and |T |,

respectively.
3: Denote ∇̃L(wk,S) = ∇L(wk,S) + εk, where εt ∼ N (0, σ2Id) with σ2 =

256G2 ln 5T
δ

ln 2
δ

n2ε2
and∇L(wk,S) is given in (6)

4: Denote ∇̃2L(wk, T ) = ∇2L(wk, T ) + Hk, where Ht is a symmetric matrix with
its upper triangle (including the diagonal) being i.i.d samples from N (0, σ2

2), σ2
2 =

256pM2T ln 2
δ
ln 5T

δ
n2ε2

, and each lower triangle entry is copied from its upper triangle counter-
part.∇2L(wk, T ) is given in (7).

5: Solve the following QCQP and get hk and dual variable λk,

hk = arg min
h∈Rd,‖h‖2≤r

〈∇̃L(wk,S), h〉+ 1

2
〈∇̃2L(wk, T )h, h〉,

6: Let wk+1 = wk + hk.
7: if λk ≤ √αρ then
8: Output wα = wk+1.
9: end if

10: end for

Comparing with Theorem 2, we can see that the sample complexity of Theorem 4
is the same while the time complexity of Algorithm 2 is O (T (|S|+ |T |)Poly(p)) =
O( Poly(p)

α3.5 ), which is independent of the sample size n. This means that DP-STR is faster
and scalable to large scale datasets.

Remark 2. We note that it is unknown whether the algorithm in [28] can be extended to a
stochastic version whose time complexity is independent of the size n. The algorithm in
[28] consists of two routines, one is the Differentially Private Gradient Descent method
and the other one is the procedure of selecting an α-SOSP. The first one can be easily
extend to a stochastic version, which is similar as the one in[37]. However, for the
second one, it needs to calculate the whole Hessian matrix and verify some conditions
as stopping criteria, but it is unknown whether we can extend it to a stochastic version.
Compared with their algorithm, in Algorithm 1 we use the Hessian matrix for Trust-
Region sub-problem and use the dual variable λk as our stopping criteria. Thus, this is
why we can extend Algorithm 1 to a stochastic version.

Note that in Algorithm 2 we use the basic subsampling technique for DP-STR to improve
the time complexity. In [34], the authors proposed the Stochastic Variance Reduction
Gradient method to improve the gradient complexity for DP-ERM with convex less
functions and show it is superior to the DP-SGD method. Thus, it is unknown whether
we can use the same idea to our problem to further improve the time complexity or
gradient complexity. Moreover, in both of Algorithm 1 and 2, we assume that we can
exactly solve the Trust-Region sub-problem (3). However, in most cases, exactly solving
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the problem is quite hard and costy. Thus whether we can relax this assumption is still
an open problem. We leave these as further research.

5 Experiments

In this section, we present numerical experiments for different non-convex Empirical
Risk Minimization problems on different datasets to demonstrate the advantage of our
DP-TR and DP-STR algorithms in finding SOSP under differential privacy.

5.1 Experimental Settings

Baselines As mentioned in previous section, the only known method for this problem
is DP-GD given in [28]. Thus, we compare it with our methods (DP-TR and DP-STR)
after carefully tuning the algorithms for a fair comparison. For the QCQP sub-problem
in Algorithm 1 and 2, we use the CVX package [19] to solve it.

Datasets We evaluate the algorithms on real-world datasets with n� p. Specifically,
we use the datasets, Covertype and IJCNN, which are commonly used in the study of
DP-ERM such as [34, 33, 32]. More information about these datasets is listed in Table 1.
We normalize each row of the datasets as preprocessing.

Table 1: Summary of Datasets used in the experiments.

Dataset Sample size n dimension p

Covertype 581, 012 54
IJCNN 35, 000 22

Evaluated Problems For the loss functions we will follow the studies in [24, 38, 31]. The
first non-convex problem that will be investigated is logistic regression with a non-convex
regularizer r(w) =

∑p
i=1

λw2
i

1+w2
i

. Specifically, suppose that we are given training data
{(xi, yi)}ni=1, where xi ∈ Rp and y ∈ {−1, 1} are, respectively, the feature vector and
label of the i-th data record. The corresponding ERM is

min
w∈Rp

1

n

n∑
i=1

log(1 + exp(−yi〈xi, w〉)) + r(w).

In the experiment, we set λ = 10−3.
The second problem that will be considered is the sigmoid regression with `2 norm

regularizer. Given training dataset {(xi, yi)}ni=1 where xi ∈ Rp and y ∈ {−1, 1} are,
respectively, the feature vector and label of the i-th data record. Then, minimization
problem is

min
w∈Rp

1

n

n∑
i=1

1

1 + exp(−yi〈xi, w〉)
+
λ

2
‖w‖22.
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In the experiment, we set λ = 10−3.

Measurements We first study how the optimaliy gap, i.e.,L(wα, D)−minw∈Rp L(w,D),
changes w.r.t the privacy level ε or time (second). For the optimal solution of the problem
minw∈Rp L(w,D), we obtain it through multiple runs of the classical trust region method
and taking the best one. Besides the expected excess empirical risk, we also use the
gradient norm, i.e., ‖∇L(wα, D)‖2, to measure the utility. For logistic regression, we
also consider its classification accuracy w.r.t privacy level, where the non-private case is
obtained by running the trust region method and taking the best. For each experiment,
we run 10 times and take the average as the final output. In all experiments, we set δ = 1

n
and α = 10−1.

5.2 Experimental Results

Figure 2 shows the classification accuracy of the private classifier given by the sigmoid
regression on the Covertype and IJCNN datasets w.r.t different privacy levels. We can
see that the accuracy increases when ε becomes larger, which means that the algorithm
will be non-private. From Remark 1 we can see that this is due to the fact that when ε is
larger, we can outpout an SOSP which is closer to the local minimum. Also, the accuracy
of the non-private case is 86% and 95% for Covertype and IJCNN dataset, respectively.
This indicates that the accuracy is comparable to the non-private case when ε ≥ 1.5.

The first and second subfigures of Figure 4, 6, 8 and 10 depict the optimality gap
and the gradient norm w.r.t different privacy level ε of the two non-convex problems
on Covertype and IJCNN datasets. For Covertype, we set the batchsize as 50000, while
for IJCNN we set it as 5000. From the figures, we can see that compared with DP-
GD, our DP-TR method has better performance on both the optimality gap and the
gradient norm. This is due to the fact that DP-TR has improved the bound of SOSP
(see Remark 1). However, the results of DP-STR are worse than that of DP-GD and
DP-TR. We attribute this to the fact that the noise level of DP-STR added in each
iteration (steps 2 and 3) is higher than that of DP-TR and DP-GD. For example, in Step
2 of Algorithm 2 we add a Gaussian noise with variance σ2 =

256L2 ln 5T
δ ln 2

δ

n2ε2 to each
coordinate, while in step 3 of Algorithm 1 we only need to add a Gaussian noise with
variance σ2 = 4L2T

n2φ ≈
64L2T log 1

δ

n2ε2 . Equivalently, the sub-optimality of DP-STR is due
to the higher level of noise that needs to be added, which is required by the Advanced
Composition Theorem to ensure (ε, δ)-DP. We leave it as an open problem to determine
how to improve the practical performance of DP-STR.

The third subfigures of Figure 4, 6, 8 and 10 show the results on the optimality gap
w.r.t time of the two non-convex problems on the datasets of Covertype and IJCNN.
Here we fix ε to be 1 in all the experiments. We can see that although the gap of DP-STR
is worse than that of DP-GD and DP-TR, its running time is the least one. This is due to
the fact that DP-STR needs only to evaluate a subset of the gradient and Hessian matrix,
instead of the full ones as in DP-TR and DP-GD.
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Covertype IJCNN

Fig. 2: Accuracy w.r.t privacy level on Covertype and IJCNN datasets

Optimality gap w.r.t privacy
level ε

Gradient norm w.r.t privacy
level ε

Optimality gap w.r.t time (sec-
onds)

Fig. 4: Results of logistic regression with non-convex regularizer on Covertype dataset

Optimality gap w.r.t privacy
level ε

Gradient norm w.r.t privacy
level ε

Optimality gap w.r.t time (sec-
onds)

Fig. 6: Results of logistic regression with non-convex regularizer on IJCNN dataset
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Optimality gap w.r.t privacy
level ε

Gradient norm w.r.t privacy
level ε

Optimality gap w.r.t time (sec-
onds)

Fig. 8: Results of sigmoid regression with `2 norm regularizer on Covertype dataset

Optimality gap w.r.t privacy
level ε

Gradient norm w.r.t privacy
level ε

Optimality gap w.r.t time (sec-
onds)

Fig. 10: Results of sigmoid regression with `2 norm regularizer on IJCNN dataset
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6 Conclusion

In this paper we study the problem of escaping saddle points of empirical risk in the
differential privacy model and propose a new method called DP-Trust Region (DP-TR)
along with its stochastic version called DP-STR. Particularly, we show that to achieve
an α-SOSP with high probability, DP-TR and DP-STR have lower sample complexities
compared with the existing algorithm DP-GD. We also show that DP-TR is faster than
DP-GD; DP-STR is more scalable and much faster than DP-TR. Experimental results on
benchmark datasets confirm our theoretical claims.
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