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Abstract. (Gradient) Expectation Maximization (EM) is a widely
used algorithm for estimating the maximum likelihood of mixture
models or incomplete data problems. A major challenge facing this
popular technique is how to effectively preserve the privacy of sen-
sitive data. Previous research on this problem has already lead to the
discovery of some Differentially Private (DP) algorithms for (Gra-
dient) EM. However, unlike in the non-private case, existing tech-
niques are not yet able to provide finite sample statistical guarantees.
To address this issue, we propose in this paper the first DP version of
Gradient EM algorithm with statistical guarantees. Specifically, we
first propose a new mechanism for privately estimating the mean of
a heavy-tailed distribution, which significantly improves a previous
result in [25], and it could be extended to the local DP model, which
has not been studied before. Next, we apply our general framework to
three canonical models: Gaussian Mixture Model (GMM), Mixture
of Regressions Model (MRM) and Linear Regression with Missing
Covariates (RMC). Specifically, for GMM in the DP model, our esti-
mation error is near optimal in some cases. For the other two models,
we provide the first result on finite sample statistical guarantees. Our
theory is supported by thorough numerical experiments on both real-
world data and synthetic data.

1 Introduction
As one of the most popular techniques for estimating the maximum
likelihood of mixture models or incomplete data problems, Expecta-
tion Maximization (EM) algorithm has been widely applied to many
areas such as genomics [14], finance [10], and crowdsourcing [7].
EM algorithm is well-known for its convergence to an empirically
good local estimator [28]. Recent studies have further revealed that
it can also provide finite sample statistical guarantees [3, 33, 27, 31].
Specifically, [3] showed that classical EM and its gradient ascent
variant (Gradient EM) are capable of achieving the first local con-
vergence (theory) and finite sample statistical rate of convergence.
They also provided a (near) optimal minimax rate for some canoni-
cal statistical models such as Gaussian mixture model (GMM), mix-
ture of regressions model (MRM) and linear regression with missing
covariates (RMC).
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The wide applications of EM also present some new challenges
to this method. Particularly, due to the existence of sensitive data
and their distributed nature in many applications like social science,
biomedicine, and genomics, it is often challenging to preserve the
privacy of such data as they are extremely difficult to aggregate and
learn from. Consider a case where health records are scattered across
multiple hospitals (or even countries), it is not possible to process the
whole dataset in a central server due to privacy and ownership con-
cerns. A better solution is to use some differentially private mecha-
nisms to conduct the aggregation and learning tasks. Differential Pri-
vacy (DP) [8] is a commonly-accepted criterion that provides prov-
able protection against identification and is resilient to arbitrary aux-
iliary information that might be available to attackers.

Thus, to be able to use (Gradient) EM algorithm to learn from
these sensitive data, it is urgent to design some DP versions of the
(gradient) EM algorithm. [18] proposed the first DP EM algorithm
which mainly focuses on the practical behaviors of the method. Their
algorithm needs quite a few assumptions on the model and the data,
which make it difficult to extend to some canonical models men-
tioned above. Furthermore, unlike the aforementioned non-private
case, their algorithm does not provide any finite sample statistical
guarantee on the solution. Thus, it is still unknown whether there
exists any DP variant of the (gradient) EM algorithm that has
finite sample statistical guarantees.

To answer this question, we propose in this paper the first (ϵ, δ)-
DP (Gradient) EM algorithm with finite sample statistical guarantees.
Specifically,

• We first show that, given an appropriate initialization βinit (i.e.,
∥βinit − β∗∥2 ≤ κ∥β∗∥2 for some constant κ ∈ (0, 1)), if the
model satisfies some additional assumptions and the number of
sample n is large enough, the output βpriv of our DP (Gradient)
EM algorithm is guaranteed to have a bounded estimation error,
∥βpriv − β∗∥2 ≤ Õ( d

√
τ√

nϵ
), with high probability, where d is the

dimensionality and τ is an upper bound of the second-order mo-
ment of each coordinate of the gradient function. To get the result,
we propose a new mechanism for privately estimating the mean
of a heavy-tailed distribution, which is based on a finer analysis of
the mechanism given by [25]. Moreover, our mechanism could be
easily extended to the local privacy model, which is the first result
on the problem.Thus, we believe our mechanism could be used in



other machine learning problems.
• We then apply our general framework to the three canonical mod-

els: GMM, MRM and RMC. Our private estimator achieves an

estimation error that is upper bounded by Õ( d√
nϵ
), Õ( d

3
2√
nϵ
) and

Õ( d
3
2√
nϵ
) for GMM, MRM and RMC, respectively. We note that

they are the first statistical guarantees for MRM and RMC in the
Differential Privacy model, and the error bound for GMM is near
optimal in some cases. We also conduct thorough experiments on
these three models. Experimental results on these models are con-
sistent with our theoretical analysis.

2 Related Work

As we mentioned previously, designing DP version of EM algorithm
is still not well studied. To our best knowledge, the only previous
work on DP EM algorithm is given by [18]. However, their result is
incomparable with ours for the following reasons. Firstly, our work
aims to achieve finite sample statistical guarantees for the DP EM
algorithm, while [18] mainly focuses on designing heuristic DP EM
algorithms that do not provide any statistical guarantees. Particularly,
[18] assumed that datasets are pre-processed such that the ℓ2-norm
of each data record is less than 1. This means that their algorithm
will likely introduce additional bias on the statistical guarantees. Sec-
ondly, the assumptions made in [18] regarding the model’s sufficient
statistics and their sensitivity are not applicable to all three funda-
mental models studied in our experiments. Specifically, [18] studied
only the exponential family so that noise can be directly added to the
sufficient statistics. However, most of the latent variable models do
not satisfy such an assumption. This includes the MRM and RMC
models to be considered in this paper.

Concurrently, [32] also studied theoretical guarantees of the DP-
EM algorithm in the high dimensional sparse setting. However, there
are significant differences between their work and ours. First, their
method requires two strong assumptions, namely Condition 3.6 and
3.7. Condition 3.6 assumes that ∥∇qi(β;β) − E∇q(β;β)∥∞ is
bouned with high probability, while in our paper we only need to as-
sume E(∇jq(β;β))

2 is bounded, i.e., their assumption implies ours,
making our assumption more general. Additionally, their Condition
2.7 imposes a peculiar assumption that we do not require in our pa-
per. Secondly, Due to their strong assumption, their algorithm merely
truncates the ∇qi functions and adds noise, whereas our paper uti-
lizes a more complex method to handle our relaxed Assumption 1.
Thirdly, their algorithm only applies to the central DP model, and it
is unknown if it can be extended to the local DP model. On the other
hand, in our paper, we can extend all the methods to the local DP
model. Due to these reasons their results are incomparable with ours.

In this paper, we implement our general framework on three spe-
cific models, and DP GMM is the only one that has been studied
previously. Specifically, [17] provided the first result for the general
k-GMM based on the sample-and-aggregate framework. However,
their algorithms are impractical as it has been shown that the sample-
and-aggregate framework has poor practical performance previously.
Later on, [13] improved the result by a factor of O(

√
d/ϵ), and also

claimed that their sample complexity is near optimal. Compared with
their result, our proposed algorithm ensures that when ϵ is some con-
stant, it has the same sample complexity. Also, although their algo-
rithm has polynomial time complexity, it is actually not very practical
and thus no practical study has been conducted. Moreover, their al-
gorithm is heavily dependent on a previous clustering algorithm; it
is unclear whether it can be extended to other mixture models. From

these two perspectives, our framework is more general and practical.

3 Preliminaries

Let Y and Z be two random variables taking values in the sample
spaces Y and Z , respectively. Suppose that the pair (Y,Z) has a
joint density function fβ∗ that belongs to some parameterized family
{fβ∗ |β∗ ∈ Ω}. Rather than considering the whole pair of (Y,Z),
we observe only component Y . Thus, component Z can be viewed
as the missing or latent structure. We assume that the term hβ(y) is
the marginal distribution over the latent variable Z, i.e., hβ(y) =∫
Z fβ(y, z)dz. Let kβ(z|y) be the density of Z conditional on the

observed variable Y = y, that is, kβ(z|y) =
fβ(y,z)

hβ(y)
.

Given n observations y1, y2, · · · , yn of Y , the EM algorithm is
to maximize the log-likelihood maxβ∈Ω ℓn(β) =

∑n
i=1 log hβ(yi).

Due to the unobserved latent variable Z, it is often difficult to directly
evaluate ℓn(β). Thus, we consider the lower bound of ℓn(β) . By
Jensen’s inequality, we have

1

n
[ℓn(β)− ℓn(β

′)] ≥ 1

n

n∑
i=1

∫
Z
kβ′(z|yi) log fβ(yi, z)dz

− 1

n

n∑
i=1

∫
Z
kβ′(z|yi) log fβ′(yi, z)dz. (1)

Let Qn(β;β
′) = 1

n

∑n
i=1 qi(β;β

′), where

qi(β;β
′) =

∫
Z
kβ′(z|yi) log fβ(yi, z)dz.1 (2)

Also, it is convenient to let Q(β;β′) denote the expectation of
Qn(β;β

′) w.r.t. {yi}ni=1, that is,

Q(β;β′) = Ey∼hβ∗

∫
Z
kβ′(z|y) log fβ(y, z)dz. (3)

We can see that the second term on the right hand side of (1) is in-
dependent on β. Thus, given some fixed β′, we can maximize the
lower bound function Qn(β;β

′) over β to obtain sufficiently large
ℓn(β)− ℓn(β

′). Thus, in the t-th iteration of the standard EM algo-
rithm, we can evaluate Qn(·;βt) at the E-step and then perform the
operation of βt+1 = maxβ∈Ω Qn(β;β

t) at the M-step. See [16] for
more details.

In addition to the exact maximization implementation of the M-
step, we add a gradient ascent implementation of the M-step, which
performs an approximate maximization via a gradient descent step.
Gradient EM Algorithm [3]. When Qn(·;βt) is differentiable, the
update of βt to βt+1 consists of the following two steps.

• E-step: Evaluate the functions in (2) to compute Qn(·;βt).
• M-step: Update βt+1 = βt + η∇Qn(β

t;βt), where ∇ is the
derivative of Qn w.r.t. the first component and η is the step size.

Next, we give some examples that use the gradient EM algorithm.
Note that they are the typical examples for studying the statistical
property of EM algorithm [27, 3, 31, 33].
Gaussian Mixture Model (GMM). Let y1, · · · , yn be n i.i.d sam-
ples from Y ∈ Rd with

Y = Z · β∗ + V, (4)

1 We denote the term q(β;β′) for a general sample y.



where Z is a Rademacher random variable (i.e., P(Z = +1) =
P(Z = −1) = 1

2
), and V ∼ N (0, σ2Id) is independent of Z for

some known standard deviation σ.
Mixture of (Linear) Regressions Model (MRM). Let
(x1, y1), (x2, y2), · · · , (xn, yn) be n samples i.i.d sampled
from Y ∈ R and X ∈ Rd with

Y = Z⟨β∗, X⟩+ V, (5)

where X ∼ N (0, Id), V ∼ N (0, σ2), Z is a Rademacher random
variable, and X,V, Z are independent.
Linear Regression with Missing Covariates (RMC). We assume
that Y ∈ R and X ∈ Rd satisfy

Y = ⟨X,β∗⟩+ V, (6)

where X ∼ N (0, Id) and V ∼ N (0, σ2) are independent. Let
x1, x2, · · · , xn be n observations of X with each coordinate of xi

missing (unobserved) independently with probability pm ∈ [0, 1).
Next, we provide several definitions on the required properties of

functions Qn(·; ·) and Q(·; ·).

Definition 1. Function Q(·;β∗) is self-consistent if β∗ =
argmaxβ∈Ω Q(β;β∗). That is, β∗ maximizes the lower bound of
the log likelihood function.

Definition 2 (Lipschitz-Gradient-2(γ,B)). Q(·; ·) is called
Lipschitz-Gradient-2(γ,B), if for the underlying parameter β∗ and
any β ∈ B for some set B, the following holds

∥∇Q(β;β∗)−∇Q(β;β)∥2 ≤ γ∥β − β∗∥2. (7)

Definition 3 (µ-smooth). Q(·;β∗) is µ-smooth, that is if for any
β, β′ ∈ B, Q(β;β∗) ≥ Q(β′;β∗)+(β−β′)T∇Q(β′;β∗)− µ

2
∥β′−

β∥22.

Definition 4 (υ-strongly concave). Q(·;β∗) is υ-strongly concave,
that is if for any β, β′ ∈ B, Q(β;β∗) ≤ Q(β′;β∗) + (β −
β′)T∇Q(β′;β∗)− υ

2
∥β′ − β∥22.

In the following we will propose the assumptions that will be used
throughout the whole paper. Note that these assumptions are com-
monly used in other works on statistical analysis of EM algorithm
such as [2, 33, 27, 24].

Assumption 1. We assume that function Q(·; ·) in (3) is self-
consistent, Lipschitz-Gradient-2(γ,B), µ-smooth, υ-strongly con-
cave over some set B. Moreover, we assume that ∀j ∈ [d] and β ∈ B,
there is some known upper bound τ on the second-order moment of
the j-coordinate of ∇q(β, β), i.e., Ey(∇jq(β, β))

2 ≤ τ and for each
i ∈ [n], ∇jqi(β, β) is independent with others.

Definition 5 (Differential Privacy [8]). Given a data universe X ,
we say that two datasets D,D′ ⊆ X are neighbors if they differ
by only one entry, which is denoted as D ∼ D′. A randomized al-
gorithm A is (ϵ, δ)-differentially private (DP) if for all neighboring
datasets D,D′ and for all events S in the output space of A, we have
P(A(D) ∈ S) ≤ eϵP(A(D′) ∈ S) + δ.

Definition 6 (Gaussian Mechanism). Given a function q : Xn →
Rp, the Gaussian Mechanism is defined as: MG(D, q, ϵ) = q(D) +
Y, where Y is drawn from a Gaussian Distribution N (0, σ2Ip) with

σ ≥
√

2 ln(1.25/δ)∆2(q)

ϵ
. ∆2(q) is the ℓ2-sensitivity of the function

q, i.e., ∆2(q) = supD∼D′ ||q(D)− q(D′)||2. Gaussian Mechanism
is (ϵ, δ)-DP.

Due to the similarity with the Gradient Descent algorithm and the
simplicity of illustrating our idea compared with the original EM al-
gorithm, in this paper, we will mainly focus on DP Gradient EM
algorithm. See the full version for the statistical guarantees of the DP
EM algorithm.

4 Main Method

4.1 Main Difficulty

In the previous section, we introduced the Gradient EM algorithm,
which updates the estimator via the gradient ∇Qn(β

t;βt). It is no-
table that this idea is quite similar to the Gradient Descent algo-
rithm. Moreover, we know that there are several DP versions of the
(Stochastic) Gradient Descent algorithm such as [4, 26, 15, 19, 21,
29]. The key idea of DP Gradient Descent is adding some random-
ized noise such as Gaussian noise to preserve DP property in each
iteration, and by the composition theorem of DP ([9]), the whole al-
gorithm will still be DP. Thus, motivated by this, to design a DP vari-
ant of Gradient EM algorithm, the most direct way is adding some
Gaussian noise to the gradient ∇Qn(β

t;βt) in each iteration and
updating the parameter.

However, it is notable that we cannot add Gaussian noise directly
to the gradient in the Gradient EM algorithm. The main reason is that
all previous DP Gradient Descent algorithms need to assume that
each component of the gradient (which correspond to the function
∇qi in (2)) is bounded, or the loss function is O(1)-Lipschitz, such
as Logistic Regression, so that its ℓ2-norm sensitivity is bounded and
thus the Gaussian mechanism can be used. However, in the Gradient
EM algorithm, each component (∇qi(β

t;βt) in (2)) is unbounded
in most of the cases. For example, we can easily show the following
fact.

Theorem 1. Consider the GMM in (4), there is a case with fixed β,
such that for each constant c, with positive probability w.r.t. y we
have ∥∇q(β;β)∥2 ≥ c.

Thus, to design a DP (Gradient) EM algorithm, the major difficulty
lies in how to process the gradient to make its sensitivity bounded.
Two main approaches are used in previous work: (1) [18] assumed
that datasets are pre-processed such that the ℓ2 norm of each sam-
ple is bounded by 1. However, as mentioned previously, our goal is
to achieve the statistical guarantees for the DP (Gradient) EM algo-
rithm. If a similar approach is adopted in our algorithm, the (manual)
normalization can easily destroy many statistical properties of the
data and force the private estimator to introduce additional bias, mak-
ing it inconsistent.2 (2) Instead of normalizing the datasets, [1, 30]
first clipped the gradient to ensure that the ℓ2-norm of each compo-
nent of the gradient is bounded by the threshold C, and then added
Gaussian noise (see Algorithm 1 for more details). However, such
an approach may cause two issues. First, in general clipping gradient
could introduce additional bias even in statistical estimation, which
has also been pointed out in [20]. Second, the threshold C heavily
affects the convergence speed and selecting the best C is quite dif-
ficult (see Experimental section for more details). Due to these two
reasons, it is hard to study the statistical guarantees of Algorithm 1.
Thus, we need a new approach to pre-process the gradient to ensure
that it has not only bounded ℓ2-norm but also consistent statistical
guarantee.

2 An estimator βn is consistent if limn→∞ ∥βn − β∗∥2 = 0.



Algorithm 1 Clipped DP Gradient EM

Input: D = {yi}ni=1 ⊂ Rd, privacy parameters ϵ, δ; Qn(·; ·) and
its q(·; ·), initial parameter β0, gradient norm C, step size η and the
number of iterations T .

1: for t = 1, 2, · · · , T do
2: For each i ∈ [n], evaluate the function in (2) to compute

qi(β;β
t−1).

3: Clip gradient:

∇q̄i(β
t−1;βt−1) =

∇qi(β
t−1;βt−1)

max{1, ∥∇qi(βt−1;βt−1)∥2
C

}
.

4: Update βt = βt + η(∇Q̄n(β
t−1;βt−1) +N (0, C2σ2Id),

where ∇Q̄n(β
t−1;βt−1)) = 1

n

∑n
i=1 ∇q̄i(β

t−1;βt−1) and

σ2 = c
T log 1

δ
n2ϵ2

for some constant c.
5: end for
6: Return βT

4.2 Our Method

In this section, we will propose our method to overcome the afore-
mentioned difficulties. Since our method is motivated by a robust
and private mean estimator for heavy-tailed distributions, which was
given in [25, 12, 22], and it is derived from the robust mean estima-
tor in [11]. To be self-contained, we first review their estimator. We
now consider a 1-dimensional random variable x and assume that
x1, x2, · · · , xn are i.i.d. sampled from x. The estimator consists of
three steps:
Scaling and Truncation. For each sample xi, we first re-scale it by
dividing s (which will be specified later). Then, the re-scaled one
was passed through a soft truncation function ϕ. Finally, we put the
truncated mean back to the original scale. That is,

s

n

n∑
i=1

ϕ(
xi

s
) ≈ E(x). (8)

Here, we use the function given in [6],

ϕ(x) =


x− x3

6
, −

√
2 ≤ x ≤

√
2

2
√
2

3
, x >

√
2

− 2
√
2

3
, x < −

√
2.

(9)

A key property for ϕ is that ϕ is bounded, that is, |ϕ(x)| ≤ 2
√
2

3
.

Noise Multiplication. Let η1, η2, · · · , ηn be random noise gener-
ated from a common distribution η ∼ χ with Eη = 0. We multiply
each data xi by a factor of 1 + ηi, and then perform the scaling and
truncation step on the term xi(1 + ηi). That is,

x̃(η) =
s

n

n∑
i=1

ϕ(
xi + ηixi

s
). (10)

Noise Smoothing. In this final step, we smooth the multiplicative
noise by taking the expectation w.r.t. the distributions. That is,

x̂ = Ex̃(η) =
s

n

n∑
i=1

∫
ϕ(

xi + ηixi

s
)dχ(ηi). (11)

Computing the explicit form of each integral in (11) depends on the
function ϕ(·) and the distribution χ. Fortunately, [6] showed that

when ϕ is in (9) and χ ∼ N (0, 1
β
) (where β will be specified later),

we have for any a and b > 0

Eηϕ(a+ b
√

βη) = a(1− b2

2
)− a3

6
+ Ĉ(a, b), (12)

where Ĉ(a, b) is a correction form which is easy to implement.
To obtain an (ϵ, δ)-DP estimator, the key observation is that the

bounded function ϕ in (9) also makes the integral form of (11)
bounded by 2

√
2

3
. Thus, we know that the ℓ2-norm sensitivity is

s
n

4
√
2

3
. Hence, the query

A(D) = x̂+ Z,Z ∼ N (0, σ2), σ2 = O(
s2 log 1

δ

ϵ2n2
) (13)

will be (ϵ, δ)-DP, which leads to the following result.

Lemma 1 (Theorem 6 in [25]). Let x1, x2, · · · , xn be i.i.d. samples
from distribution x ∼ µ. Assume that there is some known upper
bound on the second-order moment, i.e., Eµx

2 ≤ τ . For a given
failure probability ζ, if set β = 2 log 1

ζ
and s =

√
nτ

2 log 1
ζ

, with

probability at least 1− ζ the following holds

|A(D)− E(x)| ≤ O(

√
τ log 1

δ
log 1

ζ

nϵ2
). (15)

Although in Lemma 1 we just need to assume that x has bounded
second order moment instead of bounded norm, there are still other
two problems: First, Lemma 1 is directly followed by a result in [11]
with the same parameter s and β. However, due to the noise we add,
is it possible that we can further improve the result by some other spe-
cific s and β? Second, by using the previous parameters we cannot
extend to the local DP model since it will have a huge error (we can
easily see that in the local DP setting, the mechanism is equivalent

to (13) with σ2 = O(
s2 log 1

δ
nϵ2

) = O( τ
ϵ2
), which could be considered

as a constant error since it is not decayed to zero when n increases.
Thus, can we extend the method to the local DP model? In the fol-
lowing we provide affirmative answer of these two questions through
finer analysis of the mechanism (13).

Theorem 2. Let x1, x2, · · · , xn be i.i.d. samples from distribution
x ∼ µ. Assume that there is some known upper bound on the second-
order moment, i.e., Eµx

2 ≤ τ . For a given failure probability ζ, if set

β =
√

log 1
ζ

and s =
√
nϵτ

log 1
ζ

log1/4 1
δ

, then with probability at least

1− ζ mechanism (13) satisfies

|A(D)− Ex| ≤ O(

√
τ log1/2 1

δ
log 1

ζ

nϵ
). (16)

Comparison with [25]. Although our private estimator has a similar
form as the one in [25]. From Theorem 2, we can see there are several
critical differences. (1) We have provided a more refined analysis
of the estimator and showed that with some specific parameters, we
can get an improved upper bound. Specifically, compared with (15)
given by [25], we can see the parameter s in Theorem 2 depends on
n, ϵ and τ , where s in (15) only depends on n and τ . This is due
to different trade-offs between the bias, variance in the estimation
error and the noises we added. Moreover, we can see the error bound
in (16) improves a factor of O( 1√

ϵ
). The theoretical analysis on the

trade-offs is non-trivial, which is started from a Legendre transform
of the mapping given by [5]. (2) We will also see that, by using a



Algorithm 2 DP Gradient EM Algorithm

Input: D = {yi}ni=1 ⊂ Rd, privacy parameters ϵ, δ, Q(·; ·) and its qi(·; ·), initial parameter β0 ∈ B, τ which satisfies Assumption 1, the
number of iterations T (to be specified later), step size η and failure probability ζ > 0.

1: Let ϵ̃ =
√

log 1
δ
+ ϵ−

√
log 1

δ
, s =

√
mτϵ̃

2 log d
ζ

, β =
√

log d
ζ

. Partite the data D into T subsets {Di}Ti=1 with |Di| = m = n
T

.

2: for t = 1, 2, · · · , T do
3: For each j ∈ [d], calculate the robust gradient by using (11) and add Gaussian noise over the dataset Dt, that is

gt−1
j (βt−1) =

1

m

∑
i∈Dt

(
∇jqi(β

t−1, βt−1)
(
1−

∇2
jqi(β

t−1, βt−1)

2s2β

)
−

∇3
jqi(β

t−1, βt−1)

6s2

)

+
s

m

∑
i∈Dt

Ĉ

(
∇jqi(β

t−1, βt−1)

s
,
|∇jqi(β

t−1, βt−1)|
s
√
β

)
+ Zt−1

j , (14)

where yi ∈ Dt for i ∈ [m], Zt−1
j ∼ N (0, σ2) with σ2 = 16s2d

9m2 ϵ̃2
= 4dTτ

9nβ2 ϵ̃
.

4: Let vector ∇̃Qn(β
t−1) ∈ Rd denote ∇̃Qn(β

t−1) = (gt−1
1 (βt−1), gt−1

2 (βt−1), · · · , gt−1
d (βt−1)).

5: Update βt = βt−1 + η∇̃Qn(β
t−1).

6: end for

similar analysis, we can have a local DP version of (13) with an error

bound of O(

√
τ log1/2 1

δ
log 1

ζ√
nϵ

). To our best knowledge, this is the

first result on private mean estimation of heavy-tailed distribution in
the local DP model.

Inspired by the previous private 1-dimensional mean estimation,
we propose our method (Algorithm 2). In Algorithm 2, the key idea
is that, in the t-th iteration of Gradient EM algorithm, we first ap-
ply the previous private estimator to each coordinate of the gradient
∇Qn(β

t−1;βt−1), and then perform the M-step.

Theorem 3 (Privacy guarantee). For any 0 < ϵ, δ < 1, Algorithm 2
is (ϵ, δ)-DP.

Theorem 4. Let the parameter set B = {β : ∥β − β∗∥2 ≤ R} for
R = κ∥β∗∥2 for some constant κ ∈ (0, 1). Assume that Assumption
1 holds for parameters γ,B, µ, v, τ satisfying the condition of 1 −
2 v−γ
v+µ

∈ (0, 1). Also, assume that ∥β0 − β∗∥2 ≤ R
2

, n is large
enough so that

Ω̃((
1

v − γ
)2
d2τT

√
log 1

δ
log 1

ζ

ϵR2
) ≤ n. (17)

Then, with probability at least 1−ζ, we have, for all t ∈ [T ], βt ∈ B.
If it holds and if taking T = O(µ+v

v−γ
logn) and η = 2

µ+v
, we have

∥βT − β∗∥2 ≤ Õ
(
R

√
v + µ

(v − γ)3

d 4

√
log 1

δ
log 1

ζ

√
τ

√
nϵ

)
, (18)

where the Õ-term and Ω̃-term omit log d, logn and other factors
(see Appendix for the explicit form of the result).

Remark 1. There are several points that need to note. Firstly, the
assumptions of the parameter set β and the initial parameter β0 are
commonly used in other papers on statistical guarantees of (Gradient)
EM algorithm such as [2, 33, 27]. Even though Theorem 4 requires
that the initial estimator be close enough to the optimal one, our ex-
periments show that the algorithm actually performs quite well for
any random initialization. Secondly, in (17) we need to assume that
n ∝ 1

R2 , where R is the radius of B. This is due to that in Algo-
rithm 2, we need to keep each βt ∈ B under perturbation. When R
is small, we have to let the noise be small enough, which means that

n should be large enough. Finally, for specific models, R, v, µ, γ are
constants, this means that the error in (18) is Õ( d

√
τ√

nϵ
). However, here

τ depends on the model, which may also depend on d and ∥β∗∥2.

5 Implications for Some Specific Models
In this section, we apply our framework (i.e., Algorithm 2) to
the models mentioned in the Preliminaries section. To obtain re-
sults for these models, we only need to find the corresponding
B, γ, k,R, v, µ, τ to ensure that Assumption 1 and the assumptions
in Theorem 4 hold. Due to the space limit, the results of RMC are
included in the full version.

5.1 Gaussian Mixture Model

Lemma 2 ([3, 31]). If ∥β∗∥2
σ

≥ r, where r is a sufficiently
large constant denoting the minimum signal-to-noise ratio (SNR),
then there exists an absolute constant C > 0 such that the prop-
erties of self-consistent, Lipschitz-Gradient-2(γ,B), µ-smoothness
and υ-strongly concave hold for function Q(·; ·) with γ =
exp(−Cr2), µ = υ = 1, R = k∥β∗∥2, k = 1

4
, and B = {β :

∥β − β∗∥2 ≤ R}.

Lemma 3. With the same notations as in Lemma 2, for each β ∈
B, the j-the coordinate of ∇q(β;β) (i.e., ∇jq(β;β)) satisfies the
following inequality

Ey(∇jq(β;β))
2 ≤ O((∥β∗∥2∞ + σ2)).

Also, for fixed j ∈ [d], each ∇jqi(β;β), where i ∈ [n], is indepen-
dent with others.

Theorem 5. With the same notations as in Lemma 2, in Algorithm
2 assume that ∥β0 − β∗∥2 ≤ 1

8
∥β∗∥2 and n is large enough so that

Ω̃(
d2
√

∥β∗∥2∞ + σ2

√
log 1

δ
log 1

ζ

ϵ∥β∗∥22
) ≤ n. (19)

Moreover, if take T = O(logn) and η = O(1), then we have with
probability at least 1− ζ

∥βT − β∗∥2 ≤ Õ
(
∥β∗∥2

d 4

√
log 1

δ
log 1

ζ

√
∥β∗∥2∞ + σ2

√
nϵ

)
. (20)



(a) GMM, n = 1000, d = 20, ϵ = 0.2 (b) MRM, n = 1000, d = 20, ϵ = 0.2 (c) RMC, n = 1000, d = 20, ϵ = 0.2

Figure 1. Estimation error of Algorithm 1 (clipped) v.s. iteration t under different clipping threshold C

Remark 2. Note that if we assume that σ, ∥β∗∥2 = O(1), then
the error in (20) is upper bounded by Õ( d√

nϵ
). This means that to

achieve the error of α ∈ (0, 1), the sample complexity is Õ( d2

α2ϵ
).

It is notable that for GMM, the near optimal rate is Õ(d2( 1
α2 + 1

αϵ
)

[13]. Thus when ϵ is some constant, our result matches their near
optimal rate. However, as mentioned in previous section, their algo-
rithm has extremely large hidden constants in their parameters and
thus is impractical and it is difficult to extend their method to other
mixture models.

5.2 Mixture of Regressions Model

Lemma 4 ([3, 31]). If ∥β∗∥2
σ

≥ r, where r is a sufficiently large con-
stant denoting the required minimal signal-to-noise ratio (SNR), then
function Q(·; ·) of the Mixture of Regressions Model has the prop-
erties of self-consistent, Lipschitz-Gradient-2(γ,B), µ-smoothness,
and υ-strongly with γ ∈ (0, 1

4
), µ = υ = 1,B = {β : ∥β−β∗∥2 ≤

R}, R = k∥β∗∥2, and k = 1
32
.

Theorem 6. With the same notations as in Lemma 4, in Algorithm
2 assume that ∥β0 − β∗∥2 ≤ 1

64
∥β∗∥2 and n is large enough so that

Ω̃(
d2 max{(∥β∗∥22 + σ2)2, d∥β∗∥22}

√
log 1

δ
log 1

ζ

ϵ∥β∗∥22
) ≤ n.

Moreover, if take T = O(logn) and η = O(1), then we have, with
probability at least 1− ζ,

∥βT−β∗∥2 ≤ Õ
(d∥β∗∥2 4

√
log 1

δ

√
max{∥β∗∥22 + σ2, d∥β∗∥22}

√
nϵ

)
.

6 Experiments
In this section, we evaluate the performance of Algorithm 2 on three
canonical models: GMM, MRM, and RMC. We evaluate our algo-
rithm on both the synthetic data and the real world datasets3: ADULT,
IPUMS-BR and IPUMS-US.
Baseline Methods. As we mentioned in the related work section,
[18] only provides heuristic methods without any finite sample sta-
tistical guarantees, and its method cannot be applied to our models
(i.e., using their method to our models cannot guarantee DP). Thus,
we will not compare with their method. [32] needs strong assump-
tions on the statistical guarantee and thus it is incomparable with our

3 http://archive.ics.uci.edu/ml/datasets/Adult, http://international.ipums.org

work. Thus, here we compare our approach against two baseline al-
gorithms. One is the Gradient EM algorithm [3], namely, EM, as our
non-private baseline method. The other is clipped DP Gradient EM
(Algorithm 1), namely, clipped, as our private baseline method.
Experimental Results. Firstly, we will show that the performance
of Algorithm 1 is heavily affected by the clipping threshold C. As
shown in Figure 1, we conduct the algorithm on three canonical mod-
els with fixed data size n, dimension data d, and privacy budget ϵ. If
C is set to be a small value (e.g., 0.1), it significantly reduces the
adding noise in each iteration but at the same time it leads much in-
formation loss in gradient estimation. Conversely, if C is set too high
(e.g., 5 or 10), the noise variance becomes high, resulting in intro-
ducing too much noise to the estimation. Thus, selecting the optimal
C is quite difficult since too large or too small values of C has a neg-
ative effect on the performance of Algorithm 1. Even for C = 1 that
achieves lowest estimation error among other threshold values, the
estimation error does not decay as the number of iterations increases,
whereas under the same privacy guarantee, our proposed algorithm
achieves the same convergence behavior as EM, and thoroughly out-
performs Algorithm 1. For fair comparison, we fixed C = 1 for
Algorithm 1 in the following experiments.

In Figure 2, 3 and 4, we test how privacy budget ϵ, data dimen-
sion d and data size n affect the estimation error ∥β − β∗∥2 of all
algorithms on three canonical models over iteration t. We can see
that the estimation error of our proposed algorithm in each of the
three models decreases when ϵ increases, d decreases or n increases,
which are consistent with our theoretical results. In these figures, our
algorithm exhibits nearly the same convergence behavior as the non-
private baseline method and outperforms Algorithm 1.

We further present the estimation error of different algorithms on
GMM model over three real world datasets, as shown in Figure 5.
We can observe that our proposed algorithm still outperforms the
baseline algorithms under different privacy budgets.

7 Conclusion
We provided the first study on the finite sample statistical guarantees
of (Gradient) EM algorithm in the Differential Privacy (DP) model.
Previous DP Gradient Descent based methods cannot be directly ex-
tended to the Gradient EM algorithm. We proposed a new and im-
proved private algorithm for estimating the mean of heavy-tailed dis-
tributions, which could also be extended to the local DP model. We
also implemented our algorithms to several canonical latent variable
models. Finally, we conducted extensive experiments on both of the
synthetic and real-world data, and these results outperform previous
heuristic methods and show the effectiveness of our algorithm.



(a) n = 2000, d = 10 (b) n = 2000, ϵ = 0.5 (c) d = 10, ϵ = 0.5

Figure 2. Estimation error of GMM w.r.t. privacy budget ϵ, data dimension d, data size n and iteration t

(a) n = 2000, d = 10 (b) n = 2000, ϵ = 0.5 (c) d = 10, ϵ = 0.5

Figure 3. Estimation error of MRM w.r.t. privacy budget ϵ, data dimension d, data size n and iteration t

(a) n = 2000, d = 10 (b) n = 2000, ϵ = 0.5 (c) d = 10, ϵ = 0.5

Figure 4. Estimation error of RMC w.r.t. privacy budget ϵ, data dimension d, data size n and iteration t

(a) ADULT (b) IPUMS-US (c) IPUMS-BR

Figure 5. Estimation error of GMM over three real datasets: ADULT, IPUMS-US and IPUMS-BR
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