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Abstract

Machine Learning has emerged as one of the most powerful tools for us to learn and extract

useful information from big data. It plays a vital role in many applications, especially in

those from social sciences, finance, medical sciences and genomics research. However, due

to the existence of sensitive information, we cannot implement machine learning algorithms

directly on such data. Traditional ad hoc approaches like anonymization have suffered

from numerous high-profile failures. Thus, approaches with more privacy preserving ability

are urgently needed. For this purpose, we focus our studies on differential privacy (DP),

which is a strong mathematical scheme for privacy preserving rooted in cryptography. It

allows for rich statistical and machine learning analysis, and is now becoming a standard

for private data analysis. Despite the rapid development of differential privacy in theory,

its adoption to machine learning community remains slow. This dissertation summarizes

our contributions to the sub-field of differentially private machine learning and presents

a number of novel algorithms, new results and limitations for a number of fundamental

machine learning problems.

In part one of this dissertation, we consider the Empirical Risk Minimization (ERM)

problem in the differential privacy model. Firstly, we investigate the behaviors of Convex

ERM in the central DP model. For this problem, we propose several algorithms with tighter

utility upper bound and less running time in different settings, such as general convex,

strongly convex and high dimensional settings. We also study the problem in the case where

the underlying distribution of data is heavy-tailed, and the case where the loss function of

ix



ERM is pairwise. Secondly, we investigate the behaviors of ERM with non-convex loss

functions in the central DP model. Specifically, we first generalize the expected excess

empirical risk from convex to Polyak-Lojasiewicz condition. Then, we study ERM with

general non-convex loss functions by considering the error measurements from the first order

stationary, second order stationary and global view, respectively. Thirdly, we consider ERM

in the Non-interactive Local DP (NLDP) model and show how to reduce the exponential

sample complexity given by previous studies for some special loss functions. We also

show that if the server is allowed to have some public but unlabeled data, the sample

complexity can be further reduced to polynomial size for smooth Generalized Linear Model.

Fourthly, we try to understand the limitations of high dimensional ERM in the LDP model.

Particularly, we study the sparse linear regression problem and show the lower bound of its

estimation error. We also show some positive results under a relaxation of the problem.

In part two of this dissertation, we consider some matrix estimation problems. Firstly,

we study the problem of Principal Component Analysis (PCA) in the LDP model and show

its lower bound and near optimal upper bound for both low dimension and high dimensional

sparse cases. Secondly, we study the sparse covariance matrix estimation problem and show

its optimal upper bound and algorithm. Finally, we provide the first study of sparse inverse

covariance matrix estimation problem in the DP model.

In part three of this dissertation, we consider some other machine learning related

problems. Firstly, we study the problem of Uniform Facility Location problem in the Joint

Differential Privacy model, we provide its lower bound and provide a near optimal algorithm.

Second, we study the the problem of inferring ground truth in the Local Attribute Differential

Privacy model and provide the first theoretical result on the problem. Thirdly, we focus on

the DP version of Expectation Maximization algorithm. Specifically, we propose in the first

DP version of (Gradient) EM algorithm with statistical guarantees. Finally, we consider the

problem of truth discovery and propose an algorithm which can generate crowdsourced data

differentially privately.
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Chapter 1

Introduction

In the big data era, Machine Learning is now becoming one of the most powerful tools for

us to learn and extract useful information from data. It plays an important role in many

applications, especially in those from social sciences [79, 147, 136, 213] , finance [145,

80, 281, 88], medical sciences [236, 89, 190, 167] and genomics research [13, 194, 232].

However, due to the existence of sensitive information in such applications, we cannot

directly apply existing machine learning algorithms to such data. For example, most of the

biomedical data are held by some organizations, such as hospitals or physicians, without

a proper privacy-preserving mechanism, these organizations cannot or are unwilling to

share these sensitive data. Thus, it is urgently needed to develop effective machine learning

algorithms which can learn these sensitive data efficiently and meanwhile protect their

privacy.

To preserve the privacy of sensitive data, a commonly adopted strategy is anonymiza-

tion, which simply removes any sensitive information from the original data. For example,

TriNetX is a global federated research network providing statistics on Electric Medical

Record (EMR) that includes various types of patient data like diagnosis, procedures, medi-

cations, laboratory results, and genomic information. TriNetX allows participating organi-

zations and individuals to explore anonymized patient data in a browser- based, real-time
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fashion [263]. Its users include a mix of hospitals, primary cares, and specialty treatment

providers spanning a wide range of geographies, age groups, and income levels. At TriNetx,

only statistical summaries of de-identified information are provided, but not the protected

health information. Both the patients and the data-providing organizations stay anonymous.

However, such a privacy preserving approach could have a few severe flaws. One of

them is that some sensitive information could still be released after removing those apparent

identifiers such as name, address, and social security number. This could still happen even

when only statistical summaries are released. There are quite a few anonymization failures.

One of the famous examples is that Netflix made a huge database of movie recommendations

available for study with the obvious identifiable information removed. But it is shown that

when paired with other existing data, re-identification becomes possible [223]. The same

phenomenon has been observed in other kinds of data, such as social network graphs [15],

search query logs [168] and others. Moreover, releasing statistics computed on sensitive data

can also be problematic; for example, Wang et al. in [333] showed that releasing R2 -values

computed on high-dimensional genetic data can lead to privacy breaches by an adversary

who is armed with a small amount of auxiliary information.

Instead of publicizing anonymized data, even just releasing the machine learning model

could still cause privacy breach. Actually, previous papers have already showed that many

machine learning algorithms are exposed to several types of privacy attacks. Attacks

targeting data privacy include: adversary inferring whether input examples were 1used to

train the target model with membership inference attacks [352, 256, 259, 224], learning the

global properties of training data with property inference attacks [120], and covert channel

model training attacks [258]. Attacks targeting model privacy include: adversary uncovering

the model details with model extraction attacks [279], and inferring hyperparameters with

hyperparameter stealing attacks [294]. Thus, approaches with more privacy preserving

ability are urgently needed.

An effective way to resolve these issues is to design differentially private machine
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learning algorithms. Differential Privacy (DP) [107], with roots in cryptography, is a strong

mathematical scheme for privacy preserving. It allows for rich statistical and machine

learning analysis, and is now becoming a standard for private data analysis. Informally

speaking, DP ensures that an adversary cannot infer whether or not a particular individual is

participating in the database query, even with unbounded computational power and access

to every entry in the database except for that particular individual’s data. DP considers a

centralized setting that includes a trusted data curator, who generates the perturbed statistical

information (e.g., counts and histograms) by using some randomized mechanism.

The decade and a half since the seminal differential privacy paper [107] saw an early

focus on developing privacy release mechanisms and answering some basic queries, such

as [35, 41, 63, 87, 97, 103, 105, 137, 138, 142, 152]. Despite the rapid development of

DP in theory, its adoption to machine learning community remains slow. Possibly, the

reason is that, unlike the traditional machine learning algorithms, there are three main

ingredients in any differentially private learning algorithm involving sensitive data, the

privacy-preserving model, the (sensitive) data, and the objective functions. Each of them

could impose tremendous challenges for designing an effective privately learning algorithm.

For example, the popular non-interactive local differential privacy model often requires a

large (or even exponential) number of data samples (called sample complexity) in order to

ensure the learning accuracy for some loss functions, making them inapplicable to real world

data [257]. Many data such as biomedical data are often high dimensional and irregular (e.g.,

heavy-tailed due to the existence of outliers). This could cause major difficulty for designing

DP algorithms. It is known that differential privacy is not achievable for some learning

problems, such as linear regression, in high dimensional space [317]. Heavy-tailed data

could lead to unbounded gradient, and thus fail almost all existing DP learning algorithms.

Loss functions in many machine learning tasks could be non-convex (such as those used in

deep neural networks) and complex (such as those pairwise loss functions used for patient

similarity learning). Such types of loss functions could be difficult to optimize and thus
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challenging to achieve differential privacy. Thus, two fundamentals questions are

What are the limitations of machine learning problems and how to design machine

learning algorithms in the differential privacy model?

This thesis focuses on answering the above two questions. Specifically, it investigates both

theoretical and practical behaviors of several fundamental machine learning problems in

different differential privacy models.

1.1 Dissertation Contributions

To be more precise, parts of the thesis are based on my following published joint work

• In Chapter 3, I study the Empirical Risk Minimization problem (ERM) (i.e., DP-ERM)

with convex loss in the differential privacy model. Specifically,

– In Chapter 3.1, I focus on DP-ERM in the central (ε, δ)-DP model. For smooth

(strongly) convex loss function with or without (non)-smooth regularization, I

give algorithms that achieve either optimal or near optimal utility bounds with

less gradient complexity compared with previous work. For ERM with smooth

convex loss function in high-dimensional (p� n) setting, I give an algorithm

which achieves the upper bound with less gradient complexity than previous

ones. At last, I generalize the expected excess empirical risk from convex loss

functions to non-convex ones satisfying the Polyak-Lojasiewicz condition and

give a tighter upper bound on the utility than the one in [356]. Part of this work

appeared in our published work in Conference on Neural Information Processing

Systems (NIPS/NeurIPS) 2017 [327].

– In Chapter 3.2, I study Differentially Private Stochastic Convex Optimization,

which is a generalization of DP-ERM, with heavy-tailed data. For this problem,

I provide a comprehensive study of DP-SCO under various settings. First, I

4



consider the case where the loss function is strongly convex and smooth. For

this case, I propose a method based on the sample-and-aggregate framework,

which has an excess population risk of Õ( d3

nε4
) (after omitting other factors),

where n is the sample size and d is the dimensionality of the data. Then, I show

that with some additional assumptions on the loss functions, it is possible to

reduce the expected excess population risk to Õ( d2

nε2
). To lift these additional

conditions, I also provide a gradient smoothing and trimming based scheme to

achieve excess population risks of Õ( d2

nε2
) and Õ( d

2
3

(nε2)
1
3

) for strongly convex and

general convex loss functions, respectively, with high probability. Experiments

suggest that these algorithms can effectively deal with the challenges caused by

data irregularity. Part of this work appeared in our published work in The 37th

International Conference on Machine Learning (ICML 2020) [331].

– In Chapter 3.3, I generalize the classical DP-ERM setting to the case where

the loss functions are pariwise loss instead of pointwise loss. I propose several

differentially private pairwise learning algorithms for both online and offline set-

tings. Specifically, for the online setting, I first introduce a differentially private

algorithm (called OnPairStrC) for strongly convex loss functions. Then, I extend

this algorithm to general convex loss functions and give another differentially

private algorithm (called OnPairC). For the offline setting, I also present two

differentially private algorithms (called OffPairStrC and OffPairC) for strongly

and general convex loss functions, respectively. These proposed algorithms can

not only learn the model effectively from the data but also provide strong privacy

protection guarantee for sensitive information in the training set. Extensive

experiments on real-world datasets are conducted to evaluate the proposed algo-

rithms and the experimental results support my theoretical analysis. Part of this

work appeared in our published work in The Thirty-Fourth AAAI Conference

on Artificial Intelligence (AAAI 2020) [154].
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• Beyond the convex loss functions, in Chapter 4, I investigate the theoretical behaviors

of DP-ERM with non-convex loss functions. I will study the problem from three

perspectives.

– In Chapter 4.1, I study the behavior of the problem from the first order stationary

view (that is, I use some first order stationary measurement to measure the private

estimator). For DP-ERM with non-smooth regularizer, we generalize an existing

work by measuring the utility using `2 norm of the projected gradient. Also, I

extend the error bound measurement, for the first time, from empirical risk to

population risk by using the expected `2 norm of the gradient. I then investigate

the problem in high dimensional space, and show that by measuring the utility

with Frank-Wolfe gap, it is possible to bound the utility by the Gaussian Width

of the constraint set, instead of the dimensionality p of the underlying space.

I further demonstrate that the advantages of this result can be achieved by the

measure of `2 norm of the projected gradient. A somewhat surprising discovery

is that although the two kinds of measurements are quite different, their induced

utility upper bounds are asymptotically the same under some assumptions. I also

show that the utility of some special non-convex loss functions can be reduced

to a level (i.e., depending only on log p) similar to that of convex loss functions.

Finally, I test the proposed algorithms on both synthetic and real world datasets

and the experimental results confirm those theoretical analysis. Part of this

work appeared in our published work in The Thirty-Third AAAI Conference on

Artificial Intelligence (AAAI 2019) [308].

– Next, in Chapter 4.2, I study the problem with the measurement of the excess

empirical risk or population risk, which was primarily used as the utility to

measure the quality for convex loss functions. Specifically, I show that the

excess empirical (or population) risk can be upper bounded by Õ(d log(1/δ)
lognε2

) in

the (ε, δ)-DP settings, where n is the data size and d is the dimensionality of
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the space. The 1
logn

term in the empirical risk bound can be further improved to

1
nΩ(1) (when d is a constant) by a highly non-trivial analysis on the time-average

error. Next, I show how to improve the bounds for some specific problems.

Particularly, we focus on the generalized linear model with non-convex loss

functions and the robust regressions problem with additional assumptions, and

present an (ε, δ)-DP algorithm for them with population risk O(
4√
d√
nε

). Part of this

work appeared in our published work in The 36th International Conference on

Machine Learning (ICML 2019) [296] and Conference on Neural Information

Processing Systems (NIPS/NeurIPS) 2017 [327].

– Finally, in Chapter 4.3, I study the behavior of the problem from the second

order stationary view (that is, I use some second order stationary measurement

to measure the private estimator). Specifically, I consider the connection be-

tween achieving differential privacy and finding approximate local minimum.

Particularly, I show that when the size n is large enough, there are (ε, δ)-DP

algorithms which can find an approximate local minimum of the empirical

risk with high probability in both the constrained and non-constrained settings.

These results indicate that one can escape saddle points privately. To deal with

the issues of high sample complexity and non-scalable, I the propose a new

method called Differentially Private Trust Region, and show that it outputs a

second-order stationary point with high probability and less sample complexity,

compared to the existing one. Moreover, I also provide a stochastic version of

the method (along with some theoretical guarantees) to make it faster and more

scalable. Experiments on benchmark datasets suggest that these methods are

indeed more efficient and practical. Part of this work appeared in our published

work in The European Conference on Machine Learning and Principles and

Practice of Knowledge Discovery in Databases (ECML-PKDD 2020) and The

36th International Conference on Machine Learning (ICML 2019) [296, 313].
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• Instead of the central DP model, in Chapter 5 I will study ERM in the Local Differen-

tial Privacy model. Particularly, I focus on the theoretical behaviors of ERM in the

non-interactive local model and high dimensional sparse linear regression problem.

Specifically,

– In Chapter 5.1 I study ERM in the non-interactive local model. Previous research

on this problem [257] indicates that the sample complexity, to achieve error

α, needs to be exponentially depending on the dimensionality p for general

loss functions. In this chapter, I make two attempts to resolve this issue by

investigating conditions on the loss functions that allow us to remove such a

limit. In the first attempt, I show that if the loss function is (∞, T )-smooth, by

using the Bernstein polynomial approximation we can avoid the exponential

dependency in the term of α. I then propose player-efficient algorithms with 1-bit

communication complexity andO(1) computation cost for each player. The error

bound of these algorithms is asymptotically the same as the original one. With

some additional assumptions, we also give an algorithm which is more efficient

for the server. In the second attempt, I show that for any 1-Lipschitz generalized

linear convex loss function, there is an (ε, δ)-LDP algorithm whose sample

complexity for achieving error α is only linear in the dimensionality p. Finally,

motivated by the idea of using polynomial approximation and based on different

types of polynomial approximations, I propose (efficient) non-interactive locally

differentially private algorithms for learning the set of k-way marginal queries

and the set of smooth queries. Part of this work appeared in our published work

in Conference on Neural Information Processing Systems (NIPS/NeurIPS) 2018

[300] and The 30th International Conference on Algorithmic Learning Theory

(ALT 2019) [306].

– To alleviate the issues of practice and exponential sample complexity. In Chapter

5.2 I relax the non-interactive LDP model. Different from its classical setting,
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my new model allows the server to access some additional public but unlabeled

data. I first show that there is an (ε, δ)-NLDP algorithm for GLM (under some

mild assumptions), if each data record is i.i.d sampled from some sub-Gaussian

distribution with bounded `1-norm. Then with high probability, the sample

complexity of the public and private data, for the algorithm to achieve an α

estimation error (in `∞-norm), is O(p2α−2) and O(p2α−2ε−2), respectively, if

α is not too small (i.e., α ≥ Ω( 1√
p
)), where p is the dimensionality of the data.

We then extend our idea to the non-linear regression problem and show a similar

phenomenon for it. To my best knowledge, this is the first paper showing the

existence of efficient and effective algorithms for GLM and non-linear regression

in the NLDP model with public unlabeled data. Note that this is my unpublished

work.

– Instead of ERM in the non-interactive local model. In Chapter 5.3 I will study

the high dimensional ERM in the general local model, and I will concentrate

on the most simplest problem, i.e., Sparse Linear Regression. I first show that

polynomial dependency on the dimensionality p of the space is unavoidable

for the estimation error in both non-interactive and sequential interactive local

models, if the privacy of the whole dataset needs to be preserved. Similar

limitations also exist for other types of error measurements and in the relaxed

local models. This indicates that differential privacy in high dimensional space

is unlikely achievable for the problem. With the understanding of this limitation,

then I present two algorithmic results. The first one is a sequential interactive

LDP algorithm for the low dimensional sparse case, called Locally Differentially

Private Iterative Hard Thresholding (LDP-IHT), which achieves a near optimal

upper bound. This algorithm is actually rather general and can be used to solve

quite a few other problems, such as (Local) DP-ERM with sparsity constraints

and sparse regression with non-linear measurements. The second one is for
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the restricted (high dimensional) case where only the privacy of the responses

(labels) needs to be preserved. For this case, we show that the optimal rate of

the error estimation can be made logarithmically dependent on p (i.e., log p) in

the local model, where an upper bound is obtained by a label-privacy version

of LDP-IHT. Part of this work appeared in our published work in The 36th

International Conference on Machine Learning (ICML 2019) [317].

• In the the second part of this dissertation, beyond the vector estimation in ERM

problem, I will focus on some estimation or inference statistical problems that are

related to matrix. Specifically, in Chapter 6, I will study three canonical matrix

estimation problems,

– In Chapter 6.1, I study the Principal Component Analysis (PCA) problem under

the non-interactive local differential privacy model. For the low dimensional

case (i.e., p � n), I will show that the optimal rate of Θ( kp
nε2

) (omitting the

eigenvalue terms) for the private minimax risk of the k-dimensional PCA using

the squared subspace distance as the measurement, where n is the sample size

and ε is the privacy parameter. For the high dimensional (i.e., p� n) row sparse

case, I first give a lower bound of Ω(ks log p
nε2

) on the private minimax risk, where

s is the underlying sparsity parameter. Then we provide an efficient algorithm to

achieve the upper bound of O( s
2 log p
nε2

). Experiments on both synthetic and real

world datasets confirm my theoretical guarantees. Part of this work appeared

in our published work in The 28th International Joint Conference on Artificial

Intelligence (IJCAI 2019) [320] and Theoretical Computer Science [322].

– Next, in Chapter 6.2, I will study the problem of estimating the covariance

matrix under differential privacy, where the underlying covariance matrix is

assumed to be sparse and of high dimensions. Firstly, I propose a new method,

called DP-Thresholding, to achieve a non-trivial `2-norm based error bound
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i.e., O(
s2 log p log 1

δ

nε2
) where s is the row sparsity of the underlying covariance

matrix, n is the sample size, and p is the dimensionality of the data, and it

is significantly better than the existing ones from adding noise directly to the

empirical covariance matrix. I also extend the `2-norm based error bound to

a general `w-norm based one for any 1 ≤ w ≤ ∞, and show that they share

the same upper bound asymptotically. My approach can be easily extended to

local differential privacy. Secondly, I show that the upper bound of the problem

in LDP model is actually tight. My main technique for achieving this lower

bound is a general framework, called General Private Assouad Lemma, which

is a considerable generalization of the previous private Assouad lemma and

can be used as a general method for bounding the private minimax risk of

matrix-related estimation problems. Experiments on the synthetic datasets show

consistent results with our theoretical claims. Part of this work appeared in

our published work in The 53rd Annual Conference on Information Sciences

and Systems (CISS 2019) [312], The 28th International Joint Conference on

Artificial Intelligence (IJCAI 2019) [316] and Theoretical Computer Science

[323].

– Finally, in Chapter 6.3 I give the first study of sparse inverse covariance estima-

tion problem under differential privacy. Firstly, we propose an ε-differentially

private algorithm via output perturbation, which is based on the sensitivity of

the optimization problem and Wishart mechanism. Based on the idea of that, I

propose a general covariance perturbation method, and then for ε-differential

privacy, I analyze Laplacian and Wishart mechanisms, for (ε, δ)-differential

privacy I analyze Gaussian and Wishart mechanisms. Moreover, I extend the

covariance perturbation algorithm to distributed setting and local differential

privacy. Experiments on synthetic and benchmark datasets are also support

these theoretical analysis. Part of this work appeared in our published work in
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2018 6th IEEE Global Conference on Signal and Information Processing (2018

GlobalSip) [303].

• In Chapter 7, I will study some other problems of Machine Learning in DP model,

which ranges from clustering, truth discovery, latent variable models and generating

synthetic dataset. Specifically,

– Chapter 7.1 is my unpublished work. In this chapter I focus on studying the

ground truth inference problem under local attribute differential privacy (LADP)

model, which is a relaxation of LDP model, and propose a new algorithm called

private Dawid-Skene method, which is motivated by the classical Dawid-Skene

method. Specifically, I first provide the estimation errors for both ability of users

and the ground truth under some assumptions of the problem if the algorithm

start with some appropriate initial vector. Moreover, I also propose an explicit

instance and show that the estimation error of the ground truth achieved by

the private major voting algorithm is always greater than the error achieved by

previous method.

– Chapter 7.2 is also an unpublished work. I propose in this chapter the first

DP version of (Gradient) EM algorithm with statistical guarantees. Moreover,

I apply the general framework to three canonical models: Gaussian Mixture

Model (GMM), Mixture of Regressions Model (MRM) and Linear Regression

with Missing Covariates (RMC). Specifically, for GMM in the DP model, my

estimation error is near optimal in some cases. For the other two models, I

provide the first finite sample statistical guarantees. My theory is also supported

by thorough numerical experiments.

Furthermore, some other work during my PhD not included in the thesis include four of our

published papers [315, 332, 330, 314] and one submitted manuscript [364].

12



1.2 Dissertation Outline

The rest of the chapters go as follows:

• In Chapter 2 I will review some definitions, mechanisms, properties and lemmas of

Differential Privacy (DP) and its local version, Local Differential Privacy (LDP) that

will be used throughout the whole dissertation.

• In Chapter 3 I will study the Empirical Risk Minimization with convex loss functions

in the DP model (DP-ERM). Chapter 3.1 studies how to design faster algorithms for

DP-ERM in the (ε, δ)-DP model. Chapter 3.2 focuses on the stochastic version of

DP-ERM, i.e., DP-SCO, in (ε, δ)-DP model where the data distribution is heavy-tailed.

Chapter 3.3 studies DP-ERM with pairwise loss functions.

• Instead of convex loss functions, Chapter 4 studies DP-ERM with non-convex loss

functions. Chapter 4.1 is about theoretical behaviors of private estimator under the

first order stationary measurement. In Chapter 4.2 I provide some upper bounds of

errors using the excess empirical or population risk. In Chapter 4.3 I show how to

escape saddle points of the Empirical Risk function in DP model.

• Instead of the central model, in Chapter 5 I study ERM in LDP model. I first study

ERM in the non-interactive LDP model in Chapter 5.1. Then I relax the non-interactive

LDP model and study Generalized Linear Models in the non-interactive LDP model

with some public but unlabeled data. Finally, I study the high dimensionality issue of

ERM in LDP model via studying sparse linear regression.

• Chapter 6 focuses on some matrix related estimation problems in (Local) DP model.

In Chapter 6.1 I study Principal Component Analysis in LDP model. In Chapter 6.2 I

study Sparse Covariance Matrix estimation in DP and LDP model. Finally in Chapter

6.3 I study Sparse Inverse Covariance Matrix estimation in DP model.
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• Chapter 7 I study other machine learning problems. In Chapter 7.1 I study ground

truth inference in the Local Attribute Differential Privacy model. Chapter 7.2 focuses

on the statistical guarantees of DP version of Expectation Maximization algorithm.

• In Chapter 8, I will conclude the dissertation and discusses some potential directions

for future research.
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Chapter 2

Differential Privacy Background

In this Chapter, I will introduce some definitions, properties and mechanisms of Differential

Privacy (DP) that will be used throughout the whole dissertation. More details could be

found in [104].

2.1 Central Differential Privacy

Informally speaking, Differential Privacy (DP) ensures that an adversary cannot infer

whether or not a particular individual is participating in the database query, even with

unbounded computational power and access to every entry in the database except for that

particular individual’s data. DP considers a centralized setting that includes a trusted data

curator, who generates the perturbed statistical information (e.g., counts and histograms) by

using some randomized mechanism. It works by injecting random noise into the statistical

results obtained from sensitive data so that the distribution of the perturbed results is

insensitive to any single element (i.e., a data point/item) change in the original dataset.

Formally, it can be defined as follows.

We say that two datasets D and D′ are neighbors to each other if they differ by only one

entry, denoted as D ∼ D′.
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Definition 2.1.1 (Differential Privacy [107]). Given a data universe X , we say that two

datasets D,D′ ⊆ X are neighbors if they differ by only one entry, which is denoted as

D ∼ D′. A randomized algorithmA is (ε, δ)-differentially private (DP) if for all neighboring

datasets D,D′ and for all events S in the output space of A, we have

P(A(D) ∈ S) ≤ eεP(A(D′) ∈ S) + δ.

In practice, ε ≈ 0.1 and δ ≈ 1/nω(1) are often good enough choices for (ε, δ)-differential

privacy, where n is the number of samples in the dataset.

It is notable that DP enjoys the post-processing and sub-sampling properties, which are

commonly used in machine learning related problems.

Lemma 2.1.1 (Post-processing Property of DP). LetM be an (ε, δ)-DP mechanism, and

f : Range(M) 7→ R be an arbitrary randomized mapping. Then f ◦M is also (ε, δ)-DP.

Lemma 2.1.2 (Sub-sampling Property of DP [29]). Over a domain of datasets X n, if an

algorithm A is (ε, δ)-DP, then for any n-size dataset D, executing A on uniformly random

γn entries of D ensures (2γε, δ)-DP.

Definition 2.1.2 (Laplacian Mechanism). Given a function q : X n → Rp, the Laplacian

Mechanism is defined as:ML(D, q, ε) = q(D) + (Y1, Y2, · · · , Yp), where Yi is i.i.d. drawn

from a Laplacian Distribution Lap(∆1(q)
ε
, where ∆1(q) is the `1-sensitivity of the function q,

i.e., ∆1(q) = supD∼D′ ||q(D)− q(D′)||1. For a parameter λ, the Laplacian distribution has

the density function:

Lap(x|λ) =
1

2λ
exp(−x

λ
).

Laplacian Mechanism preserves ε-differentially private.

Definition 2.1.3 (Gaussian Mechanism). Given a function q : X n → Rp, the Gaussian

Mechanism is defined as:MG(D, q, ε) = q(D) +Y, where Y is drawn from a Gaussian Dis-

tributionN (0, σ2Ip) with σ ≥
√

2 ln(1.25/δ)∆2(q)

ε
. ∆2(q) is the `2-sensitivity of the function q,
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i.e., ∆2(q) = supD∼D′ ||q(D)−q(D′)||2.Gaussian Mechanism preserves (ε, δ)-differentially

private.

Definition 2.1.4 (Exponential Mechanism). The Exponential Mechanism allows differen-

tially private computation over arbitrary domains and range R, parametrized by a score

function u(D, r) which maps a pair of input data set D and candidate result r ∈ R to

a real valued score. With the score function u and privacy budget ε, the mechanism

yields an output with exponential bias in favor of high scoring outputs. LetM(D, x,R)

denote the exponential mechanism, and ∆ be the sensitivity of u in the range R, ∆ =

maxr∈RmaxD∼D′ |u(D, r)−u(D′, r)|. Then ifM(D, x,R) selects and outputs an element

r ∈ R with probability proportional to exp( εu(D,r)
2∆u

), it preserves ε-differential privacy.

Lemma 2.1.3 ([104]). For the exponential mechanismM(D, u,R), we have

Pr{u(M(D, u,R)) ≤ OPTu(x)− 2∆u

ε
(ln |R|+ t)} ≤ e−t,

where OPTu(x) is the highest score in the rangeR, i.e. maxr∈R u(D, r).

Lemma 2.1.4 (Basic Composition Theorem). LetMi be an (εi, δi) DP mechanism, then

the composition mechanismMT = (M1,M2, · · · ,MT ) will be (
∑T

i=1 εi,
∑T

i=1 δi) DP.

Thus, given target privacy parameters 0 < ε < 1 and 0 < δ < 1, to ensure (ε, δ)-DP

over T mechanisms, it suffices that each mechanism is (ε′, δ′)-DP, where ε′ = ε
T

and δ′ = δ
T

.

In addition to allowing the parameters to degrade more slowly, we would like our

theorem to be able to handle more complicated forms of composition.

Lemma 2.1.5 (Advanced Composition Theorem). Given target privacy parameters 0 <

ε < 1 and 0 < δ < 1, to ensure (ε, T δ′ + δ)-DP over T mechanisms, it suffices that each

mechanism is (ε′, δ′)-DP, where ε′ = ε

2
√

2T ln(2/δ)
and δ′ = δ

T
.

The Moments Accountant method proposed in [1] is a technique to accumulate the

privacy cost which has tighter bound for ε and δ.
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Lemma 2.1.6 (Moments Accountant). Given target privacy parameters 0 < ε < 1 and

0 < δ < 1, to ensure (ε, T δ′+ δ)-DP over T mechanisms, it suffices that each mechanism is

(ε′, δ′)-DP, where ε′ = ε

2
√

2T ln(2/δ)
and δ′ = δ.

Roughly speaking, when we use the Gaussian Mechanism on the (stochastic) gradient

descent, we can save a factor of
√

ln(T/δ) in the asymptotic bound of standard deviation of

noise compared with the advanced composition theorem in [105].

Lemma 2.1.7. [1] For any G-Lipschitz loss function, there exist constants c1 and c2 so that

given the sampling probability q = l/n and the number of steps T, for any ε < c1q
2T , a DP

stochastic gradient algorithm with batch size l that injects Gaussian Noise with standard

deviation G
n
σ to the gradients (Algorithm 1 in [1]) is (ε, δ)-differentially private for any

δ > 0 if σ ≥ c2
q
√
T ln(1/δ)

ε
.

More details of how to use this lemma could be found in Chapter 3 and 4.

Besides the classical Differential Privacy, additionally, we also use zero Concentrated

Differential Privacy (zCDP) [52] and its composition property to guarantee (ε, δ)-DP. Com-

pared to directly using the composition property of DP, it has many advantages (see [192,

309] for more details).

Definition 2.1.5. A randomized mechanism A is ρ-zCDP if, for all neighboring dataset

D,D′ and all α ∈ (1,∞),

Dα(A(D)||A(D′)) ≤ ρα,

where Dα(·||·) is the α-Rényi Divergence 1.

The following three lemmas are some properties of zCDP, which will be used in the

proofs of our theorems.

Lemma 2.1.8 ([52]). Suppose that two mechanisms satisfy ρ1-zCDP and ρ2-zCDP, respec-

tively. Then, their composition is (ρ1 + ρ2)-zCDP.
1For two distributions P and Q on Ω and α ∈ (1,∞), the α-Rényi Divergence between P,Q is defined as

Dα(P ||Q) = 1
α−1 log

∫
Ω
P (x)αQ(x)1−αdx.
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Lemma 2.1.9 ([52]). For a Gaussian mechanism q(D)+Y with Y ∼ N (0, σ2Id), it satisfies

(
∆2

2(q)

2σ2 )-zCDP.

Lemma 2.1.10 ([52]). If a mechanism is ρ-zCDP, then it is (ρ+ 2
√
ρ log 1

δ
, δ)-DP for any

δ > 0.

2.2 Local Differential Privacy

Instead of the trusted curator, in Local Differential Privacy model, each data provider perturb

his/her private data record locally via some differentially private mechanisms before sending

it to the curator.

Since we will consider the sequential interactive and non-interactive local models in this

dissertation, we follow the definitions in [97].

We assume that {Zi}ni=1 are the private observations transformed from {Xi}ni=1 through

some privacy mechanisms. We say that the mechanism is sequentially interactive, when it

has the following conditional independence structure:

{Xi, Z1, · · · , Zi−1} 7→ Zi, and Zi is independent with Xj | {Xi, Z1, · · · , Zi−1}

for all j 6= i and i ∈ [n]. The full conditional distribution can be specified in terms of

conditionals Qi(Zi | Xi = xi, Z1:i−1 = z1:i−1). The full privacy mechanism can be specified

by a collection Q = {Qi}ni=1.

When Zi is depending only on Xi, the mechanism is called non-interactive and in this

case we have a simpler form for the conditional distributions Qi(Zi | Xi = xi). We now

define local differential privacy by restricting the conditional distribution Qi.

Definition 2.2.1 ([97]). For given privacy parameters ε > 0, δ ≥ 0, the random variable Zi

is an (ε, δ) sequentially locally differentially private view of Xi if for all z1, z2, · · · , zi−1
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and x, x′ ∈ X we have the following for all the events S:

Qi(Zi ∈ S | Xi = xi, Z1:i−1 = z1:i−1) ≤ eεQi(Zi ∈ S | Xi = x′i, Z1:i−1 = z1:i−1) + δ.

If δ = 0, we will omit the term of δ (the same for other definitions).

We say that the random variable Zi is an (ε, δ) non-interactively locally differentially

private view of Xi if

Qi(Zi ∈ S | Xi = xi) ≤ eεQi(Zi ∈ S | Xi = x′i) + δ.

We say that the privacy mechanism Q = {Qi}ni=1 is (ε, δ)-sequentially (non-interactively)

locally differentially private (LDP) if each Zi is a sequentially (non-interactively) locally

differentially private view.

Note that the LDP can be regarded as a special case of traditional DP where each dataset

only contains one tuple. Thus, for the same privacy parameter ε, LDP provides a stronger

guarantee than DP.

Since all of our lower bounds are in the form of private minimax risk, we first introduce

the classical statistical minimax risk before discussing the locally private version.

Let P be a class of distributions over a data universe X . For each distribution p ∈

P , there is a deterministic function θ(p) ∈ Θ, where Θ is the parameter space. Let

ρ : Θ × Θ :7→ R+ be a semi-metric function on the space Θ and Φ : R+ 7→ R+ be a

non-decreasing function with Φ(0) = 0 (in this paper, we assume that ρ(x, y) = |x − y|

and Φ(x) = x2 unless specified otherwise). We further assume that {Xi}ni=1 are n i.i.d

observations drawn according to some distribution p ∈ P , and θ̂ : X n 7→ Θ be some

estimator. Then the minimax risk in metric Φ ◦ ρ is defined by the following saddle point

problem:

Mn(θ(P),Φ ◦ ρ) := inf
θ̂

sup
p∈P

Ep[Φ(ρ(θ̂(X1, · · · , Xn), θ(p))],
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where the supremum is taken over distributions p ∈ P and the infimum over all estimators θ̂.

Private Minimax Risk

For a given privacy parameter ε > 0, let Qε be the set of conditional distributions that

have the ε-LDP property. For a given set of samples {Xi}ni=1, let {Zi}ni=1 be the set of

observations produced by any distribution Q ∈ Qε. Then, our estimator will be based on

{Zi}ni=1, that is, θ̂(Z1, · · · , Zn). This yields a modified version of the minimax risk:

Mn(θ(P),Φ ◦ ρ,Q) := inf
θ̂

sup
p∈P

Ep[Φ(ρ(θ̂(Z1, · · · , Zn), θ(p))].

From the above definition, it is natural for us to seek the mechanism Q ∈ Qε that has

the smallest value for the minimax risk. This allows us to define functions that characterize

the optimal rate of estimation in terms of privacy parameter ε.

Definition 2.2.2. Given a family of distributions θ(P) and a privacy parameter ε > 0, the ε

sequential private minimax risk in the metric Φ ◦ ρ is:

MInt
n (θ(P),Φ ◦ ρ, ε) := inf

Q∈Qε
Mn(θ(P),Φ ◦ ρ,Q),

where Qε is the set of all ε sequentially locally differentially private mechanisms. Moreover,

the ε non-interactive private minimax risk in the metric Φ ◦ ρ is:

MNint
n (θ(P),Φ ◦ ρ, ε) := inf

Q∈Qε
Mn(θ(P),Φ ◦ ρ,Q),

where Qε is the set of all ε non-interactively locally differentially private mechanisms.
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Chapter 3

Empirical Risk Minimization with

Convex Loss Functions in Differential

Privacy Model

Empirical Risk Minimization (ERM) is one of the most fundamental problem in supervised

learning which encompasses a large family of classical models such as linear regression,

LASSO, ridge regression, SVM, logistic regression, sigmoid regression, and neural networks.

Due to its importance, its differentially private version ( called DP-ERM) has become one

of the core problems in both machine learning and differential privacy communities [66]. In

this chapter, we will revisit the classical setting DP-ERM with convex loss functions and its

stochastic version, i.e., DP Stochastic Convex Optimization (DP-SCO) in the central DP

model. Specifically, in Chapter 3.1, we will study DP-ERM from optimization perspective.

Particularly, we will focus on designing faster algorithm to achieve (near) optimal error under

different settings. In Chapter 3.2, we will study DP-SCO in the setting where the dataset

may follows some heavy-tailed distribution. Finalliy, in Chapter 3.3 we will generalize

DP-ERM with pointwise loss functions to pairwise loss functions. To make each chapter

independent and self-contained, we will review the definition of DP-ERM in each Chapter.
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We also note that the notations of loss function, constraint set and parameter space may be

different across different chapters. We first review some definitions in convex optimization.

Convex Optimization and Convex Geometry

Definition 3.0.1 (Lipschitz Function). A loss function f : C × X → R is G-Lipschitz

(under `2-norm) over θ, if for any z ∈ X and θ1, θ2 ∈ C, we have |f(θ1, z) − f(θ2, z)| ≤

G||θ1 − θ2||2.

Definition 3.0.2 (L-smooth Function). A loss function f : C × X → R is L-smooth over θ

with respect to the norm || · || if for any z ∈ X and θ1, θ2 ∈ C, we have

||∇f(θ1, z)−∇f(θ2, z)||∗ ≤ L||θ1 − θ2||,

where || · ||∗ is the dual norm of || · ||. If f is differentiable, this yields

f(θ1, z) ≤ f(θ2, z) + 〈∇f(θ2, z), θ1 − θ2〉+
L

2
||θ1 − θ2||2.

Definition 3.0.3 (Strongly Convex). The loss function f(x) is µ-strongly convex with

respect to norm || · || if for any x, y ∈ dom(f) and z ∈ X , there exists µ > 0 such that

f(θ1, z) ≥ f(θ2, z) + 〈∂f(θ2, z), θ1 − θ2〉+
µ

2
||θ1 − θ2||2,

where ∂f(θ2, z) is any subgradient on θ2 of f(·, z).

Next, we define the gradient complexity of finite sum function (3.1). Before that, we first

let IFO denote incremental first-order oracle, which is widely used in optimization theory

[4].
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3.1 Faster Algorithms of DP-ERM under the Classical Set-

ting

We will start from the most classical setting of DP-ERM. As we mentioned previously, ERM

is the most important model in Supervised Machine Learning, thus, DP-ERM is also one

core problem in the Differentially Private Machine Learning coomunity. It can be formally

defined as follows.

Definition 3.1.1 (DP-ERM). Given a dataset D = {z1, · · · , zn} from a data universe X and

a closed convex set C ⊆ Rp, DP-ERM is to find xpriv ∈ C so as to minimize the empirical

risk, i.e.

F r(x,D) =
1

n

n∑
i=1

f(x, zi) + r(x), (3.1)

with the guarantee of being differentially private, where f is the loss function and r is some

simple (non-)smooth convex function called regularizer 1. When the inputs are drawn i.i.d

from an unknown underlying distribution P on X , we also consider the population risk

Ez∼P [f(x, z)]. If the loss function is convex, the utility of the algorithm is measured by the

expected excess empirical risk, that is

EA[F r(xpriv, D)]−min
x∈C

F r(x,D),

or the expected excess population risk (generalization error), that is

Ez∼P,A[f(xpriv, z)]−min
x∈C

Ez∼P [f(x, z)],

where the expectation of A is taking over all the randomness of the algorithm.

Due to its importance, DP-ERM has received a great deal of attentions in recent years.

Most of them have been focused on convex loss functions. A number of approaches have
1If there is no regularizer, we will simply denote the ERM as F (x,D).
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been proposed for DP-ERM with convex loss functions, which can be roughly classified into

three categories. The first type of approaches is to perturb the output of a non-DP algorithm.

[66] first proposed the output perturbation approach which is extended by [356]. The second

type of approaches is to perturb the objective function [66]. We referred to it as objective

perturbation approach. The third type of approaches is to perturb gradients in first order

optimization algorithms. [29] proposed the gradient perturbation approach and gave a lower

bound on the utility of both general convex and strongly convex loss functions. Later, [269]

showed that this bound can actually be broken by adding more restrictions on the convex

domain C of the problem. As shown in Tables 3.1, 3.2 and 3.32 , the output perturbation

approach [356] can achieve the optimal bound of utility for strongly convex case, but cannot

be generalized to the case with non-smooth regularizer; also, the gradient complexity of

this approach is often too high, making it impractical. [159] extends the output perturbation

approach in [66]. However, their method is only applicable to the unconstrained case and

is not robust to the case with non-smooth regularizer. The objective perturbation approach

needs to obtain the optimal solution to ensure both differential privacy and utility, which

is often intractable in practice, and cannot achieve the optimal bound [159]. The gradient

perturbation approach can overcome all the issues and thus is preferred in practice. However,

its current results are all based on Gradient Descent (GD) or Stochastic Gradient Descent

(SGD), which could be slow for large datasets. In this section, we will focus on the gradient

perturbation based approach. Specifically, we will focus on how to design faster algorithms

in both theory and practice, while also could achieve (near) optimal (expected) excess

empirical or population risk.

Below is a summary of our results on DP-ERM with convex loss functions.

1. For strongly convex loss functions, we first propose a differentially private version

of SVRG [166], i.e., DP-SVRG, and show that it could achieve a near optimal error

bound with less gradient complexity, meaning that it runs much faster than the previous

2Bound and complexity ignore multiplicative dependence on log(1/δ).
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ones to achieve the near optimal bound. Moreover, combining with the Katyusha

momentum [8] and Variance Reduction methods, we introduce an accelerated version

of DP-SVRG, i.e., DP-Katyusha, and show that it can further reduce the gradient

complexity while achieving a near optimal upper bound (see Table 3.1 for details).

2. For general convex loss functions, we also propose a DP version of variance reduction

method, i.e., DP-SVRG++, which is a DP version of SVRG++ [9]. We show that our

method can achieve the optimal error bound with significantly less gradient complexity

compared to previous ones. See Table 3.2 for details.

3. In high dimensions, for smooth and convex loss functions, we propose an algorithm

called DP-AccMD, which is motivated by the Nestrov’s accelerated version of Mirror

Descent. Our algorithm has significantly less gradient complexity than the previous

one to achieve an upper bound of error which depends only on the Gaussian width of

the underlying constraint set. More details are in Table 3.3.

3.1.1 Related Work

There is a long list of works on differentially private ERM in the last decade which attack

the problem from different perspectives, such as [160, 276, 336, 305, 299]. We compare to

those that are most related to ours from the utility and gradient complexity (i.e., the number

(complexity) of times that the first order oracle (f(x, zi),∇f(x, zi)) is called) points of

view. Table 3.1 is the comparisons for the case that the loss function is strongly convex

and 1-smooth. Our algorithm achieves near optimal bound with less gradient complexity

compared to previous ones. It is also robust against non-smooth regularizers.

Tables 3.2 and 3.3 show that for non-strongly convex loss functions and in high dimen-

sional space, our algorithms outperform other existing methods. Particularly, we improve

the gradient complexity from O(n2) to O(n log n) while preserving the optimal bound

for non-strongly convex case. For the high dimensional case, the gradient complexity of
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Method Utility Upper Bd Gradient Complexity Non smooth Regularizer?
[67][66] Objective Perturbation O( p

n2ε2
) N/A No

[181] Objective Perturbation O( p
n2ε2

+ λ||x∗||2
nε

) N/A Yes

[29] Gradient Perturbation O(p log2(n)
n2ε2

) O(n2) Yes

[356] Output Perturbation O( p
n2ε2

) O(nκ log(nε
κ

)) No

[159] Output Perturbation O( p
n2ε2

) N/A No

Algorithm 3.1.1 Gradient Perturbation O(p log(n)
n2ε2

) O((n+ κ) log( nε√
p
)) Yes

Algorithm 3.1.2 Gradient Perturbation O(p log2(n)
n2ε2

) O((n+
√
κn) log( nε√

p
)) Yes

Table 3.1: Comparisons with previous (ε, δ)-DP algorithms. We assume that the loss
function f is convex, 1-smooth, differentiable (twice differentiable for objective pertur-
bation), and 1-Lipschitz. r(·) is µ-strongly convex. Bound and complexity ignore multi-
plicative dependence on log(1/δ). κ = L

µ
is the condition number. The lower bound is

Ω(min{1, p
n2ε2
})[29].

our method is reduced from O(n3) to O(n1.5). Note that [177] also considered the high

dimensional case via a dimension reduction method. But their method requires the optimal

value in the dimension-reduced space; in addition, they considered the loss functions under

a more stricter condition than the `2- norm Lipschitz requirement.

3.1.2 Preliminaries

Definition 3.1.2. Given some x ∈ Rp and i ∈ [n], the IFO returns a pair (f(x, zi),∇f(x, zi)).

The gradient complexity of an algorithm is the complexity of IFO in the algorithm.

For convenience, we let F (x) = 1
n

∑n
i=1 f(x, zi) and F r(x) = F r(x,D), and denote by

x∗ = arg minx∈C F
r(x).

Assumption 3.1.1. The loss function f(·, z) is assumed to be differentiable, L-smooth over

x with respect to `2 norm and is G-Lipschitz over x with respect to `2-norm for all z ∈ X .

The following definitions and lemmas will be used in the high dimensional case,
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Method Utility Upper Bd Gradient Complexity Non smooth Regularizer?
[181] Objective Perturbation O(

√
p

nε
) N/A Yes

[29] Gradient Perturbation O(
√
p log3/2(n)

nε
) O(n2) Yes

[356] Output Perturbation O([
√
p

nε
]

2
3 ) O(n[nε

d
]

2
3 ) No

Algorithm 3.1.3 Gradient Perturbation O(
√
p

nε
) O( nε√

p
+ n log(nε

p
)) Yes

Table 3.2: Comparisons with previous (ε, δ)-DP algorithms, where F r is not necessar-
ily strongly convex. We assume that the loss function f is convex, 1-smooth, differen-
tiable( twice differentiable for objective perturbation), and 1-Lipschitz. Bound and com-
plexity ignore multiplicative dependence on log(1/δ). The lower bound in this case is
Ω(min{1,

√
p

nε
})[29].

Method Utility Upper Bd Gradient Complexity Non-smooth Regularizer

[269] Gradient Perturbation O(

√
G2
C+||C||2 log(n)

nε
) O( n3ε2

(G2
C+||C||2) log2(n)

) Yes

[269] Objective Perturbation O(GC+λ||C||2
nε

) N/A No

[270] Gradient Perturbation O(
(G

2
3
C log2(n))

(nε)
2
3

) O( (nε)
2
3

G
2
3
C

) Yes

Algorithm 3.1.4 Gradient Perturbation O(

√
G2
C+||C||2

nε
) O

(
n1.5√ε

(G2
C+||C||2)

1
4

)
No

Table 3.3: Comparisons with previous (ε, δ)-DP algorithms. We assume that the loss function
f is convex, 1-smooth, differentiable( twice differentiable for objective perturbation), and
1-Lipschitz. The utility bound depends on GC , which is the Gaussian width of C. Bound and
complexity ignore multiplicative dependence on log(1/δ).
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Definition 3.1.3 (Minkowski Norm). The Minkowski norm (denoted by || · ||C) with respect

to a centrally symmetric convex set C ⊆ Rp is defined as follows. For any vector v ∈ Rp,

|| · ||C = min{r ∈ R+ : v ∈ rC}. The dual norm of || · ||C is denoted as || · ||C∗; for any

vector v ∈ Rp, ||v||C∗ = maxw∈C |〈w, v〉|.

Definition 3.1.4 (Gaussian Width). Let b ∼ N (0, Ip) be a Gaussian random vector in Rp.

The Gaussian width for a set C is defined as GC = Eb[supw∈C〈b, w〉].

Compared with the dimensionality p, Gaussian Width of a convex set C ⊆ Rp could be

much smaller. For example, when C is l1-norm unit ball, GC = O(
√

log p); when C is the

set of all unit s-sparse vectors on Rp, GC = O(
√
s log(p/s)).

3.1.3 Low Dimensional Case

Since the constraint set can be represented as a indication function, in this section we will

consider ERM with (non)-smooth regularizer3, i.e.

min
x∈Rp

F r(x,D) = F (x,D) + r(x) =
1

n

n∑
i=1

f(x, zi) + r(x). (3.2)

The loss function f is convex for every z. We define the proximal operator as

proxr(y) = arg min
x∈Rp
{1

2
||x− y||22 + r(x)}.

Note that for many specified non-smooth regularizer r(·), such as `1-norm or elastic net,

there are efficient or closed forms of solution for the operator.

Before showing our algorithm, we first introduce SVGR. SVRG is a general technique

called variance reduction method, which has been studied considerably in recent years

[8, 9, 166, 347]. All these results have showed that SGD converges faster if one makes

a better choice of the gradient estimator vt so that its variance reduces as k increases. In

3All the algorithms and theorems in this section are applicable to closed convex set C rather than Rp.
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SVRG [166], the estimator behaves as follows. It first keeps a snapshot vector x̃ that

is updated every m iterations, and computes the full gradient ∇F (x̃). Then it sets vt =

∇f(xt, zit)−∇f(x̃, zit) +∇F (x̃, D) as an unbiased estimator of the gradient∇F (xt, D).

After that, it updates xt, using the gradient descent on vt, i.e., xt+1 = xt − ηtvt , where ηt is

the step size.

The basic idea of our algorithms is to inject Gaussian noise to this unbiased estimator

vt; it can be shown that the estimator is still unbiased after injecting noise, which means

that it attains all the advantages (i.e., faster convergence) of the original one except for some

slightly increased variance.

Algorithm 3.1.1 DP-SVRG
Input: f(x, z) is G-Lipschitz and L-smooth. r(·) is µ-strongly convex w.r.t `2-norm. x̃0 is
the initial point, η is the step size, and T,m are the iteration numbers.

1: for s = 1, 2, · · · , T do
2: x̃ = x̃s−1

3: ṽ = ∇F (x̃)
4: xs0 = x̃
5: for t = 1, 2, · · · ,m do
6: Pick ist ∈ [n]
7: vst = ∇f(xst−1, zist )−∇f(x̃, zist ) + ṽ + ust , where ust ∼ N (0, σ2Ip)
8: xst = proxηr(x

s
t−1 − ηvst )

9: end for
10: x̃s = 1

m

∑m
k=1 x

s
k

11: end for
12: return x̃T

Strongly convex case

We first consider the case that F r(x,D) is µ-strongly convex. As mentioned earlier, Algo-

rithm 3.1.1 is based on the Prox-SVRG [347], which is much faster than SGD or GD. We

will show that DP-SVRG is also faster than DP-SGD or DP-GD in terms of the gradient

complexity needed to achieve a near optimal excess empirical risk bound.

Theorem 3.1.1. DP-SVRG (Algorithm 3.1.1) is (ε, δ)-differentially private, where 0 < ε ≤

c1
Tm
n2 for some constant c1 and δ > 0 is a constant, if the following condition holds for some
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constant c

σ2 = c
G2Tm ln(1

δ
)

n2ε2
. (3.3)

Remark 3.1.1. The constraint on ε in Theorems 3.1.1 and 3.1.4 comes from Lemma 2.1.7.

This constraint can be removed if the noise σ is amplified by a factor of O(ln(T/δ)) in

(3.3) and (3.7). But accordingly, there will be a factor of Õ(log(Tm
δ

)) in the utility bound in

(3.4), (3.6) and (3.8). In this case, the differential privacy guarantee is achieved by advanced

composition theorem and privacy amplification via sampling [29].

The following theorem shows that the output in Algorithm 3.1.1 achieves a near optimal

error bound.

Theorem 3.1.2. Under Assumption 3.1.1 and further assuming that r(x) is µ-strongly

convex w.r.t `2-norm, the output of DP-SVRG (Algorithm 3.1.1) has the following error

bound after T = O
(

log( n2ε2µ
pG2 ln(1/δ)

)
)

iterations

E[F r(x̃T )]− F r(x∗) ≤ Õ

(
p log(n)G2 log(1/δ)

n2ε2µ

)
, (3.4)

if σ is chosen as in (3.3), η is set as η = Θ( 1
L

) ≤ 1
12L

, and m = Θ(L
µ

) is sufficiently large so

that they satisfy inequality

1

η(1− 8ηL)µm
+

8Lη(m+ 1)

m(1− 8Lη)
<

1

2
, (3.5)

where some insignificant logarithmic terms are hiding in the Õ-notation. The total gradient

complexity is O
(

(n+ L
µ

) log nε√
p

)
.

From Table 3.1, we can see that the gradient complexity of DP-SGD is O(n2), which

means that our method is much faster when L
µ
� n. We will verify this in the experimental

section.

With the above theorem, a natural question is whether we can further reduce the gradient

complexity. Recently, [8] proposed the Katyusha technique to accelerate the stochastic vari-
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ance reduced methods and achieved the best-known gradient complexityO((n+
√

L
µ
n) log 1

ε
)

for strongly convex loss functions. Combining this technique with Algorithm 3.1.1, we

can obtain a differentially private version of Katyusha, DP-Katyusha, and show that it can

indeed improve the gradient complexity in Theorem 3.1.2. See Algorithm 3.1.2 for details.

Algorithm 3.1.2 DP-Katyusha
Input: f(x, z) is G-Lipschitz and L-smooth. r(x) is µ-strongly convex w.r.t `2-norm. x0 is
the initial point, η is the step size, and T,m are the iteration numbers. Parameter θ

1: Let x̃0 = x1
0 = x0, w = 1 + ηµ.

2: for s = 1, 2, · · · , T do
3: ṽ = ∇F (x̃s−1).
4: for t = 1, 2, · · · ,m do
5: Pick ist ∈ [n] uniformly.
6: Let yt−1 = θxst−1 + (1− θ)x̃s−1

7: vst = ∇f(yt−1, zist )−∇f(x̃s−1, zist ) + ṽ.
8: xst = proxηr(x

s
t−1 − ηvst ).

9: end for
10: Let x̃s = θ(

∑m−1
j=0 wj)−1

∑m−1
j=0 wjxsj+1 + (1− θ)x̃s−1.

11: xs+1
0 = xsm

12: end forreturn x̃T .

Theorem 3.1.3. Under Assumption 3.1.1 and taking σ as in Theorem 3.1.1, Algorithm

3.1.2 is (ε, δ)-DP. Furthermore if r(x) is µ-strongly convex w.r.t `2-norm and the parameters

are chosen in the following way: 1) if n ≤ L
µ

, set m = 3
4
n, η =

√
1

3µmL
, θ =

√
mµ
3L

and

T = O(
√

L
µn

log nε√
p
); 2) if n ≥ L

µ
, set m = 3

4
L
µ
, η = 2

3L
, θ = 1

2
, T = O(log( nε√

p
)), then the

output of Algorithm 3.1.2 has the following error bound

E[F r(x̃T )]− F r(x∗) ≤ Õ
(p log2 nG2 log 1

δ

n2ε2µ

)
. (3.6)

In other words, the overall gradient complexity of DP-Katyusha is O
(
(n+

√
nL
µ

) log nε√
p

)
.

Compared with the gradient complexity in Theorem 3.1.1, we can see that in the ill-

conditioned problem where the condition number L
µ
� n, the gradient complexity in

Theorem 3.1.3 is less.
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Remark 3.1.2. Note that compared with DP-SVRG (Algorithm 3.1.1), DP-Katyusha (Algo-

rithm 3.1.2) has additional variables yt, which are linear combinations of xt and x̃. Actually,

this corresponds to a special case of Katyusha momentum [8], i.e., the case of 1−τ1−τ2 = 0.

We note that this special case has also been studied in [368]. We can easily see that the

updating of x̃s can be written as x̃s = (
∑m−1

j=0 wj)−1
∑m−1

j=o w
jyj+1.

Non-strongly convex case

In some cases, F r(x) may not be strongly convex. For such cases, [10] has recently showed

that SVRG++ has less gradient complexity than Accelerated Gradient Descent. Following

the idea of DP-SVRG, we present algorithm DP-SVRG++ for the non-strongly convex case.

Unlike the previous one, this algorithm can achieve the optimal utility bound.

Compared with DP-SVRG (Algorithm 3.1.1) and DP-Katyusha (Algorithm 3.1.2), there

are some differences in DP-SVRG++. The first one is that the inner iteration number ms is

doubled when the outer loop iteration number s increases, while it is a fixed number in both

DP-SVRG and DP-Katyusha. The second one is that the starting vector xs+1
0 in each epoch

is the ending vector of the last epoch xsms , which is similar to the one in DP-Katyusha, but

not the average as in DP-SVRG.

Theorem 3.1.4. DP-SVRG++ (Algorithm 3.1.3) is (ε, δ)-differentially private, where 0 <

ε ≤ c1
2Tm
n2 for some constant c1 and δ > 0 is a constant, if the following condition holds for

some constant c

σ2 = c
G22Tm ln(2

δ
)

n2ε2
. (3.7)

Theorem 3.1.5. Under Assumption 3.1.1 and further assuming that F r(x) is convex,

the output of DP-SVRG++ (Algorithm 3.1.3) has the following error bound after T =

O

(
log( nε

G
√
p
√

log(1/δ)
)

)
iterations

E[F r(x̃T )]− F r(x∗) ≤ O

(
G
√
p ln(1/δ))

nε

)
, (3.8)
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Algorithm 3.1.3 DP-SVRG++
Input:f(x, z) is G-Lipschitz, and L-smooth over x ∈ C. x̃0 is the initial point, η is the step
size, and T,m are the iteration numbers.

1: x1
0 = x̃0

2: for s = 1, 2, · · · , T do
3: ṽ = ∇F (x̃s−1)
4: ms = 2sm
5: for t = 1, 2, · · · ,ms do
6: Pick ist ∈ [n]
7: vst = ∇f(xst−1, zist )−∇f(x̃s−1, zist ) + ṽ + uts, where uts ∼ N (0, σ2Ip)
8: xst = proxηr(x

s
t−1 − ηvst )

9: end for
10: x̃s = 1

ms

∑ms
k=1 x

s
k

11: xs+1
0 = xsms

12: end for
13: return x̃T

if σ is chosen as in (3.7), η = 1
13L

, and m = Θ(L) is sufficiently large. The gradient

complexity is O
(
nLε√
p

+ n log(nε
p

)
)

.

Note that only near optimal error bound has been achieved for strongly convex loss

functions as shown in (3.4), while optimal bound has been obtained for general convex loss

functions. It is not clear whether our method can achieve optimal error bound for strongly

convex loss functions. Another problem is to determine whether the gradient complexity in

Theorem 3.1.5 can be further improved by using DP-Katyusha. We leave both problems as

future research.

3.1.4 High Dimensional Case

The utility bounds in Section 3.1.3 depend polynomially on the dimensionality p. In high-

dimensional (i.e., p � n) space, such a dependence could be too large and thus not very

desirable. To alleviate this issue, we can usually get rid of the dependence on dimensionality

by reformulating the problem so that the goal is to find the parameter in some closed

centrally symmetric convex set C ⊆ Rp (such as l1-norm ball), i.e., minx∈C F (x,D) =

1
n

∑n
i=1 f(x, zi), where the loss function is convex.
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Recently, [269] and [270] showed that the
√
p term in (3.4), (3.6) and (3.8) can be

replaced by the Gaussian Width of C, which is no larger than O(
√
p) and can be significantly

smaller for many special cases, such as unit `1-norm ball. However, one issue of their

methods is that the gradient complexity to achieve this upper bound is Õ(n3), which is quite

large. In this section, we propose a faster algorithm to achieve the same upper utility bound.

Algorithm 3.1.4 DP-AccMD
Input:f(x, z) is G-Lipschitz , and L-smooth over x ∈ C . ||C||2 is the `2 norm diameter of
the convex set C. w is a function that is 1-strongly convex w.r.t || · ||C . x0 is the initial point,
and T is the iteration number.

1: Define V (y, x) = w(y)−〈∇w(x), y−x〉−w(x) as the Bregman divergence associated
with w.

2: y0, z0 = x0

3: for k = 0, · · · , T − 1 do
4: αk+1 = k+2

4L
and rk = 1

2αk+1L

5: xk+1 = rkzk + (1− rk)yk
6: yk+1 = arg miny∈C{L||C||

2
2

2
||y − xk+1||2C + 〈∇F (xk+1), y − xk+1〉}

7:
8: zk+1 = arg minz∈C{V (z, zk) + αk+1〈∇F (xk+1) + bk+1, z − zk〉}, where bk+1 ∼
N (0, σ2Ip)

9: end for
10: return yT

Our algorithm DP-AccMD is based on the Accelerated Mirror Descent method, which

was studied in [9] and [229]. Since there is an additional noise injected to the gradient in this

method, the parameters αk and rk are quite different from the original one, which makes the

proof much more challenging. Before showing our result, we first introduce the Bregman

divergence.

Definition 3.1.5. A function w : C → R is said to be a distance generating function with

modulus α > 0 (w.r.t. ‖ · ‖ norm), if w is continuously differentiable and strongly convex

satisfying the following inequality for any x, z ∈ C, 〈x−z,∇w(x)−∇w(z)〉 ≥ α‖x−z‖2.

The Bregman Divergence associated with w is defined as V (x, z) = w(x) − w(z) −

〈∇w(z), x− z〉.
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Theorem 3.1.6. DP-AccMD (Algorithm 3.1.4) is (ε, δ)-differentially private for constants

ε, δ > 0, if the following holds

σ2 = c
G2T ln(1/δ)

n2ε2
(3.9)

for some constant c.

Theorem 3.1.7. Under Assumption 3.1.1 and further assuming that the loss function is

convex, the output of DP-AccMD (Algorithm 3.1.4) has the following error bound

E[F (yT )]− F (x∗) ≤ O
(√G2

C + ||C||22G
√

ln(1/δ)

nε

)
after T iterations, where

T 2 = O
( L||C||22

√
V (x∗, x0)nε

G
√

ln(1/δ)
√
G2
C + ||C||22

)
,

if σ is chosen as in (3.9) and w is function that is 1-strongly convex with respect to || · ||C .

The total gradient complexity isO
(

n1.5
√
εL

(G2
C+||C||22)

1
4

)
, where ‖C‖2 is the `2-norm of the diameter

of C, i.e., ‖C‖2 = maxx,y∈C ‖x− y‖2.

We note that compared with DP-Mirror Descent in [269], our method can improve a

factor of O(n1.5) in the gradient complexity. However, we need to assume that the loss

function is L-smooth while in [269] it is required only to be convex.

A remaining issue in our algorithm is that in Steps 6 and 7 it needs to solve a sub-problem

in each iteration. This could be costly for some general convex set C. We leave it as an open

problem for future research.

3.1.5 Experiments

In this section, we study the practical performance of some of our proposed algorithms on

both synthetic and real-world datasets. As we will see later, all experimental results support
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our theoretical analysis.

We will use logistic regression as an example to study the practical performance of our

algorithms. Particularly, we test DP-SVRG (Algorithm 3.1.1) and DP-Katyusha (Algorithm

3.1.2) for logistic regression with `2-norm regularizer and DP-SVRG++ (Algorithm 3.1.3)

for logistic regression with `1-norm regularizer:

min
θ∈Rp

F r(θ,D) =
1

n

n∑
i=1

log(1 + exp(−yi〈xi, θ〉)) +
λ

2
‖θ‖2

2,

min
θ∈Rp

F r(θ,D) =
1

n

n∑
i=1

log(1 + exp(−yi〈xi, θ〉)) +
λ

2
‖θ‖1,

where{xi}ni=1 are the feature vectors and {yi}ni=1 are the corresponding labels.

Experimental Settings

For all the experiments, we set λ = 10−4. We compare the optimality gap with the gradient

complexity in different settings, where the optimal value is obtained through gradient descent.

For both strongly and general convex cases, we compare our methods with DP-SGD [29] and

DP-GD [356]. The synthetic dataset is generated by Pr(yi|xi) = 1
1+exp(−yi〈θ∗,xi〉) for some

θ∗. That is, we first randomly choose θ∗, and then for each random vector xi, we set yi = 1

if 1
1+exp(−yi〈θ∗,xi〉) >

1
2
. The size of the synthetic dataset is (105, 50). For the real-world

datasets, we use Covertype and IJCNN, which are commonly used in binary classification.

The sizes of the training sets are (5× 105, 54) and (5× 104, 22), respectively. We normalize

all the above datasets as pre-processing so that the loss functions are 1-Lipschitz.

Parameter Settings

For the strongly convex case, the outer and inner iteration numbers are chosen to be 2dlog ne

and 100, respectively, in DP-SVRG, while they are set to be dlog ne and 3
4
n, respectively, in

DP-Katyusha. Since the stepsize does not affect the privacy, we use the Barzilai-Borwein

stepsize strategy to determine the stepsize in each iteration [271] for DP-SVRG and DP-
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(a) Optimality gap w.r.t gra-
dient complexity with fixed
ε = 1, p = 50.

(b) Optimality gap w.r.t gra-
dient complexity with fixed
n = 105, ε = 1.

(c) Optimality gap w.r.t gra-
dient complexity with fixed
n = 105, p = 50.

Figure 3.1: Experimental results on synthetic dataset for strongly convex case.

(a) Optimality gap w.r.t gra-
dient complexity with fixed
ε = 1, p = 54.

(b) Optimality gap w.r.t gra-
dient complexity with fixed
n = 5× 105, ε = 1.

(c) Optimality gap w.r.t gra-
dient complexity with fixed
n = 5× 105, p = 54.

Figure 3.2: Experimental results on Covertype dataset for strongly convex case.

(a) Optimality gap w.r.t gra-
dient complexity with fixed
ε = 1, p = 50.

(b) Optimality gap w.r.t gra-
dient complexity with fixed
ε = 1, n = 105.

(c) Optimality gap w.r.t gra-
dient complexity with fixed
p = 50, n = 105.

Figure 3.3: Experimental results on synthetic dataset for convex case.

Katyusha. The initial stepsize is η = 0.1. For the privacy parameters, we choose ε = 0.2, 1

and a fixed δ = 10−4. All experiments are performed on MATLAB.

Results

Figure 3.1 and 3.2 show the results of `2-norm regularized logistic regression on synthetic

and Covertype dataset, respectively. Firstly, from the figures we can see that DP-Katyusha

38



(a) Optimality gap w.r.t gra-
dient complexity with fixed
ε = 1, p = 22.

(b) Optimality gap w.r.t gra-
dient complexity with fixed
ε = 1, n = 5× 104.

(c) Optimality gap w.r.t gra-
dient complexity with fixed
p = 22, n = 5× 104.

Figure 3.4: Experimental results on IJCNN dataset for convex case.

and DP-SVRG not only have lower gradient complexities in all cases than other existing

methods, but also achieve the lowest optimality gap. This suggests that our methods are

more practical and effective, which is consistent with our theoretical analysis. Comparing

DP-SVRG and DP-Katyusha, we can see that both of them can achieve almost the same

optimality gap, but DP-Katyusha has considerably lower gradient complexity. Secondly, we

can see that when the sample size becomes smaller, the optimality gap increases, which is

mainly due to the added noise in each iteration. Thirdly, when the dimensionality increases,

the optimality gap also increases. This is due to the fact that the error bound is linearly

depending on the dimensionality. Finally, we know that when the privacy parameter ε

increases, which means less privacy, the optimality gap decreases.

Figure 3.3 and 3.4 depict the results of logistic regression on synthetic and IJCNN

dataset, respectively. Firstly, we can see that in all the cases, DP-SVRG++ has significantly

lower gradient complexity than other methods, and also achieves a comparable optimality

gap with DP-GD. Secondly, when the sample size decreases, the optimality gap increases.

Thirdly, when the dimensionality increases, the optimality gap also increases. Finally, we

know that with a larger privacy parameter ε, the optimality gap decreases.

3.1.6 Omitted Proofs

For simplicity, we omit the superscripts of iterations in the same epoch s, i.e. use xt to

denote xst , unless otherwise specified.
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Useful Lemmas

Lemma 3.1.1. Suppose that each component function f(x, zi) is L-smooth. Let v =

∇f(yt−1, zit) − ∇f(x̃, zit) + ∇F (x̃) + ut, where ut ∼ N (0, σ2Ip) is independent of it.

Then, the following inequality holds

Eit,ut‖∇F (yt−1)− v‖2
2 ≤ 2L(F (x̃)− F (yt−1)− 〈∇F (yt−1), x̃− yj−1〉) + pσ2,

where the expectation is taking over it and u.

Proof. Let ṽ = ∇f(yt−1, zit)−∇f(x̃, zit) +∇F (x̃). Then, E〈∇F (yt−1)− ṽ, ut〉 = 0. For

the term E‖∇F (yt−1)− v‖2
2, by a tighter upper bound on the gradient estimator variance in

[8], we have

Eit‖∇F (yt−1)− ṽ‖2
2 ≤ 2L(F (x̃)− F (yt−1)− 〈∇F (yt−1, x̃− yj−1〉).

Thus, we get the proof.

Lemma 3.1.2. Assume that z∗ is an optimal solution to the following problem

min
x

γ

2
‖x− z0‖2 + φ(x),

where γ > 0, and φ(x) is a convex function (possibly non-differentiable). Then for all

z ∈ Rp, there exists a vector G ∈ ∂φ(z∗) with

〈G, z − z∗〉 =
γ

2
‖z0 − z∗‖2 − γ

2
‖z − z0‖2 +

γ

2
‖z − z∗‖2.

Proof. By the optimality of z∗, there exists a vector G ∈ ∂φ(z∗) which satisfies

γ(z∗ − z0) + G = 0.
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Thus, for all ∈ Rp, we have

0 = 〈γ(z∗ − z0) + G, z∗ − z〉

= γ〈z∗ − z0, z
∗ − z〉+ 〈G, z∗ − z〉

=
γ

2
‖z∗ − z0‖2 − γ

2
‖z − z0‖2 +

γ

2
‖z − z∗‖2 + 〈G, z∗ − z〉.

Lemma 3.1.3. If two vectors xj, xj−1 ∈ Rp satisfies xj = Proxηr(xj−1−ηv) with a constant

vector v and a general convex function r(x), then for all u ∈ Rp, we have

〈v, xj − u〉 ≤ −
1

2η
‖xj−1 − xj‖2 +

1

2η
‖xj−1 − u‖2 − 1

2η
‖xj − u‖2 + r(u)− r(xj).

Moreover, if r(x) is µ-strongly convex, the above inequality becomes

〈v, xj − u〉 ≤ −
1

2η
‖xj−1 − xj‖2 +

1

2η
‖xj−1 − u‖2 − 1 + ηµ

2η
‖xj − u‖2 + r(u)− r(xj).

Proof. By the definition of the proximal operator Prox(·), we can see that xj = Proxηr(xj−1−

ηv) is equivalent to

xj = arg min
x
{ 1

2η
‖x− xj−1‖2 + 〈v, x〉+ r(x)}.

Applying Lemma 3.1.2 with z = u, z0 = xj−1, z
∗ = xj, γ = 1

η
and φ(x) = 〈v, x〉 + r(x),

then there exists a vector G ∈ ∂r(x) satisfying

〈v, u− xj〉+ 〈G, u− xj〉 =
1

2η
‖xj−1 − xj‖2 − 1

2η
‖xj−1 − u‖2 +

1

2η
‖xj − u‖2.

Using the convexity of r(·), we get g(u)− g(xj) ≥ 〈G, u− xj〉. After rearranging, we have

the first inequality.
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If r(x) is µ-strongly convex, we have r(u)− r(xj) ≥ 〈G, u− xj〉+ µ
2
‖xj − u‖2.

Lemma 3.1.4. Let r be a closed convex function on Rp. Then for any x, y ∈ dom(R)

||proxr(x)− proxr(y)|| ≤ ||x− y||.

Lemma 3.1.5. Let w be a distance generating function with modulus α w.r.t. ‖ · ‖ norm,

and x+ = arg minu∈C{〈∇F (x) + ε, u〉+ 1
γ
V (u, x) + h(u)}. Then the following is true

〈∇F (x), x− x+〉 ≥ α

γ
‖x+ − x‖2 + r(x+)− r(x) + 〈ε, x+ − x〉.

Proof. By the optimality of x+, we know that there exists a p ∈ ∂r(x+) such that

〈∇F (x) + ε+
1

γ
[∇w(x+)−∇w(x)] + p, u− x+〉 ≥ 0, ∀x ∈ C. (3.10)

Letting u = x in above inequality, we have

〈∇F (x), x− x+〉 ≥ 1

γ
〈∇w(x+)−∇w(x), x+ − x〉+ 〈p+ ε, x+ − x〉.

By the strongly convexity of w and 〈p, x+ − x〉 ≥ r(x+)− r(x), we get the proof.

Lemma 3.1.6. For any vector v, we have ||v||2 ≤ ||C||2||v||C , where ||C||2 is the `2-diameter

and ||C||2 = supx,y∈C ||x− y||2.

Lemma 3.1.6 implies that any smooth convex function F (θ), which is L-smooth with

respect to `2 norm, is L||C||22-smooth with respect to || · ||C norm, which is the motivation of

our algorithm.

Proof. If v = 0, this is trivially true. Otherwise, we will show that ||v||2||C||2 ≤ ||v||C . This is

equivalent to show that v /∈ ||v||2
||C||2C. Taking any y ∈ C, since || ||v||2||C||2y||2 = ||v||2

||C||2 ||y||2, we

know that ||y||2 < ||C||2. Thus, || ||v||2||C||2y||2 < ||v||2. We get v /∈ ||v||2||C||2C.
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Lemma 3.1.7. [269] For W = (maxw∈C〈w, v〉)2, where v ∼ N (0, Ip), we have Ev[W ] =

O(G2
C + ||C||22).

3.1.7 Proofs of Differential Privacy

We will show that Algorithm 3.1.1, 3.1.2 and 3.1.3 are (ε, δ)-DP. The proof of Algorithm

3.1.4 is just based on the Moment in Lemma 2.1.7.

W.l.o.g, we assumeG = 1, i.e., ||∇f || ≤ 1 (otherwise we can rescale f ). We will mainly

focus on the proof of Theorem 3.1.1, the Proof of Theorem 3.1.3 and Theorem 3.1.4 are

the same, instead of the iteration number (or number of queries). Let the difference data of

D,D′ be the n-th data. Now, consider the i-th query:

Mi = ∇f(xst−1, zist )−∇f(x̃, zist ) +
1

n

n∑
i=1

∇f(x̃, zi) + ust , u
s
t ∼ N (0, σ2Ip),

where ist ∈ [n] is a uniform sample. This query can be thought as the composition of two

queries:

Mi,1 = ∇f(xst−1, zist )−∇f(x̃, zist ) +N (0, σ2
1Ip) (3.11)

and

Mi,2 = ∇F (x̃, D) +N (0, σ2
2Ip) =

1

n

n∑
i=1

∇f(x̃, zi) +N (0, σ2
2Ip) (3.12)

for some σ1, σ2. By Theorem 2.1 in [1] we have αMi
(λ) ≤ αMi,1

(λ) + αMi,2
(λ). Now we

bound αMi,1
(λ) and αMi,2

(λ).

For αMi,1
, we can use Lemma 3 in [1] directly, where q = 1

n
, f(·) = ∇f(xst−1, ·) −

∇f(x̃, ·). For some constant c1 and any integer λ ≤ σ2
1 ln(n/σ1), we have

αMi,1
(λ) ≤ c1

λ2

n2σ2
1

+O(
λ3

n3σ3
1

). (3.13)

For αMi,2
(λ), we use the relationship between moment account and Rényi divergence. By
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Definition 2.1 in [52] we have:

αMi,2
(λ) = λDλ+1(P ||Q), (3.14)

where P = ∇F (x̃, D)+N (0, σ2
2Ip) = N (∇F (x̃, D), σ2

2) andQ = ∇F (x̃, D′)+N (0, σ2
2Ip) =

N (∇F (x̃, D′), σ2
2). By Lemma 2.5 in [52], we have for some c2:

λDλ+1(P ||Q) =
λ(λ+ 1)||∇F (x̃, D)−∇F (x̃, D′)||2

2σ2
≤ 2λ(λ+ 1)

n2σ2
2

≤ c1λ
2

n2σ2
2

. (3.15)

Combining (3.13), (3.14) and (3.15), we have

αMi
(λ) ≤ c1

λ2

n2σ2
2

+ c2
λ2

n2σ2
1

+O(
λ3

n3σ3
1

). (3.16)

After T iterations, we have for some c1, c2,

αM ≤
T∑
i=1

αMi
≤ c1

λ2

n2σ2
2

+ c2
λ2

n2σ2
1

. (3.17)

To be (ε, δ)-differentially private, by Theorem 2.2 in [1], it suffices to show that

c1
Tλ2

n2σ2
2

+ c2
Tλ2

n2σ2
1

≤ λε

2

and

exp(
−λε

2
) ≤ δ.

In addition, we need

λ ≤ σ2
1 ln(n/σ1). (3.18)

It can be verified that when ε ≤ c3
T
n2 for some constant c3, we have

σ1 = c4

√
T log(1/δ)

nε
(3.19)
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and

σ2 = c5

√
T log(1/δ)

nε
. (3.20)

For some constants c4, c5, all the conditions can be satisfied. Since the sum of two Gaussian

distributions is still a Gaussian distribution, andMi = Mi,1 +Mi,2, we have σ = c

√
T log(1/δ)

nε

for some c. Thus, T-fold of the queries

Mi = ∇f(xst−1, zist )−∇f(x̃, zist ) +
1

n

n∑
i=1

∇f(x̃, zi) +N (0, σ2Ip)

will guarantee (ε, δ)-differential private when ε ≤ c3
T
n2 .

For Algorithm 3.1.1 and 3.1.3, T = Tm, while for Algorithm 3.1.2, T = 2T+1m.

Proof of Theorem 3.1.2

Let gt = 1
η
(xt−1 − proxηr(xt−1 − ηvt)). Then we have xt = xt−1 − ηgt. Thus

‖xt − x∗‖2
2 = ||xt−1 − ηgt − x∗||22 = ||xt−1 − x∗||22 − 2η〈gst , xt−1 − x∗〉+ η2||gt||22.

(3.21)

By Lemma 3 in [347], we have the following inequality

−〈gt, xt−1 − x∗〉+
η

2
||gt||22 ≤ F r(x∗)− F r(xst)−

µF
2
||xt−1 − x∗||22

− µr
2
||xt − x∗||2 − 〈vt −∇F (xt−1), xt − x∗〉. (3.22)

Plugging (3.21) into (3.22), we have

‖xt−x∗‖2
2 ≤ ‖xt−1−x∗‖2

2− 2η[F r(xt)−F r(x∗)]− 2η〈vt−∇F (xt−1), xt−x∗〉. (3.23)
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Next we bound −2η〈vt − ∇F (xt−1), xt − x∗〉. Denote x̂t = proxηr(xt−1 − η∇F (xst−1)).

Then we have

− 2η〈vt −∇F (xt−1), xt − x∗〉

= −2η〈vt −∇F (xt−1), xt − x̂t〉 − 2η〈vt −∇F (xt−1), x̂t − x∗〉

≤ 2η||vt −∇F (xt−1)||2||xt − x̂t||2 − 2η〈vt −∇F (xt−1), x̂t − x∗〉

≤ 2η‖vt −∇F (xt−1)‖2‖xt−1 − ηvt − (xt−1 −∇F (xt−1)‖2 − 2η〈vt −∇F (xt−1), x̂t − x∗〉

(3.24)

≤ 2η2‖vt −∇F (xt−1)‖2
2 − 2η〈vt −∇F (xt−1), x̂t − x∗〉 (3.25)

We can easily get Eut,it(vt −∇F (xt−1)) = 0, since ust is independent with vst−1. Also

by Lemma 3.1.1, we have

E‖vt −∇F (xt−1)‖2
2 ≤ 2L[F r(xt−1)− F r(x∗) + F r(x̃)− F r(x∗)] + σ2p. (3.26)

Plugging (3.26) into (3.25) and taking the expectation over it, ut, we have

E‖xt − x∗‖2
2 ≤ ‖xt−1 − x∗‖2

2 − 2η[E(F r(xt)− F r(x∗)]

+ 16η2L[F r(xt−1)− F r(x∗) + F r(x̃)− F r(x∗)] + 4η2σ2p. (3.27)

Summing over t = 1, 2, · · · ,m and taking the expectation, we have

E[‖xm − x∗‖2
2] + 2η(1− 8ηL)

m∑
t=1

[E(F r(xt))− F r(x∗)]

≤ ||x̃− x∗||2 + 16Lη2(m+ 1)[F r(x̃)− F r(x∗)] + 4mη2σ2p.

Since F r is µ strongly convex, we have ||x̃ − x∗||2 ≤ 2
µ
(F r(x̃) − F r(x∗)). Dividing
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2mη(1− 8Lη) from both sides, we get

E[F r(x̃s)]−F r(x∗) ≤ (
1

η(1− 8ηL)µm
+

8Lη(m+ 1)

m(1− 8Lη)
)(E[F r(x̃s−1)]−F r(x∗))+

2η

1− 8Lη
σ2p.

(3.28)

Thus, we can choose η = Θ( 1
L

) < 1
12L

and m = Θ(L
µ

) to make

A =
1

η(1− 8ηL)µm
+

8Lη(m+ 1)

m(1− 8Lη)
<

1

2

and 2η
1−8Lη

< 1
2L

. By (3.28) and summing over s = 1, 2 · · · , T , we get

E[F r(x̃T )]− F r(x∗)

≤ AT [F r(x0)− F r(x∗)] +
σ2p

L

= AT [F r(x0)− F r(x∗)] +O(
pG2Tm ln(1/δ)

n2ε2L
)

= AT [F r(x0)− F r(x∗)] +O(
pG2T ln(1/δ)

n2ε2µ
).

Thus, if we take T such that AT [F r(x0)− F r(x∗)] = O(pG
2 ln(1/δ)
n2ε2µ

), i.e.,

T = O

(
log(

n2ε2µ

pG2 ln(1/δ)
)

)
,

we have

E[F r(x̃T )]− F r(x∗) ≤ O(
pG2 ln(nεµ/pG) ln(1/δ)

n2ε2µ
),

where the big-O notation omits the other ln term.

Proof of Theorem 3.1.3

We first impose the following constraint on parameters η, θ

Lθ +
Lθ

1− θ
≤ 1

η
. (3.29)
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By the convexity of F (·), we have

F (yt−1)− F (u) ≤ 〈∇F (yt−1), yt−1 − u〉

= 〈∇F (yt−1), yt−1 − xt−1〉+ 〈∇F (yt−1), xt−1 − u〉

=
1− θ
θ
〈∇F (yt−1), x̃s−1 − xt−1〉+ 〈∇F (yt−1), xt−1 − u〉, (3.30)

where the last equality is by the definition of yt−1.

For the term 〈∇F (yt−1), xt−1 − u〉, we expand it as

〈∇F (yt−1), xt−1−u〉 = 〈∇F (yt−1)−vt, xt−1−u〉+ 〈vt, xt−1−xt〉+ 〈vt, xt−u〉. (3.31)

Since F (·) is L-smooth, we have

F (yt)− F (yt−1)

≤ 〈∇F (yt−1), yt − yt−1〉+
L

2
‖yt − yt−1‖2

2

= θ〈∇F (yt−1), xt − xt−1〉+
Lθ2

2
‖xt − xt−1‖2

2

= θ(〈∇F (yt−1)− vt, xt − xt−1〉+ 〈vt, xt − xt−1〉) +
Lθ2

2
‖xt − xt−1‖2

2. (3.32)

Thus, we have

〈vt, xt−xt−1〉 ≤
1

θ
(F (yt−1)−F (yt))+〈∇F (yt−1)−vt, xt−xt−1〉+

Lθ

2
‖xt−xt−1‖2

2. (3.33)

By (3.29), we have

〈vt, xt − xt−1〉 ≤
1

θ
(F (yt−1)− F (yt)) + 〈∇F (yt−1)− vt, xt − xt−1〉

+
1

2η
‖xt − xt−1‖2

2 −
Lθ

2(1− θ)
‖xt − xt−1‖2

2. (3.34)

Combining this with (3.30), (3.31), (3.32), (3.33) and (3.34), as well as by Lemma 3.1.3
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(here r(x) is µ-strongly convex), we have

F (yt−1)− F (u) ≤ 1− θ
θ
〈∇F (yt−1), x̃s−1 − yt−1〉

+ 〈∇F (yt−1)− vt, xt − u〉+
1

θ
(F (yt−1)− F (yt))−

Lθ

2(1− θ)
‖xt − xt−1‖2

2

+
1

2η
‖xt−1 − u‖2

2 −
1 + ηµ

2η
‖xt − u‖2

2 + r(u)− r(xt).

Taking the expectation w.r.t it, ut, we have

F (yt−1)− F (u)

≤ 1− θ
θ
〈∇F (yt−1), x̃s−1 − yt−1〉+ E〈∇F (yt−1)− vt, xt − u〉+

1

θ
(F (yt−1)− EF (yt))

− Lθ

2(1− θ)
‖xt − xt−1‖2

2 +
1

2η
‖xt−1 − u‖2

2 −
1 + ηµ

2η
E‖xt − u‖2

2 + r(u)− Er(xt)

≤ 1− θ
θ
〈∇F (yt−1), x̃s−1 − yt−1〉+

1

2β
E‖∇F (yt−1)− vt‖2

2 +
β

2
E‖xt − xt−1‖2

2

+
1

θ
(F (yt−1)− EF (yt))−

Lθ

2(1− θ)
‖xt − xt−1‖2

2 +
1

2η
‖xt−1 − u‖2

2 −
1 + ηµ

2η
E‖xt − u‖2

2

+ r(u)− Er(xt)

Applying Lemma 3.1.1, we have

F (yt−1)− F (u) ≤ 1− θ
θ
〈∇F (yt−1), x̃s−1 − yt−1〉+

L

β
(F (x̃s−1)− F (yt−1)

− 〈∇F (yt−1), x̃s−1 − yt−1〉) +
pσ2

2β
+
β

2
E‖xt − xt−1‖2

2 +
1

θ
(F (yt−1)− EF (yt))

− Lθ

2(1− θ)
‖xt − xt−1‖2

2 +
1

2η
‖xt−1 − u‖2

2 −
1 + ηµ

2η
E‖xt − u‖2

2 + r(u)− Er(xt).
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Let β = Lθ
1−θ > 0. By rearranging the above inequality, we obtain the following

0 ≤ 1− θ
θ

F (x̃s−1)− 1

θ
EF (yj) + F r(u)− Er(xt) +

1

2η
‖xt−1 − u‖2

2 −
1 + ηµ

2η
E‖xt − u‖2

2

(3.35)

≤ 1− θ
θ

F r(x̃s−1)− 1

θ
EF r(yt) + F (u) +

1

2η
‖xt−1 − u‖2

2 −
1 + ηµ

2η
E‖xt − u‖2

2 +
1− θ
2Lθ

pσ2,

(3.36)

where inequality (3.36) is by the definition of yt−1 and the convexity of r(·), which leads to

−r(xt) ≤
1− θ
θ

r(x̃s−1)− 1

θ
r(yt).

This is equivalent to

1

θ
(EF r(yt)− F r(u)) ≤ 1− θ

θ
(F r(x̃s−1)− F r(u))

+
1

2η
‖xt−1 − u‖2

2 −
1 + ηµ

2η
E‖xt − u‖2

2 +
1− θ
2Lθ

pσ2. (3.37)

Let u = x∗. Using w = 1 + ηµ to sum (3.37) over t = 1, · · · ,m with increasing wt−1, and

taking the expectation, we have

1

θ

m−1∑
t=0

wt(EF r(yt+1)− F r(x∗)) +
wm

2η
E‖xm − x∗‖2

2 ≤

1− θ
θ

m−1∑
t=0

wt(F r(x̃s−1)− F r(x∗)) +
1

2η
‖x0 − x∗‖2

2 +
m−1∑
t=0

wt
1− θ
2Lθ

pσ2. (3.38)

Using Jensen’s inequality and

x̃s = θ(
m−1∑
t=0

wt)−1

m−1∑
t=0

wtxt+1 + (1− θ)x̃s−1

= (
m−1∑
t=0

wt)−1

m−1∑
t=0

wtyt+1
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we have

(
1

θ

m−1∑
t=0

wt)(EF r(x̃s)− F r(x∗)) +
wm

2η
E‖xm − x∗‖2

2 ≤

1− θ
θ

m−1∑
t=0

wt(F r(x̃s−1)− F r(x∗)) +
1

2η
‖x0 − x∗‖2

2 +
m−1∑
t=0

wt
1− θ
2Lθ

pσ2. (3.39)

Consider the first case with m ≤ 3
4
L
µ

. Denote by κ = L
µ

. We set η =
√

1
3µmL

, θ =
√

m
3κ
≤ 1

2

and m = Θ(n). By (3.29), we know that
√

m
κ
≤
√

3
2

.

For the term of (1− θ)wm, we have

(1− θ)wm = (1−
√
m

3κ
)(1 +

√
1

3mκ
)m.

Let ζ =
√

m
κ
∈ (0,

√
3

2
]. We denote

φ(ζ) = (1−
√

3

3
ζ)(1 +

√
3

3

ζ

m
)m

as a function of ζ. We can easily get that φ(ζ) is monotonically decreasing on [0,
√

3
2

] for

any m ≥ 0, which means that (1− θ)wm ≤ φ(0) = 1. Thus, we have 1
θ
≥ 1−θ

θ
wm.

(
1− θ
θ

m−1∑
t=0

wt)(EF r(x̃s)− F r(x∗)) +
wm

2η
E‖xm − x∗‖2

2 ≤

w−m(
1− θ
θ

m−1∑
t=0

wt(F r(x̃s−1)− F r(x∗)) +
1

2η
‖x0 − x∗‖2

2 +
m−1∑
t=0

wt
1− θ
2Lθ

pσ2). (3.40)

Dividing 1−θ
θ

∑m−1
t=0 wt, we get

EF r(x̃s)− F r(x∗) +
θ

2η(1− θ)
∑m−1

t=0 wt
E‖xm − x∗‖2

2 ≤

w−m(F r(x̃s−1)− F r(x∗) +
θ

2η(1− θ)
∑m−1

t=0 wt
E‖x0 − x∗‖2

2 +
1

2L
pσ2). (3.41)
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Summing the above inequality over s = 1, · · · , T , we have

EF r(x̃T )− F r(x∗) ≤ w−Tm(F r(x̃0)− F r(x∗) +
θ

2η(1− θ)
∑m−1

t=0 wt
E‖x0 − x∗‖2

2)

+
T

2L
pσ2. (3.42)

Since F r(·) is µ-strongly convex, we have ‖x0 − x∗‖2
2 ≤ 2

µ
(F r(x0)− F r(x∗)). By substi-

tuting with our parameters and σ2 = O(
G2 log 1

δ
Tm

n2ε2
), we have

EF r(x̃T )− F r(x∗) ≤ (O(1 +

√
1

3nκ
))−TmO(F r(x0)− F r(x∗)) +

T 2mpG2 log 1
δ

2Ln2ε2
.

(3.43)

Let Tm = log
O(1+
√

1
3nκ

)
(n

2ε2

p
) = O(

√
nκ log nε√

p
). Since m = Θ(n), we have T =

O(
√

κ
n

log nε√
p
). Thus, we get

EF r(x̃T )− F r(x∗) ≤ O(
log2 nG2 log 1

δ
p

n2ε2µ
).

For the other case with n
k
≥ 3

4
, we set η = 2

3L
, θ = 1

2
andm = 3

4
κ. Since wm = (1+ 2

3κ
)m ≥

1 + 2m
3κ
≥ 3

2
, substituting the parameters into (3.39), we have

m−1∑
t=0

wt(EF r(x̃s)− F r(x∗)) +
3L

4
E‖xm − x∗‖2

≤ 2

3
((
m−1∑
t=0

wt)(EF r(x̃s−1)− F r(x∗)) +
3L

4
‖x0 − x∗‖2

2 +
m−1∑
t=0

wt
pσ2

2L
) (3.44)

≤ 2

3

T

((
m−1∑
t=0

wt)(EF r(x̃s−1)− F r(x∗)) +
3L

4
‖x0 − x∗‖2

2) +O(
m−1∑
t=0

wt
pσ2

L
). (3.45)

Dividing
∑m−1

t=0 wt on both sides, we get

EF r(x̃T )− F r(x∗) ≤ (
2

3
)TO(F r(x0)− F r(x∗)) +O(

pTG2 log 1
δ

n2ε2µ
). (3.46)

52



Taking T = O(log( nε√
p
)), we have EF r(x̃s)− F r(x∗) ≤ O(

G2p logn log 1
δ

n2ε2µ
). The total gradint

complexity is thus O(T (m+ n)) = O(nT ) = O(n log( nε√
p
))

Proof of Theorem 3.1.5

Eist ,ust [F
r(xst)− F r(x∗)] = Eist ,ust [F (xst)− F (x∗) + r(xst)− r(x∗)]

≤ Eist ,ust [F (xst−1) + 〈∇F (xst−1), xst − xst−1〉+
L

2
||xst − xst−1||2 − F (x∗) + r(xst)− r(x∗)]

≤ Eist ,ust [〈∇F (xst−1), xst−1 − x∗〉] + 〈∇F (xst−1), xst − xst−1〉+
L

2
||xst − xst−1||2 + r(xst)− r(x∗)]

= Eist ,ust [〈v
s
t , x

s
t−1 − x∗〉] + 〈∇F (xst−1), xst − xst−1〉+

L

2
||xst − xst−1||2 + r(xst)− r(x∗)].

(3.47)

The last equality is due to the fact that Eist ,ust [v
s
t ] = ∇F (xst−1). By [10], we have

〈vst , xst−1 − x∗〉+ r(xst)− r(x∗) ≤ 〈vst , xst−1 − xst〉+
||xst−1 − x∗||2

2η

− ||x
s
t − x∗||2

2η
−
||xst − xst−1||2

2η
. (3.48)

Plugging (3.48) into (3.47), we have

LHS

≤ Eist ,ust [〈v
s
t −∇F (xst−1), xst−1 − xst〉 −

1− ηL
2η

||xst − xst−1||2 +
||xst−1 − x∗||2 − ||xst − x∗||2

2η
]

≤ Eist ,ust
η

2(1− ηL)
||vst −∇F (xst−1)||2 +

||xst−1 − x∗||2 − Eist ,ust [||x
s
t − x∗||2]

2η

≤ 4ηL

1− ηL
[F r(xst−1)− F r(x∗) + F r(x̃s−1)− F r(x∗)] +

η

1− ηL
pσ2

+
||xst−1 − x∗||2 − Eist ,ust [||x

s
t − x∗||2]

2η
.

Choosing η = 1
13L

, summing over t = 1, · · · ,ms, dividing ms, and taking the expectation,
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we have

E[
1

ms

ms∑
t=1

F r(xst)− F r(x∗)] ≤
1

3
E[

1

ms

ms−1∑
t=0

[F r(xst)− F r(x∗) + F r(x̃s−1)− F r(x∗)]

+
||xs0 − x∗||2 − E[||xsms − x∗||

2]

2ηms

+
1

12L
σ2p.

By the definitions of xs+1
0 and x̃s, we have

2E[F r(x̃s)− F r(x∗)] ≤ E[
F r(xs0)− F r(x∗)− (F r(xs+1

0 )− F (x∗))

ms

+

F r(x̃s−1)− F r(x∗) +
||xs0 − x∗||2 − ||xs+1

0 − x∗||2

2η/3ms

] +
1

4L
σ2p, (3.49)

which implies that

2(E[F r(x̃s)− F r(x∗) +
||xs+1

0 − x∗||2

4η/3ms

+
F r(xs+1

0 )− F r(x∗)

2ms

]) ≤

E[F r(x̃s−1)− F r(x∗) +
||xs0 − x∗||2

4η/3ms−1

+
F r(xs0)− F r(x∗)

2ms−1

] +
σ2p

4L
. (3.50)

Summing over s = 1, · · · , T , we get

E[F r(x̃T )− F r(x∗)] ≤
F r(x̃0)− F r(x∗)

2T−1
+
||x̃0 − x∗||2

2T4η/3m
+

1

4L
σ2p.

Thus, if we take m = Θ(L) to make A = 2F r(x̃0) − F r(x∗) + ||x̃0−x∗||2
4η/3m

independent of

T, n, p, σ, L, and plug σ into (3.50), we have

E[F r(x̃T )]− F r(x∗) ≤
A

2T
+O(

G2p2Tm ln 2/δ

n2ε2L
)

=
A

2T
+O(

G2p2T ln(1/δ)

n2ε2
).
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Let T = O(log( nε

G
√
p
√

1/δ
)). We have

E[F r(x̃s)]− F r(x∗) ≤ O(
G
√
p ln(1/δ))

nε
).

The gradient complexity is O(2sm+ Tn) = O( nLε
G
√
p

+ n log( nε
G
√
p
)).

Proof of Theorem 3.1.7

We use || · || and || · ||∗ instead of || · ||C and || · ||C∗ . Also, w.l.o.g we assume that ||C||2 = 1

(for the general case, just replace L by L||C||22). Since bk+1 is independent of xk+1, we have

for any u

Ebk+1
[〈αk+1∇F (xk+1), zk − u〉]

= Ebk+1
[〈αk+1(∇F (xk+1) + bk+1), zk − u〉]

= Ebk+1
[〈αk+1(∇F (xk+1) + bk+1), zk − zk+1〉] + Ebk+1

[〈αk+1(∇F (xk+1) + bk+1), zk+1 − u〉].

(3.51)

Since

zk+1 = arg min
z∈C
{V (z, zk) + αk+1〈∇F (xk+1) + bk+1, z − zk〉},

which implies that

〈∇V (zk+1, zk) + αk+1(∇F (xk+1 + bk+1), u− zk+1〉 ≥ 0

for every u ∈ C. So we can get

Ebk+1
[〈αk+1(∇F (xk+1) + bk+1), zk+1 − u〉]

≤ Ebk+1
[〈−∇V (zk+1, zk), zk+1 − u〉]

= Ebk+1
[V (u, zk)− V (u, zk+1)− V (zk+1, zk)], (3.52)
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where the equality is due to the triangle equality of Bregman divergence. Since w is 1-strong

convex with respect to || · ||, we have −V (zk+1, zk) ≤ −1
2
||zk+1 − zk||2. Plugging this into

(3.51), we have

Ebk+1
[〈αk+1∇F (xk+1), zk − u〉]

≤ Ebk+1
[〈αk+1(∇F (xk+1) + bk+1), zk − zk+1〉 −

1

2
||zk+1 − zk||2]

+ V (u, zk)− Ebk+1
[V (u, zk+1)]

≤ Ebk+1
[〈αk+1∇F (xk+1), zk − zk+1〉 −

1

4
||zk+1 − zk||2] + α2

k+1Ebk+1
[||bk+1||2∗]

+ V (u, zk)− Ebk+1
[V (u, zk+1)]. (3.53)

The last inequality is due to Cauchy-Shwartz Inequality. Thus, we have 〈αk+1bk+1, zk −

zk+1〉 ≤ α2
k+1||bk+1||2∗+ 1

4
||zk−zk+1||2. Now, we want to bound Ebk+1

[〈αk+1∇F (xk+1), zk−

zk+1〉− 1
4
||zk+1−zk||2]. Define v = rkzk+1+(1−rk)yk ∈ C so that xk+1−v = rk(zk−zk+1).

We have

〈αk+1∇F (xk+1), zk − zk+1〉 −
1

4
||zk+1 − zk||2

= 〈αk+1

rk
∇F (xk+1), xk+1 − v〉 −

1

4r2
k

||xk+1 − v||2

= 2α2
k+1L(〈F (xk+1), xk+1 − v〉 −

L

2
||xk+1 − v||2)

≤ 2α2
k+1L(−min

y∈C
{L

2
||y − xk+1||2 + 〈F (xk+1), y − xk+1〉})

= 2α2
k+1L(−{L

2
||yk+1 − xk+1||2 + 〈F (xk+1), yk+1 − xk+1〉})

≤ 2α2
k+1L(F (xk+1)− F (yk+1)). (3.54)
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The last inequality is due to the fact that F is L||C||22-smooth (note that ||C||2 = 1) in || · ||

norm and the definition of yk+1. Thus, we get the following

Ebk+1
[〈αk+1∇F (xk+1), zk − u〉]

= Ebk+1
[〈αk+1(∇F (xk+1) + bk+1), zk − u〉]

≤ 2α2
k+1L(F (xk+1)− F (yk+1)) + V (u, zk)− Ebk+1

[V (u, zk+1)] + α2
k+1Ebk+1

||bk+1||2∗.

(3.55)

By using the Concentration of Gaussian Width, Lemma 3.1.7 shows that Ebk+1
||bk+1||2∗ =

σ2O(G2
C + ||C||22), where GC is the Gaussian Width of C. From this, we have

Ebk+1
[αk+1(F (xk+1)− F (u)]

≤ Ebk+1
[〈αk+1∇F (xk+1), xk+1 − u〉]

= Ebk+1
([〈αk+1∇F (xk+1), xk+1 − zk〉] + [〈αk+1∇F (xk+1), zk − u〉])

≤ αk+1(1− rk)
rk

〈∇F (xk+1), yk − xk+1〉+ Ebk+1
[〈αk+1∇F (xk+1), zk − u〉]

≤ αk+1(1− rk)
rk

(F (yk)− F (xk+1) + Ebk+1
[〈αk+1∇F (xk+1), zk − u〉]

≤ (2α2
k+1L− αk+1)(F (yk)− F (xk+1) + 2α2

k+1L(F (xk+1)− F (yk+1))

+ V (u, zk)− Ebk+1
[V (u, zk+1)] + α2

k+1Ebk+1
||bk+1||2∗.

Thus, we obtain

2α2
k+1LF (yk+1)− (2α2

k+1L− αk+1)F (yk) + E(V (u, zk+1)− V (u, zk))

≤ αk+1F (u) + α2
k+1σ

2O(G2
C + ||C||22). (3.56)

By the definition of αk+1, we have 2α2
kL = 2α2

k+1L − αk+1 + 1
8L

. Summing over k =

0 · · · , T − 1 and setting u = x∗, by the definition of αk we have
∑T

k=1 α
2
k = O(T 3). After
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taking the expectation we get

2α2
TLE[F (yT )] +

1

8L
E[

T−1∑
k=1

F (yk)] + E[V (x∗, zT−1)]− V (x∗, z0)

≤
T∑
k=1

αkF (x∗) +O(T 3σ2(G2
C + ||C||22)/L2). (3.57)

Plugging αk = k+1
4L

into the above, dividing both sides by a factor of 2α2
TL, and by the fact

that V ≥ 0, we finally get

E[F (yT )]− F [x∗] ≤
8LV (x∗, x0)

(T + 1)2
+O(Tσ2(G2

C + ||C||22)/L). (3.58)

Since σ2 = O(G
2T ln(1/δ)
n2ε2

), if choose

T 2 = O(
L
√
V (x∗, x0)nε

G
√

ln(1/δ)
√
G2
C + ||C||22

), (3.59)

we have the bound

E[F (yT )]− F (x∗) ≤ O(

√
V (x∗, x0)

√
G2
C + ||C||22G

√
ln(1/δ)

nε
).

3.2 DP-ERM with Heavy-tailed Data

It is worth noting that all previous results of DP-ERM or DP-SCO need to assume that

either the loss function is O(1)-Lipschitz or each data sample has bounded `2 or `∞ norm.

This is particularly true for those output perturbation based [67] and objective or gradient

perturbation based [29] DP methods. However, such assumptions may not always hold

when dealing with real-world datasets, especially those from biomedicine and finance,

implying that existing algorithms may fail. The main reason is that in such applications,

the datasets are often unbounded or even heavy-tailed [345, 39, 157]. As pointed out by

Mandelbrot and Fama in their influential finance papers [211, 111], asset prices in the early
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1960s exhibit some power-law behavior. The heavy-tailed data could lead to unbounded

gradient and thus violate the Lipschitz condition. For example, consider the linear squared

loss `(w, x, y) = (wTx− y)2. When x is heavy-tailed, the gradient of `(w, x, y) becomes

unbounded.

With the above understanding, our questions now are: What is the behavior of DP-

SCO on heavy-tailed data and is there any effective method for the problem?

To answer these questions, we will conduct, in this section, a comprehensive study of

the DP-SCO problem. Our contributions can be summarized as follows.

1. We first consider the case where the loss function is strongly convex and smooth.

For this case, we propose an (ε, δ)-DP method based on the sample-and-aggregate

framework by [233] and show that under some assumptions, with high probability,

the excess population risk of the output is Õ( d3

nε4
LD(w∗)), where n is the sample size,

d is the dimensionality and LD(w∗) is the minimal value of the population risk.

2. Then, we study the case with the additional assumptions: each coordinate of the

gradient of the loss function is sub-exponential and Lipschitz. For this case, we

introduce an (ε, δ)-DP algorithm based on the gradient descent method and a recent

algorithm on private 1-dimensional mean estimation [51] (i.e., Algorithm 3.2.7).

We show that the expected excess population risk for this case can be improved to

Õ(
d2 log 1

δ

nε2
).

3. We also consider the general case, where the loss function does not need the above

additional assumptions and can be general convex, instead of strongly convex. For

this case, we present a gradient descent method based on the strategy of trimming the

unbounded gradient (Algorithm 3.2.8). We show that if each coordinate of the gradient

of the loss function has bounded second-order moment, then with high probability, the

output of our algorithm achieves excess population risks of Õ(
d2 log 1

δ

nε2
) and Õ(

log 1
δ
d

2
3

(nε2)
1
3

)

for strongly convex and general convex loss functions, respectively. It is notable that
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compared with Algorithm 3.2.8, Algorithm 3.2.7 uses stronger assumptions and yields

weaker results.

4. Finally, we test our proposed aglorithms on both synthetic and real-world datasets.

Experimental results are consistent with our theoretical claims and reveal the effec-

tiveness of our algorithms in handling heavy-tailed datasets.

3.2.1 Related Work

As mentioned earlier, there is a long list of works on DP-SCO or DP-ERM. However, none

of them considers the case with heavy-tailed data. Recently, a number of works have studied

the SCO and ERM problems with heavy-tailed data [46, 220, 151, 191]. However, all of

them focus on the non-private version of the problem. It is not clear whether they can be

adapted to private versions. To our best knowledge, the work presented in this paper is the

first one on general DP-SCO with heavy-tailed data.

The works that are most related to ours are perhaps those dealing with unbounded

sensitivity. [103] proposed a general framework called propose-test-release and applied it

to mean estimation. They obtained asymptotic results which are incomparable with ours.

Also, it is not clear whether such a framework can be applied to our problem. In our second

result, we adopt the private mean estimation procedure in [51]. However, their results are

in expectation form, which is not preferred in robust estimation [46]. For this reason, we

propose a new algorithm which yields theoretically guaranteed bounds with high probability.

[176] considered the confidence interval estimation problem for Gaussian distributions

which was later extended to general distributions [114]. However, it was unknown how to

extend them to the DP-SCO problem. [1] proposed a DP-SGD method based on truncating

the gradient, which could deal with the infinity sensitivity issue. However, there is no

theoretical guarantees on the excess population risk.
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3.2.2 Preliminaries

Definition 3.2.1 (DP-SCO). Given a dataset D = {x1, · · · , xn} from a data universe X

where xi are i.i.d. samples from some unknown distribution D, a convex loss function `(·, ·),

and a convex constraint setW ⊆ Rd, Differentially Private Stochastic Convex Optimization

(DP-SCO) is to find wpriv so as to minimize the population risk, i.e., LD(w) = Ex∼D[`(w, x)]

with the guarantee of being differentially private. The utility of the algorithm is measured by

the (expected) excess population risk, that is EA[LD(wpriv)]−minw∈W LD(w), where the

expectation of A is taken over all the randomness of the algorithm. Besides the population

risk, we can also measure the empirical risk of dataset D: L̂(w,D) = 1
n

∑n
i=1 `(w, xi).

Definition 3.2.2. A random variable X with mean µ is called τ -sub-exponential if

E[exp(λ(X − µ))] ≤ exp(
1

2
τ 2λ2),∀|λ| ≤ 1

τ
.

Assumption 3.2.1. For the loss function and the population risk, we assume the following.

1. The loss function `(w, x) is non-negative, differentiable and convex for all w ∈ W

and x ∈ X .

2. The population risk LD(w) is β-smooth.

3. The convex constraint setW is bounded with diameter ∆ = maxw,w′∈W ‖w−w′‖2 <

∞.

4. The optimal solution w∗ = arg minw∈W LD(w) satisfies∇LD(w∗) = 0.

Assumption 3.2.2. There exists a number nα such that when the sample size |D| ≥ nα, the

empirical risk L̂(·, D) is α-strongly convex with probability at least 5
6

over the choice of

i.i.d. samples in D.

We note that Assumptions 3.2.1 and 3.2.2 are commonly used in the studies on the
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problem of Stochastic Strongly Convex Optimization with heavy-tailed data, such as [151,

148]. Also the probability of 5
6

in Assumption 3.2.2 is only for convenience.

Assumption 3.2.3. We assume the following for the loss functions.

1. For any w ∈ W and each coordinate j ∈ [d], we assume that the random variable

∇j`(w, x) is τ -sub-exponential and βj-Lipschitz (that is `j(w, x) is βj-smooth), where

∇j represents the j-th coordinate of the gradient.

2. There are known constants a, b = O(1) such that a ≤ E[∇j`(w, x)] ≤ b for all

w ∈ W .

Assumption 3.2.4. For anyw ∈ W and each coordinate j ∈ [d], we have E[(∇j`(w, x))2] ≤

v = O(1), where v is some known constant.

We can see that, compared with Assumption 3.2.3, Assumption 3.2.4 needs fewer

assumptions on the loss functions, because we only need to assume the gradient of the loss

function has bounded second-order moment. We also note that Assumption 3.2.4 is more

suitable to the problem of Stochastic Convex Optimization with heavy-tailed data and has

been used in some previous works such as [149, 46].

3.2.3 Sample-aggregation based method

In this section we first summarize the sample-aggregate framework introduced in [233].

Most of the existing privacy-preserving frameworks are based on the notion of global

sensitivity, which is defined as the maximum output perturbation ‖f(D)− f(D′)‖ξ, where

the maximum is over all neighboring datasets D,D′ and ξ = 1, 2. However, in some

problems such as clustering [233, 337] the sensitivity could be very high and thus ruin the

utility of the algorithm.

To circumvent this issue, [233] introduced the sample-aggregate framework based on a

smooth version of local sensitivity. Unlike the global sensitivity, local sensitivity measures
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the maximum perturbation ‖f(D)− f(D′)‖ξ over all databases D′ neighboring the input

database D. The proposed sample-aggregate framework (Algorithm 3.2.5) enjoys local

sensitivity and comes with the following guarantee:

Theorem 3.2.1 (Theorem 4.2 in [233]). Let f : D 7→ Rd be a function where D is the

collection of all databases and d is the dimensionality of the output space. Let dM(·, ·) be

a semi-metric on the output space of f . Set ε > 2d√
m

and m = ω(log2 n). The sample-

aggregate algorithm A in Algorithm 3.2.5 is an efficient (ε, δ)-DP algorithm.4 Furthermore,

if f and m are chosen such that the `1 norm of the output of f is bounded by Λ and

PrDS⊆D[dM(f(DS), c) ≤ r] ≥ 3

4
(3.60)

for some c ∈ Rd and r > 0, then the standard deviation of Gaussian noise added is upper

bounded by O( r
ε

+ Λ
ε
e−Ω( ε

√
m
d

)). In addition, when m = ω(d
2 log2(r/Λ)

ε2
), with high probability

each coordinate of A(D) − c̄ is upper bounded by O( r
ε
), where c̄ depending on A(D)

satisfies dM(c, c̄) = O(r).

Algorithm 3.2.5 Sample-aggregate Framework [233]
Input: D = {xi}ni=1 ⊂ Rd, number of subsets m, privacy parameters ε, δ; f, dM.

1: Initialize: s =
√
m, γ = ε

5
√

2 log(2/δ)
and β = ε

4(d+log(2/δ))
.

2: Subsampling: Select m random subsets of size n
m

of D independently and uniformly
at random without replacement. Repeat this step until no single data point appears in
more than

√
m of the sets. Mark the subsampled subsets DS1 , DS2 , · · · , DSm .

3: Compute S = {si}mi=1, where si = f(DSi).
4: Compute g(S) = si∗ , where i∗ = arg minmi=1 ri(t0) with t0 = m+s

2
+ 1. Here ri(t0)

denotes the distance dM(·, ·) between si and the t0-th nearest neighbor to si in S.
5: Noise Calibration: Compute S(S) = 2 maxk(ρ(t0 + (k + 1)s) · e−βk), where ρ(t) is

the mean of the top d s
β
e values in {r1(t), · · · , rm(t)}.

6: Return A(D) = g(S) + S(S)
γ
u, where u is a standard Gaussian random vector.

We have the following Lemma 3.2.1, which shows that the minimum of the empirical

risk satisfies (3.60).
4Here the efficiency means that the time complexity is polynomial in all terms.
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Lemma 3.2.1. Let wD = f(D) = arg minw∈W L̂(w,D) where |D| = n. Then, under

Assumptions 3.2.1 and 3.2.2, if n ≥ nα, the following holds

Pr[‖wD − w∗‖2 ≤ η] ≥ 3

4
, (3.61)

where η = O(

√
E‖∇`(w∗,x)‖22

nα2 ).

Combining Lemma 3.2.1 and Theorem 3.2.1, we get the following upper bound for

DP-SCO with heavy-tailed data and strongly convex loss functions.

Theorem 3.2.2. Under Assumptions 3.2.1 and 3.2.2, for any ε, δ > 0, if n ≥ Ω̃(nαd
2

ε2
),

m ≥ ω̃(d
2

ε2
), f(D) = arg minw∈W L̂(w,D) and dM(x, y) = ‖x− y‖2, then Algorithm 3.2.5

is (ε, δ)-DP. Moreover, with high probability the output of A(D) ensures that

LD(A(D))− LD(w∗) ≤ Õ((
β

α
)2 d

3

nε4
LD(w∗)), (3.62)

where the Big-Õ,Ω and small-ω notations omit the logarithmic terms.

Remark 3.2.1. For DP-SCO with Lipschitz and strongly-convex loss function and bounded

data, [29, 328, 31] showed that the upper bound of the excess population risk is O(
√
d

nε
),

and the lower bound is Ω( d
n2ε2

) 5. This suggests that the bound in Theorem 3.2.2 has some

additional factors related to d and 1
ε
. We note that the upper bound in Theorem 3.2.2 has a

multiplicative term of LD(w∗). This means that when LD(w∗) is small, our bound is better.

For example, when LD(w∗) = 0, our algorithm can recover w∗ exactly and results in an

excess risk of 0. Notice that there is no previous work on DP-ERM or DP-SCO that has a

multiplicative error with respect to LD(w∗).
5[29] only shows the lower bound of the excess empirical risk. We can obtain the lower bound of the excess

population risk by using the reduction from private ERM to private SCO [31].
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3.2.4 Gradient descent based methods

There are several issues in the sample-aggregation based method presented in last section.

Firstly, function f(D) in Theorem 3.2.2 needs to solve the optimization problem exactly,

which could be quite inefficient in practice. Second, previous empirical evidence suggests

that sample-aggregation based methods often suffer from poor utility in practice [265, 337].

Thirdly, Theorem 3.2.2 needs to assume strong convexity for the empirical risk and it is

unclear whether it can be extended to the general convex case. Finally, from Eq.(3.62) we

can see that when LD(w∗) = Θ(1), the excess population risk is quite large as compared to

the ones in [29]. Thus, an immediate question is whether we can further lower the upper

bound. To answer this question and resolve the above issues, we propose in this section two

DP algorithms based on the Gradient Descent method under different assumptions.

Recently, [51] studied the problem of estimating the mean of a 1-dimensional heavy-

tailed distribution and proposed algorithms based on the idea of truncating the empirical

mean and the local sensitivity. Motivated by this DP algorithm that has the capability of

handling heavy-tailed data, we plan to develop a new method by borrowing some ideas from

the work [51] and robust gradient descent. Our method is inspired by their theorem that

follows and uses the Arsinh-Normal mechanism (see Algorithm 3.2.6 and Prop. 5 in [51]).

Theorem 3.2.3 (Theorem 7 in [51]). Let 0 < ε, δ ≤ 1 be two constants and n be some

integer ≥ O(log(n(b−a)/σ
ε

). Then, there exists a 1
2
ε2-zero concentrated Differentially Private

(zCDP) (see Appendix for the definition of zCDP) algorithm (Algorithm 3.2.6)M : Rn 7→ R

such that the following holds: Let D be a distribution with mean µ ∈ [a, b], where a, b are

given constants and unknown variance σ2. Then,

EX∼Dn,Z [(M(X)− µ)2] ≤ O(
σ2 log n

nε2
).

The key idea of our algorithm is that, in each iteration, after getting wt−1, we use the

mechanism in Theorem 3.2.3 on each coordinate of ∇`(w, xi). See Algorithm 3.2.7 for
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details. By the composition theorem and the relationship between zCDP and (ε, δ)-DP

Algorithm 3.2.6 MechanismM in [51]
Input: D = {xi}ni=1 ⊂ R, ε, a, b.

1: Let t = ε2

16
and s = ε

4
. Sort {xi}ni=1 in the ascending order as x(1) ≤ x(2) ≤ · · · ≤ x(n).

Calculate the upper bound of the smooth sensitivity for the trimming and truncating
step:

St[trimm(·)][a,b](D) = max{
x(n) − x(1)

n− 2m
, e−mt(b− a)},

where m = O(1) ≤ n
2

is a constant.
2: Do the average trimming and truncating step:

[Trimm(D)][a,b] = [
x(m+1) + · · ·+ x(n−m)

n− 2m
][a,b],

where [x][a,b] = x if a ≤ x ≤ b, equals to a if x < a and otherwise equals to b.
3: Output [Trimm(D)][a,b] + 1

s
St[trimm(·)][a,b](D) · Z, where Z = sinh(Y ) = eY −e−Y

2
and Y

is the Standard Gaussian.

Algorithm 3.2.7 Heavy-tailed DP-SCO with known mean
Input: D = {xi}ni=1 ⊂ Rd, privacy parameters ε, δ; loss function `(·, ·), initial parameter
w0, a, b which satisfy Assumption 3.2.3, and the number of iterations T (to be specified
later).

1: Let ε̃ =
√

2 log 1
δ

+ 2ε−
√

2 log 1
δ
.

2: for t = 1, 2, · · · , T do
3: For each j ∈ [d], calculate

Dt−1,j(w
t−1) = {∇j`(w

t−1, xi)}ni=1.
4: Run Algorithm 3.2.6 for each Dt−1,j and denote the output

∇̃t−1,j(w
t−1) = (M(Dt−1,j(w

t−1)), ε̃√
dT
, a, b). Denote

∇L̃(wt−1, D) = (∇̃t−1,1(wt−1) · · · , ∇̃t−1,d(w
t−1)).

5: Updating wt = PW(wt−1 − ηt−1∇L̃(wt−1, D)), where ηt−1 is some step size and
PW is the projection operator.

6: end for

[52], we have the DP guarantee.

Theorem 3.2.4. For any 0 < ε, δ ≤ 1, Algorithm 3.2.7 is (ε, δ)-differentially private.

To show the expected excess population risk of Algorithm 3.2.7, we cannot use the upper

bound in Theorem 3.2.3 directly for the following reasons. First, since the upper bound is
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for the expectation w.r.t. X and Z while the expected excess population risk depends only

on the randomness of the algorithm instead of the data. Thus, we need to obtain an upper

bound for EZ [(M(X) − µ)2] (with high probability w.r.t. X). Secondly, to get an upper

bound, it is sufficient to analyze the term ‖∇L̃(wt−1, D)−∇LD(wt−1)‖2 in each iteration.

However, since the parameter wt−1 at any step depends on the random draw of the dataset

{xi}ni=1, upper bounds on the estimation error need to be uniform in w ∈ W in order to

capture all contingencies. To resolve these two issues, we use the same technique as in [74,

289] (under Assumption 3.2.3) to obtain the following lemma.

Lemma 3.2.2. Under Assumption 3.2.3, with probability at least 1− 2dn

(1+nβ̂∆)d
the following

holds for all w ∈ W ,

EZ‖∇L̃(w,D)−∇LD(w)‖2 ≤ O(
τd
√
T log n√
nε̃

), (3.63)

where β̂ =
√
β2

1 + · · ·+ β2
d , the expectation is w.r.t. the random variables {Zi}di=1 and the

Big-O notation omits other factors.

Next, we show the expected excess population risk for strongly convex loss functions.

Theorem 3.2.5 (Strongly-convex case). Under Assumptions 3.2.1 and 3.2.3, if the pop-

ulation risk is α-strongly convex and T and η are set to be T = O(β
α

log n) and η = 1
β

,

respectively, in Algorithm 3.2.7, then with probability at least 1− Ω(β
α

2dn logn

(1+nβ̂∆)d
) the output

satisfies the following for all D ∼ Dn,

E[LD(wT )]− LD(w∗) ≤ O(
∆2β2τ 2d2 log2 n log 1

δ

α3nε2
).

Compared with the bound in Theorem 3.2.2, we can see that the bound in Theorem 3.2.5

improves a factor of Õ( d
ε2

) (if we omit other terms). However, there are more assumptions

on the distribution and the loss functions. Specifically, in Assumption 3.2.3 we need to

assume the sub-exponential property, i.e., the moment of∇j`(w, x) exists for every order.
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Also, we need to assume that ∇j`(w, x) is Lipschitz and the range of its mean is known.

These assumptions are quite strong, compared to those used in the literature of learning with

heavy-tailed data, such as [149, 46, 151, 220].

To improve the above result, we consider the following. First, we would like to relax

those assumptions in the theorem. Second, in the problem of ERM with heavy-tailed data,

it is expected to have an excess population risk bound that is in the form of with high

probability instead of its expectation [46]. However, it is unclear whether Algorithm 3.2.7

can achieve a high probability bound. This is due to the fact that the noise added in each

iteration is a combination of log-normal distributions, which is non-sub-exponential and thus

is hard to get tail bounds. Third, Algorithm 3.2.7 depends on the local sensitivity and thus

cannot be extended to the distributed settings or local differential privacy model. Finally, the

practical performance of Algorithm 3.2.7 has poor utility and is unstable due to the noise

added in each iteration (see Section 6 for details), which means that Algorithm 3.2.7 is still

impractical. To resolve all these issues and still keeping (approximately) the same upper

bound, we propose a new algorithm that is simply based on the Gaussian mechanism.

In the following we will study the problem under Assumptions 1 and 3.2.4. Note that

compared with Assumption 3.2.3, we only need to assume that the second-order moment of

∇j`(w, x) exists for all w ∈ W and j ∈ [d] and its upper bound is known.

Our method is motivated by the robust mean estimator given in [148]. To be self-

contained, we first review their estimator. Now, we consider 1-dimensional random variable

x and assume that x1, x2, · · · , xn are i.i.d. sampled from x. The estimator consists of the

following steps:

Scaling and Truncation For each sample xi, we first re-scale it by dividing s (which will

be specified later). Then, we apply the re-scaled one to some soft truncation function φ.
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Finally, we put the truncated mean back to the original scale. That is,

s

n

n∑
i=1

φ(
xi
s

) ≈ EX. (3.64)

Here, we use the function given in [62],

φ(x) =


x− x3

6
, −

√
2 ≤ x ≤

√
2

2
√

2
3
, x >

√
2

−2
√

2
3
, x < −

√
2.

(3.65)

Note that a key property for φ is that φ is bounded, that is, |φ(x)| ≤ 2
√

2
3

.

Noise Multiplication Let η1, η2, · · · , ηn be random noise generated from a common dis-

tribution η ∼ χ with Eη = 0. We multiply each data xi by a factor of 1 + ηi, and then

perform the scaling and truncation step on the term xi(1 + ηi). That is,

x̃(η) =
s

n

n∑
i=1

φ(
xi + ηixi

s
). (3.66)

Noise Smoothing In this final step, we smooth the multiplicative noise by taking the

expectation w.r.t. the distributions. That is,

x̂ = Ex̃(η) =
s

n

n∑
i=1

∫
φ(
xi + ηixi

s
)dχ(ηi). (3.67)

Computing the explicit form of each integral in (3.67) depends on the function φ(·) and the

distribution χ. Fortunately, [62] showed that when φ is in (3.65) and χ ∼ N (0, 1
β
) (where β

will be specified later), we have for any a, b

Eηφ(a+ b
√
βη) = a(1− b2

2
)− a3

6
+ C(a, b), (3.68)
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where C(a, b) is a correction form which is easy to implement and its explicit form can be

calculated as the followings: We first define the following notations:

V− :=

√
2− a
b

, V+ =

√
2 + a

b
(3.69)

F− := Φ(−V−), F+ := Φ(−V+) (3.70)

E− := exp(−
V 2
−

2
), E+ := exp(−

V 2
+

2
), (3.71)

where Φ denotes the CDF of the standard Gaussian distribution. Then we have

C(a, b) = T1 + T2 + · · ·+ T5, (3.72)

where

T1 :=
2
√

2

3
(F− − F+) (3.73)

T2 := −(a− a3

6
)(F− + F+) (3.74)

T3 :=
b√
2π

(1− a2

2
)(E+ − E−) (3.75)

T4 :=
ab2

2

(
F+ + F− +

1√
2π

(V+E+ + V−E−)

)
(3.76)

T5 :=
b3

6
√

2π

(
(2 + V 2

−)E− − (2 + V 2
+)E+

)
. (3.77)

[148] showed the following estimation error for the mean estimator x̂ after these three

steps.

Lemma 3.2.3 (Lemma 5 in [148]). Let x1, x2, · · · , xn be i.i.d. samples from distribution

x ∼ µ. Assume that there is some known upper bound on the second-order moment, i.e.,

Eµx2 ≤ v. For a given failure probability δ′, if set β = 2 log 1
δ′

and s =
√

nv
2 log 1

δ′
, then with
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Algorithm 3.2.8 Heavy-tailed DP-SCO with known variance
Input: D = {xi}ni=1 ⊂ Rd, privacy parameters ε, δ, loss function `(·, ·), initial parameter
w0, v which satisfies Assumption 3.2.4, the number of iterations T (to be specified later),
and failure probability δ′.

1: Let ε̃ = (
√

log 1
δ

+ ε−
√

log 1
δ
)2, s =

√
nv

2 log 1
δ′

, β = log 1
δ′

.

2: for t = 1, 2, · · · , T do
3: For each j ∈ [d], calculate the robust gradient by (3.66)-(3.68), that is

gt−1
j (wt−1) =

1

n

n∑
i=1

(
∇j`(w

t−1, xi)
(
1−
∇2
j`(w

t−1, xi)

2s2β

)
−
∇3
j`(w

t−1, xi)

6s2

)
+
s

n

n∑
i=1

C

(
∇j`(w

t−1, xi)

s
,
|∇j`(w

t−1, xi)|
s
√
β

)
+ Zt−1

j , (3.78)

where Zt−1
j ∼ N (0, σ2) with σ2 = 8vdT

9 log 1
δ′ nε̃

.

4: Let vector gt−1(wt−1) ∈ Rd to denote gt−1(wt−1) =
(gt−1

1 (wt−1), gt−1
2 (wt−1), · · · , gt−1

d (wt−1)).
5: Update wt = PW(wt−1 − ηt−1g

t−1).
6: end for

probability at least 1− δ′ the following holds

|x̂− Ex| ≤ O(

√
v log 1

δ′

n
). (3.79)

To obtain an (ε, δ)-DP estimator, the key observation is that the bounded function φ

in (3.65) also makes the integral form of (3.68) bounded by 2
√

2
3

. Thus, we know that the

`2-norm sensitivity is s
n

4
√

2
3

. Hence, the query

A(D) = x̂+ Z,Z ∼ N (0, σ2), σ2 = O(
s2 log 1

δ

ε2n2
) (3.80)

will be (ε, δ)-DP, which leads to the following theorem.

Theorem 3.2.6. Under the assumptions in Lemma 3.2.3, with probability at least 1− δ′ the

following holds

|A(D)− E(x)| ≤ O(

√
v log 1

δ
log 1

δ′

nε2
). (3.81)

71



Comparing with Theorem 3.2.3, we can see that the upper bound in Theorem 3.2.6 is in

the form of ‘with high probability’ (after transferring zCDP to (ε, δ)-DP [52]). Moreover,

we improve by a factor of O(log n) in the error bound.

Inspired by Theorem 3.2.6 and Algorithm 3.2.7, we propose a new method (Algorithm

3.2.8), which uses our private mean estimator (3.80) on each coordinate of the gradient

in each iteration. The following theorem shows the error bound when the loss function is

strongly convex.

Theorem 3.2.7. For any 0 < ε, δ < 1, Algorithm 3.2.8 is (ε, δ)-DP. Under Assumptions

3.2.1 and 3.2.4, if the population risk is α-strongly convex and ηt and T in Algorithm 3.2.8

are set to be ηt = 1
β

and T = O(β
α

log n), respectively, then for any δ′ > 0, with probability

at least 1− 2δ′T the output wT satisfies

LD(wT )− LD(w∗) ≤ O(
v∆2β4d2 log2 n log 1

δ
log 1

δ′

α3nε2
).

Comparing with Theorem 3.2.7 and 3.2.5, we can see that if we omit other terms, the

bounds are asymptotically the same and Theorem 3.2.7 needs fewer assumptions.

With the high probability guarantee on the error in Theorem 3.2.6, we can actually get

an upper bound for general convex loss functions. For this general convex case, we need the

following mild technical assumption on the constraint setW .

Assumption 3.2.5. The constraint set W contains the following `2-ball centered at w∗:

{w : ‖w − w∗‖2 ≤ 2‖w0 − w∗‖2}.

Theorem 3.2.8 (Convex case). Under Assumptions 3.2.1, 3.2.4 and 3.2.5, if we take η = 1
β

and T = Õ
(
‖w0−w∗‖2

√
n
√
ε̃

d

) 2
3

in Algorithm 3.2.8, then for any given failure probability δ′,

with probability at least 1− Tδ′ the following holds

LD(wT )− LD(w∗) ≤ Õ(
log

1
3 1
δ

√
log 1

δ′
d

2
3

(nε2)
1
3

) (3.82)
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when n ≥ Ω̃(d
2

ε2
), where the Big-Õ notation omits other logarithmic factors and the term of

v, β.

The problem is far from being closed. First, it is unclear whether the upper bounds of the

excess population risk for strongly convex and general convex loss functions can be further

improved. The second open problem is that we do not know what the lower bound for the

excess population risk for these two cases is. Finally, it is an open problem to determine

whether we can further relax the assumptions in our previous theorems. We leave these open

problems for future research.

3.2.5 Experiments

Baseline Methods As mentioned earlier, sample-aggregation based methods often have

poor practical performance. Thus, we will not conduct experiments on Algorithm 3.2.5.

Moreover, as this is the first paper studying DP-SCO with heavy-tailed data and almost all

previous methods on DP-SCO that have theoretical guarantees fail to provide DP guarantees,

we do not compare our methods with them, and instead focus on comparing the performance

of Algorithm 3.2.7 and Algorithm 3.2.8. To show the effectiveness of our methods, we

use the non-private heavy-tailed SCO method in [148], denoted by (stochastic) RGD in the

following, as our baseline method.

Experimental Settings For synthetic data, we consider the linear and binary logistic

models. Specifically, we generate the synthetic datasets in the following way. Each dataset

has a size of 1×105 and each data point (xi, yi) is generated by the model of yi = 〈ω∗, xi〉+ei

and yi = sign[ 1
1+e〈ω

∗,xi〉+ei
− 1

2
], respectively, where xi ∈ R10 and yi ∈ R. In the first model,

the zero mean noise ei is generated as follows. We first generate a noise ∆i from the (µ, σ)

log-normal distribution, i.e., P(∆i = x) = 1
xσ
√

2π
e−

(ln x−µ)2

2σ2 , and then let ei = ∆i − E[∆i].

For the second model, we first generate a noise ∆i from the (µ, σ) log-logistic distribution,

i.e., P(∆i = x) = ez

σx(1+ez)2 , where x > 0 and z = log(x)−µ
σ

. Then, we let ei = ∆i − E[∆i].
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Accordingly, we implement Algorithm 3.2.7 and Algorithm 3.2.8, together with RGD, on

the ridge and logistic regressions.

For the synthetic data generation, we select the parameters (µ = 1, σ = 1) and (µ =

0.2, σ = 0.2) for the Lognormal and Loglogistic noises underlying, respectively. The step

size of Algorithm 3 is set to 0.01 where m = 0.05n. As for algorithm 4, v = 5, failure

probability δ′ = 0.01 and the step size is set to 0.1. For the stochastic Algorithm 4, the

step size is selected as 1√
t
, where t is the iteration number. Accordingly, w̄T =

∑T
t=1 w

t

T
.

Corresponding to Fig. 1 and 2, we present the results which also mark the difference between

the best and the worst performances as follows.

To measure the impact from dimension on performances, we fix n = 105 and test d

varying from 10 to 50 through stochastic Algorithm 4 and RGD under the same setup as

above. To test the impact from the size of the dataset, we fix d = 20 and test n varying from

2× 104 to 105.

For real-world data, we use the Adult dataset from the UCI Repository [94]. We aim

to predict whether the annual income of an individual is above 50,000. We select 30,000

samples, 28,000 amongst which are used as the training set and the rest are used for test.

For the privacy parameters, we will choose ε = {0.1, 0.5, 1} and δ = O( 1
n
). See

Appendix for the selections of other parameters. For Algorithm 3.2.7, the strength of prior

knowledge is modeled by κ = b− a.

Experimental Results Figure 3.5 and 3.6 show the results of ridge and logistic regressions

on synthetic and real datasets w.r.t iteration, respectively. Since there is no ground truth in

the real dataset, we use the empirical risk on test data as the measurement. To test scalability

of Algorithm 3.2.8 dealing with large-scaling data, experiments on stochastic versions of

Algorithm 3.2.8 and RGD with minibatch size 1000 are also conducted. We can see that the

performance of Algorithm 3.2.7 bears a larger variation compared to Algorithm 4, since we

have to apply a heavy-tailed noise to fit the smooth sensitivity. Moreover, the performance of
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Algorithm 3.2.7 is sensitive to the parameter κ. Thus, these results show that Algorithm 3.2.7

has poor performance and the results of Algorithm 3.2.8 are comparable to the non-private

ones. In Figure 3.7 and 3.8 we test the estimation error w.r.t different dimensionality d

and sample size n, respectively. From these results we can see that when n increases or

d decreases, the estimation error will decrease. Also, with fixed n and d, we can see that

the estimation error will decrease as ε becomes larger. Thus, all these results confirm our

previous theoretical analysis.
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Figure 3.5: Experiments on synthetic datasets. Figures 3.5a and 3.5b are for ridge regressions
over synthetic data with Lognormal noises. Figures 3.5c and 3.5d are for logistic regressions
over synthetic data with Loglogistic noises.
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Figure 3.6: Experiments on UCI Adult dataset. Figures 3.6a and 3.6b are for ridge regres-
sions. Figures 3.6c and 3.6d are for logistic regressions.
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Figure 3.7: Experiments for the impact of dimensionality. Figure 3.7a and 3.7b are for ridge
regressions. Figure 3.7c and 3.7d are for logistic regressions.
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Figure 3.8: Experiments for the impact of the size of the dataset. Figure 3.8a and 3.8b are
for ridge regressions. Figure 3.8c and 3.8d are for logistic regressions.
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3.2.6 Omitted Proofs

Proof of 3.2.1

Before the proof, we recall the following two lemmas

Lemma 3.2.4 ([262]). If a non-negative function f : W 7→ R+ is β-smooth, then

‖∇f(w)‖2
2 ≤ 4βf(w) for all w ∈ W .

Lemma 3.2.5 ([171]). Let X1, X2, · · · , Xn be independent copies of a zero-mean random

vector X , then E‖ 1
n

∑n
i=1 Xi‖2

2 ≤ 1
n
E‖X‖2

2.

Consider w = w∗. Then by Assumption 3.2.1, we have ∇L(w∗) = E[∇`(w∗, x)] = 0.

Thus, by Lemma 3.2.5 we have

E‖∇L̂(w∗, D)‖2
2 ≤

1

n
E[‖∇`(w∗, x)‖2

2].

By Markov’s inequality, we get

Pr[‖∇L̂(w∗, D)‖2
2 ≤

10

n
E[‖∇`(w∗, x)‖2

2] ≥ 9

10
.

Since n ≥ nα, by the assumption we have with probability at least 5
6

that L̂(w,D) is α

strongly convex. Thus, we get

α

2
‖wD − w∗‖2

2 ≤ −〈∇L̂(w∗, D), wD − w∗〉+ L̂(wD, D)− L̂(w∗, D)

≤ ‖∇L̂(w∗, D)‖2‖wD − w∗‖2.

In total, with probability at least 3
4
, we have

‖wD − w∗‖2 ≤
√

40E‖∇`(w∗, x)‖2
2

nα2
.
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Proof of Theorem 3.2.2

For each subsample setDSi , by the assumption we have its size n
m
≥ nα. Thus, Lemma 3.2.1

holds with n = n
m

. That is, (3.60) holds with r =

√
40mE‖∇`(w∗,x)‖22

nα2 . Hence, by Theorem

3.2.1 we have

‖A(D)− w∗‖2 ≤ O(

√
dr

ε
) = O(

√
dmE‖∇`(w∗, x)‖2

2

nε2α2
).

Since LD(w) is β-smooth and∇LD(w∗) = 0, we have LD(A(D))−LD(w∗) ≤ β
2
‖A(D)−

w∗‖2
2. Also, by Lemma 3.2.1 and the non-negative property we get

LD(A(D))− LD(w∗) ≤ O((
β

α
)2dm

nε2
LD(w∗)).

Taking m = Θ̃(d
2

ε2
), we get the proof.

Proof of Theorem 3.2.4

We first give the definition of zCDP in [52].

Definition 3.2.3. A randomized algorithm A : X n 7→ Y is ρ-zero Concentrated Differen-

tially Private (zCDP) if for all neighboring datasets D ∼ D′ and all α ∈ (1,∞),

Dα(A(D)‖A(D′)) ≤ ρα,

where Dα(P‖Q) = 1
α−1

logEX∼P [(P (X)
Q(X)

)α−1] denotes the Rényi divergence of order α.

We first convert (ε, δ)-DP to 1
2
ε̃2-zCDP by using the following lemma

Lemma 3.2.6 ([52]). Let M : X n 7→ Y be a randomized algorithm. If M is 1
2
ε2-zCDP, it is

(1
2
ε2 + ε ·

√
2 log 1

δ
, δ)-DP for all δ > 0.

Thus, it suffices to show that Algorithm 3.2.7 is 1
2
ε̃2-zCDP. We note that in each iteration
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and each coordinate, outputting∇t−1,j will be 1
2
ε̃2

dT
-zCDP by Theorem 3.2.3. Thus by the

composition property of CDP, we know that it is 1
2
ε̃2-zCDP.

Proof of Lemma 3.2.2

By assumption, we know thatW is closed and bounded, and hence it is compact. By [204]

we know that its covering number with radius δ (will be specified later) is bounded from

above as Nδ ≤ (3∆
2δ

)d. Denote the center of this δ-net as W̃ = {w̃1, w̃2, · · · , w̃Nδ}.

We first fix j ∈ [d] and consider |∇̃j(w) − ∇jLD(w)| (we omit the subscript t − 1).

Then, we have

EZj(∇̃j(w)−∇jLD(w))2

= E
(
[Trimm(Dj(w))][a,b] +

1

s
St[trim(·)][a,b](Dj(w)) · Zj −∇jLD(w)

)2

≤ O(([Trimm(Dj(w))][a,b] −∇jLD(w))2 + E(
1

s
St[trim(·)][a,b](Dj(w)) · Zj)2)

≤ O((Trimm(Dj(w))]−∇jLD(w))2 + E(
1

s
St[trimm(·)][a,b](D(w)) · Zj)2), (3.83)

where Dj(w) = {∇j`(w, xi)}ni=1 and the last inequality is due to the property that the

truncation operation reduces error.

Lemma 3.2.7. Let a ≤ µ ≤ b and X be a random variable. Then

([X][a,b] − µ)2 ≤ (x− µ)2.

By the proof of Theorem 51 in [51] and the fact that ε = ε̃√
dT

, we have (m, a, b = O(1))

EZ(
1

s
St[trimm(·)][a,b](Dj(w)) · Z)2 ≤ O(

τ 2dT log n

nε̃2
), (3.84)

where the O-notation omits the log σ2 and log(b− a) factors.

Next, we bound the first term of (3.83). Before showing that, we first give the following
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estimation error on the trimming operation for sub-exponential random variables.

Lemma 3.2.8. Suppose that xi are i.i.d υ-sub-exponential with mean µ. Then, the following

holds for any t ≥ 0,

P{ 1

n

n∑
i=1

xi − µ ≥ t} ≤ 2 exp(−nmin{ t
2v
,
t2

2v2
}),

and for any s ≥ 0,

P[max
i∈[n]
{|xi − µ|} ≥ s] ≤ 2n exp(−min{ s

2v
,
s2

2v2
}),

and for any m ≥ 0, under the above two events,

|Trimm({xi}ni=1)− µ| ≤ nt+ms

n− 2m
.

Proof of Lemma 3.2.8. Note that the first two inequalities are just the Berstein’s Inequality.

We only prove the last inequality.

Let T ⊂ [n] denote the set of all trimmed variables and U = [n]\T . Then, we know that

Trimm({xi}ni=1) =
∑
i∈U xi
n−2m

. Thus, we have

|
∑

i∈U xi

n− 2m
− µ| = 1

n− 2m
|
∑
i∈[n]

(xi − µ)−
∑
i∈T

(xi − µ)|

≤ 1

n− 2m
(|
∑
i∈[n]

(xi − µ)|+ |
∑
i∈T

(xi − µ)|). (3.85)

For the second term of (3.85), we have |
∑

i∈T (xi − µ)| ≤ mmax{|xi − µ|}. Plugging the

inequalities into (3.85) we get the proof.

Now, fix anyw ∈ W , we know that there exists a w̃ which is in the δ-net, i.e., ‖w̃−w‖2 ≤

δ. Then by using the Bernstein inequality and the sub-exponential assumption and taking

the union bound, we can see that with probability at least 1− 2dNδ exp(−nmin{ t
2τ
, t2

2τ2}),
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we have the following for all j ∈ [d] and w̃ ∈ W̃

|
n∑
i=1

∇j`(w̃, xi)

n
−∇jLD(w̃)| ≤ t, (3.86)

and with probability at least 1− 2dnNδ exp(−min{ s
2τ
, s2

2τ2}), we get the following for all

j ∈ [d] and w̃ ∈ W̃ ,

max
i∈[n]
|∇j`(w̃, xi)−∇jLD(w̃)| ≤ s. (3.87)

By the βj-smoothness of `j(·, x) we have

|
n∑
i=1

∇j`(w̃, xi)

n
−

n∑
i=1

∇j`(w, xi)

n
| ≤ βj‖w − w̃‖2 ≤ βjδ, (3.88)

|∇jLD(w̃)−∇jLD(w)| ≤ βjδ. (3.89)

Thus, we get

|
n∑
i=1

∇j`(w, xi)

n
−∇jLD(w)| ≤ t+ 2βjδ (3.90)

max
i∈[n]
|∇j`(w, xi)−∇jLD(w)| ≤ s+ 2βjδ. (3.91)

By Lemma 3.2.8 we have for all j ∈ [d] and w ∈ W

|Trimm(Dj(w))−∇jLD(w)| ≤ nt+ms

n− 2m
+

m+ n

n− 2m
2βjδ.

Combining this with (3.84) we have the following for all j ∈ [d] with probability at least

1− 2dnNδ exp(−min{ s
2τ
,
s2

2τ 2
})− 2dNδ exp(−nmin{ t

2τ
,
t2

2τ 2
})
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and w̃ ∈ W̃ ,

E‖∇L̃(w,D)−∇LD(w)‖2 ≤ O(
√
d
nt+ms

n− 2m
+ β̂δ

m+ n

n− 2m
+
τd
√
T log n√
nε̃

), (3.92)

where β̂ =
√
β2

1 + · · ·+ β2
d . Thus, let δ = 1

nβ̂
,m = O(1),

t = O(τ max{d
n

log(nβ̂∆),

√
d

n
log(nβ̂∆)}),

s = O(τd log(β̂n∆)).

Then, we get the proof.

Proof of Theorem 3.2.5

In the t-th iteration, let

ŵt = wt−1 − η∇L̃(wt−1, D).

Then, by the property of Euclidean project we have

‖wt − wt−1‖2 ≤ ‖ŵt − wt−1‖2.

Hence, we have

‖ŵt − w∗‖2 ≤ ‖wt−1 − η∇L̃(wt−1, D)− w∗‖2

≤ ‖wt−1 − η∇LD(wt−1)− w∗‖2

+ η‖∇L̃(wt−1, D)− LD(wt−1)‖2.

For the first term, by the co-coercivity of strongly convex functions [47], we have

〈wt−1 − w∗,∇LD(wt−1)〉 ≥ αβ

α + β
‖wt−1 − w∗‖2

2 +
1

α + β
‖∇LD(wt−1)‖2

2.
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Thus we obtain the following by taking η = 1
β

‖wt−1 − η∇LD(wt−1)− w∗‖2
2 ≤

(1− 2α

α + β
)‖wt−1 − w∗‖2

2 −
2

β(β + α)
‖∇LD(wt−1)‖2

2 +
1

β2
‖∇LD(wt−1)‖2

2

≤ (1− 2α

α + β
)‖wt−1 − w∗‖2

2. (3.93)

Taking the expectation w.r.t Zt−1 and using the inequality of
√

1− x ≤ 1− x
2

and Lemma

4, we have

E‖ŵt − w∗‖2 ≤ (1− α

α + β
)E‖wt−1 − w∗‖2 +O(

τd
√
T log n

β
√
nε̃

). (3.94)

That is,

E‖ŵT − w∗‖2 ≤ (1− α

β + α
)T∆ +O(

β

α

τd
√
T log n

β
√
nε̃

).

Thus, taking T = O(β
α

log n), we have the following with probability at least 1−Ω( 2dn logn

(1+nL̂∆)d
)

E‖ŵt − w∗‖2 ≤ O(

√
β

α

∆τd log n

α
√
nε̃

).

Since ε̃ =
√

2 log 1
δ

+ 2ε−
√

2 log 1
δ
, by using the Taylor series of the function

√
x+ 1−

√
x,

we have ε̃ = O( ε√
log 1

δ

). Since LD(w) is β-smooth we have ELD(wT ) − LD(w∗) ≤
β
2
E‖wT − w∗‖2

2. Thus we get the proof.

Proof of Theorem 3.2.7

The proof of (ε, δ)-DP is the same as in the proof of Theorem 3. The `2 sensitivity is s
n

4
√

2
3

.

Next, we show the upper bound. The key lemma on the uniform converge rate is the
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following. For convenience, we denote by

ĝj(w) =
1

n

n∑
i=1

(∇j`(w, xi)
(
1−
∇2
j`(w, xi)

2s2β

)
−
∇3
j`(w, xi)

6s2
) +

1

n

n∑
i=1

C

(
∇j`(w, xi)

s
,
|∇j`(w, xi)|

s
√
β

)

and ĝj(w) = (ĝ1(w), ĝ2(w), · · · , ĝd(w)).

Lemma 3.2.9 (Lemma 8 in [148]). Under Assumptions 1 and 4, with probability at least

1− δ′, the following holds for any w ∈ W ,

‖ĝj(w)− E[∇`(w, x)]‖2 ≤ O(
βd
√
v log( 1

δ′
∆n)

√
n

). (3.95)

Thus, we have the following lemma.

Lemma 3.2.10. Under the assumptions in the previous lemma, the following holds with

probability at least 1− 2δ′ for any w ∈ W

‖gj(w)− E[∇`(w, x)]‖2 ≤ O(
βd
√
vT log( 1

δ′
∆n)

√
n
√
ε̃

). (3.96)

The remaining proof is almost the same as the proof of Theorem 3.2.5 by using Lemma

3.2.10. We omit it here for convenience.

Proof of Theorem 3.2.8

Let ŵt denote the same notation as in the proof of Theorem 3.2.5. Then, we have

‖ŵt − w∗‖2 ≤ ‖wt−1 − ηgt−1(wt−1)− w∗‖2

≤ ‖wt−1 − η∇LD(wt−1)− w∗‖2 + η‖gt−1(wt−1)− LD(wt−1)‖2,
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and

‖wt−1 − η∇LD(wt−1)− w∗‖2
2 ≤ ‖wt−1 − w∗‖2

2

− 2η〈∇LD(wt−1), wt−1 − w∗〉+ η2‖∇LD(wt−1)‖2
2

≤ ‖wt−1 − w∗‖2
2 − 2η

1

β
‖∇LD(wt−1)‖2

2 + η2‖∇LD(wt−1)‖2
2

≤ ‖wt−1 − w∗‖2
2.

Thus by Lemma 3.2.10 we have with probability at least 1− 2δ′

‖ŵt − w∗‖2 ≤ ‖wt−1 − w∗‖2 +O(
d
√
vT log( 1

δ′
∆n)

√
n
√
ε̃

). (3.97)

Hence, when O(
dT
√
vT log( 1

δ′∆n)
√
n
√
ε̃

) ≤ ‖w0 − w∗‖2, we have ŵt ∈ W for all t = {1, · · · , T}

with probability at least 1 − 2δ′T . This means that ŵt = wt for all t ∈ [T ]. Hence, we

proceed to study the algorithm without projection. LetDt = ‖w0−w∗‖2+O(
dt
√
vT log( 1

δ′∆n)
√
n
√
ε̃

)

for t = {0, 1, · · · , T}. By the smoothness of LD(·) we have

LD(wt) ≤ LD(wt−1) + 〈∇LD(wt−1), wt − wt−1〉+
β

2
‖wt − wt−1‖2

2

= LD(wt−1) + η〈∇LD(wt−1),−gt−1(wt−1) +∇LD(wt−1)−∇LD(wt−1)〉

+ η2β

2
‖gt−1(wt−1)−∇LD(wt−1) +∇LD(wt−1)‖2

2.

Since η = 1
β

, by simple calculation we have

LD(wt) ≤ LD(wt−1)− 1

2β
‖∇L(w

t−1)‖2 +O(
βd2vT log( 1

δ′
∆n)

nε̃
). (3.98)

Next we show the following lemma

Lemma 3.2.11. Assume that events (3.96) hold for all t = {1, · · · , T}. Then there exists at
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least one t ∈ {1, · · · , T} such that

LD(wt)− LD(w∗) ≤ 16D0χ,

where χ = O(
βd
√
vT log( 1

δ′∆n)
√
n
√
ε̃

).

Proof. We note that Dt ≤ 2D0 for all t = 0, · · · , T . Thus we have

LD(w)− LD(w∗) ≤ ‖∇LD(w)‖2‖w − w∗‖2,

which implies that

‖∇LD(w)‖2 ≥
LD(w)− LD(w∗)

‖w − w∗‖2

.

Suppose that there exists t ∈ {1, 2, · · · , T} such that ‖∇LD(wt)‖2 <
√

2χ. Then, we have

LD(wt)− LD(w∗) ≤ ‖∇LD(wt)‖2‖wt − w∗‖2 ≤ 2
√

2D0χ.

Otherwise suppose that for all {1, 2, · · · , T}, ‖∇LD(wt) ≥
√

2χ. Then, we have the

following for all t ≤ T ,

LD(wt)− LD(w∗) ≤ LD(wt−1)− LD(w∗)− 1

4β
‖∇LD(wt−1)‖2

2

≤ LD(wt−1)− LD(w∗)− 1

4βD2
t−1

(LD(wt−1)− LD(w∗)).

Multiplying both side by [(LD(wt)− LD(w∗))(LD(wt−1)− LD(w∗))]−1 we get

1

LD(wt)− LD(w∗)
≥ 1

LD(wt−1)− LD(w∗)
+

1

4βD2
t−1

LD(wt−1)− LD(w∗)

LD(wt)− LD(w∗)

≥ 1

LD(wt−1)− LD(w∗)
+

1

16βD2
0

,

where the last inequality is due to the facts that Dt ≤ 2D0 and LD(wt−1) ≥ LD(wt).
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Hence, we have

1

LD(wT )− LD(w∗)
≥ T

16βD2
0

≥ 1

16D0χ
(3.99)

using the fact that T = βD0

χ
, that is, T = Õ

(
‖w0−w∗‖2

√
n
√
ε̃

d

) 2
3
. Thus χ = Õ(∆ d

2
3

(nε̃)
1
3

).

Next we show that

LD(wT )− LD(w∗) ≤ 16D0χ+
1

2β
χ2. (3.100)

Let t = t0 be the first time that LD(wT )− LD(w∗) ≤ 16D0χ. We show that for any t ≥ t0,

LD(wt)−LD(w∗) ≤ 16D0χ+ 1
2β
χ2. If not, let t1 be the first time that LD(wt)−LD(w∗) >

16D0χ+ 1
2β
χ2. Then, we must have LD(wt1) > LD(wt1−1). By (3.98) we have

LD(wt1−1)− LD(w∗) ≥ LD(wt1)− LD(w∗)− 1

2β
χ2 > 16D0χ.

Thus, we have

‖∇LD(wt1−1)‖2 ≥
LD(wt1−1)− LD(w∗)

‖wt1−1 − w∗‖2

≥ 8χ.

By (3.98) we have LD(wt1) ≤ LD(wt1−1) which is a contradiction.

3.3 DP-ERM with Pairwise Loss Functions

In the previous two chapters we studied DP-ERM with pointwise loss functions. However,

recently, much more attention has been paid to an important family of learning problems

called pairwise learning. The main difference between pairwise learning and traditional

pointwise learing (e.g., classification and regression) is that pairwise learning takes pairs of

samples as the input of its loss function while pointwise learning involves only individual

samples as the input. Thus, pairwise learning has more advantage in modeling the relative
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relationship between pairs of samples. Its importance has been demonstrated in many

real-world applications. For example, in patient similarity learning, the learner (e.g., a

doctor/hospital) can learn a clinically meaningful similarity metric to measure the proximity

between a pair of patients through formulating the learning task as a pairwise learning

problem [153]. Additionally, many other machine learning problems can also be categorized

as pairwise learning, such as metric learning [61, 165], AUC maximization [360, 225],

ranking [272] and multiple kernel learning [186].

Existing pairwise learning algorithms can be roughly divided into two categories: online

and offline. The online pairwise learning algorithms process the input data records in a

sequential manner and iteratively update the model upon the arrival of each sample [360,

175]. In contrast, the offline pairwise learning algorithms require the entire training dataset

ready before the learning process starts and take it as whole to update the model [61, 165].

Despite their tremendous success in many real-world applications, existing pairwise

learning algorithms fail to take into consideration an important issue in their designs, that is,

the protection of sensitive information in the training set. The training datasets for pairwise

learning are often collected from individual users and thus may contain private personal

information. The models learned by such algorithms can implicitly memorize some details

of the sensitive information, which undesirably offers opportunity for malicious parties to

compromise the users’ privacy. Taking the above patient similarity learning task as example,

a hospital may want to train a universal patient similarity learning model from patients

(crossing many hospitals) so as to obtain a better understanding of the diseases and diagnoses.

Due to trust to the hospital, patients may be willing to provide necessary information for

such a learning process. However, without a proper mechanism, the patients’ privacy may

be bleached when the trained model by the hospital is provided to other parties (such as

medical research institutes or drug makers). This is because these parties can infer patients’

private information using various attack techniques, such as model inversion attack [116]

and membership attack [256]. Thus, without a convincing privacy-preserving mechanism,
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the patients may not be willing to participate in such a learning task. Hence, a big challenge

facing pairwise learning is how to learn a model privately such that sensitive information in

the training set cannot be inferred from the learned model.

To the best of our knowledge, no existing work has addressed the above challenge. This

motivates us to design, in this section, methods of DP-ERM with pairwise loss functions

which can not only keep the sensitive information private but also guarantee good gener-

alization performance. Although various DP-ERM methods exist for (online) pointwise

learning, such as objective perturbation [66, 301] or DP-SGD [29, 160, 329, 318, 296, 307],

they cannot be applied to pairwise learning algorithms directly. This is mainly because the

training sample pairs in pairwise learning algorithms are not i.i.d. and the loss function

depends on more than one data records. In the light of the above challenges, in this section,

we propose efficient differentially private algorithms for the aforementioned two types of

pairwise learning problems. The contributions of this section can be summarized as follows:

• Firstly, we consider the pairwise learning problem in online settings, and propose

an (ε, δ)-DP algorithm called online pairwise private GIGA-Strongly convex method

(OnPairStrC). This algorithm can achieve a regret upper bound of Õ(
√
d
√
n

ε
) when

the loss functions are strongly convex, where d is the dimensionality of the data and

n is the size of the data sequence. We then extend this algorithm to general convex

loss functions by proposing an algorithm called online pairwise private GIGA-convex

method (OnPairC), which has a regret upper bound of Õ(
√
dn

3
4

ε
).

• Secondly, to deal with the computational/storagewise issue in online learning case,

we then extend our algorithms to the finite-buffer online setting, where the buffer

updates in stream oblivious. Specifically, we show that, with RS-x algorithm as the

buffer updating, our algorithms can achieve a regret bound of Õ(
√
d
√
n

ε
+ n

√
d√
s

) and

Õ(
√
dn

3
4

ε
+ n
√
d√
s

) for strongly convex and convex loss function case, respectively, where

s is the capacity of the buffer.
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• Thirdly, we study the pairwise learning problem in offline settings. We show that

it is possible to achieve generalization errors of Õ(
√
d√
nε

) and Õ(
√
d

4√nε) for strongly

and general convex loss functions respectively by adopting the results in the online

settings. We then improve these bounds by proposing an offline pairwise private

GIGA-Strongly convex algorithm (OffPairStrC) and an offline pairwise private

GIGA-convex algorithm (OffPairC) for the two types of loss functions. Particularly,

in the case of general convex loss functions, our improved algorithm can achieve a

generalization error of Õ(
√
d√
nε

).

• Finally, we take two pairwise learning tasks (i.e., AUC maximization and metric

learning) as examples and conduct extensive experiments on real-world datasets to

evaluate the performance of the proposed algorithms. The experimental results not

only verify our theoretical analysis but also show the effectiveness of our proposed

algorithms in real-world applications.

3.3.1 Private pairwise learning

Different from the pointwise loss function ` : C × D 7→ R, a pairwise loss function is a

function on pairs of data records, i.e., ` : C × D × D 7→ R, where D is the data universe.

Given a dataset D = {z1, z2, · · · , zn} ⊆ Dn and a loss function `(·; ·, ·), its empirical risk

can be defined as:

L(w;D) =
1

n(n− 1)

n∑
i=1

∑
j 6=i

`(w; zi, zj). (3.101)

When the inputs are drawn i.i.d from an unknown underlying distribution P on D, the

population risk is

LP(w) = Ezi,zj∼P [`(w; zi, zj)]. (3.102)
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We define private pairwise learning as follows.

Definition 3.3.1 (DP-ERM with pairwise loss functions). Let C ⊆ Rd be a convex, closed

and bounded constraint set, D be a data universe, and ` : C × D × D 7→ R be a pairwise

loss function. Also, let D = {z1 = (x1, y1), z2 = (x2, y2), · · · , zn = (xn, yn)} ⊆ Dn be a

dataset with data records {xi}ni=1 ⊂ Rd and labels (responses) {yi}ni=1 ⊂ [−1, 1]n. Private

pairwise learning is to find a private estimator wpriv ∈ C so that the algorithm is (ε, δ) or

ε differential privacy and the error is minimized, where the error for an estimator w can

be measured by either the optimality gap ErrD(w) = L(w;D) − minw∈C L(w;D) or the

generalization error ErrP(w) = LP(wpriv)−minw∈C LP(w).

In this paper, we will focus on a special class of pairwise loss functions 6 which contains

the loss functions of metric learning, AUC maximization and bipartite ranking.

Assumption 3.3.1. For the loss function, we assume that it has the form of `(w; z, z′) =

φ(Y (y, y′)h(w;x, x′)), and ` is a G-Lipschitz and L-smooth convex function over w, where

Y (y, y′) = y − y′ or Y (y, y′) = yy′. In the experimental part, we will let φ be the logistic

function, i.e., φ(x) = log(1 + e−x).

Example 1: Metric Learning [61] The goal here is to learn a Mahalanobios metric

M2
W (x, x′) = (x−x′)TW (w−x′) using loss function `(W ; z, z′) = φ(yy′(1−M2

W (x, x′)),

where y, y′ ∈ {−1,+1}. The constraint set C is C = {W : W ∈ Sd, ‖W‖F ≤ 1}, where Sd

is the set of d× d positive symmetric matrices.

Example 2: AUC Maximization [360], Bipartite Ranking [76] The goal here is to maxi-

mize the area under the ROC curve for a linear classification problem with the constraint of

‖w‖2 ≤ 1. Here h(w;x, x′) = wT (x− x′) and `(w; z, z′) = φ((y − y′)h(w;x, x′)), where

y, y′ ∈ {−1,+1}.

Like in the pointwise loss function case, in the following we will introduce the Rademacher

average for a class of pairwise loss function functions. Specifically, we denote the Rademacher
6We note that all the (ε, δ)-DP algorithms in this paper can be extended to general pairwise loss functions,

although the upper bounds of the generalization errors may differ.
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averages of the pairwise loss functions class ` ◦ C := {(z, z′) 7→ `(w; z, z′), w ∈ C} by the

following [175]:

Rn(` ◦ C) = E[sup
w∈C

1

n

n∑
i=1

εi`(w; z, zi)], (3.103)

where {εi}ni=1 are the Rademacher variables, i.e., ε = ±1 with probability 1
2
, and the

expectation is over {εi}ni=1, z, {zi}ni=1.

Note that there are many classes of pairwise loss functions whose Rademacher average is

Rn(` ◦ C) = O(
√
d√
n
), such as Example 1 and Example 2 [175], where d is the dimensionality

of the parameter space.

Online private pairwise learning

Here we follow online pairwise learning [175]. An online learning algorithm A is given se-

quential access to a stream of elements z1, z2, z3, · · · , zn. At each time step t = 2, 3, · · · , n,

the algorithm selects a parameter wt−1 ∈ C upon which the data record zt is revealed, and

the algorithm incurs the following penalty

L̂t(wt−1, Dt) =
1

t− 1

t−1∑
i=1

`(wt−1; zt, zi), (3.104)

whereDt = {z1, z2, · · · , zt}. Thus, the online algorithmAmaps a data sequence {z1, z2, · · · , zn}

to a sequence of parameters {w1, w2, · · · , wn−1}. In the non-private case, the goal is to

select {w1, w2, · · · , wn−1} so as to minimize the regret, i.e.,

RA(n,D) =
n∑
t=2

L̂t(wt−1, Dt)−min
w∈C

n∑
t=2

L̂t(w,Dt). (3.105)

Moreover, if all the data records are chosen i.i.d from the distribution P , we also want to

minimize the generalized regret, i.e.,

RP,A(n) =
n∑
t=2

LP(wt−1)− (n− 1) min
w∈C

LP(w). (3.106)
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Note that if the loss function ` is convex, then from (3.106) we have the parameter w̄ =

w1+···+wn−1

n−1
satisfies the following generalization error:

LP(w̄)−min
w∈C

LP(w) ≤ RP,A(n)

n− 1
. (3.107)

However, under the differential privacy model, we need to guarantee that the output sequence

{w1, · · · , wn−1} is DP. Thus, private pairwise learning in the online setting can be defined

as follows:

Definition 3.3.2 (Online private pairwise learning). Let Z = {z1, z2, · · · , zn} be any se-

quence of data records in the data universe D. Let the sequence of outputs by algorithm

A be A(Z) = {w1, w2, · · · , wn−1}. Then, A is (ε, δ) differentially private if given any

other data sequence Z ′ which differs in at most one entry with Z, for all events S, we have

Pr[A(Z) ∈ S] ≤ eεPr[A(Z ′) ∈ S] + δ. The goal of online private pairwise learning is to

select private outputs {w1, w2, · · · , wn−1} that minimizes the (generalized) regret.

From above discussions on (3.106) and (3.107), we know that if the generalized regret is

low, the algorithm will have a good performance on generalization theoretically. From this

view, the online setting is more general. Thus, in the paper, we will first consider the online

private pairwise learning and provide (generalized) regrets for both strongly and general

convex loss functions. After that, in the following sections, we will study the problem in the

finite-buffer online and offline settings.

3.3.2 Online Private pairwise learning

We first consider the case that the loss function is strongly convex. After that, we will use the

regularization perturbation strategy [276, 160] to extend the resulting algorithm to general

convex loss functions.
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Strongly convex case

Our algorithm is inspired by the ideas in the stability of Generalized Infinitesimal Gradient

Ascent (GIGA) [371, 160], which is a well-known online convex algorithm (see Remark

3.3.1 for discussions on the difference of our algorithm with the previous ones). The main

steps of our algorithm are given in Algorithm 3.3.9. We call the above algorithm excluding

Algorithm 3.3.9 Online Pairwise Private GIGA-Strongly Convex (OnPairStrC)

1: Input: Privacy parameters ε and δ, sequence of data record {z1, z2, · · · , zn}, constrained
convex set C ⊂ Rd, and pairwise loss function `(·; ·, ·).

2: Parameters: ` is G-Lipschitz, L-smooth and α-strongly convex over w. Step time
T1 = max{d16L2

α2 e, 7}.
3: Compute ρ which satisfies ρ+ 2

√
ρ log(1

δ
) = ε.

4: for t = 1, · · · , T1 do
5: Receive the data record zt (incurs penalty L̂t(wt−1, Dt) when t ≥ 2).
6: Randomly choose a parameter wt ∈ C.
7: end for
8: for t = T1 + 1, · · · , n do
9: Receive the data record zt (incurs penalty L̂t(wt−1, Dt)).

10: Set step size ηt = t−1
t−2

2
αt

11: wt = ΠC[wt−1 − ηt∇L̂t(wt−1, Dt)], where ΠC is the projection onto the set C.
12: Set σ2

t = 32G2(n−T1)
α2t2ρ

. Let w̃t = wt + nt, where nt ∼ N (0, σ2
t Id).

13: Output wt = arg minw∈C ‖w − w̃t‖2
2.

14: end for

the portion of random perturbation (i.e., steps 12 and 13) Pairwise GIGA. The following

lemma gives an upper bound on the `2-norm sensitivity of the output in the t-th iteration of

Pairwise GIGA, which is the key to ensure (ε, δ)-differential privacy.

Lemma 3.3.1. Let At(Dt) denote the output of Pairwise GIGA in the t-th iteration. Then,

under the assumption of Algorithm 3.3.9, for any t ≥ 1 and Dt ∼ D′t,

‖At(Dt)−At(D′t)‖2 ≤
8G

αt
.

Theorem 3.3.1 shows that Algorithm 3.3.9 is differentially private.
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Theorem 3.3.1. Under Assumption 3.3.1 and the assumption that the loss function ` is

α-strongly convex, for any 0 < ε, δ ≤ 1, Algorithm 3.3.9 is (ε, δ)-differentially private.

Note that to guarantee DP, we first transfer (ε, δ)-DP to ρ-zCDP by Lemma 2.1.10,

and then use composition theorem to make Algorithm 3.3.9 be ρ-zCDP (i.e., we make

each iteration T1 + 1 ≤ t ≤ n be ρ
n−T1

-zCDP). It is easy to see that in this case the

variance of the noise satisfies σ2
t = 32G2(n−T1)

α2t2(
√

log(1/δ)+ε−
√

log(1/δ))2
. When ε

log(1/δ)
� 1 (this

case will always holds since in practice we select ε = 0.1 ∼ 5 and δ = 1
n

), by Taylor

expansion of
√

1 + x, we have (
√

log(1/δ) + ε−
√

log(1/δ))2 ' ε2

4 log(1/δ)
. Thus in total,

we have σ2
t '

128G2(n−T1) log(1/δ)
α2t2ε2

. We note that this idea has also been used in [192]. The

main difference is that in our online setting, the iteration number equals to the size of the

sequence, which is fixed and thus needs us to equally allocate the privacy budget, while in

[192], the iteration number is not fixed, which allows them to allocate the budget in a more

efficient way. This makes the two algorithms significantly different in their analysis and

thus incomparable.

The following theorem shows an upper bound on the (expected) regret of Algorithm

3.3.9, which can be transformed to (expected) generalized error (we will show it in the

following section).

Theorem 3.3.2. Under the assumptions in Theorem 3.3.1 and the additional condition of

ε
log 1

δ

� 1, Algorithm 3.3.9 has the following (expected) upper bound on the regret of its

outputs

RA(n,D) ≤ O(
G2
√
d log1.5 n

ζ

√
n
√

log 1
δ

αε
+
GL2

α2
‖C‖2 +

G2 log n

α
) (3.108)

with probability at least 1− ζ , and

ERA(n) ≤ O(
G2
√
d log n

√
n
√

log 1
δ

αε
+
GL2

α2
‖C‖2 +

G2 log n

α
), (3.109)
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where ‖C‖2 = maxw,w′∈C ‖w − w′‖2 is the diameter of the set C7.

Remark 3.3.1. We note that [160] also used the differentially private version of GIGA and

IGD [184] in their DP pointwise learning. But their Private GIGA or IGD [160] is quite

different from our method of OnPairStrC (Algorithm 3.3.9). Firstly, [160] needs to assume

that each loss function L̂t is independent (see the proofs of Lemma 4 and Lemma 5 in [160]),

which means that it is only applicable to pointwise loss functions. However, in our problem,

the penalty function (3.104) depends on previous data records, which means that it is much

more complicated than the case in [160]. Thus, we need a much finer and more different

analysis on the stability of Pairwise GIGA. Also, the parameters of the step size ηt and time

step T1 are quite different from those in [160] (see Appendix for details). Additionally, in

order to show the power of our method, we also consider the case with additional finite

buffer constraint, which has not been studied in [160]. Thus, our method is more general.

Secondly, the upper bound (3.109) on the expected regret of our algorithm is less than

that in [160] with a factor of log n
δ
. This is due to the fact that we use the composition

property of zCDP instead of advanced composition theorem of DP [105].

Thirdly, since the definition of regret in our paper is different from that in pointwise

learning [160], the same upper bound (i.e., Õ(
√
dn
ε

)) on the regret for strongly convex loss

functions are actually incomparable.

We now use the perturbation strategy [276] to obtain results for general convex pairwise

loss functions.

Algorithm 3.3.10 Online Pairwise Private GIGA-Convex (OnPairC)

1: Input: Privacy parameters ε and δ, sequence of data record {z1, z2, · · · , zn}, constrained
convex set: C, pairwise loss function `(·; ·, ·), and a parameter α to be defined later.

2: Parameters: ` is G-Lipschitz, L-smooth and convex over w.
3: Randomly select a point w0 ∈ C. Let ˜̀(w; z, z′) = `(w; z, z′) + α

2
‖w − w0‖2

2.
4: Run Algorithm 3.3.9 with loss function ˜̀, which is G̃ = G + α‖C‖2-Lipschitz, L̃ =
L+ α-smooth and α-strongly convex.

7If C = Rd, then we can take C = {w : ‖w‖2 ≤ ‖w∗‖2}.
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Theorem 3.3.3. Let ` be a pairwise loss function satisfying Assumption 3.3.1. Then, for any

0 < ε, δ ≤ 1, Algorithm 3.3.10 is (ε, δ)-DP. Moreover, if ε
log 1

δ

� 1 and take α = O( 1
4√n),

then with probability at least 1 − ζ, the following upper bound on regret for the outputs

holds:

RA(n,D) ≤ O(
L2G2‖C‖2

2

√
d log1.5 n

ζ
n

3
4

√
log 1

δ

ε
). (3.110)

Similar result also holds for the expected regret.

Comparing (3.110) with (3.108), we can see that for strongly convex pairwise loss

functions, the average regret, i.e., RA(n)
n−1

, is upper bounded by Õ(
√
d√
nε

), while for general

convex ones, it is Õ(
√
d

4√nε). This is the same as in the case of pointwise loss functions [276].

Online Private Pairwise Learning with Finite Buffer

In the previous section, we consider the online private pairwise learning and proposed

Private Pairwise GIGA algorithm. However, from Algorithm 3.3.9 and Algorithm 3.3.10 we

can see that in each iteration, this requires one to memorize and store all the previous data

records, which is computationally/storagewise expensive. Thus, for the online pairwise loss

function, it has been studied in additional the finite-buffer setting [360, 175]. Thus in this

section, we study online private pairwise learning with finite buffer.

We assume that the buffer updates in stream oblivious. More specifically, we require the

buffer update rule to decide upon the inclusion of a particular point zi in the buffer based

only on its stream index i ∈ [n]. Such as Reservoir Sampling [290] and FIFO. Stream

oblivious policy allow us to decouple buffer construction randomness from training sample

randomness which makes analysis easier [175]. We also assume that the adversary cannot

get the status of the buffer. Next we give some definitions related to the finite-buffer online

learning.

We consider a buffer B with capacity s, and we denote it is Bt in the t-th iteration,

which stores a sketch of the stream. Now at each step after receiving the data record zt. The
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penalty becomes

L̂buf
t (wt−1, Bt) =

1

|Bt|
∑
z∈Bt

`(wt−1; zt, z). (3.111)

An online learning algorithm A will be said to have a finite-buffer regret boundRbuf
A (n) if

its presents an ensemble w1, w2, · · · , wn−1 such that

n∑
t=2

L̂buf
t (wt−1, Bt)−min

w∈C

n∑
t=2

L̂buf
t (w,Bt) ≤ Rbuf

A (n). (3.112)

Algorithms and main results

There are several buffer updating, such as RS algorithm in [360], RS-x, RS-x2. In this

paper, we use RS-x as the buffer updating. See Algorithm 3.3.11 for detail. Combing with

Algorithm 3.3.11 and our previous Pairwise Private GIGA, we can get efficient algorithms.

Algorithm 3.3.11 RS-x: Stream Subsampling with Replacement [175]
1: Input: Buffer B, new data record zt, buffer size s, timestep t.
2: if |B| < s then
3: TMP=B

⋃
{zt}

4: else
5: if t = s+ 1 then
6: TMP=B

⋃
{zt}

7: Repopulate B with s points sampled uniformly with replacement from TMP
8: else
9: Independently, replace each point of B with zt with probability 1

t

10: end if
11: end if

We have the following differential privacy guarantee and upper bounds of finite-buffer

regret (3.112).

Theorem 3.3.4. For any 0 < ε, δ < 1, Algorithm 3.3.12 and 3.3.13 are (ε, δ)-DP. Moreover,

for strongly convex loss function under Assumption 3.3.1 and if ε
log 1/δ

� 1, we have the

following finite buffer regret for the outputs {w1, · · · , wn−1}:

Rbuf
A (n)

n− 1
≤ O

(G2L2‖C‖2

√
d log1.5 n

ζ

√
log 1/δ

√
nα2ε

)
. (3.113)
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Algorithm 3.3.12 Finite-buffer Online Pairwise Private GIGA-Strongly Convex (FBOn-
PairStrC)

1: Input: Privacy parameters ε and δ, sequence of data record {z1, z2, · · · , zn}, convex
set C, pairwise loss function `(·; ·, ·). Buffer B with size s.

2: Parameters: ` is G-Lipschitz, L-smooth and α-strongly convex . Step time T1 =
max{d16L2

α2 e, 7}.
3: Randomly sample w0 ∈ C
4: for t = 1, 2, · · · , T1 do
5: Receive the data record zt and we get the penalty L̂buf

t (wt−1, Bt) when t ≥ 2.
6: Update buffer Bt+1 by using Algorithm 3.3.11 with (Bt, zt, s, t).
7: Randomly choose a parameter wt ∈ C.
8: end for
9: for t = T1 + 1, · · · , n do

10: Receive the data record zt and we get the penalty L̂buf
t (wt−1, Bt)

11: Set step size ηt = t−1
t−2

2
αt

12: wt = ΠC[wt−1 − η∇L̂buf
t (wt−1, Bt)], where ΠC is the projection onto the set C.

13: Compute ρ which satisfies ρ + 2
√
ρ log(1

δ
) = ε. Then set σ2

t = 32G2(n−T1)
α2t2ρ

. Let
w̃t = wt + nt, where nt ∼ N (0, σ2

t Id).
14: Output wt = arg minw∈C ‖w − w̃t‖2

2.
15: Update buffer Bt+1 by using Algorithm 3.3.11 with (Bt, zt, s, t).
16: end for

Algorithm 3.3.13 Finite-buffer Online Pairwise Private GIGA-Convex (FBOnPairC)

1: Input: Privacy parameters ε and δ, sequence of data record {z1, z2, · · · , zn}, convex
set C, pairwise loss function `(·, ·, ·). Buffer B with size s. α is a parameter will be
specified later.

2: Parameters: ` is G-Lipschitz, L-smooth and convex.
3: Randomly select a point w0 ∈ C. Let ˜̀(w; z, z′) = `(w; z, z′) + α

2
‖w − w0‖2

2.
4: Run Algorithm 3.3.12 with loss function ˜̀, which is G̃ = G + α‖C‖2-Lipschitz,
L̃ = L+ α-smooth and α-strongly convex.
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The following upper bound for generalized regret.

RP,A(n)

n− 1
≤ O

(G2‖C‖2L
2
√
d log1.5 n

ζ

√
log 1/δ

α2ε
√
n

+
Cd√
s

+G‖C‖2

√
log n

ζ

s

)
. (3.114)

and the following regret bound:

RA(n,D)

n− 1
≤
G2‖C‖2L

2
√
d log1.5 n

ζ

√
log 1/δ

α2ε
√
n

+ Cd

√
log n

ζ

s
). (3.115)

Where Cd is the dependence of dimensionality in the Rademacher Average Rn(` ◦ C) in

(3.103).

For the general convex loss function, we just replace the term ofO(
G2‖C‖2L2

√
d log1.5 n

ζ

√
log 1/δ

α2ε
√
n

)

above to O(
L2G2‖C‖22

√
d log1.5 n

ζ

√
log 1/δ

εn
1
4

). when we set α = O( 1
4√n) in Algorithm 3.3.13.

From the above Theorem 3.3.4 we can see that, unlike the infinite-buffer case, i.e., Algo-

rithms 3.3.9 and 3.3.10, the buffer capacity s plays an important role on the generalization

performance. Only if s = ω(n), then these bounds are asymptotically the same as in the

infinite-buffer case for strongly convex function, while it only needs to be ω(
√
n) for the

general convex case.

3.3.3 Offline Private Pairwise Learning

In this section, we study differentially private pairwise learning in offline settings. As

shown in Definition 3.3.1, we always assume that each zi is sampled from some unknown

distribution P .

Generalization error induced by generalized regret

We first observe that Algorithm 3.3.9 and 3.3.10 preserve (ε, δ)-DP in the offline settings.

Also, as discussed in (3.106) and (3.107), if we get the generalized regret for the output
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{w1, w2, · · · , wn−1}, we can easily obtain a generalization error by (3.107). By a theorem

in [175], we can have the following generalization bounds for w̄ = w1+···+wn−1

n−1
of Algorithm

3.3.9 and 3.3.10.

Theorem 3.3.5. Under Assumption 3.3.1, the parameter w̄ = w1+···+wn−1

n−1
satisfies the

following generalization error for loss function ` with probability at least 1−2ζ if ε
log 1

δ

� 1,

where w1, w2, · · · , wn−1 are the outputs of Algorithm 3.3.10 (Algorithm 3.3.9 for strongly

convex loss functions),

ErrP(w̄) ≤ O
(∑n

t=2Rt−1(` ◦ C)
n− 1

+
L2G2‖C‖2

2

√
d log1.5 n

ζ

√
log 1

δ

ε 4
√
n

)
. (3.116)

Moreover, if the loss is α-strongly convex, then we have:

ErrP(w̄) ≤O
( 1

n− 1

n∑
t=2

Rt−1(` ◦ C) +
G2L2‖C‖2

√
d log1.5 n

ζ

√
log 1

δ

α2ε
√
n

)
. (3.117)

Remark 3.3.2. Thus, for Example 1, the generalization error is Õ( d
ε 4√n) for logistic loss

function while it is Õ( d
ε
√
n
) if adding an additional Frobenious regularization to the loss

functions 8. Similar result holds for Example 2, where the generalization error for logistic

loss is Õ(
√
d

ε 4√n) while it is Õ(
√
d

ε
√
n
) in the case of with additional `2-norm regularization.

3.3.4 Improved Upper Bounds for Offline Setting

Inspired by the sensitivity of Pairwise GIGA in Lemma 3.3.1 and Theorem 3.3.5, we propose

an offline DP algorithm which has better upper bounds compared to (3.116) and (3.117).

The basic idea is to use output perturbation. More specifically, we first run Pairwise GIGA

in the offline settings and then add some Gaussian noises to w̃ = w1+···+wn
n

to keep the

algorithm (ε, δ)-DP, since the sensitivity of w̃ is based on each wi, which can be obtained by

Lemma 3.3.1. For the general convex loss functions, we can still use the perturbation idea,

8Note that for Example 1 since the parameter is a positive matrix, the dimensionality will be O(d2).
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which is the same as in Algorithm 3.3.10. See Algorithm 3.3.14 and 3.3.15 for details.

The reason that we can improve the generalization error is due to the following fact.

From Algorithms 3.3.9 and 3.3.10, we can see that the output sequences {w1, w2, · · · , wn−1}

satisfy the conditions of (ε, δ)-DP in each iteration. However, in the offline setting, we only

need to ensure that the final output is DP. Thus, instead of adding noise in each iteration, we

can add noises only once to the final output, which means that we can add a smaller scale of

noises compared to the online ones.

Algorithm 3.3.14 Offline Pairwise Private GIGA-Strongly Convex (OffPairStrC)

1: Input: Privacy parameters ε and δ, sequence of data record {z1, z2, · · · , zn}, constrained
convex set C, pairwise loss function `(·; ·, ·), and step number T1 = max{d16L2

α2 e, 7}.
2: Parameters: ` is G-Lipschitz, L-smooth and α-strongly convex over w.
3: Randomly sample w1, · · · , wT1 ∈ C.
4: for t = T1 + 1, · · · , n do
5: Set step size ηt = t−1

t−2
2
αt

.
6: wt = arg minw∈C ‖w − (wt−1 − ηt∇L̂t(wt−1, Dt))‖2

2, i.e., projecting wt−1 −
ηt∇L̂t(wt−1, Dt) onto the convext set C.

7: end for
8: Let w̃ = w1+···+wn

n
.

9: Let w̄ = w̃ + σ, where σ ∼ N (0, 128G2 log2 n log(1.25/δ)
α2n2ε2

Id).
10: Return ŵ = arg minw∈C ‖w − w̄‖2

2.

Algorithm 3.3.15 Pairwise Private GIGA-Convex (OffPairC)

1: Input: Privacy parameters ε and δ, sequence of data record {z1, z2, · · · , zn}, constrained
convex set C, pairwise loss function `(·; ·, ·), and a parameter α to be defined later.

2: Parameters: ` is G-Lipschitz, L-smooth and convex over w.
3: Let ˜̀(w; z, z′) = `(w; z, z′) + α

2
‖w − w0‖2

2, w0 is any point in C.
4: Run Algorithm 3.3.14 with loss function ˜̀, which is G̃ = G + α‖C‖2-Lipschitz,
L̃ = L+ α-smooth and α-strongly convex.

Theorem 3.3.6. For any 0 < ε, δ ≤ 1, Algorithm 3.3.14 is (ε, δ)-DP for any α-strongly

convex loss functions satisfying Assumption 3.3.1. Moreover, if ε
log 1

δ

� 1, then with

probability at least 1− 2ζ , the output ŵ satisfies:

ErrP(ŵ) ≤ O(

√
dG2‖C‖2 log n

ζ

√
log 1

δ

αnε
+

1

n

n∑
t=1

Rt(` ◦ C)). (3.118)
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Algorithm 3.3.15 is (ε, δ)-DP for any convex loss functions satisfying Assumption 3.3.1

if α = O( 1√
n
). Moreover, if ε

log 1
δ

� 1, then with probability at least 1− 2ζ, the output ŵ

satisfies:

ErrP(ŵ) ≤ O
(√dG2‖C‖2

2 log n
ζ

√
log 1

δ
log n

√
nε

+
1

n

n∑
t=1

Rt(` ◦ C)
)
. (3.119)

From Theorem 3.3.6, we can see that for strongly and general convex loss functions,

the bounds in (3.119) and (3.118) are respectively lower than those in (3.116) and (3.117).

Specifically, for general convex loss functions, we can improve the upper bound from

Õ(
√
d

ε 4√n) to Õ(
√
d

ε
√
n
).

3.3.5 Experiments

In this section, we empirically evaluate the performance of the proposed differentially private

algorithms on real-world datasets. we take two popular pairwise learning tasks, i.e., AUC

maximization and metric learning, as examples. All of the experiments in this paper are

conducted over 20 runs of different random permutations for each adopted dataset, and we

report the averaged results.

Experimental setup

Datasets. We use six real-world datasets that are widely adopted in pairwise learning tasks.

These datasets are the Diabetes dataset, the Diabetic Retinopathy dataset, the Hepatitis

dataset, the Parkinson Speech dataset, the Auto Riskness 9 and the Cancer dataset [94].

The statistical information of them is described in Table 3.4.

Performance measures. To evaluate the performance of the proposed algorithms, we use

the following measures:

1. AUC: For AUC maximization task, we report the AUC measurement [360] for each of

9http://www.gagolewski.com/resources/data/ordinal-regression/
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Table 3.4: The statistics of the adopted datasets.

Dataset Size Dimension
Diabetes 768 20
Hepatitis 155 19
Cancer 699 10

Diabetic Retinopathy 1, 151 20
Parkinson Speech 1, 040 27

Auto Riskness 160 16

the proposed algorithms over every adopted dataset. A larger AUC value means that

the corresponding AUC maximization algorithm can generate more accurate results.

2. Classification Accuracy: For metric learning task, we calculate the classification

accuracy that is defined as the percentage of the correctly classified samples in the test

set. The less the classification accuracy, the worse the performance of the proposed

algorithm. In this paper, the KNN classifier is adopted to assign labels to the test

samples. For the KNN classifier, we set K to be 3.

3. Objective function value: For both metric learning task and AUC maximization task,

we also report the objective function value of the proposed differentially private

algorithms. A smaller objective function value means that the original pairwise

learning model is less perturbed.

Baselines. Since there is no existing work that addresses the privacy issue in pairwise

learning, in experiments, we take the original pairwise learning algorithms that do not take

any actions to protect the private information as the baselines. We denote the baseline

methods as NonPrivate, which is the GIGA for pairwise loss functions [175].

Experiments for AUC maximization

We first evaluate the performance of the proposed differentially private pairwise learning

algorithms (i.e., OnPairStrC, OnPairC, OffPairStrC and OffPairC) for AUC maximization

task (see Example 2 for the problem formulation). We add additional `2 regularization
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λ
2
‖w‖2

2 with λ = 10−3 to loss function for the strongly convex case.

We study the effect of the training size n and the privacy parameter ε on the performance

of the proposed OnPairStrC, OnPairC, OffPairStrC and OffPairC algorithms. Here we fix

δ = 1
n

and consider three cases where the value of parameter ε is set to be 0.5, 1.5 and

2.5, respectively. For OnPairStrC and OffPairStrC, we vary the training size from 40 to

90 and conduct the experiment on the Hepatitis, Auto Riskness and Cancer datasets. For

OnPairC and OffPairC, the experiment is conducted on the Diabetes, Parkinson Speech and

Diabetic Retinopathy datasets and we vary the training size from 50 to 350. In Figure 3.9

and Figure 3.10, we respectively report the objective values of OnPairStrC and OnPairC.

The experimental results show that the larger the value of the training size n, the smaller

the objective value. Additionally, when n is fixed, the smaller the value of ε, the larger the

objective value is. The performance of the proposed algorithms are comparable with that

of the baseline, which can be observed from Figure 3.10. The results for OffPairStrC and

OffPairC are shown in Figure 3.11 and Figure 3.12, respectively. Figure 3.11 shows the

objective value of OffPairStrC when the training size varies and Figure 3.12 reports the

AUC measurement of OffPairC. The results in the two figures also show that the larger the

training size is or privacy parameter ε is, the higher the AUC measurement value is, which

means that the proposed algorithm is less perturbed and more accurate. These experimental

results verify that the proposed online differential private algorithms can achieve good utility

while guarantee strong privacy protection when they are applied to the AUC maximization

task.
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Figure 3.9: The objective value of OnPairStrC for AUC maximization.
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Figure 3.10: The objective value of OnPairC for AUC maximization.
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Figure 3.11: The objective value of OffPairStrC for AUC maximization.
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Figure 3.12: The AUC measurement of OffPairC.

Experiments for Metric Learning

Next, we evaluate the performance of the proposed differentially private pairwise learning

algorithms for the metric learning task (see Example 1 for the problem formulation). Similar

to the experiments for AUC maximization, we evaluate the effect of the privacy parameter ε

and the training size n. In this section, we only report the experimental results for general

convex pairwise learning algorithms, i.e., OnPairC and OffPairC.
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Figure 3.13: The objective value of OnPairC for metric learning task under different training
sizes.
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Figure 3.14: The classification accuracy of OffPairC for metric learning task under different
training sizes.

In these experiments, the value of δ is fixed as 1
n

, and we consider three cases where the

parameter ε is set to be 0.5, 1.5 and 2.5, respectively. We first calculate the objective value

of OnPairC when the training size varies from 50 to 350, and the results on the Diabetes,

Parkinson Speech and Diabetic Retinopathy datasets are shown in Figure 3.13. As for the

offline algorithm OffPairC, we report the classification accuracy in Figure 3.14. As we

can see, the derived experimental results are similar to that for AUC maximization. The

proposed algorithms perform competitively with the baseline when we vary the values of n

and ε.
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3.3.6 Omitted Proofs

Proof of Lemma 3.3.1

For the sake of convenience, we call the non-private version of Algorithm 3.3.9 as Pairwise

GIGA and denote by wt = A(D), w′t = A(D′). Also, we let Dt = {z1, · · · , zt}.

We will show that the sensitivity of the t-th iteration in Pairwise GIGA is at most 8G
αt

.

We prove it by induction.

We first consider the case 1 ≤ t ≤ T1. Since w1, · · · , wT1 are selected randomly, their

values do not depend on the underlying dataset. Thus, we have wt = w′t for all 1 ≤ t ≤ T1.

Next, we consider t > T1. There are two cases, i.e., D −D′ = {zt, z′t} and D −D′ =

{zi, z′i}, where i < t.

For the first case, since D −D′ = {zt, z′t}, we have wt−1 = w′t−1. Thus

‖wt − w′t‖2 ≤ ‖wt−1 − ηt∇L̂t(wt−1, Dt)− w′t−1 + ηt∇L̂t(wt−1, D
′
t)‖2

= ηt‖∇L̂t(wt−1, Dt)−∇L̂t(wt−1, D
′
t)‖2

≤ t− 1

t− 2

2G

αt
≤ 4G

αt
,

where the last inequality is due to the G-Lipschitz assumption on ` and the assumption of

t ≥ 3.

For the second case, we have the following

‖wt − w′t‖2
2 ≤ ‖(wt−1 − ηt∇L̂t(wt−1, Dt))− (w′t−1 − ηt∇L̂t(w′t−1, D

′
t))‖2

2 (3.120)

≤ ‖wt−1 − w′t−1‖2
2 + η2

t ‖∇L̂t(wt−1, Dt)−∇L̂t(w′t−1, D
′
t)‖2

2

− 2ηt(wt−1 − w′t−1)T (∇L̂t(wt−1, Dt)−∇L̂t(w′t−1, D
′
t)). (3.121)
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For the term ‖∇L̂t(wt−1, Dt)−∇L̂t(w′t−1, D
′
t)‖2

2, we have

‖∇L̂t(wt−1, Dt)−∇L̂t(w′t−1, D
′
t)‖2

2

= ‖ 1

t− 1

∑
j 6=i

[∇`(wt−1; zt, zj)−∇`(w′t−1; zt, zj)]

+
1

t− 1
[∇`(wt−1; zt, zi)−∇`(w′t−1; zt, z

′
i)]‖2

2

≤ 2‖ 1

t− 1

∑
j 6=i

[∇`(wt−1; zt, zj)−∇`(w′t−1; zt, zj)]‖2
2

+ 2‖ 1

t− 1
[∇`(wt−1; zt, zi)−∇`(w′t−1; zt, z

′
i)]‖2

2

≤ 2L2(
t− 2

t− 1
)2‖wt−1 − w′t−1‖2

2 +
8G2

(t− 1)2
, (3.122)

where the last inequality is due to the L-smoothness and G-Lipschitz of the loss function `.

For the term (wt−1 − w′t−1)T (∇L̂t(wt−1, Dt)−∇L̂t(w′t−1, D
′
t)), we have:

(wt−1 − w′t−1)T (∇L̂t(wt−1, Dt)−∇L̂t(w′t−1, D
′
t))

= (wt−1 − w′t−1)T [
1

t− 1

∑
j 6=i

[∇`(wt−1; zt, zj)−∇`(w′t−1; zt, zj)]

+
1

t− 1
[∇`(wt−1; zt, zi)−∇`(w′t−1; zt, z

′
i)]. (3.123)

By the α-strongly convexity of the loss function, we have

(wt−1 − w′t−1)T [
1

t− 1

∑
j 6=i

[∇`(wt−1; zt, zj)−∇`(w′t−1; zt, zj)] ≥ α
t− 2

t− 1
‖wt−1 − w′t−1‖2

2.

(3.124)

Also due to the G-Lipschitz, we have

|(wt−1 − w′t−1)T [
1

t− 1
[∇`(wt−1; zt, zi)−∇`(w′t−1; zt, z

′
i)]| ≤

2G‖wt−1 − w′t−1‖2

t− 1
.

(3.125)

111



Plugging (3.124) and (3.125) into (3.123), we have

(wt−1 − w′t−1)T (∇L̂t(wt−1, Dt)−∇L̂t(w′t−1, D
′
t)) (3.126)

≥ α
t− 2

t− 1
‖wt−1 − w′t−1‖2

2 −
2G‖wt−1 − w′t−1‖2

t− 1
. (3.127)

Plugging (3.126) and (3.122) into (3.121), we get

‖wt − w′t‖2
2 ≤ (1 + 2L2η2

t (
t− 2

t− 1
)2 − 2ηtα

t− 2

t− 1
)‖wt−1 − w′t−1‖2

2

+
8G2η2

t

(t− 1)2
+

4ηtG‖wt−1 − w′t−1‖2

t− 1
. (3.128)

Now taking ηt = t−1
t−2

2
αt

and ‖wt−1 − w′t−1‖2 ≤ 8G
α(t−1)

, we have

‖wt − w′t‖2
2 ≤ (1 +

8L2

α2t2
− 4

t
)

64G2

α2(t− 1)2
+

32G2

α2t2(t− 2)2
+

64G2

α2t(t− 1)(t− 2)

≤ (1 +
8L2

α2t2
− 4

t
+

1

2(t− 2)2
+

1

(t− 2)
)

64G2

α2(t− 1)2
. (3.129)

What we still need to prove is

(1 +
8L2

α2t2
− 4

t
+

1

2(t− 2)2
+

1

(t− 2)
)

64G2

α2(t− 1)2
≤ 64G2

α2t2
. (3.130)

After simplifying both sides we now need to show

8L2

α2
+

t2

2(t− 2)2
+

t2

t− 2
≤ 2t+ 1. (3.131)

By the assumption on t ≥ T1 = max{16L2

α2 , 7}, we have t
2
≥ 8L2

α2 , 3
2
t ≥ t2

t−2
and 1 ≥ t2

2(t−2)2 .

Thus, (3.131) is true, and we have

‖wt − w′t‖2
2 ≤

64G2

α2t2
.
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This completes the proof.

Proof of Theorem 3.3.1

By Lemma 3.3.1, we know the `2 norm sensitivity in the t-th iteration is upper bounded by

8G
αt

. Now, by the Gaussian mechanism we can get that each iteration of Algorithm 3.3.9 is

ρ
n−T1

-zCDP for T1 < t ≤ n. Then by Lemma composition theorem of zCDP we can see

that Algorithm 3.3.9 is ρ-zCDP. Thus it is (ε, δ)-DP.

Proof of Theorem 3.3.2

For the sake of convenience, we call the non-private version of Algorithm 3.3.9 as Pairwise

GIGA and denote by wt = A(D), w′t = A(D′). Also, we let Dt = {z1, · · · , zt}. As we said

earlier, in the case of ε
log 1

δ

� 1 we can see σ2
t = c

log 1
δ
G2(n−T1)

α2ε2t2
= O(

log 1
δ
G2n

α2ε2t2
) for c = 128.

We first prove the following lemma:

Lemma 3.3.2. LetRGIGA(n,D) be the regret of (non-private) Pairwise GIGA on the stream

{z1, z2, · · · , zn}, then the outputs w1, · · · , wn−1 satisfies

n∑
t=2

L̂t(wt−1, Dt)−min
w∈C

n∑
t=2

L̂t(w,Dt)

≤ RGIGA(n,D) +G

T∑
t=T1+1

‖nt−1‖2 +GT1‖C‖2. (3.132)

Proof of Lemma 3.3.2. We denote the output of Pairwise GIGA as w̃1, · · · , w̃n−1. Then, by
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the G-Lipschitz property of ` and L̂t, we get

n∑
t=2

L̂t(wt−1, Dt)−min
w∈C

n∑
t=2

L̂t(w,Dt)

≤
n∑
t=2

L̂t(wt−1, Dt)−
n∑
t=2

L̂t(w̃t−1, Dt) +RGIGA(n,D)

≤ G
n∑
t=2

‖wt−1 − w̃t−1‖2 +RGIGA(n,D)

= RGIGA(n,D) +G
n∑

t=T1+1

‖nt−1‖2 +GT1‖C‖2.

Next we bound the term of
∑T

t=T1+1 ‖nt−1‖2. For a Gaussian distribution x ∼ N (0, σ2Id),

with probability at least 1 − ζ we have ‖x − σ‖2 ≤ σ
√
d
√

2 log 2/ζ. Thus, by the above

concentration bound and taking the union, we have the following with probability at least

1− ζ

T∑
t=T1+1

‖nt−1‖2 ≤ O(
n∑

t=T1

√
d
√

log n
ζG
√
n− T1

√
log 1/δ

αεt
)

≤ O(
G
√
d log1.5 n

ζ

√
n
√

log 1/δ

αε
). (3.133)

Combining this with Lemma 3.3.2 and (3.133), we can get the following with probability at

least 1− ζ

n∑
t=2

L̂t(wt−1, Dt)−min
w∈C

n∑
t=2

L̂t(w,Dt)

≤ RGIGA(n) +O(
G2
√
d log1.5 n

ζ

√
n
√

log 1/δ

αε
+
GL2

α2
‖C‖2).

Using the regret bound analysis of GIGA in [371, 144] on strongly convex functions

{L̂t}nt=1 and by the fact that they are α-strongly convex, we can get

RGIGA(n,D) ≤ G2(1 + log n)

2α
.
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Thus, in total we have

n∑
t=2

L̂t(wt−1, Dt)−min
w∈C

n∑
t=2

L̂t(w,Dt) (3.134)

≤ O(
G2
√
d log1.5 n

ζ

√
n
√

log 1/δ

αε
+
GL2

α2
‖C‖2 +

G2(1 + log n)

α
).

For the expected regret, we only need to get an upper bound on E
∑n

t=T1+1 ‖nt‖2. We can

follow the techniques in [160] and show that

E
n∑

t=T1+1

‖nt‖2 ≤ O(
√
d
G

α

√
n

log n
√

log 1/δ

ε
). (3.135)

Proof of Theorem 3.3.3

By the perturbation strategy in Algorithm 3.3.10 and Theorem 3.3.1 we can get the following

for the loss function after perturbation ˜̀= `+ α
2
‖w − w0‖2

RA,˜̀(n,D) ≤ O(
(G+ α‖C‖2)2

√
d log1.5 n

ζ

√
n
√

log 1/δ

αε

+
(G+ α‖C‖2)(L+ α)2

α2
‖C‖2 +

(G+ α‖C‖2)2(1 + log n)

α
).

SinceRA,`(n,D) ≤ RA,˜̀(n,D) + nα‖C‖2
2, we have

RA,`(n,D) ≤ O(
(G+ α‖C‖2)2

√
d log1.5 n

ζ

√
n
√

log 1/δ

αε

+
(G+ α‖C‖2)(L+ α)2

α2
‖C‖2 +

(G+ α‖C‖2)2(1 + log n)

α
+ nα‖C‖2

2).

Taking α = O( 1
4√n), we get

RA,`(n,D) ≤ O(
L2G2‖C‖2

2

√
d log1.5 n

ζ
n

3
4

√
log 1/δ

ε
).
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Proof of Theorem 3.3.4

For the (ε, δ)-DP, we can follow the proof of Theorem 3.3.1. What we only need to show is

the bound, we have the following lemma:

Lemma 3.3.3 (Theorem 6 in [175]). Let w1, · · · , wn−1 be an ensemble of parameters

generated by an online algorithm working with a finite buffer of capacity s and a B-bounded

loss function `. Moreover, suppose that the algorithm guarantees a finite-buffer regret bound

ofRbuf
A (n). Then, for any δ > 0, we have the following with probability at least 1− ζ:

RA(n) ≤ R
buf
A (n)

n− 1
+O(

Cd√
s

+B

√
log n

ζ

s
).

Lemma 3.3.4 (Lemma 26 in [175]). Suppose we have an online algorithm A that incurs

finite-buffer penalties based on a buffer B of size s that is updated using RS-x. Suppose

further that the learning algorithm generates {w1, · · · , wn−1}, then with probability at least

1− δ, we have

RP,A(n) ≤ Rbuf
A (n) +O(Cdn

√
log n

ζ

s
).

Now we denote the regret of the non-private version of Algorithm 3.3.12 asRbuf
GIGA(n).

Thus, by the same proof as in Theorem 3.3.2 we have the following

Rbuf
A (n) ≤ Rbuf

GIGA(n) +O(
G2
√
d log1.5 n

ζ

√
n
√

log 1/δ

αε
+
GL2

α2
‖C‖2).

For the term Rbuf
GIGA(n), since {L̂buf

t }nt=1 are all α-strongly convex , then we can use the

GIGA algorithm in [144] with the functions {L̂buf
t }nt=1 and get

Rbuf
GIGA(n) ≤ 2G2(1 + log n)

α
.

Thus we get the proofs.

For the general convex loss function, we have the same trick as in the proofs of Theorem
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3.3.2 and 3.3.3, that is, replacing G = G+ α‖C‖2, L = L+ α‖C‖2 and take α = O( 1
4√n).

Proof of Theorem 3.3.5

We first rephrase a lemma in [175].

Lemma 3.3.5 (Theorem 3 in [175]). Let w1, · · · , wn−1 be an ensemble of parameters

generated by an online learning algorithm working with a B-bounded pairwise loss function

` that guarantees a regret bound ofR(n). Then for any δ > 0, we have the following with

probability at least 1− δ,

LP(w̄) ≤ 1

n− 1

n∑
t=2

LP(wt−1)

≤ min
w∈C

LP(w) +
4

n− 1

n∑
t=2

Rt−1(` ◦ C) +
R(n)

n− 1
+ 6B

√
log n

δ

n− 1
, (3.136)

whereR(` ◦ C) is the Rademacher average for the class of functions ` ◦ C in (3).

For the strongly convex loss functions, by Lemma 3.3.5, we can get with probability at

least 1− 2ζ ,

LP(w̄)−min
w∈C

LP(w) ≤ O
( 1

n− 1

n∑
t=2

Rt−1(` ◦ C) +
G2L2‖C‖2

√
d log1.5 n

ζ

√
log 1/δ

α2ε
√
n

)
.

(3.137)

For the general convex ones, we have with probability at least 1− 2ζ

LP(w̄)−min
w∈C

LP(w)

≤ O
( 1

n− 1

n∑
t=2

Rt−1(` ◦ C) +G‖C‖2

√
log n

ζ

n− 1
+
L2G2‖C‖2

2

√
d log1.5 n

ζ
n

3
4

√
log 1/δ

ε(n− 1)

)
= O

( 1

n− 1

n∑
t=2

Rt−1(` ◦ C) +
L2G2‖C‖2

2

√
d log1.5 n

ζ

√
log 1/δ

ε 4
√
n

)
.
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Proof of Theorem 3.3.6

We first prove Algorithm 3.3.14 is (ε, δ) differentially private. What we only need to show

is the sensitivity of w̃ is 8G logn
nα

. Since by Lemma 3.3.1, we know ‖wt − w′t‖2 ≤ 8G
αt

, thus

‖w̄ − w̄′‖2 ≤
∑n

t=1
8G
αt

n
≤ 8G log n

nα
. (3.138)

Thus by Gaussian mechanism we can show it is (ε, δ)-differentially private.

Next we analyze the generalization error, we have the following with probability 1− ζ:

LP(ŵ)−min
w∈C

LP(w)

≤ LP(ŵ)− LP(w̃) + LP(w̃)−min
w∈C

LP(w) (3.139)

≤ G‖ŵ − w̃‖2 +
4

n− 1

n∑
t=2

Rt−1(` ◦ C) +
RGIGA(n,D)

n
+ 6G‖C‖2

√
log n

ζ

n
,

≤ G‖ŵ − w̄‖2 +G‖w̄ − w̃‖2 +
4

n− 1

n∑
t=2

Rt−1(` ◦ C) +
RGIGA(n,D)

n
+ 6G‖C‖2

√
log n

ζ

n
,

(3.140)

where RGIGA(n,D) is the regret of Pairwise GIGA on the strongly convex loss function

{L̂t}nt=1. The last inequality is by the G-Lipschitz property and Lemma 3.3.5.

Also, by [144], the regret of Pairwise GIGA on the strongly convex loss function {L̂t}nt=1

isRGIGA(n,D) ≤ 2G2(1+logn)
α

. For the term ‖ŵ − w̄‖2, by definition of ŵ, we have

‖ŵ − w̄‖2 ≤ ‖w̃ − w̄‖2.

For the term ‖w̄ − w̃‖ = ‖σ‖, we have with probability at least 1− ζ ,

‖σ‖2 ≤
8G
√
d
√

2
√

log 1/ζ log 1.25/δ log n

αnε
.
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Thus in total we have:

LP(w̄)−min
w∈C

LP(w) ≤ O
(√dG2

√
log 1/ζ log 1/δ log n

αnε

+
1

n

n∑
t=1

Rt(` ◦ C) +
G2 log n

αn
+G‖C‖2

√
log n

ζ

n

)
.

For the convex loss function, as the same as above, we have

LP(w̄)−min
w∈C

LP(w) ≤ O
(√d(G+ α‖C‖2)2

√
log 1/ζ log 1/δ log n

αnε

+
1

n

n∑
t=1

Rt(` ◦ C) +
(G+ α‖C‖2)2 log n

αn
+ (G+ α‖C‖2)‖C‖2

√
log n

ζ

n
+ α‖C‖2

2

)
.

When we take α = O( 1√
n
), we have

LP(w̄)−min
w∈C

LP(w) ≤ O
(√dG2‖C‖2

2 log n
ζ

√
log 1/δ log n

√
nε

+
1

n

n∑
t=1

Rt(` ◦ C)
)
.

(3.141)
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Chapter 4

Empirical Risk Minimization with

Non-Convex Loss Functions in

Differential Privacy Model

In Chapter 3 we studied different settings of DP-ERM with convex loss functions. However,

several empirical studies have revealed that non-convex loss functions can achieve better

classification accuracy than convex loss functions [231], and recent developments in Deep

Neural Networks [133] have further suggested that the loss functions are more likely to

be non-convex in real world applications. Thus, there is an urgent need for the research

community to shift its focus from convex to non-convex loss functions. However, due to the

fact that finding the global minimum for non-convex functions is NP-hard, which implies

that measuring the utility by the expected excess empirical risk may not always be a good

choice. Thus, to study the problem, one possible is to change the measurement of error for

our private estimator. So far, only a few papers [356, 324] have considered the utility of

DP-ERM with non-convex loss functions, but all of them measure the utility by `2 norm of

the gradient, instead of the expected excess empirical risk. In the following three sections,

we will study the theoretical behaviors under three different types of measurements, i.e.,
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first order stationary measurement, excess empirical (population) risk and second order

stationary measurement, respectively. To make each chapter independent and self-contained,

we will review the definition of DP-ERM in each Chapter. We also note that the notations of

loss function, constraint set and parameter space may be different across different chapters.

We first review some definitions in convex optimization that will be used throughout the

whole chapter.

Definition 4.0.1 (Lipschitz Function). A loss function f : C × X → R is G-Lipschitz

(under `2-norm) over θ, if for any z ∈ X and θ1, θ2 ∈ C, we have |f(θ1, z) − f(θ2, z)| ≤

G||θ1 − θ2||2.

Definition 4.0.2 (L-smooth Function). A loss function f : C × X → R is L-smooth over θ

with respect to the norm || · || if for any z ∈ X and θ1, θ2 ∈ C, we have

||∇f(θ1, z)−∇f(θ2, z)||∗ ≤ L||θ1 − θ2||,

where || · ||∗ is the dual norm of || · ||. If f is differentiable, this yields

f(θ1, z) ≤ f(θ2, z) + 〈∇f(θ2, z), θ1 − θ2〉+
L

2
||θ1 − θ2||2.

Definition 4.0.3 (ρ-Hessian Lipschitz). A twice-differentiable loss function ` : C ×X → R

is called ρ-Hessian Lipschitz if for any z ∈ X and θ1, θ2 ∈ C we have

‖∇2`(θ1, z)−∇2`(θ2, z)‖2 ≤ ρ‖θ1 − θ2‖2.

4.1 First Order Stationary View

Before going into details, we first review the definition of DP-ERM with convex loss

functions.
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Definition 4.1.1 (DP-ERM). Given a dataset D = {z1, · · · , zn} from a data universe

X and a closed convex set C ⊆ Rp, DP-ERM is to find xpriv ∈ C so as to minimize

the empirical risk, i.e. F r(x,D) = 1
n

∑n
i=1 f(x, zi) + r(x), with the guarantee of being

differentially private, where f is the loss function and r is some simple (non-)smooth convex

function called regularizer. When the inputs are drawn i.i.d from an unknown underlying

distribution P on X , we also consider the population risk Ez∼P [f(x, z)]. If the loss function

is convex, the utility of the algorithm is measured by the expected excess empirical risk, i.e.

EA[F r(xpriv, D)]−minx∈C F
r(x,D), or the expected excess population risk (generalization

error), i.e. Ez∼P,A[f(xpriv, z)]−minx∈C Ez∼P [f(x, z)], where the expectation ofA is taking

over all the randomness of the algorithm.

As we mentioned in previously, to study DP-ERM with non-convex loss functions, one

way is to change the measurement of error. Since we know that for any function, its global

minimum satisfies that its `2-norm of the gradient of the function is zero, thus, we can use

the `2-norm of the gradient of the function as a mearsurement. So far, only a few papers

[356, 324] have considered the utility of DP-ERM with non-convex loss functions. Despite

the aforementioned progress on this problem, there are still quite a few remaining issues.

1) Previous work has obtained the error bounds for the smooth loss functions with smooth

regularizer; it is not clear whether they can be extended to non-smooth regularizer, such

as `1 norm. 2) Even though existing work has considered the error bound measured by

empirical risk, it is not clear what is the generalization property of the problem. Particularly,

it is unknown what is the error bound measured by population risk for non-convex loss

functions and its difference with the convex ones [29]. 3) Existing work mainly focuses on

the low dimensional case, where n� p. It is still unknown what can be done for the high

dimensional case. In this paper, we will address the above issues. Our main results are listed

in Table 4.1. Below is a more detailed description of our contributions.

1. For low dimensional space, we consider the general case for DP-ERM with non-convex

loss function and non-smooth regularizer. For this case (see Algorithm 4.1.16), we
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generalize the approaches in [356, 324], which consider only smooth regularizer and

unconstrained domain, i.e. C = Rp). Particularly, we use as the utility the `2 norm of

the projected gradient, while [356, 324] use the `2 norm of the gradient. Then, we

resolve some practical issues in [356, 324] by using zero Concentrated Differential

Privacy. Finally, we study the generalization property of the private estimator. By

using `2 norm of the gradient in the empirical risk, we show an upper bound of the

population risk with non-convex loss functions at the point θpriv based on the expected

`2-norm of the gradient, i.e. EA‖Ez∼P [∇f(xpriv, z)]‖2.

2. For high dimensional space (i.e. p� n), we first show that by using the differentially

private version of Frank-Wolfe method, it is possible to measure the utility by Frank-

Wolfe gap (see Algorithm 4.1.17), and the utility upper bound depends only on

the Gaussian Width of the constraint set C (see Definition 4.1.3), instead of the

dimensionality p of the underlying space. Then, we improve the robustness of the

above approach for non-smooth regularizer, while still maintain the same utility upper

bound (see Algorithm 4.1.18) for the case of ‖C‖2 ≤ 1 by using the `2 norm of the

projected gradient. Finally, we consider a special case where C is a polytope and the

loss function is `1-Lipschitz, which has been studied in [270] for the convex case. For

this case (see Algorithm 4.1.19), we present a method which uses Frank-Wolfe gap

to measure the utility and achieves an upper bound depending only on log p, instead

of the Gaussian Width or the dimensionality of the underlying space.

4.1.1 Low Dimension Case

Extending to Non-Smooth Regularizer

In this section, we consider DP-ERM with non-convex loss function and non-smooth convex

regularizer, i.e.,
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Method Assumption Utility Upper Bd Non-smooth Regularizer Measurement

[356] Smooth, `2-norm Lipschitz O(
4
√
p ln( 1

δ
) ln(n

δ
)

√
nε

) No `2 norm of gradient

[327] Smooth, `2-norm Lipschitz O(
4
√
p ln( 1

δ
)

√
nε

) No `2 norm of gradient

Algorithm 4.1.16 Smooth, `2-norm Lipschitz O(
4
√
p ln( 1

δ
)

√
nε

) Yes `2 norm of projected gradient

Algorithm 4.1.17 Smooth, `2-norm Lipschitz, C bounded O(
4
√

(‖C‖22+G2
C) ln 1

δ√
nε

) No Frank-Wolfe gap

Algorithm 4.1.18 Smooth, `2-norm Lipschitz, C bounded O(
4
√

(‖C‖22+G2
C) ln 1

δ√
nε

) Yes `2 norm of projected gradient

Algorithm 4.1.19 Smooth, `1-norm Lipschitz, C is `1 norm ball (or polytope) O(
4
√

ln( 1
δ

)
√

ln(np)
√
nε

) No Frank-Wolfe gap

Table 4.1: Comparisons with previous (ε, δ)-DP algorithms for DP-ERM with non-convex
loss function. We assume that the Lipschitz and smooth parameters are 1, and ‖C‖2 ≤ 1.

min
x∈C

F r(x,D) =
1

n

n∑
i=1

f(x, zi) + r(x). (4.1)

For convenience, we let F (x) = 1
n

∑n
i=1 f(x, zi) and F r(x) = F r(x,D).

Assumption 4.1.1. F (x) is assumed to be differentiable and L-smooth over x with respect

to `2 norm. Also, the loss function f(·, z) is assumed to be G-Lipschitz over x with respect

to `2-norm for all z ∈ X .

In order to measure the utility for (4.1), we define the generalized projected gradient

as PC(x, g, γ) = 1
γ
(x− x+), where

x+ = arg min
u∈C
{〈g, u〉+

1

2γ
‖x− u‖2

2 + r(u)}. (4.2)

Note that this measurement has been widely used in the optimization community for studying

the convergence and non-stationarity, such as [127, 128]. Actually, if C = Rp and r(x) ≡ 0,

we have PC(x,∇F (x), γ) = ∇F (x) = ∇F r(x).

Based on the Projected Gradient Descent, we have the following algorithm for DP-ERM

with non-convex loss function and non-smooth convex regularizer.
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Algorithm 4.1.16 DP-PGD(F, x1, T, σ, {γk}Tk=1)
Input: T is the maximum number of iterations, x1 is the initial point, and {γk}Tk=1 is the
step size. ε and δ are privacy parameters.

1: for k = 1, · · · , T do
2: Compute xk+1 = arg minu∈C{〈∇F (xk) + εk, u〉 + 1

2γk
‖u − xk‖2

2 + r(u)}, where
εk ∼ N(0, σ2Ip), here σ can be chosen by Theorem 1 or as the following:

3: Compute ρ which satisfies ρ+ 2
√
ρ log(1

δ
) = ε. Then set σ2 = 2L2T

n2ρ2 .
4: end for
5: return xR ∈ {x1, · · · , xT} such that R is uniformly sampled from {1, 2, · · · , T}.

Theorem 4.1.1. There exist constants c, c1, such that for any 0 < ε < c1T, 0 < δ < 1,

DP-PGD (Algorithm 4.1.16) is (ε, δ)-differentially private if

σ2 = c
G2T ln(1

δ
)

n2ε2
. (4.3)

Theorem 4.1.2. Under Assumption 4.1.1, if we take σ2 as in (4.3), {γ}Tk=1 = 1
2L

and

T = O( nε√
p ln( 1

δ
)
) in Algorithm 4.1.16, the following inequality holds,

E‖gC,R‖2 ≤ O
( 4

√
p ln(1

δ
)

√
nε

)
, (4.4)

where gC,R = 1
γk

(xR − xR+1).

Remark 4.1.1. Note that if we remove the non-smoothness restriction on the regularizer

and assume that C = Rp, the upper bound in Theorem 4.1.2 becomes the same as in [324].

Thus Theorem 4.1.2 can be viewed as a generalization of theirs.

Also it is worth noting that if we use the output in classical non-convex optimization

algorithm directly, such as the one on Page 26 in [230], i.e. ‖gC,R‖2 = min1≤k≤T ‖gC,k‖2,

the algorithm will not be differentially private. Thus, here we use another randomizer on R.

This is a main difference between our algorithm and those optimization algorithms.

It is notable that the variance of noise (4.3) in Theorem 4.1.1, which is based on Moment

Accountant (Lemma 2.1.7), just states the existence of such constant c without specifying it.
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Actually we can follow the way in [1] which is based on grid search for finding this hidden

constant. However, this procedure is costy and complex, here we propose a more practical

approach by transforming zero Concentrated Different Privacy (zCDP) [52] to (ε, δ)-DP,

which corresponds to the step 3 in Algorithm 4.1.161.

The idea is that we first make the algorithm to be ρ-zCDP and then transfer to (ε, δ)-

DP, i.e. we first compute the number ρ which satisfies ρ + 2
√
ρ log(1

δ
) = ε. Then we

perform Algorithm 1 for T iterations. We can easily get in this case the variance satisfies

σ2
2 = 2L2T

n2(
√

log(1/δ)+ε−
√

log(1/δ))2
. When ε

log(1/δ)
� 1 (this case will always holds since in

practice we select ε = 0.1− 0.5 and δ = 1
n

), by expanding Taylor series of
√

1 + x, we have

(
√

log(1/δ) + ε−
√

log(1/δ))2 ' ε2

4 log(1/δ)
, so σ2

1 '
8L2T log(1/δ)

n2ε2
. We can see that compared

with moment accountant method, our method is much more practical and simpler, compared

with advanced composition theorem, it adds less noise in each iteration (see Experiment

section for details).

Extension to Population Risk

An important problem in machine learning is to use population risk to measure the perfor-

mance of an estimator. It indicates how well the estimator performs on unseen examples

from the same distribution. Based on the idea of measuring the utility of θpriv by the `2 norm

of the gradient of the empirical risk, in this section, we show an upper bound of θpriv on

the population risk based on the `2 norm of the gradient for non-convex loss functions, i.e.

EA‖Ez∼P [∇f(xpriv, z)]‖2, where A is the randomized algorithm which outputs the private

estimator xpriv.

Due to the hardness of the problem even in non-private settings, we need to make some

assumptions. Below, we only consider the non-regularizer case.

Assumption 4.1.2. The gradient of the loss function is τ -sub-Gaussian. That is, for any

λ ∈ Rp and x ∈ Rp, we have E{exp(〈λ,∇f(x, z)− E[∇f(x, z)]〉)} ≤ exp( τ
2‖λ‖2

2
).

1Recently, [192] also proposed a similar way of reducing the noise in DP-GD based on zCDP. However,
here we do not compare with it since there is no theoretical guarantee in their paper.
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Assumption 4.1.3. The Hessian of the population risk is bounded. That is, there exists an H

such that ‖∇2Ez∼P [f(x0, z)]‖2 ≤ H for all x0 ∈ Rp. Also, the Hessian of the loss function

is L-Lipschitz. That is, for every z and x1, x2 ∈ Rp, we have ‖∇
2f(x1,z)−∇2f(x2,z)‖2

‖x1−x2‖2 ≤ L,

where the `2 norm of the Hessian is the operator norm. Furthermore, we assume that the

constant H,L cannot be too large with respect to τ and p. This means that there exists a

constant c such that H ≤ τ 2pc and L ≤ τ 3pc.

Note that the first assumption is quite standard for analyzing the population risk [74].

The second assumption is very common in many non-convex loss functions, such as robust

regression and binary classification. The examples can be found in [218]. Based on recent

results on non-convex learning, we now have the following theorem.

Theorem 4.1.3. Under Assumption 4.1.1, 4.1.2 and 4.1.3, if n ≥ Ω(p log(p)), then for

any 0 < ε, δ, β ≤ 1, there is an (ε, δ)-differentially private algorithm A which outputs xR

satisfying the following with probability at least 1− β,

EA‖Ez∼P [∇f(xR, z)]‖2 ≤ O(

√
τ 2p log( τ

β
) log n

n
+

4

√
p log(1

δ
)

√
nε

)

= O(τ

√√√√p log( τ
β
) log n

√
log 1

δ

nε
). (4.5)

Remark 4.1.2. As we can see from above theorem, compared with the uniform convergence

error, i.e. the first term in the right side of (4.5), the error due to differential privacy, i.e. the

second term in the right side of (4.5), is less when we consider ε, δ as constants. Thus, the

effect of differential privacy on the convergence error is just making the efficient sample

complexity n become nε. This is quite different from the population risk in convex loss

functions under differential privacy, where the error caused by privacy plays a much more

important role, i.e. there is additional factor of
√
p in the population risk under differential

privacy compared with non-private case. For details, please refer to Appendix F in [29].

An open problem is that whether this bound is tight, or whether we can deal with the high
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dimensional case, we left these for future works.

4.1.2 High Dimension Case

Error Bounded by Frank-Wolfe Gap

The utility bound in (4.4) depends on the dimensionality p. In high dimensional (i.e., p� n)

space, such a dependence may no longer be desirable. For convex loss functions, [269]

showed that it is possible to make the utility bound (using the expected excess empirical

risk as the measurement) depend only on the Gaussian Width of the constrained set C,

which could be considerably smaller than O(
√
p) when C is a bounded closed centrally

symmetric convex set C ⊆ Rp (such as l1-norm ball). Thus, a natural question is whether

such an improvement can also be achievable for non-convex loss functions. Below we give

an affirmative answer by showing that this is indeed possible for non-convex loss function

(without considering the non-smoothness constraint on the regularizer, i.e., r(x) ≡ 0).

We start our discussion with some definitions and lemmas which will be used in this and

next section.

Definition 4.1.2 (Minkowski Norm). The Minkowski norm (denoted by || · ||C) with respect

to a centrally symmetric convex set C ⊆ Rp is defined as follows. For any vector v ∈ Rp,

|| · ||C = min{r ∈ R+ : v ∈ rC}. The dual norm of || · ||C is denoted as || · ||C∗; for any

vector v ∈ Rp, ||v||C∗ = maxw∈C |〈w, v〉|.

Definition 4.1.3 (Gaussian Width). Let b ∼ N (0, Ip) be a Gaussian random vector in Rp.

The Gaussian width for a set C is defined as GC = Eb[supw∈C〈b, w〉].

Compared with the dimensionality p, Gaussian Width of a convex set C ⊆ Rp could be

much smaller. For example, when C is l1-norm unit ball, GC = O(
√

log p); when C is the

set of all unit s-sparse vectors on Rp, GC = O(
√
s log(p/s)).

Lemma 4.1.1. [269] For W = (maxw∈C〈w, v〉)2, where v ∼ N (0, Ip), we have Ev[W ] =

O(G2
C + ||C||22).
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For simplicity, we let ‖ · ‖ denote ‖ · ‖C and ‖ · ‖∗ denote ‖ · ‖C∗ in this section.

Our algorithm is based on the Frank-Wolfe method, where a differentially private

version of Frank-Wolfe has been studied in [270] for LASSO. Frank-Wolfe method can

be viewed as a greedy algorithm which moves towards the optimum solution in the first

order approximation. It reduces the problem to solving a minimization problem of linear

function, which exploits the geometric property of the constrained set C. It also provides a

new measurement of the non-stationarity, called Frank-Wolfe gap, for the utility, which has

already been used in [187, 247]. Formally, the Frank-Wolfe gap at a point x of the function

F is defined as: G(x) = maxv∈C〈v − x,−∇F (x)〉, x ∈ C. Since the gap G(x) = 0 if and

only if x is a stationary point, it could provide of stationarity for a point. Our following

algorithm uses the Frank-Wolfe gap as a measurement for DP-ERM with non-convex smooth

loss functions.

Algorithm 4.1.17 DP-FW-L2(F, x1, T, σ, {γt}Tt=1)
Input: T is the maximum of iterations, x1 is the initial point, and {γt}Tt=1 is the step size.

for k = 1, · · · , T do
Compute vt = arg maxv∈C〈v,−(∇F (x) + εt)〉, where εk ∼ N(0, σ2Ip).
xt+1 = xt + γt(vt − xt).

end for
return xR ∈ {x1, · · · , xT} such that R is uniformly sampled from {1, · · · , T}.

Theorem 4.1.4. Let C be a bounded, closed, centrally symmetric convex set. Then, there

exist constants c, c1, under Assumption 4.1.1 and for any 0 < ε < c1T, 0 < δ < 1, DP-FW-

L2 (Algorithm 4.1.17) is (ε, δ)-differentially private if σ2 is chosen as in (4.3). Moreover, if

taking {γt}Tt=1 = O(
4
√

(‖C‖22+G2
C) ln 1

δ

‖C‖2
√
nε

) and T = O( nε√
(‖C‖22+G2

C) ln 1
δ

), the following holds,

E[GR] ≤ O
(‖C‖2

4

√
(‖C‖2

2 +G2
C) ln 1

δ√
nε

)
, (4.6)

where Gt = maxv∈C〈−∇F (xt), v − xt〉.
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4.1.3 Error Bounded by Norm of Gradient

So far we have presented two methods for the general non-convex case and the high

dimension case, respectively. Theorem 4.1.4 enables us to bound the utility using Gaussian

Width, but has some robustness issue with non-smooth regularizer. Contrarily, Theorem

4.1.2 can handle non-smooth regularizer, but its utility depends on the dimensionality of

the space. Below we show in Algorithm 4.1.18 that it is actually possible to combine the

advantages of both methods by using Mirror Descent.

Definition 4.1.4. A function w : C → R is said to be a distance generating function with

modulus α > 0 (w.r.t. ‖ · ‖ norm), if w is continuously differentiable and strongly convex

satisfying the following inequality for any x, z ∈ C, 〈x−z,∇w(x)−∇w(z)〉 ≥ α‖x−z‖2.

The Bregman Divergence associated with w is defined as V (x, z) = w(x) − w(z) −

〈∇w(z), x− z〉.

Similar to (4.2), we define the generalized projected gradient as PC(x, g, γ) = 1
γ
(x−x+),

where x+ = arg minu∈C{〈g, u〉 + 1
γ
V (u, x) + r(u)}. Note that (4.2) is a special case in

which w(x) = 1
2
‖x‖2

2.

Algorithm 4.1.18 DP-PMD(F, x1, T, σ, {γk}Tk=1, w(·))
Input: T is the maximum number of iterations, x1 is the initial point, w : C → R is a
distance generating function with modulus 1 (w.r.t. ‖ · ‖ norm) and V (·, ·) is its Bregman
Divergence, {γk}Tk=1 is the step size.

1: for k = 1, · · · , T do
2: Compute xk+1 = arg minu∈C{〈∇F (xk) + εk, u〉+ 1

γk
V (u, x) + r(u)}, where εk ∼

N(0, σ2Ip).
3: end for
4: return xR ∈ {x1, · · · , xT} where R is uniformly sampled from {1, · · · , T}.

Theorem 4.1.5. Let C be a bounded closed centrally symmetric convex set. Then, under

Assumption 4.1.1 and for any 0 < ε < c2T, δ > 0, DP-PMD (Algorithm 4.1.18) is (ε, δ)-

differentially private if σ2 is chosen as in (4.3). Moreover, if taking {γ}Tk=1 = 1
2L‖C‖22

and
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T = O( nε‖C‖2√
(‖C‖22+G2

C) ln( 1
δ

)
), the following holds

E‖gC,R‖2 ≤ O(
‖C‖

3
2
2

4

√
(‖C‖2

2 +G2
C) ln(1

δ
)

√
nε

), (4.7)

where gC,k = 1
γk

(xk − xk+1).

Remark 4.1.3. If ‖C‖2 ≤ 1, GC = o(
√
p), from Theorems 4.1.5 and 4.1.2, we can see that

the utility bound of (4.7) is always less than (4.4). One of the main reasons for us to have

Theorem 4.1.5 is the fact that we can exploit the geometric structure of the problem (by

Remark 2 and the Mirror Descent). Moreover, when we ignore the terms related to C, the

upper bounds in Theorem 4.1.5 and 4.1.4 actually achieve the same upper bound, although

the utilities are measured quite differently.

4.1.4 Further Reducing the Utility

Theorem 4.1.5 allows us to bound the utility quite well for the general non-convex case.

However, as shown in [270, 181], the utility can be further reduced for some convex loss

functions to a level depending only on log(p), rather than GC or p. This inspires us to ask

whether there is any special case for non-convex loss functions to achieve the same. In this

section, we give an affirmative answer to this by showing (in Algorithm 4.1.19) that there

is indeed a case where the Frank-Wolf gap depends only on log(p). We consider problem

(4.1) without the regularizer term.

Assumption 4.1.4. F (x) is assumed to be differentiable and L-smooth over x w.r.t `2-norm,

and f(·, z) is assumed to be G-Lipschitz over x with respect to `1-norm for all z ∈ X .

C ⊆ Rp is assumed to be a closed convex set. Furthermore, C is assumed to be the convex

hull of some finite set A, i.e., C = Conv(A) and bounded. (For example, C could be a

polytope.)
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Algorithm 4.1.19 DP-FW-L1(F, x1, T, σ, {γt}Tt=1)
Input: T is the iteration number and x1 is the initial point. {γt}Tt=1 is the step size. C ⊆ Rp

be the convex hull of a compact set A ⊆ Rp.
1: for t = 1, · · · , T do
2: Use exponential mechanism M(D, u,R), where R = A, u(D, s) =
−〈s,∇F (xt, D)〉, to ensure ( ε√

8T ln( 1
δ

)
, 0)-differentially private. Denote the output

as x̃t.
3: Compute xt+1 = (1− γt)xt + γtx̃t.
4: end for
5: return xR ∈ {x1, · · · , xT} where R is uniformly sampled from {1, 2 · · · , T}.

Theorem 4.1.6. Assume A is a finite set. Then, for any ε, δ > 0, DP-FW-L1 (Algorithm

4.1.19) ensures (ε, δ)-differentially private. Furthermore, if we set T = O( nε√
ln( 1

δ
) ln(|A|n/η)

)

and {γt}Tt=1 =
√

2
T‖C‖22

. Then with probability at least 1− η, the following holds

E[GR] ≤ O(
‖C‖1

4

√
ln(1

δ
)
√

ln n|A|
η√

nε
), (4.8)

where Gt = maxv∈C〈−∇F (xt), v − xt〉.

Corollary 4.1.1. If C is an `1-norm ball or a simplex in Rp, then we can see that A is the set

of the vertices of C, in this case, the Frank-Wolf gap in (4.8) is EGR = O(
4
√

ln( 1
δ

)
√

ln(np)
√
nε

).

Note that sinceA in step 2 of Algorithm 4.1.19 is finite and u is a linear function, it could

run in O(|A|p) time; also we can use Report-Noisy-Max in [104] instead of the exponential

mechanism, see [205] for details. The above bound could be the smallest among all the

results presented so far. For example, when C contains the unit Euclidean ball, GC = Ω(
√
p).

Thus, all the previous results depend on p while (4.8) depends only on log(p).

4.1.5 Experimental Results

In this section, we study the performance of differentially private gradient descent method

with non-convex loss functions. Particularly, we consider the case where the sigmoid
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function is the loss and `1-norm is the regularizer, i.e.

min
θ∈Rp

F r(θ,D) =
1

n

n∑
i=1

1

1 + exp(−yi〈θ, xi〉)
+
λ

2
‖θ‖1,

where{xi}ni=1 are the feature vectors and {yi}ni=1 are the corresponding labels.

Experiment Settings

Due to the hardness of computing the Frank-Wolfe gap, we test Algorithm 4.1.19 and

measure the `2-norm of the generalized projected gradient. We set λ = 10−4, and evaluate

our algorithms on both synthetic and real world datasets. The synthetic dataset is generated

in the same way as in logistic regression. The size of the synthetic dataset is (5× 104, 50).

For the real-world datasets, we use the same datasets as in the convex case.

For the differential privacy parameters, we choose ε from {0.1, 0.5, 2, 5}, and a fixed

δ = 10−4. For the optimization algorithms, the initial vector is selected randomly. Also,

since the step size does not affect differential privacy, we use the the same way as in

http://cvxr.com/tfocs/ to choose the step size, where the initial step size is 0.1. All the

experiments are performed on MATLAB.

Experiments Results

Figure 4.1, 4.2 and 4.3 are the results on synthetic, Covertype, and IJCNN datasets, re-

spectively, with varying parameters. Figure 4.4 shows the results of different differentially

private composition methods on different datasets.

Results in (a) of Figures 4.1, 4.2 and 4.3 show the effect of the iteration number T on the

norm of gradient. From these figures, we can see that although different T values can cause

the magnitude of the added noise change in each iteration, it has less effect on the norm of

projected gradient than ε. This is due to the fact that all the upper bounds in our theoretical

analysis are independent of T , which makes the norm of projected gradient stable after some
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(a) Norm of projected gradient w.r.t iterations
with fixed ε = 1, n = 5× 104, p = 50.

(b) Norm of projected gradient w.r.t sample
size with fixed ε = 1, p = 50.

(c) Norm of projected gradient w.r.t privacy
parameter ε with fixed n = 5× 104 and p =
50.

(d) Norm of projected gradient w.r.t dimen-
sionality with fixed n = 5× 104 and ε = 1.

Figure 4.1: Experimental results on synthetic datasets for nonconvex case.

iterations.

Results in (b) of Figures 4.1, 4.2 and 4.3 depict the effect of sample size n. From these

figures, we can observe that the norm of gradient is reverse proportional to the sample size,

which is consistent with our theoretical analysis.

The effect of the privacy parameter ε is plotted in (c) of Figures 4.1, 4.2 and 4.3. These

figures show that a larger ε, which means less privacy, leads to a smaller error, ı.e. the norm

of projected gradient is smaller. This is consistent with our theoretical analysis.

The effect of dimensionality is depicted in (d) of Figures 4.1, 4.2 and 4.3. These figures

indicate that there is a positive correlation between the dimensionality and the norm of

gradient, i.e. the higher the dimensionality, the larger the norm of gradient.

Figure 4.4 shows the comparisons of our method with some existing ones. The figure

suggests that on all the datasets our method has less error compared to the advanced
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(a) Norm of projected gradient w.r.t iterations
with fixed ε = 1.

(b) Norm of projected gradient w.r.t sample
size with fixed ε = 1.

(c) Norm of projected gradient w.r.t privacy
level.

(d) Norm of projected gradient w.r.t dimen-
sionality with fixed ε = 1.

Figure 4.2: Experimental results on Covertype dataset for nonconvex case.

composition theorem and moment accountant methods. This confirms our previous analysis.

4.1.6 Omitted Proofs

Proof of Theorem 4.1.1

In order to proof Theorem 4.1.1, we have the following lemma.

Lemma 4.1.2. Let x+ = arg minu∈C{〈∇F (x) + ε, u〉 + 1
2γ
‖u − x‖2

2 + r(u)}. Then the

following is true.

〈∇F (x), x− x+〉 ≥ 1

γ
‖x+ − x‖2

2 + r(x+)− r(x) + 〈ε, x+ − x〉.

Since Lemma 4.1.2 is a special case of Lemma 4.1.5 (i.e., w = 1
2
‖x‖2

2), we will only

prove Lemma 4.1.5.
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(a) Norm of projected gradient w.r.t iterations
with fixed ε = 1.

(b) Norm of projected gradient w.r.t sample
size with fixed ε = 1.

(c) Norm of projected gradient w.r.t privacy
level.

(d) Relative error w.r.t dimensionality with
fixed ε = 1.

Figure 4.3: Experimental results on IJCNN dataset for nonconvex case.

By the L-smooth property of F (x) and gC,k = 1
γk

(xk − xk+1), we have

F (xk+1) ≤ F (xk)− γk〈∇F (xk), gC,k〉+
Lγ2

k

2
‖gC,k‖2

2.

In Lemma 4.1.2, taking x+ = xk+1, x = xk, γ = γk and x− x+ = γkgC,k, we have

F r(xk+1) ≤ F r(xk)− (γk −
L

2
γ2
k)‖gC,k‖2

2 − γk〈εk, gC,k〉

≤ F r(xk)− (γk −
L

2
γ2
k −

L

2
γ2
k)‖gC,k‖2

2 +
‖εk‖2

2

2L
,

where the last inequality comes from Cauchy Inequality. Summing this over k = 1 · · ·T
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(a) Norm of projected gradient w.r.t different
methods on synthetic dataset with fixed ε = 1,
n = 5× 104 and p = 50.

(b) Norm of projected gradient w.r.t different
methods on Covertype dataset with fixed ε =
1.

(c) Norm of projected gradient w.r.t different
methods on IJCNN dataset with fixed ε = 1.

Figure 4.4: Experimental results on the norm of projected gradient w.r.t different methods.
The left one is for synthetic dataset, the middle one is for Covertype dataset, and the right
one is for IJCNN dataset.

and taking the expectation with {ε}Tk=1, we have

T∑
k=1

(γk − Lγ2
k)E‖gC,k‖2

2 ≤ F r(x1)− F r(x∗) +
Tpσ2

2L
.

By the definition of gC,R, we have

E‖gC,R‖2
2 =

1

T

T∑
k=1

E‖gC,k‖2
2.

Taking {γk}Tk=1 = 1
2L

and σ2 as in Theorem 8, we obtain

E‖gC,R‖2
2 ≤

4L(F r(x1)− F r(x∗))

T
+O(

pG2T ln(1
δ
)

n2ε2
).
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Setting T = O( nε
√
L

G
√
p ln( 1

δ
)
), and since EZ ≤

√
EZ2, we get the result.

Proof of Theorem 4.1.3

The proof is based on the following theorem in [218]:

Lemma 4.1.3 (Theorem 1 in [218]). Under Assumption 2 and 3, there exists a universal

constant C0, such that if letting C = C0 max{ch, log(rτ/δ), 1}, the following holds: The

sample gradient converges uniformly to the population gradient in Euclidean norm, namely,

if n ≥ Cp log p, we have with probability at least 1− δ,

sup
θ∈Bp(r)

‖∇Fn(θ)−∇F̂ (θ)‖2 ≤ τ

√
Cp log n

n
,

where Fn(θ) = 1
n

∑n
i=1 f(θ, xi), F̂ (θ) = Ex∼P [f(θ, x)].

Actually, we can extend the theorem from the restriction θ ∈ Bp(r) to any ball with radius

r, that is θ ∈ Bp(x0, r). From Theorem 4.1.1, we have EA‖∇F (xR, D)‖2 ≤ O
( 4
√
p ln( 1

δ
)

√
nε

)
.

By Lemma 4.1.3, we know that for each xR, we have ‖∇F (xR, D) − ∇F̂ (xR)‖2 ≤

τ
√

Cp logn
n

. Thus, EA‖∇F (xR, D) − ∇F̂ (xR)‖2 ≤ τ
√

Cp logn
n

. Consequently, we have

EA‖∇Ex∼P [f(xR, x)]‖2 ≤ O
( 4
√
p ln( 1

δ
)

√
nε

+ τ
√

Cp logn
n

)
.

Proof of Theorem 4.1.4

We first need the following lemma:

Lemma 4.1.4. For any vector v, we have ||v||2 ≤ ||C||2||v||C , where ||C||2 is the `2-diameter

and ||C||2 = supx,y∈C ||x− y||2.

Lemma 4.1.4 implies that any smooth convex function F (θ), which is L-smooth with

respect to `2 norm, is L||C||22-smooth with respect to || · ||C norm, which is the motivation of

our algorithm.
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Proof. If v = 0, this is trivially true. Otherwise, we will show that ||v||2||C||2 ≤ ||v||C . This is

equivalent to show that v /∈ ||v||2
||C||2C. Taking any y ∈ C, since || ||v||2||C||2y||2 = ||v||2

||C||2 ||y||2, we

know that ||y||2 < ||C||2. Thus, || ||v||2||C||2y||2 < ||v||2. We get v /∈ ||v||2||C||2C.

Let L̃ denote L‖C‖2
2, and D denote the diameter of C w.r.t. ‖ · ‖ norm. By the L-smooth

property and Lemma 4.1.4, we have

F (xt+1) ≤ F (xt) + γt〈∇F (xt), vt − xt〉+
L̃γ2

t

2
‖vt − xt‖2. (4.9)

Let v̂t = arg maxv∈C〈v,−∇F (xt)〉. By the optimality of vt, we have

〈vt,−∇F (xt)− εt〉 ≥ 〈v̂t,−∇F (xt)− εt〉,

This implies

〈vt − v̂t,∇F (xt)〉 ≤ 〈vt − v̂t,−εt〉. (4.10)

From (4.9), we get

F (xt+1) ≤ F (xt) + γt〈∇F (xt), vt − v̂t〉+ γt〈∇F (xt), v̂t − xt〉+
γ2
t L̃

2
‖vt − xt‖2.

Plugging (4.10) into (4.9) and by the fact that 〈∇F (xt), v̂t − xt〉 = −Gt (from the definition

of v̂t), we obtain

γtGt ≤ F (xt)− F (xt+1) + γt〈vt − v̂t,−εt〉+
L̃γ2

t

2
D2

≤ F (xt)− F (xt+1) +
γ2
t L̃‖vt − v̂t‖2

2
+
‖εt‖2

∗

2L̃
+
L̃γ2

t

2
D2

≤ F (xt)− F (xt+1) +
‖εt‖2

∗

2L̃
+ L̃γ2

tD
2,

where the second inequality is due to Cauchy Inequality. By the definition of GR, we have

E[GR] = 1
T

∑T
t=1 E[Gt]. Since {γt}Tt=1 = γ, summing the above over t = 1 · · · , T and
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taking the expectation, also from Lemma 4.1.1, we have

EGR ≤
F (x1)− F (x∗)

γT
+ L̃γD2 +

1

γ
O((‖C‖2

2 +G2
C)
G2T ln(1

δ
)

n2ε2
).

Taking γ = O(
4
√
G2(‖C‖22+G2

C) ln 1
δ√

L̃D
√
nε

) and T = O( nε√
(‖C‖22+G2

C)G2 ln 1
δ

), by definition of ‖ · ‖, and

D ≤ O(1), we obtain the result.

Proof of Theorem 4.1.5

We first proof the following lemma:

Lemma 4.1.5. Let w be a distance generating function with modulus α w.r.t. ‖ · ‖ norm,

and x+ = arg minu∈C{〈∇F (x) + ε, u〉+ 1
γ
V (u, x) + h(u)}. Then the following is true

〈∇F (x), x− x+〉 ≥ α

γ
‖x+ − x‖2 + r(x+)− r(x) + 〈ε, x+ − x〉.

Proof. By the optimality of x+, we know that there exits a p ∈ ∂r(x+) such that

〈∇F (x) + ε+
1

γ
[∇w(x+)−∇w(x)] + p, u− x+〉 ≥ 0, ∀x ∈ C. (4.11)

Letting u = x in above inequality, we have

〈∇F (x), x− x+〉 ≥ 1

γ
〈∇w(x+)−∇w(x), x+ − x〉+ 〈p+ ε, x+ − x〉.

By the strongly convexity of w and 〈p, x+ − x〉 ≥ r(x+)− r(x), we get the proof.

Since F (θ) is L-smooth w.r.t `2 norm, we know that it is L‖C‖2
2-smooth w.r.t ‖ · ‖ norm.

Let L̃ = L‖C‖2
2. We have

F (xk+1) ≤ F (xk)− γk〈∇F (xk), gC,k〉+
L̃γ2

k

2
‖gC,k‖2.
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In Lemma 4.1.5, taking x+ = xk+1, x = xk, γ = γk, x− x+ = γkgC,k, we have

F r(xk+1) ≤ F r(xk)− (γk −
L̃

2
γ2
k)‖gC,k‖2 − γk〈εk, gC,k〉

≤ F r(xk)− (γk −
L̃

2
γ2
k −

L̃

2
γ2
k)‖gC,k‖2 +

‖εk‖2
∗

2L̃
,

where the last inequality follows from Cauchy Inequality. Summing this over k = 1 · · ·T

and taking the expectation with {ε}Tk=1 and by Lemma 4.1.1 , we have

T∑
k=1

(γk − L̃γ2
k)E‖gC,k‖2 ≤ F r(x1)− F r(x∗) +

TO(‖C‖2
2 +G2

C)σ
2

2L̃
.

By the definition of R, we have E‖gC,R‖2 = 1
T

∑T
k=1 E‖gC,k‖2. Taking {γk}Tk=1 = 1

2L̃
and

σ2, we get

E‖gC,R‖2 ≤ 4L̃(F r(x1)− F r(x∗))

T
+O

((‖C‖2
2 +G2

C)G
2T ln(1

δ
)

n2ε2
)
.

Setting T = O( nε
√
L̃

G
√

(‖C‖22+G2
C) ln( 1

δ
)
), we have E‖gC,R‖2 ≤ O(

G
√
L̃
√

(‖C‖22+G2
C) ln( 1

δ
)

nε
). Also by

Lemma 4.1.4, we have the result.

Proof of Theorem 4.1.6

By exponential mechanism and advanced composition theorem, we can see that it is (ε, δ)-

differentially private. By the G-Lipschitz (w.r.t `1-norm) property of the loss function, we

know that ∆u ≤ O(‖C‖1G
nε

). Let β = O(
G‖C‖1

√
8T ln( 1

δ
) ln(

|A|T
η

)

nε
). By the utility bound of

exponential mechanism, we know that in each iteration, with probability 1− η
T

, the following

holds

〈θ̃t,∇F (θt)〉 ≤ min
v∈A
〈v,∇F (θt)〉+ β. (4.12)
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Let st = arg minu∈A〈u,∇F (xt)〉. By the L-smooth property and (4.12), we have

L

2
‖xt+1 − xt‖2

2 ≥ F (xt+1)− F (xt)− 〈F (xt), xt+1 − xt〉

= F (xt+1)− F (xt)− γt〈∇F (xt), x̃t − xt〉

≥ F (xt+1)− F (xt)− γt(〈∇F (xt), st − xt〉+ β).

Note that minu∈C〈u−xt,∇F (xt)〉 = minu∈A〈u−xt,∇F (xt)〉 = 〈st−xt,∇F (xt)〉 = −Gt.

Thus, we have

F (xt+1)− F (xt) + γtGt ≤ γtβ +
Lγ2

t

2
‖C‖2

2. (4.13)

Summing over t = 1, · · · , T , we get with probability 1− η,

(
T∑
t=1

γt)GR ≤ F (x1)− F (x∗) + (
T∑
t=1

γt)β + (
T∑
t=1

γ2
t )‖C‖2

2.

Taking {γt}Tt=1 = γ, we have

GR ≤
F (x1)− F (x∗)

γT
+
γ‖C‖2

2L

2
+O(

G‖C‖1

√
T ln(1

δ
) ln( |A|T

η
)

nε
).

Taking T = O( nε‖C‖2
‖C‖1G

√
ln( 1

δ
) ln(|A|n)

) and γ =
√

2
T‖C‖22L

, by the relation ‖C‖2 ≤ ‖C‖1 we get

the result.

4.2 Global Minimum View

In the previous section, we study the approach of using first order stationary measurement

to measure the error of private estimation. Despite some obvious advantages with such an

approach, it also endows a few limitations: 1) although [356, 328, 309] showed that the

gradient norm tends to 0 as n goes to infinity, there is no guarantee that such an estimator

will be close to any non-degenerate local minimum [5]; 2) the gradient-norm estimator is
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not always consistent with the excess empirical (population) risk of the loss function, i.e.,

L̂(wpriv)− L̂(w∗), where w∗ is the optimal solution [29, 67]. Thus, it is difficult to compare

the obtained solution with either the global or local minima. This propels us to the following

interesting question.

Can the excess empirical (population) risk be used to measure the error of non-

convex loss functions under differential privacy?

In the section, we consider the `2-norm regularized DP-ERM with non-convex loss

functions and propose an (ε, δ)-DP algorithm, named DP-GLD (Algorithm 4.2.20), and

prove that its excess empirical (or population) risk is upper bounded by Õ(d log(1/δ)
lognε2

) when

log n ≥ O(d), where n is the data size and d is the dimensionality of the space. Our

techinique is based on some recent developments in Bayesian learning and (stochastic)

Gradient Langevin Dynamics [243, 70, 348, 284]. Interestingly, we show that the 1
logn

term

in the empirical risk bound can be further improved to 1
nΩ(1) by a highly non-trivial analysis

on the time-average error of a dynamic system.

Next, we consider upper bounding the excess population risk. Instead of determining the

optimal bound, we show how to improve the bounds for some specific problems. Particularly,

we focus on the generalized linear model with non-convex loss functions and the robust

regressions problem with additional assumptions, and present an (ε, δ)-DP algorithm for

them with population risk O(
4√
d√
nε

).

Related Work: Previous works on the DP version of SGLD have focused on Bayesian

learning, such as [335, 195], which differ from our work considerably. Firstly, our work

mainly focuses on achieving (ε, δ)-DP for ERM with non-convex loss functions, and on

measuring the error of a private estimator with respect to the global or local minima.

Secondly, existing works assume that the temperature-parameter β in the gradient Langevin

dynamics is one or some constant, while β in our problem is not even a constant, making

the analysis significantly more challenging in our work than in previous ones (see Remark
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4.2.2 for more details).

4.2.1 Preliminaries

Problem Setting Given a dataset D = {z1 = (x1, y1), z2 = (x2, y2) · · · , zn = (xn, yn)}

from a data universe Z and a closed convex set C ⊆ Rd, where {xi}ni=1 are feature vertors

and {yi}ni=1 are labels or responses. DP-ERM is to find wpriv ∈ C by minimizing the

empirical risk defined as L̂r(w,D) , L̂(w,D) + r(w) , 1
n

∑n
i=1 `(w, zi) + r(w), with the

guarantee of being differentially private (defined below). Here ` is the loss function; and r(·)

is some simple (non)-smooth convex regularizer. The utility of an algorithm is measured by

the expected excess empirical risk (which we call empirical risk), i.e.,

ErrrD(wpriv) = E[L̂r(wpriv, D)]−min
w∈C

L̂r(w,D),

where the expectation is taking over the randomness of the algorithm. When the data are

drawn i.i.d. from an unknown underlying distribution P on Z , we also seek to minimize

the population risk, defined as LrP(w) = Ez∈P [`(w, z)] + r(w). The expected excess

population risk (which we call population risk) becomes 2

ErrrP(wpriv) = E[LrP(wpriv)]−min
w∈C

LrP(w).

Markov semigroups and Infinitestimal Generator

In order to be self-contained, in this section we introduce the background and some pre-

liminaries of Markov diffusion process. We refer the reader to [243, 18, 70] for more

details.

Definition 4.2.1. For two Borel measures µ, ν on Rd with finite second moments, the 2-

Wasserstein distance, W2(µ, ν), is defined as: W2(µ, ν) := inf{(E‖V − W‖2
2)

1
2 : µ =

2If there is no regularizer, we will simply denote as ErrP .
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L(V ), ν = L(W )}, where the infinitum is taken over all the random couples (V,W ) whose

values are taken in Rd×Rd with marginals V ∼ µ and W ∼ ν. L(V ) means the probability

law of the random vector V .

Let {Wt}t≥0 be a continuous-time homogeneous Markov process with values in Rd, and

P = {Pt}t≥0 be the corresponding Markov semigroup. That is

Psg(Wt) = E[g(Ws+t)|Wt]

for all s, t ≥ 0 and all bounded measurable functions g : Rd 7→ R. A Borel probability

measure π is called stationary or invariant if
∫
Rd Ptgdπ =

∫
Rd gdπ for all g and t. Each of

Pt can be extended to a bounded linear operator on L2(π), such that Ptg ≥ 0 whenever

g ≥ 0 and Pt1 = 1 for all t. The infinitestimal generator of the semigroup is a linear

operator L defined on a dense subspace D(L) of L2(π) such that for any g ∈ D(L), we

have ∂tPtg = LPtg. Also, L can be defined as

Lg(Wt) := lim
h→0

Phg(Wt)− g(Wt)

h
.

The inifinitestimal generator L defines the Dirichlet form

E(g) := −
∫
Rd
gLgdπ.

Let P be a Markov semigroup with the unique invariant distribution π and the Dirichlet

form E . We say that π satisfies a Poincaré inequality with constant c if for all probability

measures µ� π, we have

χ2(µ||π) ≤ cE(

√
dµ

dπ
),

where χ2(µ||π) := ‖dµ
dπ
− 1‖2

L2(π) is the χ2 divergence, and 1
c
≤ λ with λ being the spectral
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gap

λ := inf{ Eg∫
Rd g

2dπ
: g ∈ C2, g 6= 0,

∫
Rd
g = 0}.

We say that π satisfies a Logarithmic Sobolev inequality with constant c if, for all µ� π,

D(µ||π) ≤ 2cE(

√
dµ

dπ
),

where D(µ||π) =
∫
dµ log dµ

dπ
is the KL-divergence.

Consider a Markov process {Wt}t≥0 with a unique invariant distribution π and the

Dirichlet form E such that π satisfies a Logarithmic Sobolev inequality with constant c.

Then, we have the following [18]:

1. Let µt := L(Wt), then we have D(µt||π) ≤ D(µ0||π)e−
2t
c .

2. If Eg = α
∫
‖∇g‖2dπ for some α > 0, then, for any µ� π,W2(µ, π) ≤

√
2cαD(µ||π).

Given a data set D ∈ Zn with Langevin Monte Carlo Dynamic:

dWt = −∇F (Wt, D)dt+
√

2dBt. (4.14)

If ∇F (·, D) is Lipschitz, then the Gibbs measure πD(dw) ∝ e−βF (w;D) is the unique

invariant measure of the underlying Markov semigroup. Its infinitestimal generator is

Lg(Wt) = (−∇F (Wt;D) · ∇+ ∆2)g(Wt).

The corresponding Dirichlet from is

Eg =

∫
Rd
‖∇g‖2dπ.

Under some assumptions about the loss function, [243] shows that the Gibbs measure satisfy

logarithmic Sobolev inequality.
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Lemma 4.2.1. [Proposition 3.2 and Appendix B in [243]] For some β ≥ O(1), all of the

Gibbs measures π satisfy a logarithmic Sobolev inequality with constant

cLS ≤ O(
1

λ∗
(d+ β)),

where λ∗ is the uniform spectral gap

λ∗ := inf
D∈Zn

inf{
∫
Rd ‖∇g‖

2dπD∫
Rd g

2dπD
: g ∈ C1(Rd) ∩ L2(πD), g 6= 0,

∫
R
gdπD = 0}.

which satisfies:
1

λ∗
≤ O(

d+ β

β
exp(O(β + d))).

Moreover, exponential dependence of 1
λ

on β is unavoidable in the presence of multiple

local minima and saddle points.

The following shows a connection between time average of the diffusion and the corre-

sponding Poisson equation.

The Poisson equation is an elliptic PDE on the basis of the infinitestimal generator

associated with the Langevin dynamics. For the generator L corresponding to the underlying

Markov semigroup, we define the Poisson equation as

Lψ = φ− φ̄,

where φ is the test function, and φ̄ :=
∫
φ(x)π(dx).

4.2.2 Excess Risk of DP-ERM with Non-convex Loss Functions

We make the following assumptions in this section unless specified otherwise.

Assumption 4.2.1. 1. The hypothesis space C = Rd, regularizer is `2 norm, e.g., r(·) =

λ
2
‖ · ‖2 for some λ > 0.
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2. For any z ∈ Z , `(·, z) is L-Lipschitz, and `(0, z) ≤ A.

3. For each z ∈ Z , `(·, z) is twice differentiable and is M -smooth.

These assumptions are quite standard in the DP-ERM literature with convex loss func-

tions [67, 66]. For some non-convex loss functions such as the sigmoid function, it is easy

to see that these assumptions are satisfied. For convenience, we assume that A, λ, L,M are

all constants, which will be omitted in the big O notation. Also the big Õ terms omit the log

terms.

We first review Gradient Langevin Dynamics (GLD), a popular generalization of the

gradient descent algorithm. For ERM, the GLD algorithm executes the following recursion

for w at iteration k:

wk = wk−1 − ηk−1∇L̂r(wk−1, D) +

√
2ηk−1

β
ξk−1, (4.15)

where ξk−1 is a standard d-dimensional Gaussian random vector, ηk−1 is the step size and

β > 0 is the inverse temperature parameter. Actually, GLD can be viewed as a discrete-

time approximation of a continuous-time Langevin diffusion, described by the following

stochastic differential equation (SDE):

dWt = −∇L̂r(Wt, D)dt+
√

2β−1dBt, (4.16)

where (Bt)t≥0 is a standard Brownian motion. It has been shown that the distribution of

diffusion process in (4.16) converges to its stationary distribution, i.e. the Gibbs measure

π(dw) ∝ exp(−βL̂r(w,D)) [75]. Moreover, when β →∞, the distribution concentrates

around the minimizer of L̂r(w,D). By choosing the step size η properly, GLD can maintain

differential privacy, as described in Algorithm 4.2.20.

It can be shown that Algorithm 4.2.20 ensures DP under certain conditions, as stated in

Theorem 4.2.1.
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Algorithm 4.2.20 DP-GLD
Input: T is the iteration number. ε, δ are privacy parameters.

1: Choose an arbitrary point w0 from distribution density p0(w) or fix the initial point w0.
2: Denote η = cn2ε2

L2βT log(1/δ)
, where c = 1

c22
is from Lemma 2.1.7.

3: for k = 1, 2, · · · , T do
4: wk = wk−1 − η∇L̂(wk−1, D) +

√
2η
β
ξk−1, where ξk−1 ∼ N (0, Id)

5: end for
6:
7: Return wT or randomly sample j ∈ [T ] and return wj .

Theorem 4.2.1. There exist constant numbers c1 and c2, such that for any 0 < ε < c1T and

0 < δ < 1, Algorithm 4.2.20 is (ε, δ)-differentially private.

Our idea for proving an upper bound of the excess risk of ERM is based on the analysis

of the convergence rate of GLD as in [83, 84, 243]. Let µk be the probability law of wk

in (4.15), and νkη the law of Wkη in (4.16). Our main step is to analyze the 2-Wasserstein

distanceW2(µk, π), which can be decomposed intoW2(µk, νkη) andW2(νkη, π). The key

observation of our analysis is that in DP-GLD with k = T , ηT is a fixed number according

to Algorithm 4.2.20, i.e., ηT = Θ( n2ε2

β log(1/δ)L2 ). This means that the term W2(νTη, π) is

always fixed, no matter how large T is. For theW2(µT , νTη) term, since wT is a discretized

version of WTη, when η approaches 0,W2(µT , νTη) will also approach 0. Thus, it appears

that the best of what we can do for bounding W2(µT , π) in DP-GLD is to bound it by

W2(µT , νTη), i.e.,

lim
T→∞

W2(µT , π) ≤ W2(νTη, π) .

The above distance can be bounded as shown in a recent work by using Logarithmic Sobolev

inequality [243]. For our problem, Theorem 4.2.2 extends the results by adapting recent

non-asymptotic GLD theory [243, 348] and giving an upper bound of the excess risk for

some initial points.

Theorem 4.2.2. Under the conditions of Theorem 4.2.1, if take T ≥ Θ( (M+λ)2n2ε2

λβ log(1/δ)L2 ) and

β ≥ max{ 4
λ
, d} in Algorithm 4.2.20, and assume that the probability law, µ0, of the initial
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hypothesis w0 has a bounded and strictly positive density function w.r.t. Lebesgue measure

on Rd, and k0 = log
∫
Rd e

‖w‖2p0(w)dw <∞, then the population risk at wT is bounded by

ErrrP(wT ) ≤ O
( n

5
2 ε

5
2

β
3
4T

1
4 log (1/δ)

+ exp(O(β)) exp[− n2ε2

β log(1/δ) exp(O(β))
]

+
exp(O(β))

n
+
d log(β)

β

)
. (4.17)

The above bound implies that limT→∞ ErrrP(wT ) ≤ O
(

exp(O(β)) log(1/δ)
n2ε2

+ exp(O(β))
n

+ d log(β)
β

)
by the constraint on T .

For the empirical risk, we have

ErrrD(wT ) ≤ O
(

exp(O(β)) exp[− n2ε2

β log(1/δ) exp(O(β))
] +

n
5
2 ε

5
2

β
3
4T

1
4 log (1/δ)

+
d log(β)

β

)
.

(4.18)

Remark 4.2.1. We can see from Theorem 4.2.2 that the excess risk is only meaningful when

β ≥ O(d). If set β = O(log n), or equivalently log n ≥ O(d), both the excess population

and empirical risks are bounded by Õ( log(1/δ)
nε2

+ d
log(n)

) = Õ( log(1/δ)d
log(n)ε2

) when T →∞. These

bounds are larger than the ones for convex loss functions, which are O(

√
d log(1/δ)

nε
) and

O(d log(1/δ)
n2ε2

) for population and empirical risks, respectively [29].

Next, we improve the bounds in Theorem 4.2.2 by using a finer analysis of the time-

average error for the SDE (4.16). We show that Algorithm 4.2.20 achieves a lower error

bound in term of n, i.e., O( 1
nΩ(1) ) instead of O( 1

logn
) for the empirical risk when fixing the

initial point for w.

Theorem 4.2.3. With the same assumption as in Theorem 4.2.2 and a fixed initial point for

w, if we return wj in Algorithm 4.2.20 instead of wT , where j is uniformly sampled from

{1, · · · , T}, then the empirical risk is bounded, for sufficiently large T , by:

ErrrD(wj) ≤ O
(
C[
β2 log(1/δ)

n2ε2
+

n2ε2

Tβ2 log(1/δ)
] +

d

β
log(β)

)
, (4.19)
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where C = C(d, β) is a function of d, β. Moreover, the bound is polynomially depending on

β (assuming that d is a constant) with degree independent of d. In other words, if β satisfies

Θ(C β2 log(1/δ)
n2ε2

) = Θ( d
β

log(β)) in (4.19), then there exists a constant 0 < τ < 1, such that

lim
T→∞

ErrrD(wT ) ≤ Õ
(C0(d) log(1/δ)

nτ ετ
)
, (4.20)

where C0(d) is a function of d.

Remark 4.2.2. Theorem 4.2.3 is a significant improvement over Theorem 4.2.2, which

is derived based on a novel and non-trivial analysis on the time-average error of SDEs.

Specifically, three points are worth emphasizing: 1) Although the time-average-error analysis

of an SDE has been studied, for example in [291, 70], the non-asymptotic bounds in those

results cannot be applied directly to our problem. This is because β in those results is

assumed to be a constant. However, in our problem β is not even a constant, as it can

be seen from (4.17) and (4.18). Furthermore, those results are based on the boundedness

assumption on the solution of a Poisson equation (e.g., Assumption 1 in [70] and Theorem 9

in [291]), which is too strong for our problem. Note that if β were a parameter, the hidden

constant C in the bounds of [291, 70] would depend on β. Fortunately, through a rather

non-trivial analysis, we are able to show that the constant is at most polynomially depending

on β. Even though the exact degree of the polynomial is unknown, it is independent of

d. 2) Our result is significant in the sense that it provides new bounds for diffusion-based

Bayesian sampling such as [291, 70], where the dependency on d in their error bounds

can be quantified, a key missing piece in previous results. 3) We reveal in Theorem 4.2.3

that if a random wj , instead of the final wT , is returned, one can improve the term related

to n in the empirical risk bound from 1/ log n to n−τ . It can be seen from (4.19) that the

relationships between β, d, and the constant C play an important role in proving the bound

of the empirical risk. Since we are mainly targeting at the rate in terms of n, it suffices to

consider only the relationship between β and C. We leave as an open problem to determine
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whether it is possible to obtain an even tighter or explicit bound for the empirical risk. The

ideal scenario is that C is independent of β. In this case, a better and more accurate bound

of Õ(C1(d)/(nε)
2
3 ) can be obtained, where C1(d) is a function of d.

From Theorem 4.2.2 and 4.2.3, we can see that the error bound for the excess population

risk in terms of n is 1
logn

(see Remark 4.2.1), while for the empirical risk it is 1
nτ

, where

ideally τ ≤ 2
3

(see Remark 4.2.2). A natural question is thus to determine whether these

bounds are tight. In the following, we first show that for loss functions satisfying Assumption

1, there is an ε-DP algorithm whose error bound of the empirical risk is Õ( d
nε

) (and whose

time complexity is exponential).

Theorem 4.2.4. For any β < 1, there is an ε-differentially private algorithm, whose output

wpriv satisfies, with probability at least 1− β , L̂r(wpriv, D)− L̂r(w∗, D) ≤ Õ( d
nε

). The time

complexity is O((1 + 2Lnε
λd

)dn).

Note that since Θ( d
nε

) is the optimal bound for general convex functions [29], our

empirical-risk bound of Õ( d
nε

) is thus near optimal.

In general, we can use an α-net and the exponential mechanism to obtain a private

estimator, which has an upper bound of Õ(max{ d
nε
, α}) for the empirical risk with a time

complexity of O((1 + 2L
λα

)dn). Now consider the case that d is a constant. We can see that

for the exponential mechanism, the bound in (4.20) can be obtained if we take 1
α

= O(nτ ).

However, in this case, the running time of exponential mechanism is O(nτd+1) compared to

Õ(Poly(n, d)) with Algorithm 4.2.20. Alternatively, the running time for achieving error γ

in Algorithm 4.2.20 is polynomial in 1
γ

, while it is O(( 1
γ
))d with an exponential mechanism

(for sufficient large n). This means that Algorithm 4.2.20 is much more efficient when d is

large.

Next, we consider upper bounding the excess population risk. Instead of determining the

optimal bound, we show how to improve the bounds for some specific problems. Particularly,

we focus on the generalized linear model with non-convex loss functions and the robust
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regressions problem with additional assumptions, and present an (ε, δ)-DP algorithm for

them with population risk O(
4√
d√
nε

). Note that these problems have been extensively studied

in literature related to non-convex learning theory, such as [218, 115, 202, 207]. Here, we

adopt the same assumptions as in [115].

Generalized Linear Model We consider the problem of learning a generalized linear

model (GLM) with squared loss. We assume that X = {x ∈ Rd|‖x‖2 ≤ 1}, C = {w ∈

Rd|‖w‖2 ≤ 1} and Y = {0, 1}, Z = X × Y . With a link function σ, GLM endows a loss

function: `(w, (x, y)) = (σ(〈w, x〉)− y)2. We further make the following assumptions on

the link function, which includes the sigmoid and probit functions 3.

Assumption 4.2.2. Let S = [−1, 1], we assume that

1. ∃ constant Cσ ≥ 1 s.t. max{σ′(s).σ′′(s)} ≤ Cσ, for ∀s ∈ S.

2. ∃ constant cσ > 0 s.t. σ′(s) ≥ cσ, for ∀s ∈ S.

3. There exists some ‖w∗‖2 ≤ 1 such that E[y|x] = σ(〈w∗, x〉).

4. |σ(s)| ≤ B for some constant B > 0, for ∀s ∈ S.

Robust Regression Let Z and C be the same as in GLM, and Y = [−Y, Y ] for some

constant Y . For a non-convex positive loss function ψ, the loss of robust regression is

defined as `(w, (x, y)) = ψ(〈x,w〉 − y). We make the following assumptions on ψ, which

includes the biweight loss function 4 [202].

Assumption 4.2.3. Let S = [−(1 + Y ), (1 + Y )].

1. ∃Cψ ≥ 1, s.t. max{ψ′(s), ψ′′(s)} ≤ Cψ, for ∀s ∈ S.

3The probit function is σ(s) = Φ(s), where Φ is the Gaussian cumulative distribution function.

4For a fixed parameter c > 0, the biweight loss is defined as ψ(s) = c2

6 ·

{
1− (1− ( sc )2)3, |t| ≤ c
1, |t| ≥ c.
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2. ψ′(·) is odd with ψ′(s) > 0, for ∀s > 0; and h(s) := Eξ[ψ′(s+ ξ)] satisfies h′(0) >

cψ, where cψ > 0.

3. There is w∗ ∈ C such that y = 〈w∗, x〉 + ξ, where ξ is symmetric noise with a

zero-mean given x.

Algorithm 4.2.21 DP-FW-L2
Input: T is the number of iterations, w1 is the initial point, and {γt}Tt=1 is the step size. ε
and δ are privacy parameters.

1: for t = 1, · · · , T do
2: Compute vt = arg maxv∈C〈v,−(∇L̂(wt, D) + εt)〉, where εt ∼ N(0, σ2Id) for

some σ.
3: wt+1 = wt + γt(vt − wt).
4: end for
5:
6: Return wR ∈ {w1, · · · , wT} such that R is uniformly sampled from {1, · · · , T}.

Algorithm 4.2.21 solves both problems and is motivated by the fact that the population

risk satisfies the inequality, LP(w)− LP(w∗) ≤ µ〈∇LP(w), w − w∗〉, for some constant

µ > 0 and ∀w ∈ C. Thus, it suffices to get an upper bound of 〈∇LP(w), w − w∗〉. It turns

out that this can be obtained via a DP version of the Frank-wolfe method.

Theorem 4.2.5. For the general linear model with Assumption 4.2.2, there exist constants

c1 and c2 > 0 such that for any 0 < ε < c1T and 0 < δ < 1, Algorithm 4.2.21 is (ε, δ)-DP

when σ2 = c2
C2
σ(B+1)2T log 1

δ

n2ε2
. Moreover, if taking γt = O(

4
√
d ln 1

δ√
nε

) for all t ∈ [1, · · · , T ]

with T = O( nε√
d ln 1

δ

), we have ErrP(wR) ≤ O
( 4
√
d ln 1

δ√
nε

)
, where the big-O notations omit

other terms.

For the case of robust regression with Assumption 4.2.3, if we take σ2 = c2
C2
ψT log 1

δ

n2ε2
, the

algorithm is (ε, δ)-DP. Moreover, with the same conditions on T, {γt}Tt=1 as above, it can be

derived that ErrP(wR) ≤ O
( 4
√
d ln 1

δ√
nε

)
, where the big-O notations omit other terms.

Motivated by Algorithm 4.2.21, under the conditions of X = {x ∈ Rd|‖x‖∞ ≤ 1} and

C = {w ∈ Rd|‖w‖1 ≤ 1}, we can actually derive an upper bound of the population risk
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that depends only logarithmically on d (i.e., log d), indicating that it is suitable for high

dimensional applications. Note that the conditions on X and C have been considered in

linear regression [270]. We adopt them to our problem and extend their DP-Frank-Wolfe

algorithm to Algorithm 4.2.22.

Algorithm 4.2.22 DP-FW-L1
Input: T is the iteration number and w1 is the initial point. {γt}Tt=1 is the step size. A is
the set of vertices of C. ε and δ are privacy parameters.

1: for t = 1, · · · , T do
2: Use exponential mechanism M(D, u,R), where R = A, u(D, s) =
−〈s,∇L̂(wt, D)〉, to ensure ( ε√

8T ln( 1
δ

)
, 0)-differential privacy. Denote the output as w̃t.

3: Compute wt+1 = (1− γt)wt + γtw̃t.
4: end for
5:
6: Return wR ∈ {w1, · · · , wT}, where R is uniformly sampled from {1, 2 · · · , T}.

Theorem 4.2.6. Let X = {x ∈ Rd|‖x‖∞ ≤ 1} and C = {w ∈ Rd|‖w‖1 ≤ 1}. For

the GLM and robust regression problems, Algorithm 4.2.22 is (ε, δ)-DP with sensitiv-

ities ∆ = O(Cσ(B+1)
n

) and ∆ = O(
Cψ
n

), respectively. Furthermore, if we set T =

O( nε√
ln( 1

δ
) ln(dn/η)

) and {γt}Tt=1 = O(
√

2
T

), then with probability at least 1 − η, we have

ErrP(wR) ≤ O(
4
√

ln( 1
δ

)
√

ln nd
η√

nε
). Here the big-O notations omit other terms.

4.2.3 Omitted Proofs

Proof of Theorem 4.2.1

Firstly, we can see that if in each iteration

wk = wk−1 + η(∇L̂r(wk−1, D) + ξ1) +

√
η
√
β
ξ2,

where ξ1 ∼ N (0,
L2c22 log(1/δ)T

n2ε2
Id) and ξ2 ∼ N (0, Id), then by moment account (Lemma 2.1.7

), we can see that it is (ε, δ)-differentially private for ε < c1T and 0 < δ < 1. Furthermore, if
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η2L
2c22 log(1/δ)T

n2ε2
= η

β
or η = n2ε2

TL2c22β log(1/δ)
, then it is equivalent to the updating in Algorithm

4.2.20. This completes the proof.

Proof of Theorem 4.2.2

The proof follows the framework of the proof in [243].

Notations For a given dataset D, we denote the corresponding Gibbs measure as πD ∝

e−βL̂
r(w,D). Also, let µT,D = L(wT |D) and νt,D = L(Wt|D).

Firstly, we show that our assumptions about the loss function and w0 meet the assump-

tions in [243]. Actually, our setting implies that f(w, z) = `(w, z) + λ
2
‖w‖2 in [243].

It is easy to see that A = A, B = L, M = M + λ in [243]. Also, when `(·, z) is L-

Lipschitz, we know that f(w, z) = `(w, z) + λ
2
‖w‖2 is (m = λ

2
, b = L2

2λ
)-dissipative (that is,

〈w,∇f(w, z)〉 ≥ λ
2
‖w‖2 − L2

2λ
) , which satisfies assumption A.3 in [243]. For A.4, we can

see that Algorithm 4.2.20 is just the non-stochastic version. Hence, δ = 0. Thus, most of

the analysis in [243] can also be applied here. For self-completeness, we will rephrase them

so that they fit our differentially private context.

Now, we briefly introduce the proof in [243]. Let ŵ∗ be the output of the Gibbs algorithm

under which the conditional distribution of ŵ∗ is equal to πD. Then, we decompose the

population risk into the following

ELrP(wT )−LrP(w∗) = ELrP(wT )−ELrP(ŵ∗)+ELrP(ŵ∗)−EL̂r(ŵ∗, D)+EL̂r(ŵ∗, D)−LrP(w∗).

For the second term, by Proposition 3.5 in [243] we have

ELrP(ŵ∗)− EL̂r(ŵ∗, D) ≤ O(
(β + d)cLS

n
) = O(

exp(O(β + d))

n
) = O

(exp(O(β))

n

)
,

(4.21)

where the big O notation hides the parameters of M, b,B (that is L,M, λ in our setting) by

the assumption of β > d.

For the third term, we have the following theorem:
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Lemma 4.2.2 ([243]). For any β ≥ 2
m

,

EL̂r(ŵ∗, D)− LrP(w∗) ≤ O(
d

β
log(β)),

where the big O notation omits the factor of M,m.

In order to estimate the term of ELrP(wT )−ELrP(ŵ∗)), we have to estimate EL̂rD(wT )−

EL̂rD(ŵ∗)) for each D ∈ Zn. The goal is to get an upper bound for W2(µT,D, πD) ≤

W2(µT , νTη,D) +W2(νTη,D, πD) for all dataset D.

For the termW2(νTη,D, πD), since ν is related to the continuous-time Langevin diffusion

(4.14), and Tη is a fixed value, which is independent of η, we have (see Section 3.4 in

[243]):

W2(νTη,D, πD) ≤ O
(√

(d+ β)cLSe
− Tη
βcLS

)
= O

(
exp(O(β)) exp(− Tη

O(exp(β))
)
)
.

(4.22)

Note that Tη = n2ε2

L2c22β log(1/δ)
.

Our final goal is to estimate W2(µT,D, νTη,D). The proof is the same as in [243].

However, we can see that m
4M2 = λ

8(M+λ)2 ≤ 1. This means that in order to use the result in

[243], we have to ensure that η ≤ O( m
M2 ) = O( λ

(M+λ)2 ). That is, T ≥ C n2ε2(M+λ)2

βL2 log(1/δ)λ
.

We can easily get (see Proposition 3.1 in [243]):

W2
2 (µT,D, νTη,D) ≤ O(β

√
η(Tη)2). (4.23)

Thus, we have

W2(µT,D, πD) ≤ O
( (nε)

5
2

β
3
4 log(1/δ)T

1
4

+
√

(d+ β)cLSe
− Tη
βcLS

)
. (4.24)
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For all D ∈ Zn, we have

∫
L̂r(w,D)µT,D(dw)−

∫
L̂r(w,D)πD(dw) ≤ O

( (nε)
5
2

β
3
4 log(1/δ)T

1
4

+ exp(O(β)) exp(− n2ε2

log(1/δ)O(exp(β))
)
)
, (4.25)

where O is independent of β, T, n, ε, δ.

Combining this with Lemmas 4.2.2, (4.25) and (4.21), we have the proof.

The result of the limit comes from the fact that exp(−x) ≤ 1
x
.

Proof of Theorem 4.2.3

For convenience, we let F (w) denote L̂r(w,D). Then, the updating becomes

wt+1 = wt − η∇F (wt) +

√
2η

β
ζt. (4.26)

By scaling η′ = η
β

and F ′ = βF , we have

wt+1 = wt − η′∇F ′(wt) +
√

2η′ζt. (4.27)

Note that the technique of rescaling is commonly used in other papers, e.g., [83, 348].

The continuous Langevin dynamic corresponding to (4.27) is

dW (t) = −∇F ′(W (t))dt+
√

2dB(t). (4.28)

Lg = −∇g · ∇F ′ + ∆2g (4.29)

Also the invariant distribution is π(dw) ∝ e−F
′(W ), and the Poisson equation is

Lψ = φ− φ̄, (4.30)
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where φ̄ =
∫
φ(w)π(dw) and φ is the testing function.

A seemingly straightforward way to prove the result is to use the theorem on finite time

sample average error of SGLD, such as Theorem 2 in [70] or (55) in [291] to our equation

(4.27). However, both papers consider only the case of β = 1, and their assumptions are

quite strong compared to ours. This means that the hidden constants in their bounds may

depend on β and the dimensionality d. However, as can be seen from above. β cannot be

assumed as a constant in our problem. Thus we cannot directly apply their results.

Next, we will use some of the ideas in the proof of Theorem 9 in [291] to show that

the the constants depend only polynomially on β and the degree of the polynomial is

independent of d. We refer the reader to Section 9 in [291].

For convenience, we assume that the test function φ = F . Now consider the solution ψ

to the Possion equation (4.30) for φ (note that the existence will be shown later for a class φ

of functions). Also, for ψ(wt+1), we use Taylor expansion at wt; that is (note that since we

now only need to estimate the bias, we just expand it to the third order, which is different

from the one in [291]),

ψ(wt+1) = ψ(wt) +∇ψ(wt)(wt+1 − wt) +
1

2
(wt+1 − wt)T∇2ψ(wt)(wt+1 − wt) +Rt

(4.31)

= ψ(wt) +∇ψ(wt)(−η′∇F ′(wt) +
√

2η′ζt)+

1

2
η′2∇F ′(wt)∇′2ψ(wt)∇F ′(wt)−

√
2η′η′∇F ′(wt)ζt + η′ζTt ∇2ψ(wt)ζt +Rt,

(4.32)

whereRt = 1
6

∫ 1

0
s2ψ(3)(swt + (1− s)wt+1)(wt+1−wt, wt+1−wt, wt+1−wt)ds and (4.32)

comes from (4.27).
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Taking the expectation on ψ(wt+1), we have

Eψ(wt+1)− Eψ(wt) = −η′∇ψ(wt)∇F ′(wt)

+ η′∆2ψ(wt) +
1

2
η′2∇F ′(wt)∇′2ψ(wt)∇F ′(wt) + ERt. (4.33)

By (4.29), we have

η′EL(ψ)(wt) = Eψ(wt+1)− Eψ(wt)−
1

2
η′2∇F ′(wt)∇′2ψ(wt)∇F ′(wt)− ERt. (4.34)

Summing over all t for t = 1, · · · , T and dividing η′T on both sides, by Poisson equation

(4.30) we get:

E(

∑T
t=1 φ(wt)

T
− φ̄) =

1

η′T
E[ψ(wT+1)− ψ(w1)]− 1

η′T
E

T∑
t=1

Rt

− 1

2

η′

T

T∑
t=1

∇F ′(wt)∇′2ψ(wt)∇F ′(wt). (4.35)

What we need to prove are the following inequalities.

sup
t

Eψ(wt) ≤ C1, (4.36)

sup
t

ERt ≤ η′2C2 (4.37)

sup
t

E∇F ′(wt)∇′2ψ(wt)∇F ′(wt) ≤ C3, (4.38)

where C1, C2, C3 are independent of η and at most polynomially depending on β with their

degrees independent of d (note that they may depend on d, but we only care about β). If we

can show these, then we have the proof.

To prove these inequalities, we want to show for the testing function φ and its corre-
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sponding ψ the following

‖ψ(i)‖ ≤ C1
i f, ∀i = {0, 1, 2, 3}, (4.39)

where {C1
i } are constants that are at most polynomially depending on β (with degrees

independent of d) and f(x) = 1 + ‖x‖2
2 is the quadratic function.

Also, we want to show for every m ∈ N,

sup
t

E‖wt‖m2 ≤ C2
m <∞, (4.40)

where {C2
m} are constants that also are at most polynomially depending on β (with degrees

independent of d).

It is easy to see that if the above inequalities (i.e., (4.39)(4.40)) can be proven, then for

(4.36) we have supt Eψ(wt) ≤ O(C1
0C

2
2); for (4.37), we have

sup
t

ERt ≤ O
(
C1

3(1 + ‖wt‖2)[η′3‖∇F ′(wt)‖3 + η′2‖∇F ′(wt)‖]
)

≤O(η′2C1
3f [‖β∇F (wt)‖3 + ‖β∇F (wt)‖]). (4.41)

Since F is smooth, we have ‖∇F (w)‖ ≤ M0

2
(1 + ‖w‖) for some M0 independent of β.

Thus, by (4.41), we have supt ERt ≤ O(η′2C), where C is at most polynomially depending

on β. Similarly, we can show for (4.38).

Thus, our goal is now to prove (4.39) and (4.40). For (4.40), we have the following

theorem:

Theorem 4.2.7. For every m, if β > d and sufficiently small η in (4.26)

sup
t

E‖wt‖2m
2 ≤ C2

m <∞, (4.42)

where wt is in (4.26) and C2
m is independent of β.
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Proof of Theorem 4.2.7. For m=1, it has been shown in Lemma 3.2 in [243] that C2
1 =

O( d
β
) = O(1), which satisfies our requirements. Actually, for any m, we can follow the

proof of Lemma 3.2 in [243], to show that there is a sufficiently small η which makes the

Theorem hold.

For example, when m = 2, E‖wt‖4
2 = E‖wt−1 − η∇F (wt−1) +

√
2η/βζt−1‖4 ≤

O(E‖wt−1 − η∇F (wt−1)‖4 + η4), also for E‖wt−1 − η∇F (wt−1)‖4 ≤ E‖wt−1‖4(1 −

Θ(η) + Θ(η2)−Θ(η3) + Θ(η4)) +O(η). The constants in the big-Θ and big-O notations

are independent of β. Thus, if we take a sufficiently small η, which makes (1 − Θ(η) +

Θ(η2)−Θ(η3) + Θ(η4)) < 1, then we can get an upper bound that is independent of β for

β ≥ max{1, d}. The same argument goes for all m ∈ N. Thus we have the proof.

Proof of (4.40) Now by Theorem 4.2.7, we have for every m, supt E‖wt‖m < Cm, where

Cm is at most polynomially depending on (actually is independent of ) β, since by Jensen’s

Inequality we have supt E‖wt‖m2 ≤
√

E‖wt‖2m. This proves (4.40).

Proof of (4.39) For (4.39), the key point is that our testing function is bounded by a

quadratic function, due to the L-smoothness of our assumption. We have the following

theorem due to Theorem 1 and 2 in [241] (corresponding to the case of α = 1 > 0,

b(x) = F ′(x) = βLr(w,D) and r0 =∞ in the Has’minski’s assumption) and Theorem 13

in [291].

Theorem 4.2.8 ( Theorem 1 and 2 in [241]). Consider the Poisson equation in Rd,

Lu(x) = −f(x), (4.43)

where L is the infinitestimal generator of the diffusion process (4.28). We further assume

that
∫
f(x)π(dx) = 0, where π is the invariant measure of the diffusion process. If

‖f(x)‖ ≤ C1 + C2‖x‖s for some s > 0 and some constants C1, C2. Then (4.43) defines

a continuous function u(x) which belongs to the Sobolev class W 2
p,loc for any p > 1, and
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satisfies the following properties,

1. There exists a constant C ′ such that

|u(x)| ≤ C ′(1 + ‖x‖s), (4.44)

where C ′ is determined only by C1, C2 and Cm, and Cm is determined only by the

constants in equations (4)-(6) in [241] for m > s+ 2.

2. Moreover, there is a constant C such that

‖∇u(x)‖ ≤ C(1 + ‖x‖s), (4.45)

where C is determined only by C1, C2 and Cm, and Cm is determined only by the

constants in equations (4)-(6) in [241] for m > s+ 2.

Now by the proofs of Theorem 1 and 2 in [241], we have the following theorem:

Theorem 4.2.9. For our test function φ, if fixing m = 6 in Theorem 4.2.8, then C ′ in (4.44)

is polynomially depending on Cm, C1, C2, and the same for C in (4.45).

Proof. The proof of C ′ depending polynomial on C1, C2, Cm can be easily found in the

proof of Theorem 1 and Theorem 2 in [241]. Since for our test function φ, s = 2 by the

M -smooth property. Thus, we need m > β + 2 and m > 2k + 2 for some k > 0 (See

Proposition 1 in [241]). This means that choosing m = 6 can satisfy the condition in

Theorem 1 of [241].

For C, we follows the proof of Theorem 1 in [241]. In [241], the proof is by (4.44),

Sobolev embedding theorem and Theorem 9.11 and (9.40) in [129]. From the proof of

Theorem 9.11 in [129], we can see that the hidden constant behind is only polynomially

depending on the upper bounds of the coefficients of the second order PDE, which means

only polynomially depending on β in our problem. Also by Sobolev embedding theorem,
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we can see that the polynomial dependence on β will be unchanged. Thus, we have the

proof for C.

Next, we show that C1, C2, Cm are at most polynomially depending on β.

Theorem 4.2.10. For a fixed number m in (4)-(6) in [241] related to the diffusion process

(4.28), C1, C2 and the constants in (4)-(6) in [241] are at most polynomially depending on β

(which is r in assumption Ab in [241]). Thus, Cm is at most polynomially depending on β.

Proof. For C1, C2, since f = φ̄− φ, which corresponds to (4.43) in Theorem 4.2.8, where

φ = L̂r(·, D), hence we have ‖f(x)‖ ≤ ‖L̂r(x,D)‖+ ‖φ̄‖. For the term of L̂r(x,D), since

it is (M + λ)-smooth, thus L̂r(x,D) ≤ M0

2
(1 + ‖x‖2) for some M0 which is independent

of β. For the term φ̄ =
∫
L̂r(w,D)π(dw), by Proposition 3.4 of [243], we know that if

β ≥ 2
m

= 4
λ

, then φ̄ ≤ O( d
β

log(β + d) + minφ), which is at most polynomially depending

on β. Thus, C1, C2 are at most polynomially depending on β with their degrees independent

of the dimensionality d.

Now, let us consider Cm. Actually, by the proof of Theorem 1 in [241], we can see

that Cm only depends polynomially on the constants of (4)-(6) in proposition 1 in [241].

Thus, it suffices to show that constants of (4)-(6) in proposition 1 in [241] depends only

polynomially on β.

To show this, we can see that β λ
2

corresponds to r and α = 1 in [241]. The proof of

proposition 1 in [241] comes from Lemma 1-Lemma 8 in [287]. From the proof in [287], we

know that all the constants of (4)-(6) in proposition 1 in [241] are polynomially depending

on r, i.e. β and their degrees are independent of d.

Thus C1, C2, Cm are all at most polynomially depending on β with their degrees inde-

pendent of d.

To summarize, we have the following theorem:
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Theorem 4.2.11. The constant C and C ′ in (4.44) , (4.45) are at most polynomially depend-

ing on β, moreover, the degree of the polynomial is independent on d.

Upto now, we have showed that ‖ψi‖ ≤ C1
i f for i = {0, 1}, where f is a quadratic

function and C1
i are polynomially depending on β.

What is still left is for i = {2, 3}. To prove this, our idea is to use the trick in [291]

(see A.9-A.11 and Lemma 15 in [291]). That is, we note that the derivatives of ψ can be

expressed as the solution to different Poisson equations. Also, by iterating Theorem 4.2.8,

4.2.9, 4.2.10, 4.2.11, we can get all the constant C1
i depending at most polynomially on β.

Putting all these together, we have showed that

E(

∑T
t=1 φ(wt)

T
− φ̄) ≤ C(

1

η′T
+ η′), (4.46)

where C is at most polynomially depending on β whose degree is independent of d (we

omit other terms and consider only β). Taking η′ = η
β

and η in Algorithm 1, also noting that

EL̂r(wj, D) = E
∑T
i=1 L̂

r(wi,D)

T
and φ = L̂r(·, D), by Proposition 3.4 in [243], we can get the

proof.

Proof of Theorem 4.2.4

Lemma 4.2.3. [104] For the exponential mechanismM(D, u,R), we have

Pr{u(M(D, u,R)) ≤ OPTu(x)− 2∆u

ε
(ln |R|+ t)} ≤ e−t.

where OPTu(x) is the highest score in the rangeR, i.e. maxr∈R u(D, r).

We first show that the optimal value w∗ = arg minw∈Rd L̂
r(w,D) contained in the ball

Bd(L
λ

). This is because under our assumption, L̂r(w,D) is (λ
2
, L

2

2λ
)-dissipative. That is,

∀w ∈ Rd, 〈w,∇L̂r(w,D)〉 ≥ λ
2
‖w‖2 − L2

2λ
. Thus, w∗ = arg minw∈Bd(L

λ
) L̂

r(w,D).

For any α > 0, by a simple volume argument (Lemma 5.2 in [289]) we can see that there
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exits an α-net Nα whose size is at most (1 + 2L
λα

)d. Then, by the property that L̂r(w,D) is

O(L)-Lipschitz, we have the following:

min
w∈Nα

L̂r(w,D)− L̂r(w∗, D) ≤ O(Lα).

Now consider the following ε-DP algorithm. We set the score function u(D,w) = −(L̂r(w,D)−

L̂r(w0, D)), where w0 ∈ Bd(L
λ

) is an arbitrary point; the range space R = Nα. Since

L̂r(w,D) is O(L)-Lipschitz in Bd(L
λ

), the sensitivity is at most O(L
n

). Thus by Lemma

4.2.3 after running exponential mechanism, we have with probability at least 1− β,

L̂r(wpriv, D)− min
w∈Nα

L̂r(w,D) ≤ O(
d ln 1

αβ

nε
).

Thus, form the above and taking α = d
nε

, we have

L̂r(wpriv, D)− L̂r(w∗, D) ≤ Õ(
d

nε
).

Actually, this is the lower bound for ERM under general convex functions with the con-

strained set C = Bd(r) under ε differential privacy, see Theorem 5.2 in [29]. By this, we

can easily get a lower bound for non-convex loss functions under our assumptions. We thus

have the following theorem:

Theorem 4.2.12. Consider DP-ERM problem with L̂r(w,D) = 1
n

∑n
i=1 `(w, zi) + r(w),

where r(w) = λ
2
‖w‖2, `(w, z) = −〈w, z〉−λ

2
‖w‖2, C = Bd(r) for some constant r. Then for

every ε-differentially private algorithm, there is a dataset D = {z1, · · · , zn} ⊆ {− 1√
d
, 1√

d
}d

such that, with probability at least 1/2, we must have:

L̂r(wpriv, D)−min
w∈C

L̂r(w,D) ≥ Ω(min{1, d
nε
}).

On the other hand, under our assumptions about C = Bd(r), there is an ε-differentially

166



private algorithm, whose output wpriv satisfies with probability at least 1− β,

L̂r(wpriv, D)− L̂r(w∗, D) ≤ Õ(
d

nε
).

The time complexity is O((1 + 2Lnε
dλ

)dn).

Thus we can get an near optimal bound for general non-convex loss functions under

ε-differential privacy.

Proof of Theorem 4.2.5

Before showing the proof, we first give an upper bound on the Frank-Wolfe gap of the output

in Algorithm 4.2.23 for general smooth and Lipschitz loss functions with general convex set

C. We start with the definition of Gaussian Width:

Definition 4.2.2 (Minkowski Norm). The Minkowski norm (denoted by || · ||C) with respect

to a centrally symmetric convex set C ⊆ Rd is defined as follows. For any vector v ∈ Rd,

|| · ||C = min{r ∈ R+ : v ∈ rC}. The dual norm of || · ||C is denoted as || · ||C∗; for any

vector v ∈ Rd, ||v||C∗ = maxw∈C |〈w, v〉|.

Definition 4.2.3 (Gaussian Width). Let b ∼ N (0, Id) be a Gaussian random vector in Rd.

The Gaussian width for a set C is defined as GC = Eb[supw∈C〈b, w〉].

Algorithm 4.2.23 DP-FW-L2
Input: T is the maximum of iterations, w1 is the initial point, and {γt}Tt=1 is the step size.
ε and δ are privacy parameters.

for t = 1, · · · , T do
Compute vt = arg maxv∈C〈v,−(∇L(wt, D) + εt)〉, where εt ∼ N(0, σ2Id).
wt+1 = wt + γt(vt − wt).

end for

Return wR ∈ {w1, · · · , wT} such that R is uniformly sampled from {1, · · · , T}.
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Theorem 4.2.13. Let C be a bounded, closed, centrally symmetric convex set. Assume

that L̂(w,D) is differentiable and M -smooth over w with respect to `2 norm, and the

loss function `(·, z) is L-Lipschitz over x with respect to `2-norm for all z ∈ Z . Then,

there are constants c1, c2 > 0 such that for any 0 < ε < c1T, 0 < δ < 1, DP-FW-L2

(Algorithm 4.2.23) is (ε, δ)-differentially private if σ2 = c2
L2T ln( 1

δ
)

n2ε2
. Moreover, if take

{γt}Tt=1 = O(
4
√

(‖C‖22+G2
C) ln 1

δ

‖C‖2
√
nε

) and T = O( nε√
(‖C‖22+G2

C) ln 1
δ

), the following holds,

E[GR] ≤ O
(‖C‖2

4

√
(‖C‖2

2 +G2
C) ln 1

δ√
nε

)
, (4.47)

where Gt = maxv∈C〈−∇L̂(wt, D), v − wt〉.

Proof. To prove Theorem 4.2.13, we need the following lemmas.

Lemma 4.2.4. For any vector v, we have ||v||2 ≤ ||C||2||v||C , where ||C||2 is the `2-diameter

and ||C||2 = supx,y∈C ||x− y||2.

Lemma 4.2.4 implies that any smooth convex function F (θ), which is M -smooth with

respect to `2 norm, is M ||C||22-smooth with respect to || · ||C norm, which is the motivation

of our algorithm.

Proof. If v = 0, this is trivially true. Otherwise, we will show that ||v||2||C||2 ≤ ||v||C . This is

equivalent to show that v /∈ ||v||2
||C||2C. Taking any y ∈ C, since || ||v||2||C||2y||2 = ||v||2

||C||2 ||y||2, we

know that ||y||2 < ||C||2. Thus, || ||v||2||C||2y||2 < ||v||2. We have v /∈ ||v||2||C||2C.

Proof of Theorem 4.2.13. For convenience, we let the norm ‖ · ‖ = ‖ · ‖C , and F (w) =

L̂(w,D). Let M̃ denote M‖C‖2
2, and D denote the diameter of C w.r.t. ‖ · ‖ norm. By the

M -smoothness property and Lemma 4.2.4, we have

F (wt+1) ≤ F (wt) + γt〈∇F (wt), vt − wt〉+
M̃γ2

t

2
‖vt − wt‖2. (4.48)
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Let v̂t = arg maxv∈C〈v,−∇F (wt)〉. By the optimality of vt, we have

〈vt,−∇F (wt)− εt〉 ≥ 〈v̂t,−∇F (wt)− εt〉.

This implies that

〈vt − v̂t,∇F (wt)〉 ≤ 〈vt − v̂t,−εt〉. (4.49)

From (4.48), we get

F (wt+1) ≤ F (wt) + γt〈∇F (wt), vt − v̂t〉+ γt〈∇F (wt), v̂t − wt〉+
γ2
t M̃

2
‖vt − wt‖2.

Plugging (4.49) into (4.48) and by the fact that 〈∇F (wt), v̂t−wt〉 = −Gt (from the definition

of v̂t), we obtain

γtGt ≤ F (wt)− F (wt+1) + γt〈vt − v̂t,−εt〉+
M̃γ2

t

2
D2

≤ F (wt)− F (wt+1) +
γ2
t M̃‖vt − v̂t‖2

2
+
‖εt‖2

∗

2M̃
+
M̃γ2

t

2
D2

≤ F (wt)− F (wt+1) +
‖εt‖2

∗

2M̃
+ M̃γ2

tD
2,

where the second inequality is due to Cauchy Inequality. By the definition of GR, we have

E[GR] = 1
T

∑T
t=1 E[Gt]. Since {γt}Tt=1 = γ, summing the above over t = 1 · · · , T and

taking the expectation, we have

EGR ≤
F (w1)− F (w∗)

γT
+ M̃γD2 +

1

γ
O((‖C‖2

2 +G2
C)
L2T ln(1

δ
)

n2ε2
).

Taking γ = O(
4
√
G2(‖C‖22+G2

C) ln 1
δ√

M̃D
√
nε

) and T = O( nε√
(‖C‖22+G2

C)L2 ln 1
δ

), and by definition of ‖ · ‖

and the fact that D ≤ O(1), we have the proof.

We first consider the Generalized Linear Model. The following inequality has been

proved in [115]. We rephrase it here to make the proof self-complete. Denote by LP(w) =
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E(x,y)∼Z`(w;x, y) and L̂(w,D) = 1
n

∑n
i=1 `(w;x, y).

Generalized Linear Model

Lemma 4.2.5. For a fixed w, LP(w)− LP(w∗) ≤ Cσ
2cσ
〈∇LP(w), w − w∗〉.

Proof. Let w ∈ C be fixed. Then, we have

〈∇LP(w), w − w∗〉 = 2E(x,y)[σ(〈w, x〉 − y)σ′(〈w, x〉)〈w − w∗, x〉]

= 2Ex[(σ(〈w, x〉)− σ(〈w∗, x〉))σ′(〈w, x〉)〈w − w∗, x〉].

By Assumption 4.2.2, we have

LP(w)− LP(w∗) = E(σ(〈w, x〉)− σ(〈w∗, x〉))2

≤ Cσ
2cσ
〈∇LP(w), w − w∗〉.

By Lemma 4.2.5 and Theorem 4.2.13, we only need to bound 〈∇LP(w), w − w∗〉.

Before doing that, we show that the empirical risk is Lipschitz and smooth, which satisfies

the assumption in Theorem 4.2.13. It is due to:

‖∇L̂(w,D)‖2 = ‖ 1

n

n∑
i=1

(σ(〈w, xi〉)− yi)σ′(〈w, x〉)xT‖2 ≤ Cσ(B + 1), (4.50)

and

‖∇2L̂(w,D)‖2 = ‖ 1

n

n∑
i=1

[(σ′(〈w, xi〉))2 + σ′′(〈w, xi〉)(σ(〈w, xi〉)− yi)]xixTi ‖

≤ C2
σ + Cσ(B + 1).

Thus, L̂(w,D) is (Cσ(B + 1))-Lipschitz and C2
σ + Cσ(B + 1)-smooth. Also, since C is the
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unit `2 norm, we have GC = O(
√
d) and ‖C‖2 = 1. Thus, we get E[GR] ≤ O

( 4
√
d ln 1

δ√
nε

)
by

Theorem 4.2.13.

By the definition of GR, we know that E[GR] ≥ E〈∇L̂(wR, D), wR − w∗〉. Taking the

expectation w.r.t {(x1, y1), · · · , (xn, yn)}, we then have E[GR] ≥ E〈∇LP(wR), wR − w∗〉.

Combing it with Lemma 4.2.5, we get

ELP(xR)− LP(w∗) ≤ O
(Cσ

2cσ

4

√
d ln 1

δ√
nε

)
.

Robust Regression We now consider robust regression. We begin with showing a similar

result as in Lemma 4.2.5. First, the smoothness of ψ implies that for any s, s∗ ∈ S , we have

ψ(s)− ψ(s∗) ≤ ψ′(s∗)(s− s∗) +
Cψ
2

(s− s∗)2.

Taking s = 〈w, x〉 and s∗ = 〈w∗, x〉, and then taking expectation w.r.t. {(x1, y1), · · · , (xn, yn)},

we get

LP(w)− LP(w∗) ≤ Ex,y[ψ′(〈w∗, x〉 − y)〈w − w∗, x〉] +
Cψ
2
E〈w − w∗, x〉2

= 〈∇LP(w∗), w − w∗〉+
Cψ
2
E〈w − w∗, x〉2. (4.51)

By Assumption 4.2.3, we have

∇LP(w∗) = Ex,ξ[ψ′(−ξ)x] = 0.

Thus, we get LP(w)− LP(w∗) ≤ Cψ
2
E〈w − w∗, x〉2. On the other hand, using gradient we

have

〈∇LP(w), w − w∗〉 = Ex[Eξψ′(〈w − w∗, x〉 − ξ)〈w − w∗, x〉]

= Ex[h(〈w − w∗, x〉)〈w − w∗, x〉].
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By the assumption on function h(·), we get

h(〈w − w∗, x〉)〈w − w∗, x〉 =
h(〈w − w∗, x〉)
〈w − w∗, x〉

〈w − w∗, x〉2 ≥ cψ〈w − w∗, x〉2,

where the inequality is due to the fact that h(0) = 0 and h′(0) ≥ cψ.

Taking the expectation, we have

〈∇LP(w), w − w∗〉 ≥ cψEx〈w − w∗, x〉2.

Thus, we have the following lemma.

Lemma 4.2.6.

LP(w)− LP(w∗) ≤ Cψ
2cψ
〈∇LP(w), w − w∗〉.

It is easily to get that the loss function `(w, (x, y)) = ψ(〈w, x〉 − y) is Cψ-Lipschitz and

Cψ-smooth. Using the same argument as in the proof for the case of Generalized Linear

model, we get the proof.

4.2.4 Proof of Theorem 4.2.6

We first give an upper bound on the Frank-Wolfe gap of general `1-norm Lipschitz and

smooth loss functions.

Definition 4.2.4. The loss function ` is L-Lipschitz under `1-norm over w, if for any z ∈ Z

and w1, w2 ∈ C, |`(w1, z)− `(w2, z)| ≤ L||x1 − x2||1 holds.

Definition 4.2.5. A loss function ` : C × Z 7→ R is M-smooth over w with respect to the

|| · ||1 norm if for any z ∈ X and w1, w2 ∈ C, the following holds

||∇`(w1, z)−∇`(x2, z)||∞ ≤M ||w1 − w2||1.

If f is differentiable, this yields `(w1, z) ≤ `(w2, z)+〈∇`(w2, z), w1−w2〉+M
2
||w1−w2||21.
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Assumption 4.2.4. L̂(w,D) is assumed to be differentiable and M -smooth over x w.r.t

`1-norm, and `(·, z) is assumed to be L-Lipschitz over x with respect to `1-norm for all

z ∈ X . C ⊆ Rd is assumed to be a closed convex set. Furthermore, C is assumed to be the

convex hull of some finite set A, i.e., C = Conv(A) and bounded. (For example, C could be

a polytope.)

Algorithm 4.2.24 DP-FW-L1
Input: T is the iteration number and x1 is the initial point. {γt}Tt=1 is the step size. C ⊆ Rp

is the convex hull of a compact set A ⊆ Rd. ε and δ are privacy parameters.
1: for t = 1, · · · , T do
2: Use exponential mechanism M(D, u,R), where R = A, u(D, s) =
−〈s,∇L̂(wt, D)〉, to ensure ( ε√

8T ln( 1
δ

)
, 0)-differential privacy. Denote the output as w̃t.

3: Compute wt+1 = (1− γt)wt + γtw̃t.
4: end for
5:
6: Return wR ∈ {w1, · · · , wT}, where R is uniformly sampled from {1, 2 · · · , T}.

Theorem 4.2.14. Under Assumption 4.2.4 and assuming that A is a finite set, then for any

ε, δ > 0, DP-FW-L1 (Algorithm 4.2.24) ensures (ε, δ)-differentially private. Furthermore,

if set T = O( nε√
ln( 1

δ
) ln(|A|n/η)

) and {γt}Tt=1 =
√

2
MT‖C‖21

, then with probability at least 1− η,

the following holds

E[GR] ≤ O(
‖C‖1

4

√
ln(1

δ
)
√

ln n|A|
η√

nε
), (4.52)

where Gt = maxv∈C〈−∇L̂(wt, D), v − wt〉.

Proof of Theorem 4.2.14. For convenience, we let F (w) = L̂(w,D). By exponential

mechanism and advanced composition theorem, we can see that it is (ε, δ)-differentially

private. By the L-Lipschitz (w.r.t `1-norm) property of the loss function, we know that

∆u ≤ O(‖C‖1L
n

). Let β = O(
L‖C‖1
√

8T ln( 1
δ

) ln(
|A|T
η

)

nε
). By the utility bound of exponential

mechanism (Lemma 4.2.3), we know that in each iteration, with probability 1 − η
T

, the

following holds

〈w̃t,∇F (wt)〉 ≤ min
v∈A
〈v,∇F (wt)〉+ β. (4.53)
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Let st = arg minu∈A〈u,∇F (wt)〉. By the M -smooth property and (4.53), we have

M

2
‖wt+1 − wt‖2

1 ≥ F (wt+1)− F (wt)− 〈F (wt), wt+1 − wt〉

= F (wt+1)− F (wt)− γt〈∇F (wt), w̃t − wt〉

≥ F (wt+1)− F (wt)− γt(〈∇F (wt), st − wt〉+ β).

Note that minu∈C〈u− wt,∇F (wt)〉 = minu∈A〈u− wt,∇F (wt)〉 = 〈st − wt,∇F (wt)〉 =

−Gt. Thus, we have

F (wt+1)− F (wt) + γtGt ≤ γtβ +
Mγ2

t

2
‖C‖2

1. (4.54)

Summing over t = 1, · · · , T , we get with probability 1− η,

(
T∑
t=1

γt)GR ≤ F (w1)− F (w∗) + (
T∑
t=1

γt)β +
M

2
(
T∑
t=1

γ2
t )‖C‖2

1.

Taking {γt}Tt=1 = γ, we have

GR ≤
F (w1)− F (w∗)

γT
+
γ‖C‖2

1M

2
+O(

L‖C‖1

√
T ln(1

δ
) ln( |A|T

η
)

nε
).

Taking T = O( nε

L
√

ln( 1
δ

) ln(|A|n)
) and γ =

√
2

T‖C‖21M
, we get the result.

Generalized Linear Model We first show the Lipschitz and Smooth properties w.r.t

`1-norm. Since ∇`(w, x, y) = σ(〈w, x〉 − y)σ′(〈w, x〉)xT , by the Lipschitzness and the

assumption, we have

‖(σ(〈w, x〉)− y)σ′(〈w, x〉)xT‖∞ ≤ Cσ(B + 1).
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Let w1, w2 ∈ C, we have

‖(σ(〈w1, x〉)− y)σ′(〈w1, x〉)xT − (σ(〈w2, x〉)− y)σ′(〈w2, x〉)xT‖∞

≤ |(σ(〈w1, x〉)− y)σ′(〈w1, x〉)− (σ(〈w2, x〉)− y)σ′(〈w2, x〉)|

≤ |σ(〈w1, x〉)σ′(〈w1, x〉)− σ(〈w2, x〉)σ′(〈w2, x〉)|+ |σ′(〈w1, x〉)− σ′(〈w2, x〉)|

≤ (C2
σ + (B + 1)Cσ)|〈w1 − w2, x〉|

≤ (C2
σ + (B + 1)Cσ)‖w1 − w2‖1.

Thus, by Theorem 4.2.14, we know E[GR] ≤ O(
4
√

ln( 1
δ

)
√

ln np
η√

nε
). The remaining part of the

proof is by Lemma 4.2.5 and is the same as in the proof of Theorem 4.2.5.

Robust Regression For the case of linear regression, it is almost the same as in the case

of generalized linear model, we omit it here.

4.3 Local Minimum/Second Order Stationary View

In Chapter 4.1 we study using first order stationary measurement to measure the error of

private estimation, despite some obvious advantages with such an approach (such as the

sample complexity is relatively low), it also endows an oblivious limitation: although [356,

328, 309] showed that the gradient norm tends to 0 as n goes to infinity, there is no guarantee

that such an estimator will be close to any non-degenerate local minimum [5]. To solve this

issue, in Chapter 4.2 we study the using the global error measurement (i.e., the empirical

(population) risk) to measure the private estimator. However, we showed that the sample

complexity may be exponential to the dimensionality. Thus, our question, is there any other

measurement which could guarantee that our private estimator close to some local minimum

while also keep the sample complexity to be small? In this section, we will provide an affirm

answer.

Recent research on deep neural network training [125, 179] and many other machine
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learning problems [126, 124, 123] has shifted their attentions to obtaining local minima.

It has been shown that fast convergence to a local minimum is actually sufficient for such

tasks, but convergence to critical points (i.e., points with vanished gradients) is often not

acceptable. This motivates us to investigate efficient techniques for finding local minima.

However, as shown in [14], computing a local minimum could be quite challenging as it

is actually NP-hard for non-convex functions. Fortunately, many non-convex functions in

machine learning are known to be strict saddle [126], meaning that a second-order stationary

point (or approximate local minimum) is sufficient to obtain a close enough point to some

local minimum.

To find (approximate) local minima, [126] have recently proposed an elegant approach

using a noisy version of gradient descent. Their method adds some scaled Gaussian noise

in each iteration to the gradient before updating, rather than directly using SGD. Such a

way of finding local minima resembles the idea used by the DP community for achieving

differential privacy for SGD [29, 328, 309]. In DP-SGD, some Gaussian noise is also added

to the gradient in each iteration to make it (ε, δ)-DP. Although these two algorithms focus

on different perspectives (one for escaping saddle points while the other for making the

algorithm DP), they both inject random Gaussian noise to the gradients in each iteration.

This naturally leads us to another question:

Can we find some approximate local minimum which escapes saddle points, while

keeping the algorithm (ε, δ)-differentially private?

In this section, We first show that when the data size n is large enough, there exist

polynomial-time 5 (ε, δ)-DP algorithms that can find an α-approximate local minimum

of the empirical risk in both constrained and non-constrained settings. To the best of our

knowledge, this is the first result that reveals a connection between differential privacy and

saddle-point escaping.

However, this method has several issues, which hamper its applications in big data.

5For the constrained case, polynomial-time solutions are only for some specified sets, see Remark 4.3.1 for
details.
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Firstly, the sample complexity (or equivalently error bound) is relatively high. It is not

clear whether it can be improved. Secondly, this method needs to calculate the gradient

and Hessian matrix of the whole objective function in each iteration, which is prohibitive in

large scale datasets.

To address the aforementioned theoretical and practical issues, we then propose a new

method called Differentially Private Trust Region (DP-TR) which is capable of escaping

saddle points privately. Particularly, we first show that our algorithm can output an α-SOSP

with high probability and less sample complexity. To make our method scalable, we then

present a stochastic version of DP-TR called Differentially Private Stochastic Trust Region

(DP-STR) with the same functionality. We show that DP-STR is much faster and has

asymptotically the same sample complexity as DP-TR. Finally, we provide comprehensive

experimental studies on the practical performance of our methods in escaping saddle point

under differential privacy model. We first impose the following assumption on the loss

function considered in this section.

Assumption 4.3.1. The loss function is L-Lipschitz, M -smooth and ρ-Hessian Lispchtiz.

We further assume that the empirical risk L(w,D) is bounded by a constant B 6. If C is

closed, we denote the diameter of C as D = maxx,x′∈C ‖x− x′‖2.

4.3.1 Finding Approximate Local Minimum Privately Using DP-GD

Unconstrained Case

Definition 4.3.1. w is called a second-order stationary point (SOSP) of a twice differentiable

function F if

‖∇F (w)‖2 = 0 and λmin(∇2F (w)) ≥ 0 ,

where λmin denotes its smallest eigenvalue.

6Note that if the empirical risk is not bounded, we can still use the same proof after replacing the constant
by the term L(w1, D)− L(w∗, D). We make such an assumption for convenience.
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Since it is extremely challenging to find an exact SOSP [126], we turn to its approxima-

tion. The following defintion of α-approximate SOSP relaxes the first- and second-order

optimality conditions.

Definition 4.3.2 ([5]). w is an α-second-order stationary point (α-SOSP) or α-approximate

local minimum of a twice differentiable function F , if 7

‖∇F (w)‖2 ≤ α and λmin(∇2F (w)) ≥ −√ρα. (4.55)

Definition 4.3.3 (DP-SOSP). Given α, ε, δ > 0, DP-SOSP is to identify the smallest sample

complexity n(α, p, ε, δ) such that when n ≥ n(α, p, ε, δ), for any dataset D of size n, there

is an (ε, δ)-DP algorithm which outputs an α-SOSP of the empirical risk function L(w,D)

with high probability.

To find an α-SOSP privately, we present Algorithm 4.3.25. Comparing with the first-

order noisy gradient descent methods, such as those in [126, 163, 349, 164], the main

difference is that the noises added should be in the scale of O(
√
T
nε

), which depends on the

iteration number T . This dependency makes Algorithm 4.3.25 more complex than previous

related algorithms.

Algorithm 4.3.25 DP-GD
Input: T is the iteration number and w1 is the initial point. {γt}Tt=1 is the step size. ε and δ
are privacy parameters.

1: for t = 1, · · · , T do
2: Compute wt+1 = wt − ηt(∇L(wt, D) + εt), where εt ∼ N(0, σ2Id) for some σ.
3: end for
4:
5: Return {w1, · · · , wT+1}.

To prove that Algorithm 4.3.25 has the ability of escaping saddle points, we first show

that the iteration number satisfies T = Õ(MB
α2 ) when the magnitude of the noise is small

7This is a special version of (ε, γ)-SOSP [126]. Our results can be easily extended to the general definition.
The same applies to the constrained case.
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enough (i.e., when n is large enough). Based on this fact, we then prove that Algorithm

4.3.25 can find an α-SOSP with high probability. Our results are summarized in the

following theorem.

Theorem 4.3.1. Under Assumption 4.3.1, there exist constants c1, c2, such that for any

0 < ε < c1T , Algorithm 4.3.25 is (ε, δ)-DP if σ2 = c2
L2 log 1

δ
T

n2ε2
. Moreover, if the data size n

is large enough such that

n ≥ Ω̃(

√
MB

√
log 1

δ
d log 1

ξ
L

εα2
), (4.56)

and choose T = Õ(MB
α2 ), {ηt}Tt=1 = 1

M
, then with probability 1− ζ , one of the outputs is an

α-SOSP of the empirical risk L(·, D). Here the Õ and Ω̃ terms omit other log factors.

Recently, [309, 328] show that there are (ε, δ)-DP algorithms satisfying ‖∇L(wpriv, D)‖2 ≤

O(
4
√
d log 1

δ√
nε

). Thus, to achieve an ε-first-order stationary point, the size n should satisfy the

condition of n ≥ Ω(

√
d log 1

δ

εα2 ). Comparing to the sample complexity in (4.56) for ε-SOSP,

we can see that they are actually asymptotically almost the same (up to some log factors).

Theorem 4.3.1 ensures the existence of an approximate SOSP among {w1, · · · , wT+1}.

To find such a SOSP with high probability, we propose Algorithm 4.3.26, which incurs an

additional O(
√
d) factor in the sample size n in (4.56).

Theorem 4.3.2. There exist constants c1, c2 such that when σ2
1 = c1

log 1
δ
TL2

n2ε2
and σ2

2 =

c2
log 1

δ
M2dT

n2ε2
, Algorithm 4.3.26 is (ε, δ)-DP. Furthermore, with probability at least 1− ξ− T

pC

for some sufficiently large C > 0, the output is an α-SOSP when the sample size satisfies

n ≥ Ω̃(
Md
√
MB

√
log 1

δ
log 1

ξ
L

ρεα2
).
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Algorithm 4.3.26 Selecting SOSP

1: Run Algorithm 4.3.25 to ensure ( ε
2
, δ

2
)-differential privacy on finding an α

2
-SOSP with

probability at least 1− ξ
2
. Let the output be {w1, · · · , wT+1}.

2: for t = 1, · · · , T + 1 do
3: Let gt = ∇L(wt, D) + εt, where εt ∼ N (0, σ2

1Id). H̃t = ∇2L(wt, D) +Ht, where
Ht a symmetric matrix with its upper triangle (including the diagonal) being i.i.d
samples from N (0, σ2

2) and each lower triangle entry is copied from its upper triangle
counterpart.

4: if ‖gt‖2 ≤ α and λmin(H̃t) ≥ −
√
ρα then

5: Return wt.
6: end if
7: end for

Constrained Case

In this section we consider a constrained-version of SOSP studied in last section (see

Definition 4.3.4).

Definition 4.3.4 ([222]). For a twice differentiable function F and a closed convex set

C, w∗ is an α-second-order stationary point in the constraint set C if: 1) ∇F (w∗)T (w −

w∗) ≥ −α, for ∀w ∈ C, and 2) (w − w∗)T∇2F (w∗)(w − w∗) ≥ −√ρα, for ∀w ∈

C , s.t. ∇F (w∗)T (w − w∗) = 0.

Recently, [222] proposed an algorithm for escaping the saddle points in the above

constrained case. Motivated by their algorithm and the ideas in the proof of Theorem 4.3.1,

we propose Algorithm 4.3.27 as a DP-version of the problem with a theoretical guarantee

presented in Theorem 4.3.3.

Theorem 4.3.3. There exist constants c1, c2, c3 and sufficiently large C such that for any

0 < ε < c1T, 0 < δ < 1, if σ2
1 = c2

log 1
δ
L2T

n2ε2
and σ2

2 = c3
log 1

δ
dM2T

n2ε2
, Algorithm 4.3.27

is (ε, δ)-DP. Moreover, taking T = O(max{D2MB
α2 , Bρ

1/2D6

Φ3α3/2 }) = O(BMρ1/2D6

Φ3α2 ), θ = Φα
2D3 ,

0 < Φ ≤ 9
5
, {ηt}Tt=1 = α

2D2M
and r = Φ2Φα

72ρD3 , we have that for any 0 < ξ < 1, with

probability at least 1 − ξ − T
pC

, Algorithm 4.3.27 outputs wt, which is an α-SOSP of the
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Algorithm 4.3.27 DP-GD-SO
Input: T is the iteration number and x1 is the initial point. {γt}Tt=1 is the step size. ε and δ
are privacy parameters. θ, σ1, σ2 are parameters to be specified later.

1: for t = 1, · · · , T do
2: Compute gt = ∇L(wt, D) + εt,where εt ∼ N (0, σ2

1Id) for some σ1.
3: Compute vt = arg maxv∈C{−gTt v}.
4: if gTt (vt − wt) < −α

2
then

5: Compute wt+1 = (1− ηt)wt + ηtvt.
6: else
7: Let H̃t = ∇2L(wt, D) + Ht, where Ht is a symmetric matrix with its upper

triangle (including the diagonal) being i.i.d samples from N (0, σ2
2) and each lower

triangle entry is copied from its upper triangle counterpart.
8: Find ut, a Φ-approximate solution of

min
u
q(u) = (u− wt)T H̃t(u− wt)

s.t. u ∈ C, gTt (u− wt) ≤ r

9: if q(ut) ≤ −Φ
√
ρα

2
then

10: Compute wt+1 = (1− θ)wt + θut.
11: else
12: Return wt.
13: end if
14: end if
15: end for
16:

empirical risk L(·, D), if the sample size n satisfies:

n ≥ Ω̃
(

max{
LD7

√
dMB log 1

δ
log 1

ξ
ρ1/4

εα2
,

√
log 1

δ
dBMLD4 log 1

ξ
ρ1/4

εα2

,
d
√
BM3 log 1

δ
D5 log 1

ξ

ρ1/4α3/2ε
}
)
.

Here the Ω̃-notation omits Φ and other log terms.

Remark 4.3.1. Firstly, we note that when omitting other terms in the bound in Theo-

rem 4.3.3 such as L,B,Φ, D,G, ρ, the sample complexity for escaping saddle points in

the constrained case is Ω̃( d
εα2 ). Compared with the unconstrained case in Theorem 4.3.2,

they are asymptotically the same. Secondly, a quadratic programming problem needs to be
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solved in step 8 of Algorithm 4.3.27. For a general constraint set C, solving the quadratic

problem is NP-hard. However, for some specified sets such as intersection of ellipsoids

or balls, an approximate solution can be obtained in polynomial time. See [222] for more

details.

4.3.2 Improved Sample Complexity via DP-TR Method

Our ideas are derived from the trust region method proposed in [78], we now briefly

introduce the trust region method. In each step of the trust region method for a function

F (·), it solves a Quadratic Constraint Quadratic Program (QCQP):

hk = arg min
h∈Rd,‖h‖2≤r

〈∇F (wk), h〉+
1

2
〈∇2F (wk)h, h〉, (4.57)

where r is called the trust-region radius. Then, it updates in the following way

wk+1 = wk + hk.

Since the function F (w) is non-convex, this indicates that the sub-problem (4.57) is non-

convex. However, its global minimum can be characterized by the following lemma.

Lemma 4.3.1 (Corollary 7.2.2 in [78]). Any global minimum of the problem (4.57) should

satisfy

(∇2F (wk) + λI)hk = −∇F (wk), (4.58)

where the dual variable λ ≥ 0 should satisfies the conditions of ∇2F (xk) + λI � 0 and

λ(‖hk‖2 − r) = 0.

It is worth noting that in practice sub-problem (4.57) can be solved by the Lanczos

method efficiently (see [134] for details). For the dual variable λ in Lemma 4.3.1, it can be

solved by almost any QCQP solver such as CVX [135].
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Differentially Private Trust Region Method

The key idea of our DP-TR is the following. In each iteration, instead of using the gradient

and Hessian of the empirical risk directly to the sub-problem (4.57), we use their perturbed

versions to ensure DP. That is, we use ∇̃L(wk, D) = ∇L(wk, D) + εk and ∇̃2L(wk, D) =

∇2L(wk, D)+Hk, where εt is a Gaussian vector andHt is a randomized symmetric Gaussian

matrix (since a Hessian matrix is symmetric, we need to add a symmetric random matrix).

The main steps of DP-TR are given in Algorithm 4.3.28.

For the stopping criteria, we use the dual variable λk and see whether the value is greater

or less than some threshold. This criteria enable the last-term convergence analysis in

Theorem 4.3.5.

The following theorem shows that Algorithm 4.3.28 is (ε, δ)-DP.

Theorem 4.3.4. For any ε, δ > 0, Algorithm 4.3.28 is (ε, δ)-differentially private under

Assumption 4.3.1.

Algorithm 4.3.28 DP-TR
Input: Privacy parameters ε, δ, trust-region radius r, iteration number T (to be specified
later), initial vector w0 and error term α

1: Let φ = (
√
ε+ ln 1

δ
−
√

ln 1
δ
)2.

2: for k = 0, · · · , T − 1 do
3: Denote ∇̃L(wk, D) = ∇L(wk, D) + εk, where εt ∼ N (0, σ2Id) with σ2 = 4G2T

n2φ
.

4: Denote ∇̃2L(wk, D) = ∇2L(wk, D) +Hk, where Ht is a symmetric matrix with its
upper triangle (including the diagonal) being i.i.d samples from N (0, σ2

2), σ2
2 = 4pM2T

n2φ
,

and each lower triangle entry is copied from its upper triangle counterpart.
5: Solve the following QCQP and get hk and dual variable λk,

hk = arg min
h∈Rd,‖h‖2≤r

〈∇̃L(wk, D), h〉+
1

2
〈∇̃2L(wk, D)h, h〉,

6: Let wk+1 = wk + hk.
7: if λk ≤ √αρ then
8: Output wα = wk+1.
9: end if

10: end for
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The following theorem shows that when the data size n is large enough, then with high

probability the output of Algorithm 4.3.28 will be an α-SOSP.

Theorem 4.3.5. Under Assumption 4.3.1, for any given α, if we take r =
√

α
ρ

, T =
6
√
ρ∆

α1.5 ,

then with probability at least 1− ζ − T
pc

for some universal constant c > 0 and ζ > 0, the

algorithm outputs a point which is an O(α)-SOSP if n satisfies

n ≥ Ω(
p ln 1

ζ

√
ln 1

δ

α1.75ε
), (4.59)

where the Big-Ω notation omits the terms of G,M, ρ,∆, ln 1
α

.

Remark 4.3.2. We note that in Theorem 4.3.2 to output anO(α)-SOSP with high probability,

the data size n needs to satisfy n ≥ Ω(
p
√

ln 1
δ

α2ε
), while the dependency on α in (4.59) is

1
α1.75 . Thus, we improve the sample size by a factor of O( 1

α0.25 ). Equivalently, if we fix

n, Theorem 4.3.5 ensures that Algorithm 4.3.28 outputs a point which is O
(

(
p
√

ln 1
δ

nε
)

4
7 )

)
-

SOSP, while Theorem 4.3.2 outputs a point which is O
(

(
p
√

ln 1
δ

nε
)

1
2 )

)
-SOSP. We can see

that our algorithm yields better approximate SOSP than the previous one. We leave as open

problems to determine whether the sample complexity in (4.59) can be further improved

and what is the optimal bound of the sample complexity.

Also, in Theorem 4.3.2 the number of iterations is T = Õ( 1
α2 ), while Algorithm 4.3.28

needs only O( 1
α1.5 ) iterations. This means that the running time of Algorithm 4.3.28 is

O(nPoly(p)
α1.5 ), while it is O(nPoly(p)

α2 ) in Theorem 4.3.2. Thus, our algorithm has an improved

time complexity for the term of 1
α

compared with the previous one. Moreover, as we will

see in the experiment section, our algorithms is indeed faster than the previous one.

Theorem 4.3.5 shows the explicit step size control of the DP-TR method: Since the dual

variable satisfies λk >
√
αρ for all but the last iteration. Thus we can always find a solution

to the trust-region sub-problem (4.57) in the boundary, i.e., ‖hk‖2 = r, according to Lemma

4.3.1.
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Differentially Private Stochastic Trust Region Method

In the previous section we show that our method DP-TR needs less samples and is faster than

DP-GD (Algorithm 4.3.25). However, as mentioned in Remark 4.3.2, the time complexities

of both algorithms are linearly dependent on the sample size n, which is prohibitive in large

scale datasets. Thus, a natural question is to determine whether it is possible to design an

algorithm that shares the advantages of DP-TR and meanwhile is scalable. In this section

we give an affirmative answer to this question by providing a stochastic version of DP-TR

called Differentially Private Stochastic Trust Region method (DP-STR).

The key idea of DP-STR is that, instead of evaluating the gradient and Hessian matrix

of the whole function L(w,D) in each iteration, we will uniformly sub-sample two sets of

indices S, T ⊆ [n] and calculate the gradients and Hessian matrix of the loss function with

the samples corresponding to the set S and T , respectively. That is

∇L(wk,S) =
1

|S|
∑
i∈S

∇`(wk, xi), (4.60)

∇2L(wk, T ) =
1

|T |
∑
i∈T

∇2`(wk, xi). (4.61)

Then, similar to DP-TR, we add some Gaussian noise and random Gaussian matrix to

∇L(wk,S) and ∇2L(wk, T ), respectively, to ensure (ε, δ)-DP. See Algorithm 4.3.29 for

details. Note that since zCDP can not be guaranteed by sub-sampling, we use the traditional

advanced composition theorem Lemma 2.1.5 and sub-sampling property Lemma 2.1.2 to

guarantee (ε, δ)-DP.

Theorem 4.3.6. For any 0 < ε, δ < 1, Algorithm 4.3.29 is (ε, δ)-differentially private.

Theorem 4.3.7. Under Assumption 4.3.1, for a given α, if we take r =
√

α
ρ
, T =

6
√
ρ∆

α1.5 ,

|S| ≥ Ω(
L2 ln p

ζ

α2 ) and |T | ≥ Ω(
M2 ln p

ζ

αρ
) in Algorithm 4.3.29, then with probability at least

1− 3ζ − T
pc

for some universal constant c > 0 and ζ > 0, the algorithm outputs a point that

is an O(α)-SOSP if n satisfies (4.59), which is the same as in Theorem 4.3.5.

185



Algorithm 4.3.29 DP-STR
Input: Privacy parameters ε, δ, trust-region radius r, iteration number T , sub-sampling size
|S|, |T | (to be specified later), initial vector w0 and error term α.

1: for k = 0, · · · , T − 1 do
2: Uniformly sub-sample two independent indices sets S, T ⊆ [n] with size |S| and
|T |, respectively.

3: Denote ∇̃L(wk,S) = ∇L(wk,S) + εk, where εt ∼ N (0, σ2Id) with σ2 =
256G2 ln 5T

δ
ln 2
δ

n2ε2
and ∇L(wk,S) is given in (4.60)

4: Denote ∇̃2L(wk, T ) = ∇2L(wk, T ) + Hk, where Ht is a symmetric matrix
with its upper triangle (including the diagonal) being i.i.d samples from N (0, σ2

2),

σ2
2 =

256pM2T ln 2
δ

ln 5T
δ

n2ε2
, and each lower triangle entry is copied from its upper triangle

counterpart. ∇2L(wk, T ) is given in (4.61).
5: Solve the following QCQP and get hk and dual variable λk,

hk = arg min
h∈Rd,‖h‖2≤r

〈∇̃L(wk,S), h〉+
1

2
〈∇̃2L(wk, T )h, h〉,

6: Let wk+1 = wk + hk.
7: if λk ≤ √αρ then
8: Output wα = wk+1.
9: end if

10: end for

Comparing with Theorem 4.3.5, we can see that the sample complexity of Theorem 4.3.7

is the same while the time complexity of Algorithm 4.3.29 is O (T (|S|+ |T |)Poly(p)) =

O(Poly(p)
α3.5 ), which is independent of the sample size n. This means that DP-STR is faster and

scalable to large scale datasets.

Remark 4.3.3. We note that it is unknown whether the DP-GD (Algorithm 4.3.25) can

be extended to a stochastic version whose time complexity is independent of the size n.

Algorithm 4.3.25 consists of two routines, one is the Differentially Private Gradient Descent

method and the other one is the procedure of selecting an α-SOSP. The first one can be easily

extend to a stochastic version, which is similar as the one in [356]. However, for the second

one, it needs to calculate the whole Hessian matrix and verify some conditions as stopping

criteria, but it is unknown whether we can extend it to a stochastic version. Compared

with Algorithm 4.3.25, in Algorithm 4.3.28 we use the Hessian matrix for Trust-Region

sub-problem and use the dual variable λk as our stopping criteria. Thus, this is why we can
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extend Algorithm 4.3.28 to a stochastic version.

Note that in Algorithm 4.3.29 we use the basic subsampling technique for DP-STR

to improve the time complexity. In [328], the authors proposed the Stochastic Variance

Reduction Gradient method to improve the gradient complexity for DP-ERM with convex

less functions and show it is superior to the DP-SGD method. Thus, it is unknown whether

we can use the same idea to our problem to further improve the time complexity or gradient

complexity. Moreover, in both of Algorithm 4.3.28 and 4.3.29, we assume that we can

exactly solve the Trust-Region sub-problem (4.57). However, in most cases, exactly solving

the problem is quite hard and costy. Thus whether we can relax this assumption is still an

open problem. We leave these as further research.

4.3.3 Experiments

In this section, we present numerical experiments for different non-convex Empirical Risk

Minimization problems on different datasets to demonstrate the our DP-GD, DP-TR and

DP-STR algorithms in finding SOSP under differential privacy.

Experimental Settings

Baselines We will use our methods (DP-GD, DP-TR and DP-STR) after carefully tuning

the algorithms for a fair comparison. For the QCQP sub-problem in Algorithm 4.3.28 and

4.3.29, we use the CVX package [135] to solve it.

Datasets We evaluate the algorithms on real-world datasets with n� p. Specifically, we

use the datasets, Covertype and IJCNN, which are commonly used in the study of DP-ERM

such as [328, 319, 311]. More information about these datasets is listed in Table 4.2. We

normalize each row of the datasets as preprocessing.
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Table 4.2: Summary of Datasets used in the experiments.

Dataset Sample size n dimension p

Covertype 581, 012 54
IJCNN 35, 000 22

Evaluated Problems For the loss functions we will follow the studies in [182, 367, 309].

The first non-convex problem that will be investigated is logistic regression with a non-

convex regularizer r(w) =
∑p

i=1
λw2

i

1+w2
i
. Specifically, suppose that we are given training data

{(xi, yi)}ni=1, where xi ∈ Rp and y ∈ {−1, 1} are, respectively, the feature vector and label

of the i-th data record. The corresponding ERM is

min
w∈Rp

1

n

n∑
i=1

log(1 + exp(−yi〈xi, w〉)) + r(w).

In the experiment, we set λ = 10−3.

The second problem that will be considered is the sigmoid regression with `2 norm

regularizer. Given training dataset {(xi, yi)}ni=1 where xi ∈ Rp and y ∈ {−1, 1} are,

respectively, the feature vector and label of the i-th data record. Then, minimization problem

is

min
w∈Rp

1

n

n∑
i=1

1

1 + exp(−yi〈xi, w〉)
+
λ

2
‖w‖2

2.

In the experiment, we set λ = 10−3.

Measurements We first study how the optimaliy gap, i.e., L(wα, D)−minw∈Rp L(w,D),

changes w.r.t the privacy level ε or time (second). For the optimal solution of the problem

minw∈Rp L(w,D), we obtain it through multiple runs of the classical trust region method

and taking the best one. Besides the expected excess empirical risk, we also use the gradient

norm, i.e., ‖∇L(wα, D)‖2, to measure the utility. For logistic regression, we also consider

its classification accuracy w.r.t privacy level, where the non-private case is obtained by

running the trust region method and taking the best. For each experiment, we run 10 times
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and take the average as the final output. In all experiments, we set δ = 1
n

and α = 10−1.

Experimental Results

Figure 4.5 shows the classification accuracy of the private classifier given by the sigmoid

regression on the Covertype and IJCNN datasets w.r.t different privacy levels. We can see

that the accuracy increases when ε becomes larger, which means that the algorithm will

be non-private. From Remark 4.3.2 we can see that this is due to the fact that when ε is

larger, we can outpout an SOSP which is closer to the local minimum. Also, the accuracy of

the non-private case is 86% and 95% for Covertype and IJCNN dataset, respectively. This

indicates that the accuracy is comparable to the non-private case when ε ≥ 1.5.

The first and second subfigures of Figure 4.6, 4.7, 4.8 and 4.9 depict the optimality gap

and the gradient norm w.r.t different privacy level ε of the two non-convex problems on

Covertype and IJCNN datasets. For Covertype, we set the batchsize as 50000, while for

IJCNN we set it as 5000. From the figures, we can see that compared with DP-GD, our DP-

TR method has better performance on both the optimality gap and the gradient norm. This is

due to the fact that DP-TR has improved the bound of SOSP (see Remark 4.3.2). However,

the results of DP-STR are worse than that of DP-GD and DP-TR. We attribute this to the

fact that the noise level of DP-STR added in each iteration (steps 2 and 3) is higher than that

of DP-TR and DP-GD. For example, in Step 2 of Algorithm 4.3.29 we add a Gaussian noise

with variance σ2 =
256L2 ln 5T

δ
ln 2
δ

n2ε2
to each coordinate, while in step 3 of Algorithm 4.3.28 we

only need to add a Gaussian noise with variance σ2 = 4L2T
n2φ
≈ 64L2T log 1

δ

n2ε2
. Equivalently, the

sub-optimality of DP-STR is due to the higher level of noise that needs to be added, which

is required by the Advanced Composition Theorem to ensure (ε, δ)-DP. We leave it as an

open problem to determine how to improve the practical performance of DP-STR.

The third subfigures of Figure 4.6, 4.7, 4.8 and 4.9 show the results on the optimality

gap w.r.t time of the two non-convex problems on the datasets of Covertype and IJCNN.

Here we fix ε to be 1 in all the experiments. We can see that although the gap of DP-STR is
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worse than that of DP-GD and DP-TR, its running time is the least one. This is due to the

fact that DP-STR needs only to evaluate a subset of the gradient and Hessian matrix, instead

of the full ones as in DP-TR and DP-GD.

(a) Covertype (b) IJCNN

Figure 4.5: Accuracy w.r.t privacy level on Covertype and IJCNN datasets

(a) Optimality gap w.r.t privacy
level ε

(b) Gradient norm w.r.t privacy
level ε

(c) Optimality gap w.r.t time
(seconds)

Figure 4.6: Results of logistic regression with non-convex regularizer on Covertype dataset

4.3.4 Omitted Proofs

Proof of Theorem 4.3.1

The guarantee of (ε, δ)- DP comes from the Moment Accountant in Lemma 2.1.7. Below

we show that one of {w1, w2, · · · , wT} is α-SOSP with high probability.
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(a) Optimality gap w.r.t privacy
level ε

(b) Gradient norm w.r.t privacy
level ε

(c) Optimality gap w.r.t time
(seconds)

Figure 4.7: Results of logistic regression with non-convex regularizer on IJCNN dataset

(a) Optimality gap w.r.t privacy
level ε

(b) Gradient norm w.r.t privacy
level ε

(c) Optimality gap w.r.t time
(seconds)

Figure 4.8: Results of sigmoid regression with `2 norm regularizer on Covertype dataset

(a) Optimality gap w.r.t privacy
level ε

(b) Gradient norm w.r.t privacy
level ε

(c) Optimality gap w.r.t time
(seconds)

Figure 4.9: Results of sigmoid regression with `2 norm regularizer on IJCNN dataset
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For convenience, we use the following notations F (w) = L(w,D), {ηt} = η = 1
M

,

Φ =
√

α3

ρ
χ−3c−5, r = αχ−3c−6, Γ = χc

η
√
ρα

and χ = max{1, C1 log dMB
ραξ
} for some

constant C1 and enough large constant c.

By the concentration inequality of Gaussian distribution, we have the following lemma.

Lemma 4.3.2. With probability at least 1− ξ
2
, for all i ∈ [T ],

‖εi‖2 ≤

√
2c2 log 1

δ
TdL log 4T

ξ

nε
≤ r = αχ−3c−6.

Below we assume that the event in Lemma 4.3.2 happens. Next, we show the following.

Lemma 4.3.3. If ‖F (wt)‖2 ≥ α, then we have

F (wt+1)− F (wt) ≤ −η
α2

4
.

Proof of Lemma 4.3.3. By the M -smoothness and taking η = 1
M

, we have

F (wt+1) ≤ F (wt) + 〈∇F (wt), wt+1 − wt〉+
M

2
‖wt+1 − wt‖2

2

≤ F (wt)− η‖∇F (wt)‖2
2 + η‖∇F (wt)‖2‖εt‖2

+
η2M

2
[‖∇F (wt)‖2

2 + 2‖∇F (wt)‖2‖εt‖2 + ‖εt‖2
2]

= F (wt)− η‖∇F (wt)‖2[
1

2
‖∇F (wt)‖2 − 2‖εt‖2] +

η

2
‖εt‖2

2

≤ F (wt)−
ηα2

4
,

where the last inequality is due to the following: by the assumption on n, we have ‖εt‖ ≤

αξ−3c−6 ≤ α
20

for sufficiently large c and ‖∇F (wt)‖2 ≥ α.

Next, we prove the following key lemma:

Lemma 4.3.4. If ‖∇F (wt)‖ ≤ α and λmin(∇2F (wt)) ≤ −
√
ρα, then in Algorithm 4, with

probability 1− ξ, we have F (wt+Γ)− F (wt) ≤ −Φ.
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Proof of Lemma 4.3.4. To prove this lemma, we need the following lemmas.

Lemma 4.3.5.

F (wt+1)− F (wt) ≤ −
η

4
‖∇F (wt)‖2

2 + 5η‖εt‖2
2.

Proof of Lemma 4.3.5. By the M -smoothness, we have

F (wt+1) ≤ F (wt) + 〈∇F (wt), wt+1 − wt〉+
M

2
‖wt+1 − wt‖2

2

≤ F (wt)− η〈F (wt), F (wt) + εt〉+
η2M

2
(‖∇F (wt)‖2

2 + 2‖∇F (wt)‖2‖εt‖2 + ‖εt‖2
2)

≤ F (wt)−
η

2
‖∇F (wt)‖2

2 + 2η‖∇F (wt)‖2‖εt‖2 +
η

2
‖εt‖2

2

≤ F (wt)−
η

4
‖∇F (wt)‖2

2 + 5η‖εt‖2
2.

Lemma 4.3.6. For all t+ 1 ≤ T , we have

‖wt+1 − w1‖2
2 ≤ 8ηT (F (w1)− F (xT+1)) + 50η2T

T∑
t=1

‖εt‖2
2.

Proof of Lemma 4.3.6. For any t ≤ T − 1, by Lemma 4.3.5, we have

‖wt+1 − wt‖2
2 ≤ η2‖∇F (wt) + ε‖2

2 ≤ 2η2‖∇F (wt)‖2
2 + 2η2‖εt‖2

2

≤ 8η(F (wt)− F (wt+1)) + 50η2‖εt‖2
2.

Thus we have

T∑
t=1

‖wt+1 − wt‖2
2 ≤ 8η(F (w1)− F (wT+1)) + 50η2

T∑
t=1

‖εt‖2
2.
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In total, we get

‖wt+1 − w1‖2
2 ≤ (

t∑
i=1

‖wi+1 − wi‖2)2 ≤ t

t∑
i=1

‖wi+1 − wi‖2
2 ≤ T

T∑
t=1

‖wt+1 − wt‖2
2.

Let DPGD(t)
ε (x) be our algorithm that updates t-times with perturbations {ε1, · · · , }

fixed and begins with x. Define the stuck region as:

X ε(w̃) = {w|w ∈ Bw̃(ηr), and Pr(F (DPGD(Γ)
ε (w))− F (w̃) ≥ −Φ) ≥

√
ξ}. (4.62)

Intuitively, the later perturbations of the coupling sequence are the same while the very first

perturbation is used to escape the saddle points.

Lemma 4.3.7. There exists a large enough constant c such that if ‖∇F (w̃)‖2 ≤ α and

λmin(∇2F (w̃)) ≤ −√ρε, then the width of X ε(w̃) along the minimum eigenvector of w̃ is

at most ξηr
√

2π
d

.

Proof of Lemma 4.3.7. To prove this lemma, we let emin be the minimum eigenvector of

∇2F (w̃). It suffice to show that for any w1, w
′
1 ∈ Bw̃(ηr) satisfying the condition of

w1 − w′1 = λemin, where |λ| ≥ ξηr
√

2π
d

, w1 /∈ X ε(w̃) or w′1 /∈ X ε(w̃).

Let wΓ+1 = DPGD
(Γ)
ε (w1) and w′Γ+1 = DPGD

(Γ)
ε (w′1), where the two sequences are

independent. To show that w1 /∈ X ε(w̃) or w′1 /∈ X ε(w̃), it is sufficient to demonstrate that

with probability at least 1− ξ

min{F (wΓ+1)− F (w̃), F (w′Γ+1)− F (w̃)} ≤ −Φ. (4.63)

That is due to the fact that if w1, w
′
1 ∈ X ε(w̃), we have, with probability at least ξ, that

F (wΓ+1)−F (w̃) ≥ −Φ and F (w′Γ+1)−F (w̃) ≥ −Φ. This will mean that with probability
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at most 1− ξ,

min{F (wΓ+1)− F (w̃), F (w′Γ+1)− F (w̃)} ≤ −Φ, (4.64)

which contradicts (4.63).

To prove that (4.63) holds with probability at least 1− ξ, we need to show that

1. max{F (w1)− F (w̃), F (w′1)− F (w̃)} ≤ Φ,

2. with probability at least 1− δ, min{F (wΓ+1)− F (w1), F (w′Γ+1)− F (w′1)} ≤ −2Φ.

For (1), we have, by the definition of w1 ∈ Bw̃(ηt) and the M -smoothness, that

F (w1)− F (w̃) ≤ αηr +
M

2
(ηr)2 = O(

α2

M
χ−3c−6) ≤ Φ

for sufficiently large c. Similarly, we have the same for F (w′1)− F (w̃).

To prove (2), we first assume that it is not true, i.e.,

min{F (wΓ+1)− F (w1), F (w′Γ+1)− F (w′1)} ≥ −2Φ.

Then, by Lemmas 4.3.2 and 4.3.6, we have ∀t ∈ [Γ + 1] that for sufficiently large c > 0,

max{‖wt − w̃‖2, ‖w′t − w̃‖2}

≤ max{‖wt − w1‖2 + ‖w1 − w̃‖2,max{‖w′t − w′1‖2 + ‖w′1 − w̃‖2}}

≤
√

16ηΓΦ + 50η2Γ2r2 + ηr

≤
√

16ηΓΦ + 50η2Γ2α2χ−4c−12 + ηαχ−3c−6

≤ 4(

√
α

ρ
χ−1c−2) = R,

where the last inequality is due to the fact that M ≥ √ρα. This means that both sequences

{wt}Γ+1
t=1 and {w′t}Γ+1

t=1 do not leave the ball with radius R around w̃. Let H = ∇2F (w̃) and
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xt := wt − w′t. We have

xt+1 = xt − η[∇F (wt)−∇F (w′t)] = (I − ηH)xt − η∆txt

≤ (I − ηH)tx1 − η
t∑

τ=1

(I − ηH)t−τ (∆τxτ )),

where ∆t =
∫ 1

0
[∇F (w′t + θ(wt − w′t)) − H]dθ. By Hessian Lipshitz, we have ∆t ≤

ρmax{‖wt − w̃‖2, ‖w′t − w̃‖2} ≤ ρR. We now show the following by induction:

‖η
t∑

τ=1

(I − ηH)t−τ (∆τxτ )‖ ≤
1

2
‖(I − ηH)tx1‖2. (4.65)

For the base case of t = 1, we can easily verify it using the fact that ηρR ≤ 1
2

for sufficiently

large c. Suppose that it holds for all t′ ≤ t. This gives us ‖xt′‖2 ≤ 2‖(I − ηH)t
′
x1‖2. Let

γ = λmin(∇2F (w̃)). For the case of t+ 1 ≤ Γ + 1, we have

‖η
t∑

τ=1

(I − ηH)t−τ (∆τxτ )‖ ≤ ηρR‖
t∑

τ=1

(I − ηH)t−τ‖2‖xτ‖2 ≤ ηρRΓ(1 + ηγ)t‖x1‖2

≤ 1

4
‖(I − ηH)tx1‖2,

where the third inequality uses the fact that x0 is along the direction of the minimum

eigenvector of H , and the last one is due to the fact that ηρRΓ = 4c−1 ≤ 1
4

for large enough

constant c.
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Thus, in total we have

‖xΓ+1‖ ≥ ‖(I − ηH)Γx1‖2 − ‖η
Γ∑
τ=1

(I − ηH)t−τ (∆τxτ )‖2

≥ 1

2
‖(I − ηH)Γx1‖2 =

1

2
(1− ηγ)Γ‖x1‖2

≥ 1

2
(1 + η

√
ρε)Γ‖x1‖2

≥ 1

2
(1 + η

√
ρε)Γξηr

√
2π

d

≥ (1 + η
√
ρα)Γ ξαχ

−3c−6

2M

≥ 2η
√
ραΓ ξαχ

−3c−6

2M

≥ 8

√
α

ρ
χ−1c−2 = 2R,

where the last inequality is due to the fact that Γ = χc
η
√
ρα

and χ = max{1, log
√
dM

ξ
√
ρα
}. From

the above, we can see that when c is sufficiently large, the above inequalities hold. Thus, we

have ‖xΓ+1‖2 ≥ 2R. This contradicts the fact that max{‖wt − w̃‖2, ‖w′t − w̃‖2} ≤ R. This

completes the proof.

We now return to the proof of Lemma 4.3.4. Let r0 = ξr
√

2π
d

. By Lemma 4.3.7, we

know that X ε(wt) has width at most ηr0 in the direction of the minimum eigenvector of

∇2F (wt). Thus, we have

Vol(X ε(wt)) ≤ Vol(B(d−1)
0 (ηr)) · ηr0, (4.66)

which gives us

Vol(X ε(wt))

Vol(Bdwt(ηt)
) ≤ Vol(B(d−1)

0 (ηr)) · ηr0

Vol(Bdwt(ηt)
) =

r0

r
√
π

Γ(d
2

+ 1)

Γ(d
2

+ 1
2
)
≤ r0

r
√
π

√
d+ 1

2
≤ 2ξ.

Hence, with probability at least 1− 2ξ, the perturbation lands in Bdwt(ηt)\X
ε(wt). That is,
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with probability at least 1−
√
ξ, the following holds

F (DPGD(Γ)
ε (wt))− F (wt) ≤ −Φ.

Thus, we have the above inequality with probability at least (1 − ξ)(1 − 2ξ)(1 −
√
ξ) ≥

1− 3
√
ξ. Reparametrizing ξ′ = 3

√
ξ only affects the factors in χ.

Now, we prove Theorem 4.3.1.

Proof of Theorem 4.3.1. By Lemmas 4.3.3 and 4.3.4, we have, with probability at least

1− 2B
Φ
ξ, that the algorithm will find an α-SOSP in the following number of iterations

O(
B

ηα2
+
BΓ

Φ
) = O(

Bχ4

ηα2
).

What we need is that √
2c2 log 1

δ
TpL log 4T

ξ

nε
≤ r = αχ−3c−6,

which means n ≥ Ω̃(
√
MBξ5c6

√
2c2 log 1

δ
pL

εα2 ). Taking ξ = 2B
Φ
ξ only affects the log term.

This completes the proof.

Proof of Theorem 4.3.2

By a similar argument given in the proof of Theorem 4.3.1, we known that there exist c1, c2

that make step 2 to step 6 ( ε
2
, δ

2
)-DP. Thus, the whole algorithm is (ε, δ)-DP.

By Lemma 4.3.8, we know that with probability at least 1− ξ − T
pC

‖εt‖2 ≤

√
c2 log 1

δ
TdL log 8T

ξ

nε
= Err1

‖Ht‖2 ≤
C
√
c3 log 1

δ
TMd

nε
= Err2.
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Now, we assume that the above event happens. By Theorem 4.3.1, we know that with

probability at least 1 − ξ
2
, there exists ‖∇F (wt)‖2 ≤ α

2
and λmin(∇2F (wt)) ≥ −

√
ρα
2

.

Thus, for this t, we have

‖gt‖2 ≤ Err1 +
α

2
≤ α

λmin(H̃t) ≥ λmin(∇2F (wt))− Err2 ≥ −
√
ρα.

These inequalities hold when Err1 ≤ α
2

and Err2 ≤ (1 −
√

1
2
)
√
ρα. Thus, the size n

should satisfy

n ≥ Ω̃
(

max{

√
BM log 1

δ
dL log 1

ξ

εα2
,

√
log 1

δ
BMMd log 1

ξ

ρεα2
}
)
.

Combining this with Theorem 4.3.1, we get the theorem.

Proof of Theorem 4.3.3

First, we show the guarantee of (ε, δ)-DP. By Lemma 2.1.7, we know that σ2
1 =

16c2 log 2
δ
L2T

n2ε2
,

where c2 is the constant in Lemma 2.1.7. Hence, it is ( ε
2
, ε
δ
)-DP. Due to the L-smoothness,

we have that for any pair of neighboring datasets D,D′, ‖∇2L(w,D)−∇2L(w,D′)‖2 ≤

2L, which means that ‖∇2L(w,D) − ∇2L(w,D′)‖F ≤ 2
√
dL. This implies that if we

view the Hessian matrix as a vector, the `2-sensitivity is 2
√
dL. Also, due to symmetric

structure, adding symmetric Gaussian matrix with each entry sampled fromN (0, σ2
2), where

σ2
2 =

c3T log 1
δ
M2d

n2ε2
, will ensure ( ε

2
, δ

2
)-DP. Thus, the algorithm is (ε, δ)-DP.

Then, we show the ability of escaping saddle points. For simplicity, we let F (·) =

L(·, D),
√
ρα = γ, γ′ = γ

2
, α′ = α

2
, and r = Φ2γ′2

18ρD3 .

We first show the following lemma by using the concentration of Gaussian distribution

and the spectrum of symmetric Gaussian noise [275].

Lemma 4.3.8. For any 0 < ξ < 1, there exists a constant C, c3, c2 > 0 such that with
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probability at least 1− ξ − T
pC

, for any t ∈ [T ],

‖εt‖2 ≤

√
c2 log 1

δ
TdL log 8T

ξ

nε
= Err1 (4.67)

‖Ht‖2 ≤
C
√
c3 log 1

δ
TMd

nε
= Err2. (4.68)

In the remaining analysis, we assume that the events in Lemma 4.3.8 happen, and the

data size n is large enough such that

Err1 ≤ min{ Φ2γ′2

18ρD4
,
α′

4D
} (4.69)

Err2 ≤
Φγ′

9D2
. (4.70)

Thus, n should be

n ≥ max{
18
√
c2 log 1

δ
TdL log 8T

ξ
ρD4

εΦ2γ′2
,
4
√
c2 log 1

δ
TdL log 8T

ξ
D

εα′
,
9
√
c3 log 1

δ
TD2Md

Φγ′ε
}.

(4.71)

We now show the iteration complexity of Algorithm 5. First, we consider the case of

gTt (vt − wt) ≤ −α′.

Lemma 4.3.9. For wt, if gTt (vt − wt) ≤ −α′, then we have

F (wt+1) ≤ F (wt)−
α′2

4D2M
. (4.72)

Proof of Lemma 4.3.9. By the M -smoothness of F (·), we have

F (wt+1) ≤ F (wt) + 〈∇F (wt), wt+1 − wt〉+
M

2
‖wt+1 − wt‖2

2

≤ F (wt) + η〈gt, vt − wt〉+ η〈εt, wt − vt〉+
η2MD2

2

≤ F (wt)− ηα′ + ηDErr1 +
η2MD2

2
.
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Taking η = α′

D2M
, since Err1 ≤ α′

4D
, we have

F (wt+1) ≤ F (wt)−
α′2

4D2M
.

Lemma 4.3.10. For a given wt, if gt(vt − wt) ≥ −α′ and q(ut) ≤ −Φγ′, then we have

F (wt+1) ≤ F (wt)−
Φ3γ′3

6ρ2D6
. (4.73)

Proof of Lemma 4.3.10.

F (wt+1)

≤ F (wt) + 〈∇F (wt), wt+1 − wt〉+
1

2
(wt+1 − wt)T∇2F (wt)(wt+1 − wt) +

ρ

6
‖wt+1 − wt‖2

≤ F (wt) + θ〈∇F (wt), ut − wt〉+
θ2

2
(ut − wt)T∇2F (wt)(ut − wt) +

θ3ρD3

6

≤ F (wt) + θ〈gt, ut − wt〉+ θ〈ε, wt − ut〉+
θ2

2
(ut − wt)T H̃t(ut − wt)

− θ2

2
(ut − wt)THt(ut − wt) +

θ3ρD3

6

≤ F (wt) + θr + θDErr1 −
θ2Φγ′

2
+
θ2D2Err2

2
+
θ3ρD3

6
.

Taking θ = Φγ′

ρD3 and by the inequalities Err1 ≤ Φ2γ′2

18D4ρ
, Err2 ≤ Φγ′

9D2 , and r = Φ2γ′2

18ρD3 , we get

the lemma.

By Lemmas 4.3.9 and 4.3.10, we know that under the events of Lemma 4.3.8, the

algorithm terminates in T = O(max{D2MB
α′2

, Bρ
2D6

Φ3γ′3
}) iterations.

Next, we will show that under the events of Lemma 4.3.8, the outputwt is an (α, γ)-SOSP.
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From the theorem, we know that wt satisfies the following conditions:

gTt (v − wt) ≥ −α′,∀v ∈ C,

(u− wt)T H̃t(u− wt) ≥ −Φγ′,∀u ∈ C, gTt (u− wt) ≤ r.

We will first show that wt satisfies the first order condition, that is

max
u∈C
〈∇F (wt), u− wt〉 ≥ min

u∈C
(〈gt, u− wt〉 −DErr1) ≥ −α′ −DErr1 ≥ −α.

We then show that wt satisfies the second-order property.

Let A = {w|〈∇F (wt), w − wt〉 = 0} and B = {w|gtt(w − wt) ≤ r}. We can show that

A ⊆ B. This is due to the following. For any w ∈ A, 〈∇F (wt), w − wt〉 = 0. Thus,

gtt(w − wt) = ∇F (wt)
T (w − wt) + εTt (w − wt) ≤ D · Err1 ≤ r.

Finally, for any w ∈ C, we have

(w − wt)T∇2F (wt)(w − wt) = (w − wt)THt(w − wt)− (w − wt)T H̃t(w − wt)

≥ −Φγ′ −D2Err2

≥ −10

9
Φ
γ

2
≥ −5

9
Φγ ≥ −γ.

Thus, for all w ∈ C satisfying the condition of 〈∇F (wt), w − wt〉 = 0, we have (w −

wt)
T∇2F (wt)(w − wt) ≥ −γ.

Thus, n should satisfy

n ≥ Ω̃
(

max{
LD7

√
dMB log 1

δ
log 1

ξ
ρ1/4

εΦ7/2α2
,

√
log 1

δ
dBMLD4 log 1

ξ
ρ1/4

εα2Φ3/2

,
d
√
BM3 log 1

δ
D5 log 1

ξ

ρ1/4Φ5/2α3/2ε
}
)
.
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Proof of Theorem 4.3.4

By the relation between zCDP and (ε, δ)-DP, we can see that it suffices to show that

Algorithm 4.3.28 is φ-zCDP.

To do this, we will show that each iteration is φ
T

-zCDP. Then, by the composition theorem

we know that the whole algorithm is φ-zCDP.

We first show that Step 3 is φ
2T

-zCDP. This is due to the Lipschitz condition in Assump-

tion 4.3.1 the fact that the `2-norm sensitivity of L(w,D) is bounded by 2G
n

, and Gaussian

mechanism.

Next, we show that Step 4 is also φ
2T

-zCDP. Since the symmetric matrix can be viewed

as a p(p+1)
2

dimensional vector, by the M -smooth property in Assumption Assumption 4.3.1

we know that the `2-sensitivity of∇2L(wk, D) is bounded by

‖∇2L(wk, D)−∇2L(wk, D′)‖F ≤
√
p‖∇2L(wk, D)−∇2L(wk, D′)‖2 ≤

2M
√
p

n
.

Thus by Gaussian mechanism, we know that adding noise Hk ensures that it is φ
2T

-zCDP.

Thus, by the composition theorem of zCDP we know that each iteration is φ
T

-zCDP.

Proof of Theorem 4.3.5

Before giving the proof, we first introduce the following lemmas which show the concentra-

tion bounds of Gaussian distribution and Gaussian random matrices.

Lemma 4.3.11 ([275]). For x ∼ N (0, σ2Ip), with probability at least 1 − ζ for any 1 >

ζ > 0,

‖x‖2 ≤
√

2pσ log
1

ζ
.

Let Z be a symmetric matrix whose upper triangle entries, including the diagonal, are i.i.d

samples fromN (0, σ2). Then, we have, with probability at least 1− 1
pc

, that ‖Z‖2 ≤ C
√
pσ,
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where c, C are universal constants.

By Lemma 4.3.11 and the assumption on n we know that with probability at least

1− ξ − T
pc

we have for all k ∈ {0, 1, · · · , T − 1},

‖εt‖2 ≤
√

2p log
T

ζ

2G
√
T

n
√
φ
≤ α

6
(4.74)

‖Ht‖2 ≤ C
2pM

√
T

n
√
φ
≤
√
αρ

3
. (4.75)

In the following, we will assume that the above events (4.74) and (4.75) occur. From

Assumption 4.3.1 we have

L(wk+1, D) ≤ L(wk, D) + 〈∇L(wk, D), hk〉, 1

2
〈∇2L(wk, D)hk, hk〉+

ρ

6
‖hk‖3

2. (4.76)

Plugging ∇̃L(wk, D) and ∇̃2L(wk, D) into (4.76) and by Cauchy-Schwartz inequality, we

obtain

L(wk+1, D) ≤ L(wk, D) + 〈∇̃L(wk, D), hk〉+ ‖εk‖2‖hk‖2

+
1

2
〈∇̃2L(wk, D)hk, hk〉+

ρ

6
‖hk‖3

2 +
1

2
‖Hk‖2‖hk‖2

2. (4.77)

By (4.74), (4.75) and the fact that ‖hk‖2 ≤ r =
√

α
ρ

, we have

‖εk‖2‖hk‖2 +
1

2
‖Hk‖2‖hk‖2

2 ≤
1

3

α1.5

√
ρ
. (4.78)

By Lemma 4.3.1, we know that the optimality of hk indicates that there exists dual variable
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λk ≥ 0 so that

∇̃L(wk, D) + ∇̃2L(wk, D)hk + λkhk = 0 (4.79)

∇̃2L(wk, D) + λkIp � 0 (4.80)

λk(‖hk‖2 − r) = 0. (4.81)

Thus by (4.79) we obtain

〈∇̃L(wk, D) + ∇̃2L(wk, D)hk + λkhk, hk〉 = 0. (4.82)

Also, by (4.80) we have

〈∇̃2L(wk, D)hk + λkhk, hk〉 ≥ 0. (4.83)

Thus, from (4.82) and (4.83) we get

〈∇̃L(wk, D), hk〉 ≤ 0. (4.84)

Moreover, (4.81) indicates that ‖hk‖ = r =
√

α
ρ

since we have λk >
√
αρ > 0.

Combining (4.84), (4.80), (4.78) with (4.77), we have

L(wk+1, D) ≤ L(wk, D)− λk

2

α

ρ
+

1

3

α1.5

√
ρ
. (4.85)

Thus, if λk >
√
αρ then we have

L(wk+1, D) ≤ L(wk, D)− 1

6
√
ρ
α1.5.

Hence, we can see that λk ≤ √αρ in no more than T =
6
√
ρ∆

α1.5 iterations.

We now show that when λk ≤ √αρ, wk+1 is an O(α)-SOSP. The reason is the following.
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From (4.79), we have

‖∇̃L(wk, D) + ∇̃2L(wk, D)hk‖2 = λk
√
α

ρ
≤ α. (4.86)

Thus, by events (4.74) and (4.75) we have

‖∇L(wk, D) +∇2L(wk, D)hk‖ ≤ ‖εk‖2 + ‖Hkh
k‖2 + ‖∇̃L(wk, D) + ∇̃2L(wk, D)hk‖

≤ α

6
+
α

3
+ α = 1.5α.

On the other side, by using the property of ρ-Hessian Lipschitz we have

‖∇L(wk+1, D)−∇L(wk, D)−∇2L(wk, D)hk‖2 ≤
ρ

2
‖hk‖2 =

α

2
.

Thus, combining the above two inequalities we get∇L(wk+1, D) ≤ 2α.

Moreover, by using the Hessian Lipschitz property and (4.80) we have

∇2L(wk+1, D) � ∇2L(wk, D)− ρ‖hk‖2Ip

� −Hk − λkIp −
√
αρIp

� −7

3

√
αρIp,

which means that wk+1 is 9α-SOSP.

Thus, to satisfy (4.74) and (4.75), n only needs to satisfy

n ≥ Ω(max{
√
p
√
TG ln 1

ζ

α
√
φ

,
pM
√
T√

αρφ
}).

Using Taylor series, we have
√
φ =

√
ε+ ln 1

δ
−
√

ln 1
δ

= O( ε√
ln 1
δ

)[311]. Also since

T = O(
√
ρ

α1.5 ), we get the proof.

206



Proof of Theorem 4.3.6

By the Advanced Composition Theorem (Lemma 2.1.5), it is sufficient to show that each

iteration is ( ε

2
√

2T ln(2/δ)
, δ

2T
)-DP.

We first show that Step 3 is (ε′, δ′) = ( ε

4
√

2T ln(2/δ)
, δ

4T
)-DP. To show this, we consider

the mechanism A(w,D) =
∑n

i=1∇`(w, xi) + ε1, where ε1 ∼ N (0,
8L2 ln 1.25

δ′
( n

2|S| ε
′)2 ). By the

definition of Gaussian mechanism we can see that A(w,D) is ( n
2|S|ε

′, δ′)-DP. Thus, by

the Sub-sampling Property (Lemma 2.1.2), we know that the sub-sampling version of

A, i.e. A(w,S) =
∑

i∈S ∇`(w, xi) + ε1, is (2 |S|
n
· n

2|S|ε
′, δ′)-DP. Also, we note that

∇̃L(wk,S) = 1
|S|A(wk,S). Using the values of ε′ and δ′, we can see that Step 2 is

( ε

4
√

2T ln(2/δ)
, δ

4T
)-DP.

Following the above argument and the ideas in the proof of Theorem 1, we can also

show that Step 4 of Algorithm 4.3.29 is (ε′, δ′) = ( ε

4
√

2T ln(2/δ)
, δ

4T
)-DP. Thus, in total, we

know that Algorithm 4.3.29 is (ε, δ)-DP.

Proof of Theorem 4.3.7

Before giving the proof, we first recall the following lemma which shows the error bound of

(6) and (7) w.r.t the full gradient and Hessian matrix, respectively.

Lemma 4.3.12 (Theorem 7 and 8 in [182]). With probability at least 1− ζ ,

‖∇L(wk,S)−∇L(wk, D)‖2 ≤ O(G

√
ln(p

ζ
)

|S|
).

With probability at least 1− ζ ,

‖∇2L(wk, T )−∇2L(wk, D)‖2 ≤ O(M

√
ln p

ζ

|T |
).

The proof is almost the same as that of Theorem 4.3.5. By Lemmas 4.3.11 and 4.3.12

and the assumptions of n, |S|, |T |, we have, with probability at least 1− 3ζ − T
pc

, that for
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all k ∈ {0, 1, · · · , T − 1},

‖∇̃L(wk,S)−∇L(wk, D)‖2 ≤ O(
L
√
pT ln T

δ

nε
+G

√
ln(pT

ζ
)

|S|
) ≤ α

6
(4.87)

‖∇̃2L(wk, T )−∇2L(wk, D)‖2 ≤ O(
pM
√
T ln T

δ

nε
+M

√
ln pT

ζ

|T |
) ≤
√
αρ

3
. (4.88)

In the following, we will assume that the events of (4.87) and (4.88) occur for all k. Let

sk = ∇̃L(wk,S)−∇L(wk, D) and tk = ∇̃2L(wk, T )−∇2L(wk, D).

From Assumption 4.3.1 we have

L(wk+1, D) ≤ L(wk, D) + 〈∇L(wk, D), hk〉

+
1

2
〈∇2L(wk, D)hk, hk〉+

ρ

6
‖hk‖3

2. (4.89)

Plugging ∇̃L(wk, D) and ∇̃2L(wk, D) into (4.89) and by Cauchy-Schwartz inequality, we

obtain

L(wk+1, D) ≤ L(wk, D) + 〈∇̃L(wk,S), hk〉+ ‖sk‖2‖hk‖2

+
1

2
〈∇̃2L(wk, T )hk, hk〉+

ρ

6
‖hk‖3

2 +
1

2
‖tk‖2‖hk‖2

2. (4.90)

By (4.87), (4.88) and ‖hk‖2 ≤ r =
√

α
ρ

, we have

‖sk‖2‖hk‖2 +
1

2
‖tk‖2‖hk‖2

2 ≤
1

3

α1.5

√
ρ
. (4.91)

By Lemma 4.3.1 we know that the optimality of hk indicates that there exists dual variable
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λk ≥ 0 so that

∇̃L(wk,S) + ∇̃2L(wk, T )hk + λkhk = 0 (4.92)

∇̃2L(wk, T ) + λkIp � 0 (4.93)

λk(‖hk‖2 − r) = 0. (4.94)

Thus, by (4.92) we obtain

〈∇̃L(wk,S) + ∇̃2L(wk, T )hk + λkhk, hk〉 = 0. (4.95)

Also, by (4.93) we have

〈∇̃2L(wk, T )hk + λkhk, hk〉 ≥ 0. (4.96)

Hence, we get

〈∇̃L(wk,S), hk〉 ≤ 0. (4.97)

Moreover, (4.81) indicates that ‖hk‖ = r =
√

α
ρ

, since λk >
√
αρ > 0.

Combining (4.97), (4.93), (4.91) with (4.90), we have

L(wk+1, D) ≤ L(wk, D)− λk

2

α

ρ
+

1

3

α1.5

√
ρ
. (4.98)

Thus, if λk >
√
αρ, we have

L(wk+1, D) ≤ L(wk, D)− 1

6
√
ρ
α1.5.

This means that that λk ≤ √αρ in no more than T =
6
√
ρ∆

α1.5 iterations.

We now show that when λk ≤ √αρ, wk+1 is an O(α)-SOSP. This is due to the following
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reasons. From (4.92), we have

‖∇̃L(wk,S) + ∇̃2L(wk, T )hk‖2 = λk
√
α

ρ
≤ α. (4.99)

Thus, by events (4.87) and (4.88) we have

‖∇L(wk, D) +∇2L(wk, D)hk‖ ≤ ‖sk‖2 + ‖tkhk‖2

+ ‖∇̃L(wk,S) + ∇̃2L(wk, T )hk‖

≤ α

6
+
α

3
+ α = 1.5α.

On the other side, by using the property of ρ-Hessian Lipschitz we have

‖∇L(wk+1, D)−∇L(wk, D)−∇2L(wk, D)hk‖2

≤ ρ

2
‖hk‖2 =

α

2
.

Combining the above two inequalities, we have∇L(wk+1, D) ≤ 2α.

Moreover, by using the Hessian Lipschitz condition and (4.93) we have

∇2L(wk+1, D) � ∇2L(wk, D)− ρ‖hk‖2Ip

� −tk − λkIp −
√
αρIp

� −7

3

√
αρIp,

which means that wk+1 is 9α-SOSP.
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Chapter 5

Empirical Risk Minimization in Local

Differential Privacy Model

In Chapter 3 and 4 we studied Empirical Risk Minimization (ERM) in the central differential

privacy model. While in the central model where data are managed by a trusted centralized

entity which is responsible for collecting them and for deciding which differentially private

data analysis to perform and to release (a classical use case for this model is the one of

census data [140]). In the local model instead, each individual manages his/her proper data

and discloses them to a server through some differentially private mechanisms. The server

collects the (now private) data of each individual and combines them into a resulting data

analysis. A classical use case for this model is the one aiming at collecting statistics from

user devices like in the case of Google’s Chrome browser [110], and Apple’s iOS-10 [273].

As we mentioned in Chapter 2 In the local model, there are two basic kinds of protocols:

interactive and non-interactive. [27] have recently investigated the power of non-interactive

differentially private protocols. Because of its simplicity and its efficiency in term of network

latency, this type of protocols seems to be more appealing for real world applications. Both

Google and Apple use the non-interactive model in their projects [273, 110].

Despite being used in industry, the interactive local model has been much less studied
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than the central one. Part of the reason for this is that there are intrinsic limitations in what

one can do in the local model. As a consequence, many basic questions, that are well studied

in the central model, have not been completely understood in the local model, yet.

In this chapter, we study Empirical Risk Minimization in the Local Differential Privacy

model. In Section 5.1 we study ERM in the non-interactive model and show some negative

results. To alleviate the exponential sample complexity issue, we then relax the classical

non-interactive model where we allow the server has additional public but unlabeled data.

We study the theoretical behaviors of Generalized Linear Models and Non-linear Regression

in this relaxed model. Finally, we transfer our attention to the high dimensional ERM in LDP

model. Specifically, we investigate the sparse linear regression problem in the interactive

model.

5.1 ERM in Non-interactive LDP model

In this section, we first study Differentially Private Empirical Risk Minimization in the

non-interactive local model. Before presenting our contributions and showing comparisons

with previous works, for convenience and to be self-contained we first review definition of

ERM problem, then we will discuss our motivations.

Problem setting [257, 178] Given a convex, closed and bounded constraint set C ⊆ Rp,

a data universe D, and a loss function ` : C × D 7→ R, and an n-size dataset D =

{(x1, y1), (x2, y2), · · · , (xn, yn)} ∈ Dn with data records {xi}ni=1 ⊂ Rp and labels (re-

sponses) {yi}ni=1 ⊂ R defines an empirical risk function: L(w;D) = 1
n

∑n
i=1 `(w;xi, yi)

(note that in some settings, such as mean estimation, there may not be separate labels).

When the inputs are drawn i.i.d from an unknown underlying distribution P on D, we can

also define the population risk function: LP(w) = ED∼Pn [`(w;D)].

Thus, we have the following two types of excess risk measured at a particular output
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wpriv: The empirical risk,

ErrD(wpriv) = L(wpriv;D)−min
w∈C

L(w;D) ,

and the population risk,

ErrP(wpriv) = LP(wpriv)−min
w∈C

LP(w).

The problem considered in this section is to design non-interactive LDP protocols that

find a private estimator wpriv to minimize the empirical and/or population excess risks.

Alternatively, we can express our goal on this problem in terms of sample complexity: find

the smallest n for which we can design protocols that achieve error at most α (in the worst

case over data sets, or over generating distributions, depending on how we measure risk).

[97] first considered the worst-case error bounds for LDP convex optimization. For

1-Lipchitz convex loss functions over a bounded constraint set, they gave a highly interactive

SGD-based protocol with sample complexity n = O(p/ε2α2); moreover, they showed that

no LDP protocol which interacts with each player only once can achieve asymptotically

better sample complexity, even for linear losses.

[257] considered the round complexity of LDP protocols for convex optimization. They

observed that known methods perform poorly when constrained to be run non-interactively.

They gave new protocols that improved on the state-of-the-art but nevertheless required

sample complexity exponential in p. Specifically, they showed:

Theorem 5.1.1 ([257]). Under some assumptions on the loss functions, there is a non-

interactive ε-LDP algorithm such that for all distribution P on D, with probability 1− β, its

population risk is upper bounded by

ErrP(wpriv) ≤ Õ
(
(

√
p log2(1/β)

ε2n
)

1
p+1
)
. (5.1)
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A similar result holds for empirical risk ErrD(wpriv). Equivalently, to ensure an error no

more than α, the sample complexity needs to be n = Õ(
√
pcpε−2α−(p+1)), where c is some

constant (approximately 2).

Furthermore, lower bounds on the parallel query complexity of stochastic optimization

(e.g., [228, 344]) mean that, for natural classes of LDP optimization protocols (based on

the measure of noisy gradients), the exponential dependence of the sample size on the

dimensionality p (in the terms of α−(p+1) and cp) is, in general, unavoidable [257].

This situation is somehow undesirable: when the dimensionality p is high and the target

error is low, the dependency on α−(p+1) could make the sample size quite large. However,

several results have already shown that for some specific loss functions, the exponential

dependency on the dimensionality can be avoided. For example, [257] show that, in the

case of linear regression, there is a non-interactive (ε, δ)-LDP algorithm whose sample

complexity for achieving error at most α in the empirical risk is n = O(p log(1/δ)ε−2α−2).1

This indicates that there is a gap between the general case and some specific loss functions.

This motivates us to consider the following basic question:

Are there natural conditions on the loss function which allow for non-interactive

ε-LDP algorithms with sample complexity sub-exponentially (ideally, it should

be polynomially or even linearly) depending on the dimensionality p in the

terms of α or c?

To answer this question, we make two attempts to approach the problem from different

perspectives. In the first attempt, we show that the exponential dependency on p in the term

of α−(p+1) can be avoided if the loss function is sufficiently smooth. In the second attempt,

we show that there exists a family of loss functions whose sample complexities is depending

on p. Below is a summary of our main contributions.

1Note that these two results are for non-interactive (ε, δ)-LDP, and we mainly focus on non-interactive
ε-LDP algorithms. Thus, we omit terms related to log(1/δ) in this section.

214



Our Contributions:

1. In our first attempt, we investigate the conditions on the loss function guaranteeing

a sample complexity which depends polynomially on p in the term of α. We first

show that by using Bernstein polynomial approximation, it is possible to achieve a

non-interactive ε-LDP algorithm in constant or low dimensions with the following

properties. If the loss function is (8, T )-smooth (see Definition 5.1.4), then with

a sample complexity of n = Õ
(
(c0p

1
4 )pα−(2+ p

2
)ε−2

)
, the excess empirical risk is

ensured to be ErrD ≤ α. If the loss function is (∞, T )-smooth, the sample complexity

can be further improved to n = Õ(4p(p+1)D2
ppε
−2α−4), where Dp depends only on p.

Note that in the first case, the sample complexity is lower than the one in [257] when

α ≤ O(1
p
), and in the second case, the sample complexity depends only polynomially

on α−1, instead of the exponential dependence as in [257]. Furthermore, our algorithm

does not assume convexity for the loss function and thus can be applied to non-convex

loss functions.

2. Then, we address the efficiency issue, which has only been partially studied in previous

works [257]. Following an approach similar to [27], we propose an algorithm for

our loss functions which has only 1-bit communication cost and O(1) computation

cost for each client, and achieves asymptotically the same error bound as the original

one. Additionally, we present a novel analysis for the server showing that if the loss

function is convex and Lipschitz and the convex set satisfies some natural conditions,

then there is an algorithm which achieves the error bound of O(pα) and runs in

polynomial time in 1
α

(instead of exponential time as in [257]) if the loss function is

(∞, T )-smooth.

3. In our second attempt, we study the conditions on the loss function guaranteeing

a sample complexity which depends polynomially on p (in both terms of α and

c). We show that for any 1-Lipschitz generalized linear convex loss function, i.e.,
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`(w;x, y) = f(yi〈w, xi〉) for some 1-Lipschitz convex function f , there is a non-

interactive (ε, δ)-LDP algorithm, whose sample complexity for achieving error α in

empirical risk depends only linearly, instead of exponentially, on the dimensionality

p. Our idea is based on results from Approximation Theory. We first consider the

case of hinge loss functions. For this class of functions, we use Bernstein polynomials

to approximate their derivative functions after smoothing, and then we apply the

Stochastic Inexact Gradient Descent algorithm [102]. Next we extend the result to all

convex general linear functions. The key idea is to show that any 1-Lipschitz convex

function in R can be expressed as a linear combination of some linear functions and

hinge loss functions, i.e., plus functions of inner product [〈w, s〉]+ = max{0, 〈w, s〉}.

Based on this, we propose a general method which is called the polynomial of inner

product approximation.

4. Finally, we show the generality of our technique by applying polynomial approx-

imation to other problems. Specifically, we give a non-interactive LDP algorithm

for answering the class of k-way marginals queries, by using Chebyshev polynomial

approximation, and a non-interactive LDP algorithm for answering the class of smooth

queries, by using trigonometric polynomial approximation.

Table 5.1 shows the detailed comparisons between our results and the results in [257,

362].

5.1.1 Related Work

[178] initiated the study of learning under local differential privacy. Specifically, they

showed a general equivalence between learning in the local model and learning in the

statistical query model. [32] gave the first lower bounds for the accuracy of LDP protocols,

for the special case of counting queries (equivalently, binomial parameter estimation).

The general problem of LDP convex risk minimization was first studied by [97], which
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Methods Sample Complexity Assumption on the Loss Function
[257, Claim 4] Õ(4pα−(p+2)ε−2) 1-Lipschitz

[257, Theorem 10] Õ(2pα−(p+1)ε−2) 1-Lipschitz and Convex

[257] Θ(pε−2α−2) Linear Regression

[362] O
(
p( 8

α
)4 log log(8/α)(4

ε
)2c log(8/α)+2( 1

α2ε2
)
)

Smooth Generalized Linear

This Paper Õ
(
(c0p

1
4 )pα−(2+ p

2
)ε−2

)
(8, T )-smooth

This Paper Õ(4p(p+1)D2
pε
−2α−4) (∞, T )-smooth

This Paper p ·
(
C
α3

)O(1/α3)
/εO( 1

α3 ) Hinge Loss

This Paper p ·
(
C
α3

)O(1/α3)
/εO( 1

α3 ) 1-Lipschitz Convex Generalized Linear

Table 5.1: Comparisons on the sample complexities for achieving error α in the empirical
risk, where c is a constant. We assume that ‖xi‖2, ‖yi‖ ≤ 1 for every i ∈ [n] and the
constraint set ‖C‖2 ≤ 1. Asymptotic statements assume ε, δ, α ∈ (0, 1/2) and ignore
dependencies on log(1/δ).

provided tight upper and lower bounds for a range of settings. Subsequent work considered

a range of statistical problems in the LDP setting, providing upper and lower bounds—we

omit a complete list here.

[257] initiated the study of the round complexity of LDP convex optimization, connecting

it to the parallel complexity of (non-private) stochastic optimization.

Convex risk minimization in the non-interactive LDP model received considerable

recent attentions [362, 257, 299] (see Table 5.1 for details). [257] first studied the problem

with general convex loss functions and showed that the exponential dependence on the

dimensionality is unavoidable for a class of non-interactive algorithms. In this paper, we

investigate the conditions on the loss function that allow us to avoid the issue of exponential

dependence on p in the sample complexity. [82] showed that an exponential lower bound

on either the term of 1
α

or the dimension p on the number of samples necessary to solve the

standard task of learning a large-margin linear separator in the non-interactive LDP model.

The work most related to ours (i.e., the second attempt) is that of [362], which also

considered some specific loss functions in high dimensions, such as sparse linear regression

217



and kernel ridge regression. The major differences with our results are the following. Firstly,

although they studied a similar class of loss functions (i.e., Smooth Generalized Linear Loss

functions) and used the polynomial approximation approach, their approach needs quite

a few assumptions on the loss function in addition to the smoothness condition, such as

Lipschitz smoothness and boundedness on the higher order derivative functions, which are

clearly not satisfied by the hinge loss functions. Contrarily, our results only assume the

1-Lipschitz convex condition on the loss function. Secondly, even though the idea in our

algorithm for the hinge loss functions is similar to theirs, we also consider generalized linear

loss function by using techniques from approximation theory.

[185, 359] recently studied the problem of releasing k-way marginal queries in LDP.

They compared different LDP methods to release marginal statistics, but did not consider

methods based on polynomial approximation.

5.1.2 Preliminaries

Algorithm 5.1.30 1-dim LDP-AVG

1: Input: Player i ∈ [n] holding data vi ∈ [0, b], privacy parameter ε.
2: for Each Player i do
3: Send zi = vi + Lap( b

ε
)

4: end for
5: for The Server do
6: Output a = 1

n

∑n
i=1 zi.

7: end for

Since we only consider non-interactive LDP through the section, we will use LDP as

non-interactive LDP below.

As an example that will be useful throughout the paper, the next lemma shows a property

of an ε-LDP algorithm for computing 1-dimensional average.

Lemma 5.1.1. For any ε > 0, Algorithm 5.1.30 is ε-LDP. Moreover, if player i ∈ [n] holds

value vi ∈ [0, b] and n > log 2
β

with 0 < β < 1, then, with probability at least 1 − β, the
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output a ∈ R satisfies:

|a− 1

n

n∑
i=1

vi| ≤
2b
√

log 2
β

√
nε

.

Bernstein polynomials and approximation We give here some basic definitions that

will be used in the sequel; more details can be found in [7, 203, 219].

Definition 5.1.1. Let k be a positive integer. The Bernstein basis polynomials of degree k

are defined as bv,k(x) =
(
k
v

)
xv(1− x)k−v for v = 0, · · · , k.

Definition 5.1.2. Let f : [0, 1] 7→ R and k be a positive integer. Then, the Bernstein

polynomial of f of degree k is defined as Bk(f ;x) =
∑k

v=0 f(v/k)bv,k(x). We denote by

Bk the Bernstein operator Bk(f)(x) = Bk(f, x).

Bernstein polynomials can be used to approximate some smooth functions over [0, 1].

Definition 5.1.3 ([219]). Let h be a positive integer. The iterated Bernstein operator of order

h is defined as the sequence of linear operatorsB(h)
k = I−(I−Bk)

h =
∑h

i=1

(
h
i

)
(−1)i−1Bi

k,

where I = B0
k denotes the identity operator and Bi

k is defined as Bi
k = Bk ◦Bk−1

k . The iter-

ated Bernstein polynomial of order h can be computed as B(h)
k (f ;x) =

∑k
v=0 f( v

k
)b

(h)
v,k(x),

where b(h)
v,k(x) =

∑h
i=1

(
h
i

)
(−1)i−1Bi−1

k (bv,k;x).

Iterated Bernstein operator can well-approximate multivariate (h, T )-smooth functions.

Definition 5.1.4 ([219]). Let h be a positive integer and T > 0 be a constant. A function

f : [0, 1]p 7→ R is (h, T )-smooth if it is in class Ch([0, 1]p) and its partial derivatives up

to order h are all bounded by T . We say it is (∞, T )-smooth, if for every h ∈ N it is

(h, T )-smooth.2

Note that (h, T )-smoothness is incomparable with the Lipschitz smoothness. In (h, T )-

smoothness, we assume it is smooth up to the h-th order while Lipschitz smooth is only for

the first order, from this view, (h, T )-smoothness is stronger than the Lipschitz smoothness.

2Ch([0, 1]p) means the class of functions that is h-th order smooth in the interval [0, 1]p.
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However, in Lipschitz smoothness we assume the gradient norm of the function will be

bounded by some constant while (h, T )-smoothness assumes that each partial derivative (or

each coordinate of the gradient) is bounded by some constant, so from this view Lipschitz

smoothness is stronger than (h, T )-smoothness.

Lemma 5.1.2 ([219]). If f : [0, 1] 7→ R is a (2h, T )-smooth function, then for all positive

integers k and y ∈ [0, 1], we have |f(y)−B(h)
k (f ; y)| ≤ TDhk

−h, where Dh is a constant

independent of k, f and y.

The above lemma is for univariate functions, which has been extended to multivariate

functions in [7].

Definition 5.1.5. Assume f : [0, 1]p 7→ R and let k1, · · · , kp, h be positive integers. The

multivariate iterated Bernstein polynomial of order h at y = (y1, . . . , yp) is defined as:

B
(h)
k1,...,kp

(f ; y) =

p∑
j=1

kj∑
vj=0

f(
v1

k1

, . . . ,
vp
kp

)

p∏
i=1

b
(h)
vi,ki

(yi). (5.2)

We denote B(h)
k = B

(h)
k1,...,kp

(f ; y) if k = k1 = · · · = kp.

Lemma 5.1.3 ([7]). If f : [0, 1]p 7→ R is a (2h, T )-smooth function, then for all positive

integers k and y ∈ [0, 1]p, we have

|f(y)−B(h)
k (f ; y)| ≤ O(pTDhk

−h).

Where Dh is a universal constant only related to h.

In the following, we will rephrase some basic definitions and lemmas on Chebyshev

polynomial approximation.

Definition 5.1.6. The Chebyshev polynomials {T (x)n}n≥0 are recursively defined as fol-

lows

T0(x) ≡ 1, T1(x) ≡ x and Tn+1(x) = 2xTn(x)− Tn−1(x).
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It satisfies that for any n ≥ 0

Tn(x) =


cos(n arccos(x)), if |x| ≤ 1

cosh(narccosh(x)), if x ≥ 1

(−1)n cosh(narccosh(−x)), if x ≤ −1

Definition 5.1.7. For every ρ > 0, let Γρ be the ellipse Γ of foci ±1 with major radius 1 + ρ.

Definition 5.1.8. For a function f with a domain containing in [−1, 1], its degree-n

Chebyshev truncated series is denoted by Pn(x) =
∑n

k=0 akTk(x), where the coefficient

ak = 2−1[k=0]
π

∫ 1

−1
f(x)Tk(x)√

1−x2 dx.

Lemma 5.1.4 (Cheybeshev Approximation Theorem [280]). Let f(z) be a function that is

analytic on Γρ and has |f(z)| ≤M on Γρ. Let Pn(x) be the degree-n Chebyshev truncated

series of f(x) on [−1, 1]. Then, we have

max
x∈[−1,1]

|f(x)− Pn(x)| ≤ 2M

ρ+
√

2ρ+ ρ2
(1 + ρ+

√
2ρ+ ρ2)−n,

|a0| ≤M , and |ak| ≤ 2M(1 + ρ+
√

2ρ+ ρ2)−k.

The following theorem shows the convergence rate of the Stochastic Inexact Gradient

Method [102], which will be used in our algorithm. We first give the definition of inexact

oracle (see Section 5.1.8 for the algorithm and general theory of SIGM).

Definition 5.1.9. For an objective function f , a (γ, β, σ) stochastic oracle returns a tuple
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(Fγ,β,σ(w; ξ), Gγ,β,σ(w; ξ)) (ξ means the randomness in the algorithm) such that

Eξ[Fγ,β,σ(w; ξ)] = fγ,β,σ(w),

Eξ[Gγ,β,σ(w; ξ)] = gγ,β,σ(w),

Eξ[‖Gγ,β,σ(w; ξ)− gγ,β,σ(w)‖2
2] ≤ σ2,

0 ≤ f(v)− fγ,β,σ(w)− 〈gγ,β,σ(w), v − w〉 ≤ β

2
‖v − w‖2 + γ, ∀v, w ∈ C.

Lemma 5.1.5 ([102]). Assume that f(w) is endowed with a (γ, β, σ) stochastic oracle with

β ≥ O(1). Then, the sequence wk generated by SIGM algorithm satisfies the following

inequality

E[f(wk)]−min
w∈C

f(w) ≤ Θ(
βσ‖C‖2

2√
k

+ γ).

5.1.3 LDP-ERM with Smooth Loss Functions

In this section, we will mainly focus on reducing the sample complexity of 1
α

. We first show

that if the loss function is∞-smooth (with some additional assumptions), then its sample

complexity can be reduced to only polynomial in 1
α

instead of exponential dependency in

the previous paper. Then we talk about how to reduce the communication and computation

cost for each user and also provide an algorithm which can let the server solve the problem

more efficient.

In this section, we impose the following assumptions on the loss function.

Assumption 1: We let x denote (x, y) for simplicity unless specified otherwise. We assume

that there is a constraint set C ⊆ [0, 1]p and for every x ∈ D and w ∈ C, `(·;x) is well

defined on [0, 1]p and `(w;x) ∈ [0, 1]. These closed intervals can be extended to arbitrarily

bounded closed intervals.

Note that our assumptions are similar to the ‘Typical Settings’ in [257], where C ⊆ [0, 1]p

appears in their Theorem 10, and `(w;x) ∈ [0, 1] from their 1-Lipschitz requirement and

‖C‖2 ≤ 1. We note that the above assumptions on xi, yi and C are quite common for the
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studies of LDP-ERM [257, 362].

Basic Idea

Definition 5.1.5 and Lemma 5.1.3 tell us that if the value of the empirical risk function, i.e.

the average of the sum of loss functions, is known at each of the grid points (v1

k
, v2

k
· · · vp

k
),

where (v1, · · · , vp) ∈ T = {0, 1, · · · , k}p for some large k, then the function can be well

approximated. Our main observation is that this can be done in the local model by estimating

the average of the sum of loss functions at each of the grid points using Algorithm 5.1.30.

This is the idea of Algorithm 5.1.31.

Algorithm 5.1.31 Local Bernstein Mechanism

1: Input: Player i ∈ [n] holds a data record xi ∈ D, public loss function ` : [0, 1]p×D 7→
[0, 1], privacy parameter ε > 0, and parameter k.

2: Construct the grid T = {v1

k
, . . . , vp

k
}{v1,...,vp}, where {v1, . . . , vp} ∈ {0, 1, · · · , k}p.

3: for Each grid point v = (v1

k
, . . . , vp

k
) ∈ T do

4: for Each Player i ∈ [n] do
5: Calculate `(v;xi).
6: end for
7: Run Algorithm 5.1.30 with ε = ε

(k+1)p
and b = 1 and denote the output as L̃(v;D).

8: end for
9: for The Server do

10: Construct Bernstein polynomial, as in (5.2), based on the perturbed empirical loss
function values {L̃(v;D)}v∈T . Denote L̃(·;D) the corresponding function.

11: Compute wpriv = arg minw∈C L̃(w;D).
12: end for

Theorem 5.1.2. For any ε > 0 and 0 < β < 1, Algorithm 5.1.31 is ε-LDP.3 Assume that the

loss function `(·;x) is (2h, T )-smooth for all x ∈ D, some positive integer h and constant

T = O(1). If the sample complexity n satisfies the condition of n = O
(

log 1
β

4p(h+1)

ε2D2
h

)
, then

by setting k = O
(

(
Dh
√
pnε

2(h+1)p
√

log 1
β

)
1

h+p

)
, with probability at least 1− β we have:

ErrD(wpriv) ≤ Õ
( log

h
2(h+p) ( 1

β
)D

p
p+h

h p
p

2(h+p) 2(h+1)p h
h+p

n
h

2(h+p) ε
h
h+p

)
, (5.3)

3Note that we can use Advanced Composition Theorem in [104] to reduce the noise. For simplicity, we
omit it here; the following algorithms are also the same.
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where Õ hides the log and T terms.

From (5.3) we can see that in order to achieve error α, the sample complexity needs to

be

n = Õ(log
1

β
D

2p
h
h p

p
h4(h+1)pε−2α−(2+ 2p

h
)). (5.4)

This implies the following special cases.

Corollary 5.1.1. If the loss function `(·;x) is (8, T )-smooth for all x ∈ D and some constant

T , and n, ε, β, k satisfy the condition in Theorem 5.1.2 with h = 4, then with probability at

least 1− β, the sample complexity to achieve α error is

n = Õ
(
α−(2+ p

2
)ε−2(45

√
D4p

1
4 )p
)
.

Note that the sample complexity for general convex loss functions in [257] is n =

Õ
(
α−(p+1)ε−22p

)
, which is considerably worse than ours when α ≤ O(1

p
), that is either in

the low dimensional case or with high accuracy.

Corollary 5.1.2. If the loss function `(·;x) is (∞, T )-smooth for all x ∈ D and some

constant T , and n, ε, β, k satisfy the condition in Theorem 5.1.2 with h = p, then with

probability at least 1− β, the output wpriv of Algorithm 5.1.31 satisfies:

ErrD(wpriv) ≤ Õ
( log 1

β

1
4D

1
2
p p

1
4

√
2

(p+1)p

n
1
4 ε

1
2

)
,

where Õ hides the log and T terms. Thus, to achieve error α, with probability at least 1− β,

the sample complexity needs to be

n = Õ
(

max{4p(p+1) log(
1

β
)D2

ppε
−2α−4,

log 1
β
4p(p+1)

ε2D2
p

}
)
. (5.5)

It is worth noticing that from (5.4) we can see that when the term h
p

grows, the term α

decreases. Thus, for loss functions that are (∞, T )-smooth, we can get a smaller dependency
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than the term α−4 in (5.5). For example, if we take h = 2p, then the sample complexity

is n = O(max{cp
2

2 log 1
β
D2p
√
pε−2α−3,

log 1
β
cp

2

ε2D2
2p
}) for some constants c, c2. When h→∞,

the dependency on the error becomes α−2, which is the optimal bound, even for convex

functions.

Our analysis on the empirical excess risk does not use the convexity assumption. While

this gives a bound which is not optimal, even for p = 1, it also says that our result holds for

non-convex loss functions and constrained domain set, as long as they are smooth enough.

From (5.5), we can see that our sample complexity is lower than the one in [257] when

α ≤ O( 1
16p

). It is notable that this bound is less reasonable since in practice could be very

large. However, there are still many cases where the condition still holds. For example, in

low dimensional space to achieve the best performance for ERM, quite often the error is set

to be extremely small, e.g., α = 10−10 ∼ 10−14[166].

Using the convexity assumption of the loss function, we can also give a bound on the

population excess risk. Here we will show only the case of (∞, T ), as the general case is

basically the same.

Theorem 5.1.3. Under the conditions in Corollary 5.1.2, if we further assume that the loss

function `(·;x) is convex and 1-Lipschitz for all x ∈ D, then with probability at least 1−2β,

we have:

ErrP(wpriv) ≤ Õ
((
√

log 1/β)
1
4D

1
4
p p

1
8

4
√

2
p(p+1)

βn
1
12 ε

1
4

)
.

That is, if we have sample complexity

n = Õ
(

max{
log 1

β
4p(p+1)

ε2D2
p

, (
√

log 1/β)3D3
pp

3
2 8p(p+1)ε−3α−12β−12

)
,

then ErrP(wpriv) ≤ α.

Corollary 5.1.2 provides a partial answer to our motivational questions. That is, for

loss functions which are (∞, T )-smooth, there is an ε-LDP algorithm for the empirical and

population excess risks achieving error α with sample complexity which is independent
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of the dimensionality p in the term of α. This result does not contradict the results in

[257]. Indeed, the example used to show the unavoidable dependency between the sample

complexity and α−Ω(p), to achieve an α error, is actually non-smooth.

More Efficient Algorithms

Algorithm 5.1.31 has computational time and communication complexity for each player

which are exponential in the dimensionality. This is clearly problematic for every realistic

practical application. For this reason, in this section, we investigate more efficient algorithms.

For convenience, in this section we focus only on the case of (∞, T )-smooth loss functions,

but our results can easily be extended to more general cases.

We first consider the computational issue on the users side. The following lemma, shows

an ε-LDP algorithm (which is different from Algorithm 5.1.30) for efficiently computing

p-dimensional average (notice the extra conditions on n and p compared with Lemma 5.1.1).

Lemma 5.1.6 ([234]). Consider player i ∈ [n] holding data vi ∈ Rp with coordinate between

0 and b. Then for 0 < β < 1, 0 < ε such that n ≥ 8p log(8p
β

) and
√
n ≥ 12

ε

√
log 32

β
, there

is an ε-LDP algorithm, LDP-AVG, with probability at least 1 − β, the output a ∈ Rp

satisfying4:

max
j∈[d]
|aj −

1

n

n∑
i=1

[vi]j| ≤ O(
bp√
nε

√
log

p

β
).

Moreover, the computational cost for each user is O(1).

By using Lemma 5.1.6 and by discretizing the grid with some interval steps, we can de-

sign an algorithm which requires O(1) computation time and O(log n)-bits communication

per player (see [234] for details; in Section 5.1.7 we have an algorithm withO(log log n)-bits

communication per player). However, we would like to do even better and obtain constant

communication complexity.

4Note that here we use an weak version of their result, one can get a finer analysis. For simplicity, we will
omit it in the paper.
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Instead of discretizing the grid, we apply a technique, proposed first by [27], which

permits us to transform any ‘sampling resilient’ ε-LDP protocol into a protocol with 1-bit

communication complexity (at the expense of increasing the shared randomness in the

protocol). Roughly speaking, a protocol is sampling resilient if its output on any dataset S

can be approximated well by its output on a random subset of half of the players.

Since our algorithm only uses the LDP-AVG protocol, we can show that it is indeed

sampling resilient. Inspired by this result and the algorithm behind Lemma 5.1.6, we propose

Algorithm 5.1.32 and obtain the following theorem.

Theorem 5.1.4. For any 0 < ε ≤ ln 2 and 0 < β < 1, Algorithm 5.1.32 is ε-LDP. If the

loss function `(·;x) is (∞, T )-smooth for all x ∈ D and n = Õ(max{ log 1
β

4p(p+1)

ε2D2
p

, p(k +

1)p log(k + 1), 1
ε2

log 1
β
}), then by setting k = O

(
(

Dp
√
pnε

2(p+1)p
√

log 1
β

)
1
2p
)
, the results in Corollary

5.1.2 hold with probability at least 1− 4β. Moreover, for each player the time complexity is

O(1), and the communication complexity is 1-bit.

Now we study the algorithm from the server’s computational complexity perspective.

The polynomial construction time complexity is O(n), where the most inefficient part is

finding wpriv = arg minw∈C L̃(w;D). In fact, this function may be non-convex; but unlike

general non-convex functions, it can be α-uniformly approximated by the empirical loss

function L(·;D) if the loss function is convex (by the proof of Theorem 5.1.2), although

we do not have access to the empirical risk function. Thus, we can see this problem as an

instance of Approximately-Convex Optimization, which has been studied recently by [249].

Before doing that, we first give the definition of the condition on the constraint set.

Definition 5.1.10 ([249]). We say that a convex set C is µ-well conditioned for µ ≥ 1,

if there exists a function F : Rp 7→ R such that C = {x|F (x) ≤ 0} and for every

x ∈ ∂K : ‖∇
2F (x)‖2

‖∇F (x)‖2 ≤ µ.

Lemma 5.1.7 (Theorem 3.2 in [249]). Let ε,∆ be two real numbers such that ∆ ≤

max{ ε2

µ
√
p
, ε
p
} × 1

16348
. Then, there exists an algorithm A such that for any given ∆-
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Algorithm 5.1.32 Player-Efficient Local Bernstein Mechanism with 1-bit communication
per player

1: Input: Player i ∈ [n] holds a data record xi ∈ D, public loss function ` : [0, 1]p×D 7→
[0, 1], privacy parameter ε ≤ ln 2, and parameter k.

2: Preprocessing:
3: Generate n independent public strings
4: y1 = Lap(1

ε
), · · · , yn = Lap(1

ε
).

5: Construct the grid T = {v1

k
, . . . , vp

k
}{v1,...,vp}, where {v1, . . . , vp} ∈ {0, 1, · · · , k}p.

6: Partition randomly [n] into d = (k + 1)p subsets I1, I2, · · · , Id, and associate each Ij to
a grid point T (j) ∈ T .

7: for Each Player i ∈ [n] do
8: Find Il such that i ∈ Il. Calculate vi = `(T (l);xi).
9: Compute pi = 1

2

Pr[vi+Lap( 1
ε
)=yi]

Pr[Lap( 1
ε
)=yi]

10: Sample a bit bi from Bernoulli(pi) and send it to the server.
11: end for
12: for The Server do
13: for i = 1 · · ·n do
14: Check if bi = 1, set z̃i = yi, otherwise z̃i = 0.
15: end for
16: for each l ∈ [d] do
17: Compute v` = n

|Il|
∑

i∈I` z̃i
18: Denote the corresponding grid point (v1

k
, . . . , vp

k
) ∈ T of Il, then denote

L̂((v1

k
, · · · , vp

k
);D) = vl.

19: end for
20: Construct Bernstein polynomial for the perturbed empirical loss {L̂(v;D)}v∈T as

in Algorithm 5.1.31. Denote L̃(·;D) the corresponding function.
21: Compute wpriv = arg minw∈C L̃(w;D).
22: end for
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approximate convex function f̃ over a µ-well-conditioned convex set C ⊆ Rp of diam-

eter 1 (that is, there exists a 1-Lipschitz convex function f : C 7→ R such that for every

x ∈ C, |f(x)− f̃(x)| ≤ ∆), A returns a point x̃ ∈ C with probability at least 1− δ in time

Poly(p, 1
ε
, log 1

δ
) and with the following guarantee: f̃(x̃) ≤ minx∈C f̃(x) + ε.

Based on Lemma 5.1.7 (for L̃(w;D)) and Corollary 5.1.2, and taking ε = O(pα), we

have the following.

Theorem 5.1.5. Under the conditions in Corollary 5.1.2, and assuming that n satisfies

n = Õ(4p(p+1) log(1/β)D2
ppε
−2α−4), that the loss function `(·;x) is 1-Lipschitz and convex

for every x ∈ D, that the constraint set C is convex and ‖C‖2 ≤ 1, and satisfies µ-well-

condition property (see Definition 5.1.10), if the error α satisfies α ≤ C µ
p
√
p

for some

universal constant C, then there is an algorithm A which runs in Poly(n, 1
α
, log 1

β
) time

for the server,5 and with probability 1 − 2β the output w̃priv of A satisfies L̃(w̃priv;D) ≤

minw∈C L̃(w;D) +O(pα), which means that ErrD(w̃priv) ≤ O(pα).

Combining Theorem 5.1.5 with Corollary 5.1.2, and taking α = α
p
, we have our final

result:

Theorem 5.1.6. Under the conditions of Corollary 5.1.2, Theorem 5.1.4 and 5.1.5, for any

C µ√
p
> α > 0, if we further set

n = Õ(4p(p+1) log(1/β)D2
pp

5ε−2α−4),

then there is an ε-LDP algorithm, with O(1) running time and 1-bit communication per

player, and Poly( 1
α
, log 1

β
) running time for the server. Furthermore, with probability at least

1− 5β, the output w̃priv satisfies ErrD(w̃priv) ≤ O(α).

Note that comparing with the sample complexity in Theorem 5.1.6 and Corollary 5.1.2,

we have an additional factor of O(p4); however, the α terms are the same.

5Note that since here we assume n is at least exponential in p, thus the algorithm is not fully polynomial.
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5.1.4 LDP-ERM with Convex Generalized Linear Loss Functions

In Section 5.1.3, we have seen that under the condition of (∞, T )-smoothness for the

loss function, the sample complexity can actually have polynomial dependence on p and

α. However, as shown in (5.5), there is still another exponential term cp
2 in the sample

complexity that needs to be removed.

In this section, we show that if the loss function is generalized linear, the sample

complexity for achieving error α is only linear in the dimensionality p. We first give the

assumptions that will be used throughout this section.

Assumption 2: We assume that ‖xi‖2 ≤ 1 and |yi| ≤ 1 for each i ∈ [n] and the constraint

set ‖C‖2 ≤ 1. Unless specified otherwise, the loss function is assumed to be generalized

linear, that is, the loss function `(w;xi, yi) ≡ f(yi〈xi, w〉) for some 1-Lipschitz convex

function f .

The generalized linear assumption holds for a large class of functions such as Generalized

Linear Model and SVM. We also note that there is another definition for general linear

functions, `(w;x, y) = f(〈w, x〉, y), which is more general than our definition. This class

of functions has been studied in [177]; we leave as future research to extend our work to this

class of loss functions.

Sample Complexity for Hinge Loss Function

We first consider LDP-ERM with hinge loss function and then extend the obtained result to

general convex linear functions.

The hinge loss function is defined as `(w;xi, yi) = f(yi〈xi, w〉) = [1
2
− yi〈w, xi〉]+,

where the plus function [x]+ = max{0, x}, i.e., f(x) = max{0, 1
2
− x} for x ∈ [−1, 1].6

Note that to avoid the scenario that 1− yi〈w, xi〉 is always greater than or equal to 0, we use

1
2
, instead of 1 as in the classical setting.

Before showing our idea, we first smooth the function f(x). The following lemma shows
6The reader should think about about particular function f , not just a general f .

230



one of the smooth functions that is close to f in the domain of [−1, 1] (note that there are

other ways to smooth f ; see [71] for details).

Lemma 5.1.8. Let fβ(x) =
1
2
−x+
√

( 1
2
−x)2+β2

2
be a function with parameter β > 0. Then,

we have

1. |fβ(x)− f(x)|∞ ≤ β
2
, ∀x ∈ R.

2. fβ(x) is 1-Lipschitz, that is, f ′(x) is bounded by 1 for x ∈ R.

3. fβ is 1
β

-smooth and convex.

4. f ′β(x) is (2, O( 1
β2 ))-smooth if β ≤ 1.

The above lemma indicates that fβ(x) is a smooth and convex function which well

approximates f(x). This suggests that we can focus on fβ(yi〈w, xi〉), instead of f . Our idea

is to construct a locally private (γ, β, σ) stochastic oracle for some γ, β, σ to approximate

f ′β(yi〈w, xi〉) in each iteration, and then run the SIGM step of [102]. By Lemma 5.1.8, we

know that f ′β is (2, O( 1
β2 ))-smooth; thus, we can use Lemma 5.1.2 to approximate f ′β(x) via

Bernstein polynomials.

Let Pd(x) =
∑d

i=0 ci
(
d
i

)
xi(1 − x)d−i be the d-th order Bernstein polynomial (ci =

f ′β( i
d
) , where maxx∈[−1,1] |Pd(x) − f ′β(x)| ≤ α

4
(i.e., d = c 1

β2α
for some constant c >

0). Then, we have ∇w`(w;x, y) = f ′(y〈w, x〉)yxT , which can be approximated by

[
∑d

i=0 ci
(
d
i

)
(y〈w, x〉)i(1− y〈w, x〉)d−i]yxT . The idea is that if (y〈w, x〉)i, (1− y〈w, x〉)d−i

and yxT can be approximated locally differentially privately by directly adding d+1 numbers

of independent Gaussian noises, which means it is possible to form an unbiased estimator

of the term [
∑d

i=0 ci
(
d
i

)
(y〈w, x〉)i(1− y〈w, x〉)d−i]yxT . The error of this procedure can be

estimated by Lemma 5.1.5. Details of the algorithm are given in Algorithm 5.1.33.

Theorem 5.1.7. For each i ∈ [n], the term G(wt, i) generated by Algorithm 5.1.33 will

be an
(
α
2
, 1
β
, O(

d3dCd4
√
p

ε2d+2 + α + 1)
)

stochastic oracle (see Definition 5.1.9) for function
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Algorithm 5.1.33 Hinge Loss-LDP

1: Input: Player i ∈ [n] holds data (xi, yi) ∈ D, where ‖xi‖2 ≤ 1, ‖yi‖2 ≤ 1; privacy
parameters ε, δ; Pd(x) =

∑d
j=0 ci

(
d
j

)
xj(1−x)d−j be the d-th order Bernstein polynomial

for the function of f ′β , where ci = f ′β( i
d
) and fβ(x) is the function in Lemma 5.1.8.

2: for Each Player i ∈ [n] do
3: Calculate xi,0 = xi +σi,0 and yi,0 = yi + zi,0, where σi,0 ∼ N (0, 32 log(1.25/δ)

ε2
Ip) and

zi,0 ∼ N (0, 32 log(1.25/δ)
ε2

).
4: for j = 1, · · · , d(d+ 1) do
5: xi,j = xi + σi,j , where σi,j ∼ N (0, 8 log(1.25/δ)d2(d+1)2

ε2
Ip)

6: yi,j = yi + zi,j , where zi,j ∼ N (0, 8 log(1.25/δ)d2(d+1)2

ε2
)

7: end for
8: Send {xi,j}d(d+1)

j=0 and {yi,j}d(d+1)
j=0 to the server.

9: end for
10: for the Server side do
11: for t = 1, 2, · · · , n do
12: Randomly sample i ∈ [n] uniformly.
13: Set ti,0 = 1
14: for j = 0, · · · , d do
15: ti,j = Πjd+j

k=jd+1yi,k〈wt, xi,k〉 and ti,0 = 1

16: si,j = Πjd+d
k=jd+j+1(1− yi,k〈wt, xi,k〉) and si,d = 1

17: end for
18: Denote G(wt, i) = (

∑d
j=0 cj

(
d
j

)
ti,jsi,j)yi,0x

T
i,0.

19: Update SIGM in [102] by G(wt, i)
20: end for
21: end for
22: return wn

Lβ(w;D) = 1
n

∑n
i=1 fβ(yi〈xi, w〉), where fβ is the function in Lemma 5.1.8, where C4 is

some constant.

From Lemmas 5.1.8, 5.1.5 and Theorem 5.1.7, we have the following sample complexity

bound for the hinge loss function under the non-interactive local model.

Theorem 5.1.8. For any ε > 0 and 0 < δ < 1, Algorithm 5.1.33 is (ε, δ) non-interactively

locally differentially private.7 Furthermore, for the target error α, if we take β = α
4

and

d = 2
β2α

= O( 1
α3 ). Then with the sample size n = Õ( d

6dCdp
ε4d+4α2 ), the output wn satisfies the

7Note that in the non-interactive local model, (ε, δ)-LDP is equivalent to ε-LDP by using the protocol given
in [49]; this allows us to omit the term of δ.
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following inequality

EL(wn, D)−min
w∈C

L(w,D) ≤ α,

where C is some constant.

Remark 5.1.1. Note that the sample complexity bound in Theorem 5.1.8 is quite loose

for parameters other than p. This is mainly due to the fact that we use only the basic

composition theorem to ensure local differential privacy.8 It is possible to obtain a tighter

bound by using Advanced Composition Theorem [105] (this is the same for other algorithms

in this section). Details of the improvement are omitted from this version. We can also

extend to the population risk by the same algorithm, the main difference is that now G(w, i)

is a
(
α
2
, 1
β
, O(

d3dCd4
√
p

ε2d+2 + α + 1)
)

stochastic oracle, where σ2 = E(x,y)∼P‖`(w;x, y) −

E(x,y)∼P`(w;x, y)‖2
2. For simplicity of presentation, we omitt the details here.

Extension to Generalized Linear Convex Loss Functions

In this section, we extend our results for the hinge loss function to generalized linear convex

loss functions L(w,D) = 1
n

∑n
i=1 f(yi〈xi, w〉) for any 1-Lipschitz convex function f .

One possible way (for the extension) is to follow the same approach used in previous

section. That is, we first smooth the function f by some function fβ . Then, we use Bernstein

polynomials to approximate the derivative function f ′β, and apply an algorithm similar to

Algorithm 5.1.33. One of the main issues of this approach is that we do not know whether

Bernstein polynomials can be directly used for every smooth convex function. Instead,

we will use some ideas in approximation theory, which says that every 1-Lipschitz convex

function can be expressed by a linear combination of the absolute value functions and linear

functions.

To implement this approach, we first note that for the plus function f(x) ≡ max{0, x},

by using Algorithm 5.1.33 we can get the same result as in Theorem 5.1.8. Since the
8There could be some improvement on the term of 1

α if we use advanced composition theorem. However,
since the dependency of 1

α is already exponential, and it will be still exponential after the improvement. So
here the improvement will be very incremental.
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absolute value function |x| = 2 max{0, x} − x, Theorem 5.1.8 clearly also holds for the

absolute function. The following key lemma shows that every 1-dimensional 1-Lipschitz

convex function f : [−1, 1] 7→ [−1, 1] is contained in the convex hull of the set of absolute

value and identity functions. We need to point out that [257] gave a similar lemma. Their

proof is, however, somewhat incomplete and thus we give a complete one in this paper.

Lemma 5.1.9. Let f : [−1, 1] 7→ [−1, 1] be a 1-Lipschitz convex function. If we define the

distribution Q which is supported on [−1, 1] as the output of the following algorithm:

1. first sample u ∈ [f ′(−1), f ′(1)] uniformly,

2. then output s such that u ∈ ∂f(s) (note that such an s always exists due to the fact

that f is convex and thus f ′ is non-decreasing); if multiple number of such as s exist,

return the maximal one,

then, there exists a constant c such that

∀θ ∈ [−1, 1], f(θ) =
f ′(1)− f ′(−1)

2
Es∼Q|θ − s|+

f ′(1) + f ′(−1)

2
θ + c.

Using Lemma 5.1.9 and the ideas discussed in the previous section, we can now show

that the sample complexity in Theorem 5.1.8 also holds for any general linear convex

function. See Algorithm 5.1.34 for the details.

Theorem 5.1.9. Under Assumption 2, where the loss function ` is `(w;x, y) = f(y〈w, x〉)

for any 1-Lipschitz convex function f , for any ε, δ ∈ (0, 1], Algorithm 5.1.34 is (ε, δ)

non-interactively differentialy private. Moreover, given the target error α, if we take β = α
4

and d = 2
β2α

= O( 1
α3 ). Then with the sample size n = Õ( d

6dCdp
ε4d+4α2 ), the output wn satisfies

the following inequality

EL(wn, D)−min
w∈C

L(w,D) ≤ α,

where C is some universal constant independent of f .
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Algorithm 5.1.34 General Linear-LDP

1: Input: Player i ∈ [n] holds raw data record (xi, yi) ∈ D, where ‖xi‖2 ≤ 1 and ‖yi‖2 ≤
1; privacy parameters ε, δ; hβ(x) =

x+
√
x2+β2

2
and Pd(x) =

∑d
j=0 cj

(
d
j

)
xj(1 − x)j is

the d-th order Bernstein polynomial approximation of h′β(x). Loss function ` can be
represented by `(w;x, y) = f(y〈w, x〉).

2: for Each Player i ∈ [n] do
3: Calculate xi,0 = xi +σi,0 and yi,0 = yi + zi,0, where σi,0 ∼ N (0, 32 log(1.25/δ)

ε2
Ip) and

zi,0 ∼ N (0, 32 log(1.25/δ)
ε2

)
4: for j = 1, · · · , d(d+ 1) do
5: xi,j = xi + σi,j , where σi,j ∼ N (0, 8 log(1.25/δ)d2(d+1)2

ε2
Ip)

6: yi,j = yi + zi,j , where zi,j ∼ N (0, 8 log(1.25/δ)d2(d+1)2

ε2
)

7: end for
8: Send {xi,j}d(d+1)

j=0 and {yi,j}d(d+1)
j=0 to the server.

9: end for
10: for the Server side do
11: for t = 1, 2, · · · , n do
12: Randomly sample i ∈ [n] uniformly.
13: Randomly sample d(d+ 1) numbers of i.i.d s = {sk}d(d+1)

k=1 ∈ [−1, 1] based on
the distribution Q in Lemma 5.1.9.

14: Set ti,0 = 1
15: for j = 0, · · · , d do
16: ti,j = Πjd+i

k=jd+1(
yi,k〈wt,xi,k〉−sk

2
) and ti,0 = 1

17: ri,j = Πjd+d
k=jd+i+1(1− yi,k〈wt,xi,k〉−sk

2
) and ri,d = 1

18: end for
19: Denote G(wt, i, s) = (f ′(1)− f ′(−1))(

∑d
j=0 cj

(
d
j

)
ti,jri,j)yi,0x

T
i,0 + f ′(−1).

20: Update SIGM in [102] by G(wt, i, s)
21: end for
22: end for
23: return wn

Remark 5.1.2. The above theorem suggests that the sample complexity for any generalized

linear loss function depends only linearly on p. However, there are still some not so desirable

issues. Firstly, the dependence on α is exponential, while we have already shown in the

Section 5.1.3 that it is only polynomial (i.e., α−4) for sufficiently smooth loss functions.

Secondly, the term of ε is not optimal in the sample complexity, since it is ε−Ω( 1
α3 ), while

the optimal one is ε−2 [257]. We leave it as an open problem to remove the exponential

dependency. Thirdly, the assumption on the loss function is that `(w;x, y) = f(y〈w, x〉),
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which includes the generalized linear models and SVM. However, as mentioned earlier,

there is another slightly more general function class `(w;x, y) = f(〈w, x〉, y) which does

not always satisfy our assumption, e.g., linear regression and `1 regression. For linear

regression, we have already known its optimal bound Θ(pα−2ε−2); for `1 regression, we can

use a method similar to Algorithm 5.1.33 to achieve a sample complexity which is linear in

p. Thus, a natural question is whether the sample complexity is still linear in p for all loss

functions `(w;x, y) that can be written as f(〈w, x〉, y).

We can see from Algorithm 5.1.33 and 5.1.34 that, both of the computation and commu-

nication cost of each user will be O(d2) = O( 1
α6 ). So, our question is, can we reduce these

costs just as in the Section 5.1.3? We will leave it as future research.

There are still many open problems left. Firstly, as we showed in this paper, the α term

can be polynomial in the sample complexity when the loss function is smooth enough while

the p term can be polynomial when the loss function is generalized linear. Thus, a natural

question is to determine whether it is possible to get an algorithm whose sample complexity

is fully polynomial in all the terms when the loss function is generalized linear and smooth

enough, such as logistic regression. Secondly, although we have shown the advantages of

these two methods, we do not know the practical performance of these methods.

Additional to the aforementioned improvements, another advantage of our method is

that it can be extended to other LDP problems. Below we show how it can be used to answer

the class of k-way marginals and smooth queries under LDP.

5.1.5 LDP Algorithms for Learning k-way Marginals Queries and Smooth

Queries

In this section, we show further applications of our idea by giving LDP algorithms for

answering sets of queries. All the queries considered in this section are linear, that is, of the

form qf (D) = 1
|D|
∑

x∈D f(x) for some function f . It will be convenient to have a notion of

236



accuracy for the algorithm to be presented with respect to a set of queries. This is defined as

follow:

Definition 5.1.11. Let Q denote a set of queries. An algorithm A is said to have (α, β)-

accuracy for size n databases with respect to Q, if for every n-size dataset D, the following

holds: Pr[∃q ∈ Q, |A(D, q)− q(D)| ≥ α] ≤ β.

k-way Marginals Queries

Now we consider a database D = ({0, 1}p)n, where each row corresponds to an individuals

record. A marginal query is specified by a set S ⊆ [p] and a pattern t ∈ {0, 1}|S|. Each such

query asks: ‘What fraction of the individuals in D has each of the attributes set to tj?’. We

will consider here k-way marginals which are the subset of marginal queries specified by a

set S ⊆ [p] with |S| ≤ k. K-way marginals could represent several statistics over datasets,

including contingency tables, and the problem is to release them under differential privacy

has been studied extensively in the literature [143, 138, 278, 119]. All these previous works

have considered the central model of differential privacy, and only the recent work [185]

studies this problem in the local model, while their methods are based on Fourier Transform.

We now use the LDP version of Chebyshev polynomial approximation to give an efficient

way of constructing a sanitizer for releasing k-way marginals.

Since learning the class of k-way marginals is equivalent to learning the class of mono-

tone k-way disjunctions [143], we will only focus on the latter. The reason of why we can

locally privately learning them is that they form a Q-Function Family.

Definition 5.1.12 (Q-Function Family). Let Q = {qy}y∈YQ⊆{0,1}m be a set of counting

queries on a data universe D, where each query is indexed by an m-bit string. We define

the index set of Q to be the set YQ = {y ∈ {0, 1}m|qy ∈ Q}. We define a Q-Function

Family FQ = {fQ,x : {0, 1}m 7→ {0, 1}}x∈D as follows: for every data record x ∈ D, the

function fQ,x : {0, 1}m 7→ {0, 1} is defined as fQ,x(y) = qy(x). Given a database D ∈ Dn,
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we define fQ,D(y) = 1
n

∑n
i=1 fQ,xi(y) = 1

n

∑n
i=1 qy(x

i) = qy(D), where xi is the i-th row

of D.

This definition guarantees that Q-function queries can be computed from their values

on the individual’s data xi. We can now formally define the class of monotone k-way

disjunctions.

Definition 5.1.13. Let D = {0, 1}p. The query set Qdisj,k = {qy}y∈Yk⊆{0,1}p of monotone

k-way disjunctions over {0, 1}p contains a query qy for every y ∈ Yk = {y ∈ {0, 1}p||y| ≤

k}. Each query is defined as qy(x) = ∨pj=1yjxj . The Qdisj,k-function family FQdisj,k =

{fx}x∈{0,1}p contains a function fx(y1, y2, · · · , yp) = ∨pj=1yjxj for each x ∈ {0, 1}p.

Definition 5.1.13 guarantees that if we can uniformly approximate the function fQ,x by

polynomials px, then we can also have an approximation of fQ,D, i.e., we can approximate

qy(D) for every y or all the queries in the classQ. Thus, if we can locally privately estimate

the sum of coefficients of the monomials for the m-multivariate functions {px}x∈D, then

we can uniformly approximate fQ,D. Clearly, this can be done by Lemma 5.1.6, if the

coefficients of the approximated polynomial are bounded.

In order to uniformly approximate the Qdisj,k-function, we use Chebyshev polynomials.

Definition 5.1.14 (Chebyshev Polynomials). For every k ∈ N and γ > 0, there exists a

univariate real polynomial pk(x) =
∑tk

j=0 cix
i of degree tk such that tk = O(

√
k log( 1

γ
));

for every i ∈ [tk], |ci| ≤ 2O(
√
k log( 1

γ
)); and p(0) = 0, |pk(x)− 1| ≤ γ, ∀x ∈ [k].

Lemma 5.1.10 ([278]). For every k, p ∈ N, such that k ≤ p, and every γ > 0, there

is a family of p-multivariate polynomials of degree t = O(
√
k log( 1

γ
))with coefficients

bounded by T = pO(
√
k log( 1

γ
)), which uniformly approximate the family FQdisj,k over the set

Yk (Definition 5.1.13) with error bound γ. That is, there is a family of polynomials P such

that for every fx ∈ FQdisj,k , there is px ∈ P which satisfies supy∈Yk |px(y)− fx(y)| ≤ γ.

By combining the ideas discussed above and Lemma 5.1.10, we have Algorithm 5.1.35

and the following theorem.
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Algorithm 5.1.35 Local Chebyshev Mechanism for Qdisj,k

1: Input: Player i ∈ [n] holds a data record xi ∈ {0, 1}p, privacy parameter ε > 0, error
bound α, and k ∈ N.

2: for Each Player i ∈ [n] do
3: Consider the p-multivariate polynomial qxi(y1, . . . , yp) = pk(

∑p
j=1 yj[xi]j), where

pk is defined as in Lemma 5.1.10 with γ = α
2

.

4: Denote the coefficients of qxi as a vector q̃i ∈ R(p+tktk
)(since there are

(
p+tk
tk

)
coef-

ficients in a p-variate polynomial with degree tk), note that each q̃i can bee seen as a
p-multivariate polynomial qxi(y).

5: end for
6: for The Server do
7: Run LDP-AVG from Lemma 5.1.1 on {q̃i}ni=1 ∈ R(p+tktk

) with parameter ε, b =

pO(
√
k log( 1

γ
)), denote the output as q̃D ∈ R(p+tktk

), note that q̃D also corresponds to a
p-multivariate polynomial.

8: For each query y inQdisj,k (seen as a d dimension vector), compute the p-multivariate
polynomial q̃D(y1, . . . , yp).

9: end for

Theorem 5.1.10. For ε > 0 Algorithm 5.1.35 is ε-LDP. Also, for 0 < β < 1, there are

constants C,C1 such that for every k, p, n ∈ N with k ≤ p, if

n = O(max{
pC
√
k log 1

α log 1
β

ε2α2
,
log 1

β

ε2
, pC1

√
k log 1

α log
1

β
}),

this algorithm is (α, β)-accurate with respect to Qdisj,k. The running time for each player

is Poly(pO(
√
k log 1

α
)), and the running time for the server is at most O(n) and the time for

answering a query is O(pC2

√
k log 1

α ) for some constant C2. Moreover, as in Section 5.1.3,

the communication complexity can be improved to 1-bit per player.

Smooth Queries

We now consider the case where each player i ∈ [n] holds a data record in the continuous

interval xi ∈ [−1, 1]p and we want to estimate the kernel density for a given point x0 ∈ Rp.

A natural question is: If we want to estimate Gaussian kernel density of a given point x0 with

many different bandwidths, can we do it simultaneously under ε local differential privacy?

We can view this kind of queries as a subclass of the smooth queries. So, like in the case
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Algorithm 5.1.36 Local Trigonometry Mechanism for QChT
1: Input: Player i ∈ [n] holds a data record xi ∈ [−1, 1]p, privacy parameter ε > 0, error

bound α, and t ∈ N. T pt = {0, 1, · · · , t−1}p. For a vector x = (x1, . . . , xp) ∈ [−1, 1]p,
denote operators θi(x) = arccos(xi), i ∈ [p].

2: for Each Player i ∈ [n] do
3: for Each v = (v1, v2, · · · , vp) ∈ T pt do
4: Compute pi;v = cos(v1θ1(xi)) · · · cos(vpθp(xi))
5: end for
6: Let pi = (pi;v)v∈T pt .
7: end for
8: for The Server do
9: Run LDP-AVG from Lemma 5.1.1 on {pi}ni=1 ∈ Rtp with parameter ε, b = 1, denote

the output as p̃D.
10: For each query qf ∈ QChT . Let gf (θ) = f(cos(θ1), cos(θ2), · · · , cos(θp)).
11: Compute the trigonometric polynomial approximation pt(θ) of gf (θ), where pt(θ) =∑

r=(r1,r2···rp),‖r‖∞≤t−1 cr cos(r1θ1) · · · cos(rpθp) as in (5.6). Denote the vector of the
coefficients c ∈ Rtp .

12: Compute p̃D · c.
13: end for

of k-way marginals queries, we will give an ε-LDP sanitizer for smooth queries. Now we

consider the data universe D = [−1, 1]p, and dataset D ∈ Dn. For a positive integer h and

constant T > 0, we denote the set of all p-dimensional (h, T )-smooth function (Definition

5.1.4) as Ch
T , and QChT = {qf (D) = 1

n

∑
x∈D f(D), f ∈ Ch

T} the corresponding set of

queries. The idea of the algorithm is similar to the one used for the k-way marginals; but

instead of using Chebyshev polynomials, we will use trigonometric polynomials. We now

assume that the dimensionality p, h and T are constants so all the result in big O notation

will be omitted. The idea of Algorithm 5.1.36 is based on the following Lemma.

Lemma 5.1.11 ([340]). Assume γ > 0. For every f ∈ Ch
T , defined on [−1, 1]p, let

gf (θ1, . . . , θp) = f(cos(θ1), . . . , cos(θp)), for θi ∈ [−π, π]. Then there is an even trigono-

metric polynomial p whose degree for each variable is t(γ) = ( 1
γ
)

1
h :

p(θ1, . . . , θp) =
∑

0≤r1,...,rp<t(γ)

cr1,...,rp

p∏
i=1

cos(riθi), (5.6)
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such that 1) p γ-uniformly approximates gf , i.e. supx∈[−π,π]p |p(x)−gf (x)| ≤ γ, 2) the coef-

ficients are uniformly bounded by a constant M which only depends on h, T and p, 3) more-

over, the entire set of the coefficients can be computed in time O
(
( 1
γ
)
p+2
h

+ 2p

h2 poly log 1
γ
)
)
.

By (5.6), we can see that all the p(x) which corresponds to gf (x), representing functions

f ∈ Ch
T , have the same basis

∏p
i=1 cos(riθi). So we can use Lemma 5.1.1 and 5.1.6 to

estimate the average of the basis. Then, for each query f the server can only compute the

corresponding coefficients {cr1,r2,··· ,rp}. This idea is implemented in Algorithm 5.1.36 for

which we have the following result.

Theorem 5.1.11. For any ε > 0, Algorithm 5.1.36 is ε-LDP. Also for α > 0, 0 < β < 1, if

n = O(max{log
5p+2h

2h (
1

β
)ε−2α−

5p+2h
h ,

1

ε2
log(

1

β
)})

and t = O((
√
nε)

2
5p+2h ), then Algorithm 5.1.36 is (α, β)-accurate with respect to QChT .

Moreover, the time for answering each query is Õ((
√
nε)

4p+4
5p+2h

+ 4p

5ph+2h2 ), where O omits

h, T, p and some log terms. For each player, the computation and communication cost could

be improved to O(1) and 1 bit, respectively, as in Section 5.1.3.

5.1.6 Omitted Proofs

In this section, we provide the details of the omitted proofs for the theorems, lemmas, and

corollaries stated in previous sections.

Proof of Lemma 5.1.1

We first provide the following lemma:

Lemma 5.1.12 ([234]). Suppose that x1, · · · , xn are i.i.d sampled from Lap(1
ε
). Then for

every 0 ≤ t < 2n
ε

, we have

Pr(|
n∑
i=1

xi| ≥ t) ≤ 2 exp(−ε
2t2

4n
).
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Consider Algorithm 5.1.30. We have |a− 1
n

∑n
i=1 vi| = |

∑n
i=1 xi
n
|, where xi ∼ Lap( b

ε
).

Taking t =
2
√
n
√

log 2
β

ε
and applying Lemma 5.1.12, we prove the lemma.

Proof of Theorem 5.1.2

The proof of the ε-LDP comes from Lemma 5.1.1 and the basic composition theorem of

differential privacy. Without loss of generality, we assume that T=1.

To prove the theorem, it is sufficient to estimate supw∈C |L̃(w;D)− L(w;D)| ≤ α for

some α. Since if it is true, denoting w∗ = arg minw∈C L(w;D), we have L(wpriv;D) −

L(w∗;D) ≤ L(wpriv;D)− L̃(wpriv;D)+ L̃(wpriv;D)− L̃(w∗;D)+ L̃(w∗;D)−L(w∗;D) ≤

L(wpriv;D)− L̃(wpriv;D) + L̃(w∗;D)− L(w∗;D) ≤ 2α.

Since we have

sup
w∈C
|L̃(w;D)− L(w;D)| ≤ sup

w∈C
|L̃(w;D)−B(h)

k (L̂, w)|+ sup
w∈C
|B(h)

k (L̂, w)− L(w;D)|.

The second term is bounded by O(Dhp
1
kh

) by Lemma 5.1.3.

For the first term, by (5.2) and Algorithm 5.1.31, we have

sup
w∈C
|L̃(w;D)−B(h)

k (L̂, w)| ≤ max
v∈T
|L̃(v;D)−L̂(v;D)| sup

w∈C

p∑
j=1

k∑
vj=0

|
p∏
i=1

b
(h)
vi,k

(wi)|. (5.7)

By Proposition 4 in [7], we have

p∑
j=1

k∑
vj=0

|
p∏
i=1

b
(h)
vi,k

(wi)| ≤ (2h − 1)p.

The following lemma bounds the term of maxv∈T |L̃(v;D)− L(v;D)|, which is obtained

by Lemma 5.1.1.

Lemma 5.1.13. If 0 < β < 1, k and n satisfy the condition of n ≥ p log(2/β) log(k + 1),
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then with probability at least 1− β, for each v ∈ T , the following holds

|L̃(v;D)− L(v;D)| ≤ O(

√
log 1

β

√
p
√

log(k)(k + 1)p

√
nε

).

Proof of Lemma 5.1.13. By Lemma 5.1.1, for a fixed v ∈ T , if n ≥ log 2
β

, we have, with

probability 1− β, |L̃(v;D)− L(v;D)| ≤
2
√

log 2
β√

nε
. Taking the union of all v ∈ T and then

taking β = β
(k+1)p

(since there are (k + 1)p elements in T ) and ε = ε
(k+1)p

, we get the

proof.

By the fact that (k + 1) < 2k, we have in total

sup
w∈C
|L̃(w;D)− L(w;D)| ≤ O(

Dhp

kh
+

2(h+1)p
√

log 1
β

√
p log kkp

√
nε

). (5.8)

Now, we take k = O(
Dh
√
pnε

2(h+1)p
√

log 1
β

)
1

h+p . Since n = O(4p(h+1)

ε2pD2
h

), we have log k > 1. Plugging

it into (5.8), we get

sup
w∈C
|L̃(w;D)− L(w;D)| ≤ Õ(

log
h

2(h+p) ( 1
β
)D

p
p+h

h p
1
2

+ p
2(h+p) 2(h+1)p h

h+p

√
h+ pn

h
2(h+p) ε

h
h+p

)

= Õ(
log

h
2(h+p) ( 1

β
)D

p
p+h

h p
p

2(h+p) 2(h+1)p

n
h

2(h+p) ε
h
h+p

).

Also, we can see that n ≥ p log(2/β) log(k + 1) is true for n = O(4p(h+1)

ε2pD2
h

). Thus, the

theorem follows.

Proof of Corollaries 5.1.1 and 5.1.2

Since the loss function is (∞, T )-smooth, it is (2p, T )-smooth for all p. Thus, taking h = p

in Theorem 5.1.2, we get the proof.
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Proof of Theorem 5.1.3

Lemma 5.1.14. [[252]] If the loss function ` is L-Lipschitz and µ-strongly convex, then

with probability at least 1−β over the randomness of sampling the data set D, the following

is true,

ErrP(θ) ≤

√
2L2

µ

√
ErrD(θ) +

4L2

βµn
.

For the general convex loss function `, we let ˆ̀(θ;x) = `(θ;x) + µ
2
‖θ‖2 for some

µ > 0. Note that in this case the new empirical risk becomes L̄(θ;D) = L̂(θ;D) + µ
2
‖θ‖2.

Since µ
2
‖θ‖2 does not depend on the dataset, we can still use the Bernstein polynomial

approximation for the original empirical risk L̂(θ;D) as in Algorithm 5.1.31, and the error

bound for L̄(θ;D) is the same. Thus, we can get the population excess risk of the loss

function ˆ̀, ErrP,ˆ̀(θpriv) by Corollary 5.1.2 and have the following relation,

ErrP,`(θpriv) ≤ ErrP,ˆ̀(θpriv) +
µ

2
.

By Lemma 5.1.14 for ErrP,ˆ̀(θpriv), where ˆ̀(θ;x) is 1 + ‖C‖2 = O(1)-Lipschitz, we have

the following,

ErrP,`(θpriv) ≤ Õ(

√
2

µ

log
1
8 1
β
D

1
4
p p

1
8

4
√

2
(p+1)p

n
1
8 ε

1
4

+
4

βµn
+
µ

2
).

Taking µ = O( 1
12√n), we get

ErrP,`(θpriv) ≤ Õ(
log

1
8 1
β
D

1
4
p p

1
8

4
√

2
(p+1)p

βn
1
12 ε

1
4

).

Thus, we have the theorem.
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Proof of Theorem 5.1.4

By [27] it is ε-LDP. The time complexity and communication complexity is obvious. As in

[27], it is sufficient to show that the LDP-AVG is sampling resilient.

The STAT in [27] corresponds to the average in our problem, and φ(x, y) corresponds to

maxj∈[p] |[x]j − [y]j|. By Lemma 5.1.6, we can see that with probability at least 1− β,

φ(Avg(v1, v2, · · · , vn); a) = O(
bp√
nε

√
log

p

β
).

Now let S be the set obtained by sampling each point vi, i ∈ [n] independently with probabil-

ity 1
2
. Note that by Lemma 5.1.6, we have the subset S . If |S| ≥ Ω(max{p log( p

β
), 1
ε2

log 1
β
})

with probability 1− β,

φ(Avg(S); LDP-AVG(S)) = O(
b
√
p√
|S|ε

√
log

p

β
).

Now by Hoeffdings inequality, we can get |n/2− |S|| ≤
√
n log 4

β
with probability 1− β.

Also since n = Ω(log 1
β
), we know that |S| ≥ O(n) ≥ Ω(p log( p

β
)) is true. Thus, with

probability at least 1− 2β, φ(Avg(S); LDP-AVG(S)) = O( bp√
nε

√
log p

β
).

Actually, we can also get φ(Avg(S); Avg(v1, v2, · · · , vn)) ≤ O( bp√
nε

√
log p

β
). We now

assume that vi ∈ R. Note that Avg(S) = v1x1+···+vnxn
x1+···+xn , where each xi ∼ Bernoulli(1

2
).

Denote M = x1 + x2 + · · · + xn. By Hoeffdings Inequality, we have with probability at

least 1 − β
2
, |M − n

2
| ≤

√
n log 4

β
. We further denote N = v1x1 + · · · + vnxn. Also, by

Hoeffdings inequality, with probability at least 1− β, we get |N − v1+···+vn
2
| ≤ b

√
n log 2

β
.

Thus, with probability at least 1− β, we have:

|N
M
− v1 + · · ·+ vn

n
| ≤ |N −

∑n
i=1 vi/2|
M

+ |
n∑
i=1

vi/2||
1

M
− 2

n
|

≤ |N −
∑n

i=1 vi/2|
M

+
nb

2
| 1

M
− 2

n
|. (5.9)
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For the second term of (5.9), | 1
M
− 2

n
| = |n/2−M |

M n
2

. We know from the above |n/2 −

M | ≤
√
n log 4

β
. Also since n = Ω(log 1

β
), we get M ≥ O(n). Thus, | 1

M
− 2

n
| ≤

O(

√
log 1

β√
nn

). The upper bound of the second term is O(
b
√

log 1
β√

n
), and the same for the first

term. For p dimensions, we just choose β = β
p

and take the union. Thus in total we have

φ(Avg(S); Avg(v1, v2, · · · , vn)) ≤ O( b√
nε

√
log p

β
) ≤ O( bp√

nε

√
log p

β
).

In summary, we have shown that

φ(AVG-LDP(S); Avg(v1, v2, · · · , vn)) ≤ O(
bp√
nε

√
log

p

β
)

with probability at least 1− 4β.

Proof of Theorem 5.1.5

Let θ∗ = arg minθ∈C L(θ;D), θpriv = arg minθ∈C L̃(θ;D). Under the assumptions of

α, n, k, ε, β, we know from the proof of Theorem 5.1.2 and Corollary 5.1.2 that supθ∈C |L̃(θ;D)−

L(θ;D)| ≤ α. Also by setting ε = 16348pα and α ≤ 1
16348

µ
p
√
p
, we can see that the condition

in Lemma 5.1.7 holds for ∆ = α. So there is an algorithm whose output θ̃priv satisfies

L̃(θ̃priv;D) ≤ min
θ∈C

L̃(θ;D) +O(pα).

Thus, we have

L(θ̃priv;D)− L(θ∗;D) ≤ L(θ̃priv;D)− L̃(θpriv;D) + L̃(θpriv;D)− L(θ∗;D),

where

L(θ̃priv;D)− L̃(θpriv;D) ≤ L(θ̃priv;D)− L̃(θ̃priv;D) + L̃(θ̃priv;D)− L̃(θpriv;D)

≤ O(pα).
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Also L̃(θpriv;D)− L̂(θ∗;D) ≤ L̃(θ∗;D)− L̂(θ∗;D) ≤ α. Thus, the theorem follows. The

running time is determined by n. This is because when we use the algorithm in Lemma

5.1.7, we have to use the first order optimization. That is, we have to evaluate some points

at L̃(θ;D), which will cost at most O(Poly(n, 1
α

)) time (note that L̃ is a polynomial with

(k + 1)p ≤ n coefficients).

Proof of Lemma 5.1.8

It is easy to see that items 1 is true. Item 2 is due to the following |f ′β(x)| = |
−1+

x− 1
2√

(x− 1
2 )2+β2

2
| ≤

1. Item 3 is because of the following 0 ≤ f ′′β (x) = β2

((x− 1
2

)2+β2)
3
2
≤ 1

β
. For item 4 we have

|f (3)
β (x)| = 3β2x

(x2+β2)
5
2
≤ 3

β2 .

Proof of Theorem 5.1.7

For simplicity, we omit the term of δ, which will not affect the linear dependency. Let

Ĝ(w, i) = [
d∑
j=0

cj

(
d

j

)
(yi〈w, xi〉)j(1− yi〈w, xi〉)d−j]yixTi ,

where cj = f ′β( j
d
) and

EiĜ(w, i) =
1

n

n∑
i=1

Ĝ(w, i) = Ĝ(w).

For the term of G(w, i), the randomness comes from sampling the index i and the Gaussian

noises added for preserving local privacy.

Note that in total Eσ,z,iG(w, i) = Ĝ(w), where σ = {σi,j}
d(d+1)

2
j=0 and z = {zi,j}

d(d+1)
2

j=0 .

It is easy to see that Eσ,zG(w, i) = E[(
∑d

j=0 cj
(
d
j

)
ti,jsi,j)yi,0x

T
i,0 | i] = Ĝ(w, i), which

is due to the fact that Eti,j = (yi〈w, xi〉)j , Esi,j = (1 − yi〈w, xi〉)d−j and each ti,j, si,j is

independent. We now calculate the variance for this term with fixed i. Firstly, we have
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Var(yi,0xTi,0) = O( p
ε4

). For each ti,j , we get

Var(ti,j) ≤ Πjd+j
k=jd+1Var(yi,k)(Var(< wi, xi,k >) + (E(wTi xi,k))

2) ≤ Õ
(
(C1

d(d+ 1)

ε2
)2j
)
.

and similarly we have

Var(si,j) ≤ Õ
(
(C2

d(d+ 1)

ε2
)2(d−j)).

Thus we have

Var(ti,jsi,j) ≤ Õ
(
(C3

d(d+ 1)

ε2
)2d
)
.

Since function f ′β is bounded by 1 and
(
d
j

)
≤ dd for each j. In total, we have

Var(G(wt, i)|i) ≤ O(d · dd · (C3
d(d+ 1)

ε2
)2d · p

ε4
) = Õ

(d6dCdp

ε4d+4

)
.

Next we consider Var(Ĝ(w, i)). Since

‖Ĝ(w, i)−f ′β(yix
T
i w)yix

T
i ‖2

2 = ‖[
d∑
j=0

cj

(
d

j

)
(yi〈w, xi〉)j(1−yi〈w, xi〉)d−j−f ′β(w)]yix

T
i ‖2

2

≤ (
1

β2d
)2 ≤ α2

4
,

we get

Var(Ĝ(w, i)) ≤ O
(
E[‖Ĝ(w, i)− f ′β(yix

T
i w)yix

T
i ‖2

2] + E[Ĝ(w)−∇Lβ(w;D)‖2
2]

+ E[‖f ′β(yix
T
i w)yix

T
i −∇Lβ(w;D)‖2

2]
)
≤ O((α + 1)2).

In total, we have E[‖G(w, i) − Ĝ(w)‖2
2] ≤ E[‖G(w, i) − Ĝ(w, i)‖2

2] + E[‖Ĝ(w, i) −

Ĝ(w)‖2
2] ≤ Õ

(
(
d3dCd4

√
p

ε2d+2 + α + 1)2
)
.
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Also, we know that

Lβ(v;D)− Lβ(w;D)− 〈Ĝ(w), v − w〉 =

Lβ(v;D)− Lβ(w;D)− 〈∇Lβ(w;D), v − w〉+ 〈∇Lβ(w;D)−G(w), v − w〉

≤ 1

2β
‖v − w‖2

2 +
α

2
,

since Lβ is 1
β

-smooth and |〈∇Lβ(w)−G(w), v − w〉| ≤ α
2

.

Thus, G(w, i) is an
(
α
2
, 1
β
, O(

d3dCd4
√
p

ε2d+2 + α + 1)
)

stochastic oracle of Lβ .

Proof of Theorem 5.1.8

The guarantee of differential privacy is by Gaussian mechanism and composition theorem.

By Theorem 5.1.7, Lemma 5.1.8 and 5.1.5, we have

ELβ(wn, D)−min
w∈C

Lβ(w,D) ≤ O(
(
d3dCd4

√
p

ε2d+2 + α + 1)

β
√
n

+
1

β2d
) = O(

d3dCd
4

√
p

ε2d+2β
√
n

+
α

2
).

By Lemma 5.1.8, we know that

EL(wn, D)−min
w∈C

L(w,D) ≤ O(β +
d3dCd

4

√
p

ε2d+2β
√
n

+
α

2
).

Thus, if we take β = α
4

, d = 2
β2α

= O( 1
α3 ) and n = Ω(

d6dCd5p

ε4d+4α2 ), we have

EL(wn, D)−min
w∈C

L(w,D) ≤ α.
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Proof of Lemma 5.1.9

Let g(θ) = Es∼Q|s − θ|. Then, we have the following for every θ, where f ′(θ) is well

defined,

g′(θ) = Es∼Q[1s≤θ]− Es∼Q[1s>θ]

=
[f ′(θ)− f ′(−1)]− [f ′(1)− f ′(θ)]

f ′(1)− f(−1)

=
2f ′(θ)− (f ′(1) + f ′(−1))

f ′(1)− f ′(−1)
.

Thus, we get

F ′(θ) =
f ′(1)− f ′(−1)

2
g′(θ) +

f ′(1) + f ′(−1)

2
= f ′(θ).

Next, we show that if F ′(θ) = f ′(θ) for every θ ∈ [0, 1], where f ′(θ) is well defined, there

is a constant c which satisfies the condition of F (θ) = f(θ) + c for all θ ∈ [0, 1].

Lemma 5.1.15. If f is convex and 1-Lipschitz, then f is differentiable at all but countably

many points. That is, f ′ has only countable many discontinuous points.

Proof of Lemma 5.1.15. Since f is convex, we have the following for 0 ≤ s < u ≤ v <

t ≤ 1

f(u)− f(s)

u− s
≤ f(t)− f(v)

t− v
,

This is due to the property of 3-point convexity, where

f(u)− f(s)

u− s
≤ f(t)− f(u)

t− u
≤ f(t)− f(v)

t− v
.

Thus, we can obtain the following inequality of one-sided derivation, that is,

f ′−(x) ≤ f ′+(x) ≤ f ′−(y) ≤ f ′+(y)
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for every x < y. For each point where f ′−(x) < f ′+(x), we pick a rational number q(x)

which satisfies the condition of f ′−(x) < q(x) < f ′+(x). From the above discussion, we can

see that all these q(x) are different. Thus, there are at most countable many points where f

is non-differentiable.

From the above lemma, we can see that the Lebesgue measure of these dis-continuous

points is 0. Thus, f ′ is Riemann Integrable on [−1, 1]. By Newton-Leibniz formula, we

have the following for any θ ∈ [0, 1],

∫ θ

−1

f ′(x)dx = f(θ)− f(−1) =

∫ θ

−1

F ′(x)dx = F (x)− F (−1).

Therefore, we get F (θ) = f(θ) + c and complete the proof.

Proof of Theorem 5.1.9

Let hβ denote the function hβ(x) =
x+
√
x2+β2

2
. By Lemma 5.1.9 we have

f(θ) = (f ′(1)− f ′(−1))Es∼Q
|s− θ|

2
+
f ′(1) + f ′(−1)

2
θ + c.

Now, we consider function Fβ(θ), which is

Fβ(θ) = (f ′(1)− f ′(−1))Es∼Q[2hβ(
θ − s

2
)− θ − s

2
] +

f ′(1) + f ′(−1)

2
θ + c.

From this, we have

∇Fβ(θ) = (f ′(1)− f ′(−1))Es∼Q[∇hβ(
θ − s

2
)] +

f ′(1) + f ′(−1)

2
− f ′(1)− f ′(−1)

2
.

Note that since |x| = 2 max{x, 0}−x, we can get 1) |Fβ(θ)− f(θ)| ≤ O(β) for any θ ∈ R,

2) Fβ(x) is O( 1
β
)-smooth and convex since hβ(θ− s) is 1

β
-smooth and convex, and 3) Fβ(θ)

is O(1)-Lipschitz. Now, we optimize the following problem in the non-interactive local
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model:

Fβ(w;D) =
1

n

n∑
i=1

Fβ(yi〈xi, w〉).

For each fixed i and s, we let

Ĝ(w, i, s) = (f ′(1)− f ′(−1))[
d∑
j=1

cj

(
d

j

)
ti,jri,j]yix

T
i + f ′(−1).

Then, we have Eσ,zG(w, i, s) = Ĝ(w, i, s). By using a similar argument given in the proof

of Theorem 5.1.7, we get

Var(Ĝ(w, i, s)|i, s) ≤ Õ
(d6dCdp

ε4d+4

)
.

Thus, for each fixed i we have

EsĜ(w, i, s) = Ḡ(w, i) = (f ′(1)− f ′(−1))[Es∼Q
d∑
j=1

cj

(
d

j

)
(
yi〈w, xi〉 − s

2
)j

(1− yi〈w, xi〉 − s
2

)d−j]yix
T
i + f ′(−1).

Next, we bound the term of Var(Ĝ(w, i, s)|i) ≤ O(d2d+2).

Let ti,j = Πjd+j
k=jd+1(yi〈wt,xi〉−sk

2
). Then, we have

Var(ti,j) ≤ Πjd+j
k=jd+1|yi|

2Var(〈wt, xi〉 − sk) ≤ O(1).

And similarly for Var(ri,j). Thus, we get

Var(Ĝ(w, i, s)|i) ≤ O(
d∑
j=1

c2
j

(
d

j

)2

Var(ti,jri,j)) = O(d2d+2).

Since EiḠ(w, i) = Ĝ = 1
n

∑n
i=1 Ḡ(w, i), we have Var(Ḡ(w, i)) ≤ O((α+ 1)2) by a similar
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argument given in the proof of Theorem 5.1.7. Thus, in total we have

E‖G(w, i, s)− Ĝ‖2
2 ≤ Õ

(d6dCdp

ε4d+4

)
The other part of the proof is the same as that of Theorem 5.1.7.

Proof of Theorem 5.1.10

It is sufficient to prove that

sup
y∈Yk
|q̃D(y)− qy(D)| ≤ γ +

T
(
p+tk
tk

)2

√
log

(p+tktk
)

β
√
nε

,

where T = pO(
√
k log( 1

γ
)). Now we denote pD ∈ R(p+tktk

) as the average of q̃i. That is, it is the

unperturbed version of p̃D. By Lemma 5.1.10, we have supy∈Yk |pD(y)− qy(D)| ≤ γ. Thus

it is sufficient to prove that

sup
y∈Yk
|q̃D(y)− pD(y)| ≤

T
(
p+tk
tk

)2

√
log

(p+tktk
)

β
√
nε

.

Since both q̃D and pD can be viewed as
(
p+tk
tk

)
-dimensional vectors, we then have

sup
y∈Yk
|p̃D(y)− pD(y)| ≤ ‖p̃D − pD‖1.

Also, since each coordinate of pD(y) is bounded by T by Lemma 5.1.10, we can see that if

n = Ω(max{ 1
ε2

log 1
β
,
(
p+tk
tk

)
log
(
p+tk
tk

)
log 1/β}), then by Lemma 5.1.1, with probability at

least 1− β, the following is true

‖p̃D − pD‖1 ≤
T
(
p+tk
tk

)2

√
log

(p+tktk
)

β
√
nε

.
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Thus, if taking γ = α
2

and by the fact that
(
p+tk
tk

)
= pO(tk), we get the proof.

Proof of Theorem 5.1.11

Let t = ( 1
γ
)

1
h . It is sufficient to prove that supqf∈QCh

T

|p̃D · cf − qf (D)| ≤ α. Let pD

denote the average of {pi}ni=1, i.e. the unperturbed version of p̃D. Then by Lemma

5.1.11, we have supqf∈QCh
T

|pD · cf − qf (D)| ≤ γ. Also since ‖cf‖∞ ≤ M , we have

supqf∈QCh
T

|p̃D · cf − pD · cf | ≤ O(‖p̃D − pD‖1). By Lemma 5.1.1, we know that if

n = Ω(max{ 1
ε2

log 1
β
, t2p log 1

β
}), then ‖p̃D − pD‖1 ≤ O(

t
5p
2

√
log( 1

β
)

√
nε

) with probability at

least 1 − β. Thus, we have supqf∈QCh
T

|p̃D · cf − qf (D)| ≤ O(γ +
( 1
γ

)
5p
2h

√
log( 1

β
)

√
nε

). Taking

γ = O((1/
√
nε)

2h
5p+2h ), we get supqf∈QCh

T

|p̃D · cf − qf (D)| ≤ O(
√

log( 1
β
)( 1√

nε
)

2h
5p+2h ) ≤ α.

The computational cost for answering a query follows from Lemma 5.1.11 and b · c = O(tp).

5.1.7 Omitted Details in Section 5.1.3

Recently, [49] proposed a generic transformation, GenProt, which could transform any (ε, δ)

(so as for ε) non-interactive LDP protocol to an O(ε)-LDP protocol with the communication

complexity for each player being O(log log n) (at the expense of increasing the shared

randomness in the protocol), which removes the condition of ’sample resilient’ in [27]. The

detail is in Algorithm 5.1.37. The transformation uses O(n log n
β
) independent public string.

The reader is referred to [49] for details. Actually, by Algorithm 5.1.37, we can easily get

an O(ε)-LDP algorithm with the same error bound.

Theorem 5.1.12. For any given ε ≤ 1
4
, under the condition of Corollary 5.1.2, Algorithm

5.1.37 is 10ε-LDP. If T = O(log n
β
), then with probability at least 1− 2β, Corollary 5.1.2

holds. Moreover, the communication complexity of each layer is O(log log n) bits, and the

computational complexity for each player is O(log n
β
).
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Algorithm 5.1.37 Player-Efficient Local Bernstein Mechanism with O(log log n) bits com-
munication complexity.

1: Input: Each user i ∈ [n] has data xi ∈ D, privacy parameter ε, public loss function
` : [0, 1]p ×D 7→ [0, 1], and parameter k, T .

2: Preprocessing:
3: For every (i, T ) ∈ [n]× [T ], generate independent public string yi,t = Lap(⊥).
4: Construct the grid T = {v1

k
, v2

k
, · · · , vp

k
}v1,v2,··· ,vp , where {v1, v2, · · · , vp} =

{0, 1, · · · , k}p.
5: Randomly partition [n] in to d = (k + 1)p subsets I1, I2, · · · , Id, with each subset Ij

corresponding to an grid in T denoted as T (j).
6: for Each Player i ∈ [n] do
7: Find the subset I` such that i ∈ I`. Calculate vi = `(T (l);xi).
8: For each t ∈ [T ], compute pi,t = 1

2

Pr[vi+Lap( 1
ε
)=yi,t]

Pr[Lap(⊥)=yi,t]

9: For every t ∈ [T ], if pi,t 6∈ [ e
−2ε

2
, e

2ε

2
], then set pi,t = 1

2
.

10: For every t ∈ [T ], sample a bit bi,t from Bernoulli(pi,t).
11: Denote Hi = {t ∈ [T ] : bi,t = 1}
12: If Hi = ∅, set Hi = [T ]
13: Sample gi ∈ Hi uniformly, and send gi to the server.
14: end for
15: for The Server do
16: for Each l ∈ [d] do
17: Compute v` = n

|I`|
∑

i∈I` gi.
18: Denote the corresponding grid point (v1

k
, v2

k
, · · · , vp

k
) ∈ T as `; then let

L̂((v1

k
, v2

k
, · · · , vp

k
);D) = v`.

19: end for
20: Construct perturbed Bernstein polynomial of the empirical loss L̃ as in Algorithm 2.

Denote the function as L̃(·, D).
21: Compute wpriv = arg minw∈C L̃(w;D).
22: end for

5.1.8 Detailed Algorithm of SIGM in Lemma 5.1.5

Let a ≥ 1, b ≥ 0, p ≥ 1 be some parameters. Let us assume that we know a number R such

that ‖w∗‖2 ≤ R. We choose

αi =
1

a
(
i+ p

p
)p−1 (5.10)

βi = β +
bσ

R
(i+ p+ 1)

2p−1
2 (5.11)

Bi = aα2
i =

1

a
(
i+ p

p
)2p−2. (5.12)
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We also define Ak =
∑n

i=0 αi and ηi = αi+1

Bi+1
and α0 = A0 = B0

Lemma 5.1.16 (Theorem 3.4 in [102]). Assume that f(w) is endowed with a (γ, β, σ)

stochastic oracle (Fγ,β,σ(w; ξ), Gγ,β,σ(w; ξ)) with β ≥ O(1). By choosing the parameters

above with a = 2
p−1

2 and b = 2
5−2p

4 p
1−2p

2 , then the sequence yk generated by Algorithm

5.1.38

Ex0,x1,··· ,xk [f(yk)]−min
y∈C

f(y) ≤ Θ(
βR2

kp
+
σR√
k

+ kp−1γ).

Taking p = 1, this is just Lemma 5.1.5.

Algorithm 5.1.38 Stochastic Intermediate Gradient Method

1: Input: The sequences {αi}i≥0, {βi}i≥0, {Bi}i≥0, functions d(x) = 1
2
‖x‖2, Bregman

distance V (x, z) = d(X)− d(Z)− 〈∇d(z), x− z〉.
2: Compute x0 = arg minx∈C{d(x)}.
3: Let ξ0 be a realization of the random variable ξ.
4: Computer Gγ,β,σ(x0; ξ0).
5: Compute

y0 = arg min
x∈C
{β0d(x) + α0〈Gγ,β,σ(x0; ξ0), x− x0〉. (5.13)

6: for k = 0, · · · , T − 1 do
7: Compute

zk = arg min
x∈C

βkd(x) +
k∑
i=0

αi〈Gγ,β,σ(xi; ξi), x− xi〉 (5.14)

8: Let xk+1 = ηkzk + (1− ηk)yk.
9: Let ξk+1 be a realization of the random variable ξ.

10: Compute Gγ,β,σ(xk+1; ξk+1)
11: Compute

x̂k+1 = arg min
x∈C

βkV (x, zk) + αk+1〈Gγ,β,σ(xk+1; ξk+1), x− zk〉. (5.15)

12: Let wk+1 = ηx̂k+1 + (1− ηk)yk.
13: Let yk+1 = Ak+1−Bk+1

Ak+1
yk + Bk+1

Ak+1
wk+1.

14: end for
15: return yT .
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5.2 ERM in a Relaxed Non-interactive LDP model

From the previous chapter, we can see that, although we have already improved the sample

complexity given by [257], here our improved sample complexity for achieving an error of

α still need to be exponential in α [307, 363] or exponential in the dimensionality p. Due to

these negative results, there is no study on the practical performance of these algorithms.

To address high sample complexity and practical issues of NLDP, a possible way is to

make use of some recent developments on the central DP model. Quite a few results [26,

139, 239, 238, 30] have suggested that by allowing the server to access some public but

unlabeled data in addition to the private data, it is possible to reduce the sample complexity

in the central DP model, under the assumption that these public data have the same marginal

distribution as the private ones. It has also shown that such a relaxed setting is likely to

enable better practical performance for problems like Empirical Risk Minimization (ERM)

[139, 239]. Thus, it would be interesting to know whether the relaxed setting can also help

reduce sample complexity in the NLDP model.

In this section, we will focus on a subclass of ERM, Generalized Linear Model (GLM),

in a relaxed version of the NLDP model. GLM is one of the most fundamental models in

statistics and machine learning. It generalizes ordinary linear regression by allowing the

linear model to be related to the response variable via a link function and by allowing the

magnitude of the variance of each measurement to be a function of its predicted value. GLM

was introduced as a way of unifying various statistical models, including linear, logistic and

Poisson regressions. It has a wide range of applications in various domains, such as social

sciences [341], genomics research [268], finance [217] and medical research [199]. The

model can be formulated as follows.

GLM: Let y ∈ [0, 1] be the response variable that belongs to an exponential family with

natural parameter η. That is, its probability density function can be written as p(y|η) =
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exp(ηy − Φ(η))h(y), where Φ is the cumulative generating function. Given observations

y1, · · · , yn such that yi ∼ p(yi|ηi) for η = (η1, · · · , ηn), the maximum likelihood estimator

(MLE) can be written as p(y1, y2, · · · |η) = exp(
∑n

i=1 yiηi − Φ(ηi))Π
n
i=1h(yi). In GLM,

we assume that η is modeled by linear relations, i.e., ηi = 〈xi, w∗〉 for some w∗ ∈ Rp and

feature vector xi. Thus, maximizing MLE is equivalent to minimizing 1
n

∑n
i=1[Φ(〈xi, w〉)−

yi〈xi, w〉]. The goal is to find w∗, which is equivalent to minimizing its population version

w∗ = arg min
w∈Rp

E(x,y)[Φ(〈x,w〉)− y〈x,w〉]. (5.16)

Thus, in this chapter, our main questions now become the follows. Can we further

reduce the sample complexity of GLM in the NLDP model if the server has additional

public but unlabeled data? Moreover, is there any efficient algorithm for this problem

in the relaxed setting?

In this paper, we provide positive answers to the above two questions. Our contributions

can be summarized as follows:

1. We first show that when the feature vector x of GLM is sub-Gaussian with bounded

`1-norm, there is an (ε, δ)-NLDP algorithm for GLM (under some mild assumptions)

whose sample complexities of the private and public data, for achieving an error of α

(in `∞-norm), areO(p2ε−2α−2) andO(p2α−2) (with other terms omitted), respectively,

if α is not too small (i.e., α ≥ Ω( 1√
p
)). We note that this is the first result that achieves

a fully polynomial sample complexity for a general class of loss functions in the

NLDP model with public unlabeled data. Another nice feature of this algorithm is that,

instead of just answering one GLM query, it can answer, with constant probability,

multiple (at most exp(O(p)) ) GLM queries and achieve an error of α ≥ Ω( 1√
p
) with

the same sample complexities as in the single query case.

2. We then extend our idea to the non-linear regression problem. By using the zero-bias

transformation [130], we show that when x is sub-Gaussian with bounded `1-norm, it
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exhibits the same phenomenon as GLM.

3. Finally, we provide an experimental study of our algorithms on both synthetic and real

world datasets. The experimental results suggest that our methods are efficient and

effective, which is consistent with our theoretical analysis. To our best knowledge,

these are the first effective algorithms in the NLDP model with public unlabeled data

for both the GLM and non-linear regression problems. Moreover, these experimental

results also provide a clear message as to which aspects need further theoretical

investigation.

5.2.1 Related Work

Private learning with public unlabeled data has been studied previously in [139, 239, 238,

30]. These results differ from ours in quite a few ways. Firstly, all of them consider either

the multiparty setting or the centralized model. Consequently, none of them can be used

to solve our problems. Specifically, [139] considered the multiparty setting where each

party possesses several data records, while each party in our NLDP model has only one data

record. [239, 238] investigated the DP model, used sub-sample and aggregate to train some

deep learning models, but provided no provable sample complexity. [30] also studied the DP

model by combining the distance to instability and the sparse vector techniques, and showed

some theoretical guarantees. However, both the sub-sample/aggregate and the sparse vector

methods cannot be used in the NLDP model. Moreover, public data in their methods are

also used quite differently from ours. Secondly, all of the above results use the private data

to label the public data and conduct the learning process on the public data, while we use

the public data to approximate some crucial constants. Finally, all of the previous methods

rely on the known model or loss functions, while in our algorithms the loss functions could

be unknown to the users; also the server could use multiple loss functions with the same

sample complexity.
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5.2.2 Our Model

Our Model: Different from the classical NLDP model where only one private dataset

{(xi, yi)}ni=1 exists, the NLDP model in our setting allows the server to have an additional

public but unlabeled dataset D′ = {xj}n+m
j=n+1 ⊂ Xm, where each xj is sampled from Px,

which is the marginal distribution of P (i.e., they have the same distribution as {xi}ni=1).

5.2.3 Privately Learning Generalized Linear Models

In this section, we study GLM in our model and privately estimate w∗ in (5.16) by using

both the private data {(xi, yi)}ni=1 and the public unlabeled data {xj}n+m
j=n+1. Our goal is to

achieve a fully polynomial sample complexity for n and m, i.e., n,m = Poly(p, 1
ε
, 1
α
, log 1

δ
),

such that there is an (ε, δ)-NLDP algorithm with estimation error less than α (with high

probability). Before presenting our ideas, we first consider the following lemma for x ∼

N (0,Σ), which is from Stein’s lemma [45].

Algorithm 5.2.39 Non-interactive LDP for smooth GLM with public data
Input: Private data {(xi, yi)}ni=1 ⊂ (Rp × {0, 1})n, where ‖xi‖1 ≤ r and |yi| ≤ 1, public
unlabeled data {xj}n+m

j=n+1, loss function Φ : R 7→ R, privacy parameters ε, δ, and initial
value c ∈ R.

1: for Each user i ∈ [n] do
2: Release x̂ixTi = xix

T
i + E1,i, where E1,i ∈ Rp×p is a symmetric matrix and each

entry of the upper triangle matrix is sampled from N (0,
32r4 log 2.5

δ

ε2
).

3: Release x̂iyi = xiyi + E2,i, where E2,i ∈ Rp is sampled from N (0,
32r2 log 2.5

δ

ε2
Ip).

4: end for
5: for The server do
6: Let X̂TX =

∑n
i=1 x̂ix

T
i and X̂Ty =

∑n
i=1 x̂iyi. Calculate ŵols = (X̂TX)−1X̂Ty.

7: Calculate ỹj = xTj ŵ
ols for each j = n+ 1, · · · , n+m. Find the root ĉΦ such that

1 = ĉΦ
m

∑n+m
j=n+1 Φ(2)(ĉΦỹj) by using Newton’s root-finding method (or other methods):

8: for t = 1, 2, · · · until convergence do
9: c = c− c 1

m

∑n+m+1
j=n+1 Φ(2)(cỹj)−1

1
m

∑n+m+1
j=n+1 {Φ(2)(cỹj)+cỹjΦ(3)(cỹj)}

.

10: end for
11: end for
12: Return ŵglm = ĉΦ · ŵols.
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Lemma 5.2.1 ([45]). If x ∼ N (0,Σ), then w∗ in (5.16) can be written as

w∗ = cΦ × wols,

where cΦ is the fixed point of z 7→ (E[Φ(2)(〈x,wols〉z)])−1 (if we assume taht E[Φ(2)(〈x,wols〉z)] 6=

0) and wols = Σ−1E[xy] is the Ordinary Least Squares (OLS) vector.

From Lemma 5.2.1, we can see that to obtain w∗, it is sufficient to estimate wols and the

underlying constant cΦ. Specifically, to estimate wols in a non-interactive local differentially

private manner, a direct way is to let each player perturb her sufficient statistics, i.e., xixTi

and yixi. After receiving the private OLS estimator ŵols, the server can then estimate the

constant cΦ by using the public unlabeled data and ŵols. From the definition, it is easy to see

that cΦ is independent of the label y. Thus, cΦ can be estimated by using the empirical version

of E[Φ(2)(〈x,wols〉z)]. That is, find the root of the function 1− c
m

∑n+m
j=n+1 Φ(2)(c〈xj, ŵols〉).

Several methods are available for finding roots, such as the Newton’s method which has a

quadratic convergence rate.

One problem with the above approach is that Lemma 5.2.1 needs x to be Gaussian,

which implies that the sensitivity of the term xix
T
i could be unbounded. We also note that

Lemma 5.2.1 is only for Gaussian distribution. The following lemma extends Lemma 5.2.1

to bounded sub-Gaussian with an additional additive error of O(‖w
∗‖2∞√
p

).

Lemma 5.2.2 ([108]). Let x1, · · · , xn ∈ Rp be i.i.d realizations of a random vector x that

is sub-Gaussian with zero mean, whose covariance matrix Σ has its corresponding Σ
1
2 being

diagonally dominant 9, and whose distribution is supported on a `2-norm ball of radius r.

Let v = Σ−
1
2x be the whitened random vector of x with sub-Gaussian norm ‖v‖ψ2 = κx. If

each vi has constant first and second conditional moments (i.e., ∀j ∈ [p] and w̃ = Σ
1
2w∗,

E[vij|
∑

k 6=j w̃vik] and E[v2
ij|
∑

k 6=j w̃vik] are deterministic) and the function Φ(2) is Lipschitz

9A square matrix is said to be diagonally dominant if, for every row of the matrix, the magnitude of the
diagonal entry in a row is larger than or equal to the sum of the magnitudes of all the other (non-diagonal)
entries in that row.
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continuous with constant G, then for cΦ = 1
E[Φ(2)(〈xi,w∗〉)]

(assuming E[Φ(2)(〈xi, w∗〉)] 6= 0),

the following holds for GLM in (5.16)

‖ 1

cΦ
· w∗ − wols‖∞ ≤ 16Grκ3

x

√
ρ2ρ∞

‖w∗‖2∞√
p

, (5.17)

where ρq for q = {2,∞} is the conditional number of Σ in `q norm andwols = (E[xxT ])−1E[xy]

is the OLS vector.

Lemma 5.2.2 indicates that we can use the same idea as above to estimate w∗. Note that

the forms of cΦ in Lemmas 5.2.1 and 5.2.2 are different. However, due to the closeness of

w∗ and wols in (5.17), we can still use 1
E[Φ(2)(〈xi,wols〉c̄Φ])

to approximate cΦ, where c̄Φ is the

root of cE[Φ(2)(〈xi, wols〉c)− 1. Combining these ideas, we have Algorithm 5.2.39.

Theorem 5.2.1. For any 0 < ε, δ < 1, Algorithm 5.2.39 is (ε, δ) non-interactive LDP.

The following theorem shows the sample complexity of the bounded sub-Gaussian case.

Theorem 5.2.2. Under the assumptions of Lemma 5.2.2, if further assume that the distri-

bution of x is supported on the `1-norm ball with radius r, |Φ(2)(·)| ≤ L, and for some

constant c̄ and τ > 0, the function f(c) = cE[Φ(2)(〈x,wols〉c)] satisfies the condition of

f(c̄) ≥ 1 + τ , and the derivative of f in the interval [0,max{c̄, cΦ}] does not change the

sign (i.e., its absolute value is lower bounded by some constant M > 0), then for sufficiently

large m,n such that

m ≥ Ω
(
‖Σ‖2‖w∗‖2∞max{1, ‖w∗‖2∞}ρ2ρ

2
∞p

2 max{1, 1

cΦ
}2
)

(5.18)

n ≥ Ω
(ρ2ρ

2
∞‖Σ‖22p2‖w∗‖2∞max{1, ‖w∗‖2∞} log 1

δ log p
ξ

ε2λmin(Σ) min{λmin(Σ), 1}
max{1, 1

cΦ
}2
)
, (5.19)
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with probability at least 1− exp(−Ω(p))− ξ, the output ŵglm in Algorithm 5.2.39 satisfies

‖ŵglm − w∗‖∞ ≤ O
(ρ2ρ

2
∞‖w∗‖2∞max{1, ‖w∗‖2∞}‖Σ‖

1
2
2 p√

m
max{ 1

cΦ
, 1}2

+
ρ2ρ

2
∞‖w∗‖2∞max{1, ‖w∗‖2∞}‖Σ‖

1
2
2 p
√

log 1
δ log p

ξ2

ελ
1
2
min(Σ) min{λ

1
2
min(Σ), 1}

√
n

×max{ 1

cΦ
, 1}2

+ ρ2ρ
2
∞‖Σ

1
2 ‖∞
‖w∗‖3∞max{1, ‖w∗‖∞}√

p
×max{1, 1

cΦ
}
)
, (5.20)

where G,L, τ,M, c̄, r, κx are assumed to be O(1) and thus omitted in the Big-O notations.

Theorem 5.2.2 suggests that if we omit all the other terms and assume that ‖w∗‖∞ =

O(1), then for any given error α ≥ Ω( 1√
p
), there is an (ε, δ)-LDP algorithm whose sample

complexity of private (n) and public unlabeled (m) data, to achieve an estimation error of

α (in `∞-norm), is O(p2ε−2α−2) and O(p2α−2), respectively. We note that m ≤ n, which

means that the sample complexity of the public data is less than that of the private data.

We also note that the sample complexity of the public data is independent of the privacy

parameters ε, δ. All these are quite reasonable in practice. We will also see that in practice

we do not need large amount of public data (see Experiments section for details).

There are also some previous work on LDP linear regression. [257] proposed an

algorithm with a sample complexity of Õ(pα−2ε−2) and [363] achieved a sample complexity

of O(log pα−4ε−2). It seems that our sample complexity for the more general GLM is

worse than theirs. However, these results are not really comparable due to their different

settings. Firstly, [257, 363] considered the optimization error and [318] measured the

`2-norm statistical error, while we estimate the `∞-norm statistical error. Secondly, w∗ is

assumed to be bounded in `2-norm in [257], `1-norm in [363], and `∞-norm in ours. There is

also a result on NLDP linear regression [318]. It relies on assumptions that ‖x‖2 = O(
√
p)

and w∗ is 1-sparse, which are not needed in ours.

Also note that in Theorem 5.2.2, Φ(2) is assumed to be bounded. This is a quite common

assumption in related works such as [301, 297]. Actually, this condition can be relaxed by
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only assuming that Φ(2)(〈x,w〉) is sub-Gaussian in some range of w.

Theorem 5.2.3. Under the assumptions of Lemma 5.2.2, if further assume that the distribu-

tion of x is supported on the `1-norm ball with radius r, sup
w:‖w−Σ

1
2wols‖2≤1

‖Φ(2)(〈x,w〉)‖ψ2 ≤

κg, the function f(c) = cE[Φ(2)(〈x,wols〉c)] satisfies the inequality of f(c̄) ≥ 1 + τ for

some constant c̄ and τ > 0, and the derivative of f in the interval of [0,max{c̄, cΦ}] does

not change the sign (i.e., its absolute value is lower bounded by some constant M > 0), then

for sufficiently large m,n such that

m ≥ Ω̃
( 1

µ̃2
ε2n
)
, (5.21)

n ≥ Ω
(
‖Σ‖22

p2ρ2ρ
2
∞‖w∗‖2∞max{1, ‖w∗‖2∞} log 1

δ log p2

ξ

ε2λmin(Σ) min{λmin(Σ), 1}
max{1, 1

cΦ
}2
)
, (5.22)

the following holds with probability at least 1− exp(−Ω(p))− ξ,

‖ŵglm − w∗‖∞ ≤ O
(
ρ2ρ

2
∞‖Σ

1
2 ‖2 ×

p‖w∗‖∞max{1, ‖w∗‖3∞}
√

log 1
δ log p2

ξ

ε
√
nλ

1/2
min(Σ) min{λ1/2

min(Σ), 1}
max{1, 1

cΦ
}2

+ ρ2ρ
2
∞
‖w∗‖2∞max{1, ‖w∗‖2∞}√

p
max{1, 1

cΦ
}

+
√
ρ2ρ∞‖w∗‖∞max{1, ‖w∗‖∞}

1

µ̃

√
p2 logm

m
max{1, 1

cΦ
}
)
, (5.23)

where µ̃ = E[‖x‖2]√
p

, the terms of r, κx, κg, G,M, τ, c̄ are assumed to be constants, and thus

omitted in the Big-O notations.

From the above theorem, we can see that with more relaxed assumptions, the sample

complexity in Theorem 5.2.3 increases by a factor of O(logm) to achieve an upper bound

on the statistical error ( in `∞-norm) that is asymptotically the same as the one in Theorem

5.2.2.

Algorithm 5.2.39 has several advantages over existing techniques. Firstly, different

from the approach of using Gradient Descent methods to solve DP-ERM (e.g., [328]), our

algorithm is parameter-free. That is, we do not need to choose a specific step size, an

iteration number or initial vectors. Secondly, comparing with some previous work such
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as [363, 257, 307], all of our above results do not need to assume that the loss function is

convex. Thirdly, since the private data contributes only to obtaining the OLS estimator, and

only the constant ĉ depends on the loss function Φ, this means that with probability at least

1− T exp(−Ω(p))− ξ, our algorithm can simultaneously use T different loss functions to

achieve the same errors and with the same sample complexity. This implies that we can

answer at most O(exp(O(p)) number of GLM queries with constant probability to achieve

error α for each query with the same sample complexity as in Theorem 5.2.2. To our best

knowledge, this is the first result which can answer multiple non-linear queries in the NLDP

model with polynomial sample complexity. Previous results are either for linear queries [40,

25], or in the central DP model [285].

A not so desirable issue of Theorems 5.2.2 and 5.2.3 is that they need quite a few

assumptions/conditions. Although almost all of them commonly appear in some related

work, the assumptions on function f seem to be a little weird. They are introduced to ensure

that the function f − 1 has a root and ĉΦ is close to cΦ for large enough m. Fortunately, this

is a not big issue in practice. As shown in [108], these conditions actually hold for many

loss functions, such as logistic and boosting loss. Also, as we will see later, our experiments

show that the algorithm actually performs quite well for many loss functions that may not

satisfy these assumptions. Also, we note that the error bounds in Theorems 5.2.2 and 5.2.3

are dependent on the `1-norm of the upper bound of xi, while such a dependency is on the

`2-norm in previous work such as [257, 363]. We leave the problem of relaxing/lifting these

assumptions to future research.

5.2.4 Privately Learning Non-linear Regressions

In this section, we extend our ideas in the previous section to the problem of estimating

non-linear regression in the NLDP model with public unlabeled data. We assume that there
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is an underlying vector w∗ ∈ Rp with ‖w∗‖2 ≤ 1 such that

y = f(〈x,w∗〉) + σ, (5.24)

where x is the feature vector sampled from some distribution (for simplicity, we assume

that the mean is zero) and y is the response. σ is the zero-mean noise which is independent

of x and bounded by some constant C = O(1) (i.e., σ ∈ [−C,C]). f is some known

differentiable link function with f(0) 6= ∞ 10. We note that these assumptions are quite

common in related work such as [318, 99]. In our model, the goal is to obtain some

estimator wpriv of w∗, based on the private dataset {(xi, yi)}ni=1 and the public unlabeled

dataset {xj}n+m+1
j=n+1 via some NLDP algorithms.

To solve this problem, we first use the zero-bias transformation [130] and the techniques

in [108] to get a lemma similar to Lemma 5.2.2.

Definition 5.2.1 (Zero-bias Transformation). Let z be a random variable with mean 0 and

variance σ2. Then, there exists a random variable z∗ that satisfies E[zf(z)] = σ2E[f ′(z∗)]

for all differentiable functions f . The distribution of z∗ is called the z-zero-bias distribution.

Normal distribution is a unique distribution whose zero-bias transformation is itself.

This is the basic Stein’s lemma.

Theorem 5.2.4. Let x1, · · · , xn ∈ Rp be n i.i.d realizations of a random vector x which

is sub-Gaussian with zero mean, whose covariance matrix Σ has its Σ
1
2 being diagonally

dominant, and whose distribution is supported on an `2-norm ball of radius r. Let v = Σ−
1
2x

be the whitened random vector of x with sub-Gaussian norm ‖v‖ψ2 = κx. If each vi has

constant first and second conditional moments and function f ′ is Lipschitz continuous with

constant G, then for cf = 1
E[f ′(〈xi,w∗〉)] , the following holds

‖ 1

cf
· w∗ − wols‖∞ ≤ O(Grκ3

x

√
ρ2ρ∞

‖w∗‖2∞√
p

),

10This assumption can be relaxed to ”there is a point x such that f(x) 6= 0”.
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where wols is the OLS vector.

Algorithm 5.2.40 Non-interactive LDP for smooth Non-linear Regression with public data
Input: Private data {(xi, yi)}ni=1 ⊂ Rp × {0, 1} with ‖xi‖1 ≤ r, public unlabeled data
{xj}n+m

j=n+1. Link function f : R 7→ R, privacy parameters ε, δ, and initial value c ∈ R.
1: for Each user i ∈ [n] do
2: Release x̂ixTi = xix

T
i +E1,i, whereE1,i ∈ Rp×p is a symmetric matrix and each entry

of the upper triangle matrix is sampled fromN (0,
32r4 log 2.5

δ

ε2
). Release x̂iyi = xiyi+E2,i,

where the vector E2,i ∈ Rp is sampled from N (0,
32r2(Lr+|f(0)|+C)2 log 2.5

δ

ε2
Ip).

3: end for
4: for The server do
5: Denote X̂TX =

∑n
i=1 x̂ix

T
i and X̂Ty =

∑n
i=1 x̂iyi. Calculate ŵols =

(X̂TX)−1X̂Ty.
6: Calculate ỹj = xTj ŵ

ols for each j = n+ 1, · · · , n+m. Find the root ĉΦ such that
1 = ĉΦ

m

∑n+m
j=n+1 f

′(ĉΦỹj) using Newton’s root finding method:
7: for t = 1, 2, · · · until convergence do
8: c = c− c 1

m

∑n+m+1
j=n+1 f ′(cỹj)−1

1
m

∑n+m+1
j=n+1 {f ′(cỹj)+cỹjf (2)(cỹj)}

.

9: end for
10: end for
11: Return ŵnlr = ĉΦ · ŵols.

From Theorem 5.2.4, we can see that it shares the same phenomenon as Lemma 5.2.2

(i.e., the OLS vector with some constant could approximate w∗ well). Thus, a similar idea

to Algorithm 5.2.39 can be used to solve this problem for the bounded sub-Gaussian case,

which gives us Algorithm 5.2.40 and the following theorem.

Theorem 5.2.5. Under the assumptions of Theorem 5.2.4, if further assume that the as-

sumptions in Theorem 5.2.2 hold for function f ′(·) instead of Φ(2)(·), then for sufficiently

large m,n such that

m ≥ Ω
(
‖Σ‖2‖w∗‖2∞max{1, ‖w∗‖2∞}ρ2ρ

2
∞p

2 max{1, 1

cf
}2
)

(5.25)

n ≥ Ω
(ρ2ρ

2
∞‖Σ‖22p2‖w∗‖2∞max{1, ‖w∗‖2∞} log 1

δ log p
ξ

ε2λmin(Σ) min{λmin(Σ), 1}
max{1, 1

cf
}2
)
, (5.26)
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Figure 5.1: GLM with logistic loss under i.i.d Bernoulli design. The left plot shows the
squared relative error under different levels of privacy. The right one shows relative error
under different dimensionality.

with probability at least 1− exp(−Ω(p))− ξ, the output of Algorithm 5.2.40 satisfies

‖ŵnlr − w∗‖∞ ≤ O
(ρ2ρ

2
∞‖w∗‖2∞max{1, ‖w∗‖2∞}‖Σ‖

1
2
2 p√

m
max{ 1

cf
, 1}2

+
ρ2ρ

2
∞‖w∗‖2∞max{1, ‖w∗‖2∞}‖Σ‖

1
2
2 p
√

log 1
δ log p

ξ2

ελ
1
2
min(Σ) min{λ

1
2
min(Σ), 1}

√
n

max{ 1

cf
, 1}2

+ ρ2ρ
2
∞‖Σ

1
2 ‖∞
‖w∗‖3∞max{1, ‖w∗‖∞}√

p
×max{1, 1

cf
}
)
, (5.27)

where the terms of G,L, τ,M, c̄, r, κx, C are assumed to be O(1) and thus omitted in the

Big-O notations.

5.2.5 Experiments

Evaluation on synthetic data

Experimental Setting For GLM, we consider the problem of binary logistic loss i.e.,

Φ(〈x,w〉) = ln (1 + exp (〈x,w〉)) in (5.16) while for non-linear regression we set f(x) =

1
3
x3 in (5.24). For each problem we first compare the squared relative error ‖ŵ−w

∗‖2∞
‖w∗‖2∞

with respect to different privacy parameters ε ∈ {10, 5, 3, 2} with δ = 1
n

. In these ex-
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periments, we estimate the squared relative error with the fixed dimensionality p = 10

and the population parameter w∗ = (1, 1, ..., 1)/
√
p. The sample size n is chosen from

the set 104 · {1, 3, 5, ..., 29}. We assume that the same amount of public unlabeled data

is available. The features are generated independently from a Bernoulli distribution

Pr
(
xi,j = ±1

p

)
= 0.5 and the label is generated according to the logistic model or the

model (5.24). In non-linear regression model, σ is bounded by C = 0.001. The results

are shown in Figure 5.1a and 5.2a. For each problem we then evaluate the impact of the

dimensionality. In these experiments, we fix the privacy parameters 11 ε = 10 , δ = 1
n

, and

tune the dimensionality p ∈ {5, 10, 12, 15}. w∗s are the same as above. The sample size

takes values from n ∈ 104 ·{10, 12, 14, ..., 48} and the same amount of public unlabeled data

is assumed. The responses are generated as the same as above. We measure the performance

directly by the relative error. For each experiments above, we run 1000 times and take the

average of the errors. The results are shown in Figure 5.1b and 5.2b.

From Figure 5.1a and 5.2a, we can see that the square of relative error is inversely

proportional to the number of samples n. In other words, in order to achieve relative error α,

we only need the number of private samples n ∼ 1
α2 if we omit the dependency on the other

parameters. Besides, we also observe that the square of relative error is proportional to 1
ε2

,

which matches our theoretical result.

From Figure 5.1b and 5.2b, we can see that the relative error increases as the dimension-

ality increases. It may seem a little weird that it is not linear in the dimensionality. We note

that as the dimensionality p changes, some other parameters, for example, the l2 norm of the

covariance matrix and w∗∞ also change, which bring other effects to the relative error.

Evaluation on real data

We first conduct experiment for GLM with logistic loss on the Covertype dataset [94].

Before running our algorithm, we first normalize the data and remove some co-related

11Note that in the studies on LDP ERM, ε is always chosen as a large value such as [37].
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Figure 5.2: Cubic regression with i.i.d Bernoulli design. The left plot shows the squared
relative error under different level of privacy. The right one shows relative error under
different dimensionality.
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Figure 5.3: GLM with logistic loss on real dataset. The dataset we use is Covertype (left)
and SUSY (right).
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Figure 5.4: The effect of the number of public unlabeled samples. The left plot shows the
relative error of GLM with logistic loss. The right one shows the relative error of cubic
regression.

features. After the pre-processing, the dataset contains 581012 samples and 44 features.

There are seven possible values for the label. Since multinomial logistic regression can not

be regarded as a Generalized Linear Model, we consider a weaker test, which is to classify

whether the label is Lodgepole Pine (type 2) or not. The chosen algorithm is still binary

logistic regression. We divide the data into training and testing, where ntraining = 406708

and ntesting = 174304 and randomly choose the sample size n ∈ 104 · {1, 2, 3, ..., 39} from

the training data and use the same amount of public data. Regarding the privacy parameter,

we take δ = 1
n

and let ε take value from {20, 10, 5}. We measure the performance by the

prediction accuracy. For each combination of ε and n, the experiment is repeated 1000 times.

Through Figure 5.3a we observe that when ε takes a reasonable value, the performance is

approaching to the non-private case, provided that the size of private dataset is large enough.

Thus, our algorithm is practical and is comparable to the non-private one.

We also conduct experiment for GLM with logistic loss on the SUSY dataset [22]. The

task is to classify whether the class label is signal or background. After the pre-processing

and sampling, the dataset contains 500000 samples and 18 features. Then we divide the

data into training and testing, where ntraining = 350000 and ntesting = 150000 and randomly

choose the sample size n ∈ 104 · {1, 3, · · · , 33} from the training data and use the same
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amount of public data. Regarding the privacy parameter, we take δ = 1
n

and let ε take

value from {20, 10, 5}. We measure the performance by the prediction accuracy. For each

combination of ε and n, the experiment is repeated 1000 times. As shown in Figure 5.3b,

we have almost the same conclusion as in the Covertype case.

The effect of public unlabeled data

We use similar setting as our synthetic experiments in Section 5.2.5. For GLM we consider

the problem of binary logistic loss while for non-linear regression we will set f(x) = 1
3
x3

in (5.24). We compare relative error ‖ŵ−w
∗‖∞

‖w∗‖∞ with respect to different privacy parameters

ε ∈ {10, 5, 3} with δ = 1
n

. In these experiments, we fix dimensionality p = 10 and the

population parameter w∗ = (1, 1, ..., 1)/
√
p. We also fix the private sample size n = 200000

and the public data size is chosen from the set 104 · {2, 4, ..., 16}. We assume that the same

amount of public unlabeled data is available. The features are generated independently

from a Bernoulli distribution Pr
(
xi,j = ±1

p

)
= 0.5 and the label is generated according

to the logistic model or the model (5.24). In non-linear regression model, σ is bounded by

C = 0.001. The results are shown in Figure 5.4a and 5.4b.

Further theoretical investigation motivated by experiments

Through the previous experimental results, we can also get some further theoretical investi-

gation:

• Firstly, in all the previous experiments, we use the logistic loss for GLM and cubic

function for non-linear regression. Actually, here these loss functions may not satisfy

all the assumptions in Theorem 5.2.2 and 5.2.4. This indicate that theoretically we

may relax these assumptions to get the same estimation error. Second, since our

algorithm has good performance for real data, as shown in Figure 3. However, these

real data may do not satisfy the assumptions in Theorem 5.2.2 and 5.2.4. Thus, we

conjecture that it is possible to further relax the assumptions on the distribution of
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samples.

• Theoretically, in Theorem 5.2.2, 5.2.3 and 5.2.4 we show that to achieve good per-

formance we need sufficient large number of public unlabeled data, and this can be

supported via Figure 5.4b. However, as shown in Figure 5.4a, sometimes there is no

need to use as large amount of public data. Thus, this motivate us to further improve

the sample complexity of public unlabeled data as future research.

5.2.6 Omitted Proofs

Background and Auxiliary Lemmas

Notations For a positive semi-definite matrix M ∈ Rp×p, we define the M -norm for

a vector w as ‖w‖2
M = wTMw. λmin(A) is the minimal singular value of the matrix

A. For a semi positive definite matrix M ∈ Rp×p, let its SVD composition be Σ =

UTΣU , where Σ = diag(λ1, · · · , λp), then M
1
2 is defined as M

1
2 = UTΣ

1
2U , where

Σ
1
2 = diag(

√
λ1, · · · ,

√
λp).

Definition 5.2.2 (Sub-Gaussian). For a given constant κ, a random variable x ∈ R is said

to be sub-Gaussian if it satisfies supm≥1
1√
m
E[|x|m]

1
m ≤ κ. The smallest such κ is the

sub-Gaussian norm of x and it is denoted by ‖x‖ψ2 . A random vector x ∈ Rp is called

a sub-Gaussian vector if there exists a constant κ such that for any unit vector v, we have

‖〈x, v〉‖ψ2 ≤ κ.

Lemma 5.2.3 (Weyl’s Inequality [264]). Let X, Y ∈ Rp×p be two symmetric matrices, and

E = X − Y . Then, for all i = 1, · · · , p, we have

|σi(X)− σi(Y )| ≤ ‖E‖2.

Lemma 5.2.4. Let w ∈ Rp be a fixed vector and E be a symmetric Gaussian random

matrix where the upper triangle entries are i.i.d Gaussian distribution N (0, σ2). Then, with
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probability at least 1 − ξ, the following holds for a fixed positive semi-definite matrix

M ∈ Rp×p

‖Ew‖2
M ≤ σ2Tr(M)‖w‖2 log

2p2

ξ
.

Proof of Lemma 5.2.4. Let M = UTΣU denote the eigenvalue decomposition of M . Then,

we have

‖Ew‖2
M = wTETUTΣUEw =

p∑
i=1

σi

p∑
j=1

[UE]2ijw
2
i .

Note that [UE]i,j =
∑p

k=1 Ui,kEj,k where Ei,j is Gaussian. Since U is orthogonal, we know

that [UE]i,j ∼ N (0, σ2). Using the Gaussian tail bound for all i, j ∈ [d]2, we have

P( max
i,j∈[p]2

|[UE]i,j ≥

√
σ2 log

2p2

ξ
) ≤ ξ.

Lemma 5.2.5 (Theorem 4.7.1 in [288] ). Let x be a random vector in Rp that is sub-Gaussian

with covariance matrix Σ and ‖Σ− 1
2x‖ψ2 ≤ κx. Then, with probability at least 1− exp(−p),

the empirical covariance matrix 1
n
XTX = 1

n

∑n
i=1 xix

T
i satisfies

‖ 1

n
XTX − Σ‖2 ≤ Cκ2

x

√
p

n
‖Σ‖2.

Lemma 5.2.6 (Corollary 2.3.6 in [274]). Let M ∈ Rp×p be a symmetric matrix whose

entries mij are independent for j > i, have mean zero, and are uniformly bounded in

magnitude by 1. Then, there exists absolute constants C2, c1 > 0 such that with probability

at least 1− exp(−C2c,1p), the following inequality holds ‖M‖2 ≤ C
√
p.

Below we introduce some concentration lemmas given in [108].

Lemma 5.2.7. Let Bδ(w̃) denote the ball centered at w̃ and with radius δ (i.e., Bδ(w̃) = {w :

‖w − w̃‖2 ≤ δ}). For i = 1, 2 · · · , n, let xi ∈ Rp be i.i.d isotropic sub-Gaussian random

vectors with ‖xi‖ψ2 ≤ kx, and µ̃ = E[‖x‖2]√
p

. For any given function g : R 7→ R that is
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Lipschitz continuous with G and satisfies supw∈Bδ(w̃) ‖g(〈x,w〉)‖ψ2 ≤ κg, with probability

at least 1− 2 exp(−p), the following holds for np > 51 max{χ, χ2}

sup
w∈Bδ(w̃)

| 1
m

m∑
i=1

g(〈xi, w〉)− E[g(〈x,w〉)]| ≤ c(κg +
κx
ũ

)

√
p logm

m
,

where χ =
(κg+κx

µ̃
)2

cδ2G2µ̃2 . c is some absolute constant.

Lemma 5.2.8. Let Bδ(w̃) be the ball centered at w̃ and with radius δ (i.e., Bδ(w̃) = {w :

‖w− w̃‖2 ≤ δ}). For i = 1, 2 · · · , n, let xi ∈ Rp be i.i.d sub-Gaussian random vectors with

covariance matrix Σ. For any given function g : R 7→ R that is uniformly bounded by L and

Lipschitz continuous with G, the following holds with probability at least 1− exp(−p)

sup
w∈Bδ(w̃)

| 1
m

m∑
i=1

g(〈xi, w〉)− E[g(〈x,w〉)]| ≤ 2{G(‖w̃‖2 + δ)‖Σ‖2 + L}
√

p

m
.

The following lemma shows that the private estimator ŵols is close to the unperturbed

one.

Lemma 5.2.9. Let X = [xT1 ;xT2 ; · · · ;xTn ] ∈ Rn×d be a matrix such that XTX is invertible,

and x1, · · · , xn are realizations of a sub-Gaussian random variable x which satisfies the

condition of ‖Σ− 1
2x‖ψ2 ≤ κx = O(1) and Σ = E[xxT ] is the the population covariance

matrix. Let w̃ols = (XTX)−1XTy denote the empirical linear regression estimator. Then,

for sufficiently large n ≥ Ω(
κ4
x‖Σ‖22pr4 log 1

δ

ε2λ2
min(Σ)

), the following holds with probability at least

1− exp(−Ω(p))− ξ,

‖ŵols − w̃ols‖2
2 = O

(pr2(1 + r2‖w̃ols‖2
2) log 1

δ
log p2

ξ

ε2nλ2
min(Σ)

)
, (5.28)

where r = r if xi is sampled from some bounded distribution.

Proof of Lemma 5.2.9. It is obvious that X̂TX = XTX + E1, where E1 is a symmetric

Gaussian matrix with each entry sampled from N (0, σ2
1) and σ2

1 = O(
nr4 log 1

δ

ε2
). X̂Ty =
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XTy + E2, where E2 is a Gaussian vector sampled from N (0, σ2
2Ip) and σ2

2 = O(
nr2 log 1

δ

ε2
).

We first show that X̂TX is invertible with high probability under our assumption.

It is sufficient to show that XTX + E1 � XTX
2

, i.e., ‖E1‖2 ≤ λmin(XTX)
2

. By Lemma

5.2.6, we can see that with probability 1− exp(−Ω(p)),

‖E1‖2 ≤ O(
r2
√
pn log 1

δ

ε
).

Also, by Lemma 5.2.5 and Lemma 5.2.3 we know that with probability at least 1 −

exp(−Ω(p)),

λmin(XTX) ≥ nλmin(Σ)−O(κ2
x‖Σ‖2

√
pn).

Thus, it is sufficient to show that nλmin(Σ) ≥ O(
κ2
x‖Σ‖2r2

√
pn log 1

δ

ε
), which is true under the

assumption of n ≥ Ω(
κ4
x‖Σ‖22pr4 log 1

δ

ε2λ2
min(Σ)

). Thus, with probability at least 1− exp(−Ω(p)), it is

invertible. In the following we will always assume that this event holds.

By direct calculation we have

‖ŵols − w̃ols‖2 = −(XTX + E1)−1E1w̃
ols + (XTX + E1)−1E2.

Thus, by Cauchy-Schwartz inequality we get

‖ŵols − w̃ols‖2
2 = O

(
‖E1w̃

ols‖2
(XTX+E1)−2 + ‖E2‖2

(XTX+E1)−2

)
.

Since we already assume that XTX + E1 � XTX
2

, by Lemma 5.2.4 we can obtain the

following with probability at least 1− ξ

‖E1w̃
ols‖2

(XTX+E1)−2 ≤ O
(nr4 log 1

δ

ε2
‖w̃ols‖2

2Tr((XTX)−2) log
4p2

ξ

)
‖E2‖2

(XTX+E1)−2 ≤ O
(nr2 log 1

δ

ε2
Tr((XTX)−2)

4p

ξ

)
.
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Thus, we have

‖ŵols − w̃ols‖2
2 ≤ C1n ·

r2(1 + r2‖w̃ols‖2
2) log 1

δ
log p2

ξ

ε2
Tr((XTX)−2).

For the term of Tr((XTX)−2), we get

Tr((XTX)−2) ≤ (Tr((XTX)−1))2 ≤ p‖(XTX)−2‖2
2 =

p

λ2
min(XTX)

≤ O(
p

n2λ2
min(Σ)

),

where the last inequality is due to the fact that λmin(XTX) ≥ nλmin(Σ)−O(κ2
x‖Σ‖2

√
pn) ≥

1
2
nλmin(Σ) (by the assumption on n). This completes the proof.

Let wols = (E[xxT ])−1E[xy] denote the population linear regression estimator. The

following lemma bounds the estimation error between w̃ols and wols. The proof could be

found in [108] or [91].

Lemma 5.2.10 (Prop. 7 in [108]). Assume that E[xi] = 0, E[xix
T
i ] = Σ, and Σ−

1
2xi and yi

are sub-Gaussian with norms κx and γ, respectively. If n ≥ Ω(κxγp), the following holds

‖w̃ols − wols‖2 ≤ O
(
γκx

√
p

nλmin(Σ)

)
,

with probability at least 1− 3 exp(−p).

Proofs of LDP

The LDP proof of Algorithm 5.2.39 follows from Gaussian mechanism and the composition

property of DP.

For Algorithm 5.2.40, it is (ε, δ)-LDP due to the `2-norm bound on ‖xiyi‖2 = ‖xi‖2‖f(〈x,w∗〉)+

σi‖2 ≤ ‖xi‖2(L‖x‖2 + |f(0)| + C), where the last inequality is due to the fact that f ′ is

L-bounded and ‖w∗‖2 ≤ 1. That is, |f(〈x,w∗〉)− f(0)| ≤ L|〈x,w∗〉 − 0| ≤ L‖x‖2‖w∗‖2.

5.2.2.
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Proof of Theorem 5.2.3

Since Theorem 5.2.3 is the most complicated one, we will first prove it and then Theorem

Since r = O(1) (by assumption), combining this with Lemmas 5.2.9 and 5.2.10, we

have that with probability at least 1− exp(−Ω(p))− ξ and under the assumption on n, there

is a constant C3 > 0 such that

‖ŵols − wols‖2 ≤ C3

κx
√
pr2‖wols‖2

√
log 1

δ
log p2

ξ

ε
√
nλ

1/2
min(Σ) min{λ1/2

min(Σ), 1}
. (5.29)

Lemma 5.2.11. Let Φ(2) be a function that is Lipschitz continuous with constant G, and

f : R×Rp 7→ R be another function such that f(c, w) = cE[Φ(2)(〈x,w〉c)] and its empirical

one is

f̂(c, w) =
c

m

m∑
j=1

Φ(2)(〈x,w〉c).

Let Bδ(w̄ols) = {w : ‖w − w̄ols‖2 ≤ δ}, where w̄ols = Σ
1
2wols. Under the assumptions in

Lemma 5.2.9 and Eq. (5.29), if further assume that ‖Σ− 1
2x‖ψ2 ≤ κx, and supw∈Bδ(w̄ols) ‖Φ(2)(〈x,w〉)‖ψ2 ≤

κg, and there exist c̄ > 0 and τ > 0 such that f(c̄, wols) ≥ 1 + τ , then there is c̄Φ ∈ (0, c̄)

such that 1 = f(c̄Φ, w
ols). Also, for sufficiently large n and m such that

m ≥ Ω
(
(κg +

κx
µ̃

)2 max{p logmτ−2,
1

G2µ̃2

ε2n

pr4‖wols‖2
2 log 1

δ
log p2

ξ
‖Σ‖2

}
)
, (5.30)

n ≥ Ω(κ4
xG

2c̄4‖Σ‖2

pr4‖wols‖2
2 log 1

δ
log p2

ξ

τ 2ε2λmin(Σ) min{λmin(Σ), 1}
)
, (5.31)

with probability at least 1− 2 exp(−p), there exists a ĉΦ ∈ [0, c̄] such that f̂(ĉΦ, ŵ
ols) = 1.

Furthermore, if the derivative of c 7→ f(c, wols) is bounded below in the absolute value (i.e.,
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does not change sign) by M > 0 in the interval c ∈ [0, c̄], then the following holds

|ĉΦ−c̄Φ| ≤ O
(
M−1c̄(κg+

κx
µ̃

)

√
p logm

m
+M−1Gκ2

xc̄
2‖Σ‖

1
2
2

√
pr2‖wols‖2

√
log 1

δ
log p2

ξ

ε
√
nλ

1/2
min(Σ) min{λ1/2

min(Σ), 1}

)
.

(5.32)

Proof of Lemma 5.2.11. We divide the proof into three parts.

Part 1: Existence of c̄Φ: From the definition, we know that f(0, wols) = 0 and f(c̄, wols) >

1. Since f is continuous, we known that there exists a constant c̄Φ ∈ (0, c̄) which satisfying

f(c̄Φ, w
ols) = 0.

Part 2: Existence of ĉΦ: For simplicity, we use the following notations.

δ = C3

κx
√
pr2‖wols‖2

√
log 1

δ
log p2

ξ

ε
√
nmin{λ1/2

min(Σ), 1}
, δ′ =

‖Σ‖
1
2
2 δ

λ
1
2
min(Σ)

, (5.33)

where C3 is the one in (5.29). Thus, ‖Σ 1
2 ŵols − Σ

1
2wols‖2 ≤ δ′.

Now consider the term of |f̂(c, ŵols)− f(c, ŵols)| for c ∈ [0, c̄]. We have

sup
c∈[0,c̄]

|f̂(c, ŵols)− f(c, ŵols)| ≤ sup
c∈[0,c̄]

sup
w∈Bδ′Σ (wols)

|f̂(c, w)− f(c, w)|, (5.34)

where Bδ′Σ(wols) = {w : ‖Σ 1
2w − Σ

1
2wols‖2 ≤ δ′}.

Note that for any x, we have 〈x,w〉 = 〈v,Σ 1
2w〉, where v = Σ−

1
2x follows an isotropic

sub-Gaussian distribution. Also, by definition we know that w ∈ Bδ′Σ(wols) is equivalent to
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Σ
1
2w ∈ Bδ′(w̄ols). Thus, we have

sup
c∈[0,c̄]

sup
w∈Bδ′Σ (wols)

|f̂(c, ŵols)− f(c, ŵols)|

≤ c̄ sup
c∈[0,c̄]

sup
w∈Bδ′Σ (wols)

| 1
m

m∑
j=1

Φ(2)(〈vi,Σ
1
2w〉c)− EΦ(2)(〈v,Σ

1
2w〉c)|

= c̄ sup
c∈[0,c̄]

sup
Σ

1
2w∈Bδ′ (w̄ols)

| 1
m

m∑
j=1

Φ(2)(〈vi,Σ
1
2w〉c)− EΦ(2)(〈v,Σ

1
2w〉c)|

= c̄ sup
w′∈Bc̄δ′ (w̄ols)

| 1
m

m∑
j=1

Φ(2)(〈vi, w′〉)− EΦ(2)(〈v, w′〉)|. (5.35)

By Lemma 5.2.7, we know that when mp ≥ 51 max{χ, χ−1}, where

χ =
(κg + κx

µ̃
)2

cδ′2G2µ̃2
= Θ

((κg + κx
µ̃

)2

G2µ̃2

ε2nλmin(Σ) min{λmin(Σ), 1}
pr4‖wols‖2

2 log 1
δ

log p2

ξ
‖Σ‖2

)
,

the following holds with probability at least 1− 2 exp(−p)

sup
w′∈Bc̄δ(w̄ols)

| 1
m

m∑
j=1

Φ(2)(〈vi, w′〉)− EΦ(2)(〈v, w′〉)| ≤ O((κg +
κx
µ̃

)

√
p logm

m
). (5.36)

By the Lipschitz property of Φ(2), we have that for any w1 and w2,

sup
c∈[0,c̄]

|f(c, w1)− f(c, w2)| ≤ Gc̄2E[〈v,Σ
1
2 (w1 − w2)〉]

≤ κxGc̄
2‖Σ

1
2 (w1 − w2)‖2. (5.37)

Taking w1 = ŵols and w2 = wols, we have

sup
c∈[0,c̄]

|f(c, ŵols)− f(c, wols)| ≤ O
(
κxGc̄

2‖Σ‖
1
2
2

δ

λ
1
2
min(Σ)

)
.
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Combining this with (5.35), (5.36), (5.37), and taking δ as in (5.33), we get

sup
c∈[0,c̄]

|f̂(c, ŵols)−f(c, wols)| ≤ O
(
c̄(κg+

κx
µ̃

)

√
p logm

m
+Gc̄2‖Σ‖

1
2
2

κ2
x

√
pr2‖wols‖2

√
log 1

δ
log p2

ξ

ε
√
nλ

1/2
min min{λ1/2

min(Σ), 1}

)
.

(5.38)

Let B denote the RHS of (5.38). If c = c̄, we have f̂(c, ŵols) ≥ 1 + τ −B. Thus, if B ≤ τ ,

there must exist a ĉΦ ∈ [0, c̄] such that f̂(ĉΦ, ŵ
ols) = 1.

To ensure that B ≤ τ holds, it is sufficient to have

O(c̄(κg +
κx
µ̃

)

√
p logm

m
) ≤ τ

2

and

O(Gc̄2‖Σ‖
1
2
2

κ2
x

√
pr2‖wols‖2

√
log 1

δ
log p2

ξ

ε
√
nλ

1/2
min(Σ) min{λ1/2

min(Σ), 1}
) ≤ τ

2
.

This means that

m ≥ Ω
(
c̄2(κg +

κx
µ̃

)2p logmτ−2
)
,

n ≥ Ω(κ4
xG

2c̄4‖Σ‖2

pr4‖wols‖2
2 log 1

δ
log p2

ξ

τ 2ε2λmin(Σ) min{λmin(Σ), 1}
)
,

which are assumed in the lemma.

Part 3: Estimation Error: So far, we know that f̂(ĉΦ, ŵ
ols) = f(c̄Φ, w

ols) = 1 with high

probability. By (5.34), (5.35) and (5.36), we have

|1− f(ĉΦ, ŵ
ols)| = |f̂(ĉΦ, ŵ

ols)− f(ĉΦ, ŵ
ols)| ≤ O(c̄(κg +

κx
µ̃

)

√
p logm

m
).

By the same argument for (5.38), we have

|f(ĉΦ, ŵ
ols)− f(ĉΦ, w

ols)| ≤ Gκxc̄
2‖Σ‖

1
2
2

δ

λ
1
2
min(Σ)

.
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Thus, using Taylor expansion on f(c, wols) around cΦ and by the assumption of the bounded

derivative of f , we have

M |ĉΦ − c̄Φ| ≤ |f(ĉΦ, w
ols)− f(c̄Φ, w

ols)|

≤ |f(ĉΦ, w
ols)− f(ĉΦ, ŵ

ols)|+ |f(ĉΦ, ŵ
ols)− 1|

≤ O
(
c̄(κg +

κx
µ̃

)

√
p logm

m
+Gκ2

xc̄
2‖Σ‖

1
2
2

√
pr2‖wols‖2

√
log 1

δ
log p2

ξ

ε
√
nλ

1/2
min(Σ) min{λ1/2

min(Σ), 1}

)
.

Next, we prove our main theorem.

Proof of Theorem 5.2.3. By definition, we have

‖ŵglm − w∗‖∞ ≤ ‖ĉΦŵ
ols − c̄Φw

ols‖∞ + ‖c̄Φw
ols − w∗‖∞

≤ ‖ĉΦŵ
ols − c̄Φw

ols‖∞ + ‖c̄Φw
ols − cΦw

ols‖∞ + ‖cΦw
ols − w∗‖∞.

(5.39)

We first bound the term of |c̄Φ−cΦ|. Since c̄ΦE[Φ(2)(〈x,wols〉c̄Φ)] = 1 and cΦE[Φ(2)(〈x,w∗〉)] =

1 (by definition), we get

|f(c̄Φ, w
ols)− f(cΦ, w

ols)| = |cΦE[Φ(2)(〈x,w∗〉)]− f(cΦ, w
ols)|

≤ cΦ|E[Φ(2)(〈x,w∗〉)− Φ(2)(〈x,wols〉cΦ)]

≤ cΦG|E[〈x, (w∗ − cΦw
ols)〉]

≤ cΦG‖(w∗ − cΦw
ols)‖∞E‖x‖1

≤ cΦGr‖cΦw
ols − w∗‖∞,

where the last inequality is due to the assumption that ‖x‖1 ≤ r.

Thus, by the assumption of the bounded deviation of f(c, wols) on [0,max{c̄, cΦ}], we
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have

M |c̄Φ − cΦ| ≤ |f(c̄Φ, w
ols)− f(cΦ, w

ols)| ≤ cΦGr‖cΦw
ols − w∗‖∞.

By Lemma 5.2.2 in the context, we have

|c̄Φ − cΦ| ≤ 16M−1cΦG
2r2κ3

x

√
ρ2ρ∞

‖w∗‖2
∞√
p

. (5.40)

Thus, the second term of (5.39) is bounded by

‖c̄Φw
ols − cΦw

ols‖∞ ≤ 16M−1cΦG
2r2κ3

x

√
ρ2ρ∞

‖w∗‖2
∞√
p
‖wols‖∞

≤ 16M−1cΦG
2r2κ3

x

√
ρ2ρ∞

‖w∗‖3
∞√
p

(
1

cΦ

+ 16Grκ3
x

√
ρ2ρ∞

‖w∗‖∞√
p

)

= O
(
M−1r3κ6

xG
3ρ2ρ

2
∞
‖w∗‖3

∞max{1, ‖w∗‖∞}√
p

max{1, cΦ}
)
, (5.41)

where the last inequality is due to Lemma 5.2.2 in the context.

By Lemma 5.2.2 in the context, the third term of (5.39) is bounded by 16cΦGrκ
3
x

√
ρ2ρ∞

‖w∗‖2∞√
p

.

For the first term of (5.39), by (5.29) and Lemma 5.2.11 we have

‖ĉΦŵ
ols − c̄Φw

ols‖∞ ≤ |ĉΦ| · ‖ŵols − wols‖∞ + |ĉΦ − c̄Φ| · ‖wols‖∞

≤ O
(
c̄
κx
√
pr2‖wols‖2

√
log 1

δ
log p2

ξ

ε
√
nλ

1/2
min(Σ) min{λ1/2

min(Σ), 1}

+ ‖wols‖∞(M−1c̄(κg +
κx
µ̃

)

√
p logm

m
+M−1Gκ2

xc̄
2‖Σ‖

1
2
2

√
pr2‖wols‖2

√
log 1

δ
log p2

ξ

ε
√
nλ

1/2
min(Σ) min{λ1/2

min(Σ), 1}
)
)
.

(5.42)
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For the first term of (5.42), we have

c̄
κx
√
pr2‖wols‖2

√
log 1

δ
log p2

ξ

ε
√
nλ

1/2
min(Σ) min{λ1/2

min(Σ), 1}
≤ c̄

κxpr
2‖wols‖∞

√
log 1

δ
log p2

ξ

ε
√
nλ

1/2
min(Σ) min{λ1/2

min(Σ), 1}

≤ c̄
κxpr

2‖w∗‖∞
√

log 1
δ

log p2

ξ

ε
√
nλ

1/2
min(Σ) min{λ1/2

min(Σ), 1}
(

1

cΦ

+ 16Grκ3
x

√
ρ2ρ∞

‖w∗‖∞√
p

)

= O
(
c̄
pκ4

x

√
ρ2ρ∞Gr

3‖w∗‖∞max{1, ‖w∗‖∞}
√

log 1
δ

log p2

ξ

ε
√
nλ

1/2
min(Σ) min{λ1/2

min(Σ), 1}
max{1, 1

cΦ

}
)
. (5.43)

For the second term of (5.42), we have

‖wols‖∞M−1c̄(κg +
κx
µ̃

)

√
p logm

m

≤ c̄‖w∗‖∞(κg +
κx
µ̃

)

√
p logm

m
(

1

cΦ

+ 16Grκ3
x

√
ρ2ρ∞

‖w∗‖∞√
p

)

≤ O
(
Grκ3

x

√
ρ2ρ∞c̄‖w∗‖∞max{1, ‖w∗‖∞}(κg +

κx
µ̃

)

√
p logm

m
max{1, 1

cΦ

}
)
. (5.44)

For the third term of (5.42), we have

‖wols‖∞M−1Gκ2
xc̄

2‖Σ‖
1
2
2

√
pr2‖wols‖2

√
log 1

δ
log p2

ξ

ε
√
nλ

1/2
min(Σ) min{λ1/2

min(Σ), 1}
)

≤M−1Gκ2
xc̄

2‖Σ‖
1
2
2

pr2‖w∗‖2
∞

√
log 1

δ
log p2

ξ

ε
√
nλ

1/2
min(Σ) min{λ1/2

min(Σ), 1}
(

1

cΦ

+ 16Grκ3
x

√
ρ2ρ∞

‖w∗‖∞√
p

)2

≤ O
(
M−1G3κ8

xc̄
2ρ2ρ

2
∞‖Σ

1
2‖2

pr4‖w∗‖2
∞max{1, ‖w∗‖2

∞}
√

log 1
δ

log p2

ξ

ε
√
nλ

1/2
min(Σ) min{λ1/2

min(Σ), 1}
max{1, 1

cΦ

}2
)
.

(5.45)
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Thus, the first term of (5.39) is bounded by (since m ≥ Ω(n))

‖ĉΦŵ
ols − c̄Φw

ols‖∞ ≤ O
(
c̄
pκ4

x

√
ρ2ρ∞Gr

3‖w∗‖2
∞max{1, ‖w∗‖∞}

√
log 1

δ
log p2

ξ

ε
√
nλ

1/2
min(Σ) min{λ1/2

min(Σ), 1}
max{1, 1

cΦ

}

+Grκ3
x

√
ρ2ρ∞c̄‖w∗‖∞max{1, ‖w∗‖∞}(κg +

κx
µ̃

)

√
p logm

m
max{1, 1

cΦ

}+

M−1G3κ8
xc̄

2ρ2ρ
2
∞‖Σ

1
2‖2

pr4‖w∗‖2
∞max{1, ‖w∗‖2

∞}
√

log 1
δ

log p2

ξ

ε
√
nλ

1/2
min(Σ) min{λ1/2

min(Σ), 1}
max{1, 1

cΦ

}2

= O
(
M−1(κg +

κx
µ̃

)G3κ8
xc̄

2ρ2ρ
2
∞‖Σ

1
2‖2

×
pr4‖w∗‖∞max{1, ‖w∗‖3

∞}
√

logm log 1
δ

log p2

ξ

ε
√
nλ

1/2
min(Σ) min{λ1/2

min(Σ), 1}
max{1, 1

cΦ

}2
)
.

Putting all the bounds together, we have

‖ŵglm − w∗‖∞ ≤ Õ
(
M−1G3κ8

xc̄
2ρ2ρ

2
∞‖Σ

1
2‖2

×
pr4‖w∗‖∞max{1, ‖w∗‖3

∞}
√

log 1
δ

log p2

ξ

ε
√
nλ

1/2
min(Σ) min{λ1/2

min(Σ), 1}
max{1, 1

cΦ

}2

+M−1r3κ6
xcΦG

3ρ2ρ
2
∞
‖w∗‖2

∞max{1, ‖w∗‖2
∞}√

p
max{1, 1

cΦ

}+

Grκ3
x

√
ρ2ρ∞c̄‖w∗‖∞max{1, ‖w∗‖∞}(κg +

κx
µ̃

)

√
p logm

m
max{1, 1

cΦ

}
)
. (5.46)

Next, we bound the probability. We assume that Lemma 5.2.9, 5.2.10 and 5.2.11 hold with

probability at least 1− exp(−Ω(p))− ρ. They hold when

m ≥ Ω
(
(κg +

κx
µ̃

)2 max{p logmτ−2,
1

G2µ̃2

ε2n

pr4‖wols‖2
2 log 1

δ
log p2

ξ

}
)
, (5.47)

n ≥ Ω(max{κ4
xG

2c̄4‖Σ‖2

pr4‖wols‖2
2 log 1

δ
log p2

ξ

τ 2ε2λmin(Σ) min{λmin(Σ), 1}
,
κ4
x‖Σ‖2

2pr
4 log 1

δ

ε2λ2
min(Σ)

}
)
. (5.48)
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Since ‖wols‖2 ≤
√
p‖w∗‖∞( 1

cΦ
+ 16Grκ3

x

√
ρ2ρ∞

‖w∗‖∞√
p

), it suffices for n

n ≥ Ω
(
G4c̄4‖Σ‖2

2

p2r6κ10
x ρ2ρ

2
∞‖w∗‖2

∞max{1, ‖w∗‖2
∞} log 1

δ
log p2

ξ

τ 2ε2λmin(Σ) min{λmin(Σ), 1}
max{1, 1

cΦ

}2
)
.

(5.49)

Proof of Theorem 5.2.2

Lemma 5.2.12. Let c̄Φ, c̄, τ, f, f̂ be defined the same as in Lemma 5.2.11. If further assume

that |Φ(2)(·)| ≤ L for some constant L > 0 and is Lipschitz continuous with constantG, then,

under the assumptions in Lemma 5.2.9 and (5.29), with probability at least 1− 4 exp(−p)

there exists a constant ĉΦ ∈ [0, c̄] such that f̂(ĉΦ, ŵ
ols) = 1. Furthermore, if the derivative

of c 7→ f(c, wols) is bounded below in absolute value (i.e., does not change the sign) by

M > 0 in the interval c ∈ [0, c̄], then with probability at least 1− 4 exp(−p), the following

holds

|ĉΦ−c̄Φ| ≤ O
(M−1GLc̄2κ2

xr
2‖Σ‖

1
2
2

√
p‖wols‖2

√
log 1

δ
log p

ξ2

ελ
1
2
min(Σ) min{λ

1
2
min(Σ), 1}

√
n

+M−1LG‖Σ‖
1
2
2 ‖wols‖2

√
p

m

)
(5.50)

for sufficiently large m,n such that

n ≥ Ω
(LG2τ−2c̄4‖Σ‖2κ

4
xpr

4‖wols‖2
2 log 1

δ
log p2

ξ

ε2λmin(Σ) min{λmin(Σ), 1}
)

(5.51)

m ≥ Ω
(
G2L2‖Σ‖2‖wols‖2

2pτ
−2). (5.52)

Proof of Lemma 5.2.12 . The main idea of this proof is almost the same as the one for

Lemma 5.2.11. The only difference is that instead of using Lemma 5.2.7 to get (5.36), we
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use here Lemma 5.2.8 to obtain the following with probability at least 1− exp(−p)

sup
w′∈Bc̄δ′ (w̄ols)

| 1
m

m∑
j=1

Φ(2)(〈vi, w′〉)− EΦ(2)(〈v, w′〉)|

≤ O
(
(G(‖w̄ols‖2 + c̄δ′)‖I‖2 + L)

√
p

m

≤ O
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1
2
2 (‖wols‖2 + c̄

δ

λ
1
2
min(Σ)

) + L)

√
p

m

)
. (5.53)

Thus, by (5.35), (5.37) and (5.53), we have

sup
c∈[0,c̄]

|f̂(c, ŵols)− f(c, wols)| ≤ O
(
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2 ‖wols‖2

√
p

m
+
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)
. (5.54)

Let D denote the RHS of (5.54), we have

f̂(c̄, ŵols) ≥ 1 + τ −D.

It is sufficient to show that τ > D, which holds when

O(Gc̄2‖Σ‖
1
2
2

κ2
x

√
pr2‖wols‖2

√
log 1

δ
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ε
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2
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Gκxc̄‖Σ‖

1
2
2L‖wols‖2

√
pr2
√

log 1
δ
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ξ

ελ
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That is,

n ≥ Ω
(G2τ−2c̄4‖Σ‖2κ

4
xpr

4‖wols‖2
2 log 1

δ
log p2

ξ

ε2λmin(Σ) min{λmin(Σ), 1}
)

(5.55)

m ≥ Ω
(
G2L2‖Σ‖2‖wols‖2

2pτ
−2). (5.56)
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Then, there exists ĉΦ ∈ [0, c̄] such that f̂(ĉΦ, ŵ
ols) = 1. We can easily get

M |ĉΦ − c̄Φ| ≤ |f(ĉΦ, w
ols)− f(c̄Φ, w

ols)|

≤ O
(Gc̄2κ2

xr
2‖Σ‖

1
2
2

√
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√
log 1

δ
log p
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ελ
1
2
min(Σ) min{λ

1
2
min(Σ), 1}

√
n

+
Gκxc̄‖Σ‖

1
2
2 ‖wols‖2

√
pr2
√

log 1
δ

log p2

ξ

ελ
1/2
min(Σ) min{λ1/2

min(Σ), 1}

√
p

mn
+ LG‖Σ‖

1
2
2 ‖wols‖2

√
p

m

)
(5.57)

≤ O
(GLc̄2κ2

xr
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log 1

δ
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2
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)
. (5.58)

Proof of Theorem 5.2.2 . The proof is almost the same as the one for Theorem 5.2.3. By

definition, we have

‖ŵglm − w∗‖∞ ≤ ‖ĉΦŵ
ols − c̄Φw

ols‖∞ + ‖c̄Φw
ols − w∗‖∞

≤ ‖ĉΦŵ
ols − c̄Φw

ols‖∞ + ‖c̄Φw
ols − cΦw

ols‖∞ + ‖cΦw
ols − w∗‖∞.

(5.59)

The second term of (5.59) is bounded by

‖c̄Φw
ols − cΦw

ols‖∞ ≤ O
(
M−1r2κ7

xcΦG
3ρ2ρ
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(5.60)

By Lemma 5.2.2 in the context, the third term of (5.59) is bounded by 16cΦGrκ
3
x

√
ρ2ρ∞

‖w∗‖∞√
p

.
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The first term is bounded by

‖ĉΦŵ
ols − c̄Φw
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Thus, in total we have
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}
)
. (5.62)

The probability of success is at least 1− exp(−Ω(p))− ξ. The sample complexity should

satisfy

m ≥ Ω
(
G2L2‖Σ‖2‖w∗‖2

∞max{1, ‖w∗‖2
∞}G2r2κ6

xρ2ρ
2
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}2
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(5.63)

n ≥ Ω
(ρ2ρ

2
∞G

4τ−2c̄4‖Σ‖2
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(5.64)

Proof of Theorem 5.2.4

The idea of the proof follows the one in [108].
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By assumption, we have

E[xy] = E[xf(〈x,w∗〉)] = Σ
1
2E[vf(〈v, ŵ∗〉)],

where ŵ∗ = Σ
1
2w∗. Now, consider each coordinate j ∈ [p] for the term E[vf(〈v, ŵ∗〉)]. Let

v∗j denote the zero-bias transformation of vj conditioned on Vj = 〈v, ŵ∗〉 − vjŵ∗j . Then, we

have

E[vjf(〈v, ŵ∗〉)] = EE[vjf(vjŵ
∗
j + Vj)|Vj]

= ŵ∗jEE[f ′(v∗j ŵ
∗
j + Vj)|Vj]

= ŵ∗jEE[f ′((v∗j − vj)ŵ∗j + 〈v, ŵ∗〉)|Vj]

= ŵ∗jE[f ′((v∗j − vj)ŵ∗j + 〈v, ŵ∗〉)].

Thus, we have wols = Σ−
1
2DΣ

1
2w∗, where D is a diagonal matrix whose i-th entry is

E[f ′((v∗j − vj)ŵ∗j + 〈v, ŵ∗〉)].

By the Lipschitz condition, we have

|E[f ′((v∗j − vj)ŵ∗j + 〈v, ŵ∗〉)]− E[f ′(〈v, ŵ∗〉)]| ≤ G|ŵ∗j |E|(v∗j − vj)|.

By the same argument given in [108], we have

E|(v∗j − vj)| ≤ 1.5E[|vj|3].

Using the bound of the third moment induced by the sub-Gaussian norm, we have

L|ŵ∗j |E|(v∗j − vj)| ≤ 8Gκ3
x max
j∈[p]
|ŵ∗j | ≤ 8Gκ3

x‖Σ
1
2w∗‖∞.
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Thus, we get

max
j∈[d]
|Djj −

1

cf
| ≤ 8Gκ3
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1
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This means that
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Due to the diagonal dominance property we have
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i
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1
2
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1
2
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2 .

Since we have ‖x‖2 ≤ r, we write

r2 ≥ E[‖x‖2
2] = Trace(Σ) ≥ p‖Σ ≥ p‖Σ‖2

ρ2

.

Thus we have ‖Σ 1
2‖∞ ≤ 2r

√
ρ2

p
.

Proof of Theorem 5.2.5

By the same argument in the proof of Lemma 5.2.9, we can show that when n ≥ Ω(
κ4
x‖Σ‖22pr4 log 1

δ

ε2λ2
min(Σ)

),

with probability at least 1− exp(−Ω(p))− ξ, the following holds
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. (5.65)

Thus, by Lemma 5.2.10 we have

‖ŵols − wols‖2 ≤ O
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)
. (5.66)
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In the following, we will always assume that (5.66) holds. By the same argument given in

Lemma 5.2.12, we have the following Lemma, which can be proved in the same way as

Lemma 5.2.12.

Lemma 5.2.13. Let f ′ be a function that is Lipschitz continuous with constant G and

|f ′(·)| ≤ L, and g : R× Rp 7→ R be another function such that g(c, w) = cE[f ′(〈x,w〉c)]

and its empirical one is

ĝ(c, w) =
c

m

m∑
j=1

f ′(〈x,w〉c).

Let Bδ(w̄ols) = {w : ‖w−w̄ols‖2 ≤ δ}, where w̄ols = Σ
1
2wols. Then, under the assumptions

in Lemma 5.2.9 and Eq. (5.66), with probability at least 1−4 exp(−p), there exists a constant

ĉΦ ∈ [0, c̄] such that ĝ(ĉΦ, ŵ
ols) = 1. Furthermore, if the derivative of c 7→ g(c, wols) is

bounded below in absolute value (i.e., does not change the sign) by M > 0 in the interval of

c ∈ [0, c̄], then with probability at least 1− 4 exp(−p), the following holds

|ĉΦ − c̄Φ| ≤ O
(M−1CGLc̄2r2‖Σ‖

1
2
2

√
p‖wols‖2 log 1

δ
log p

ξ2

ελ
1
2
min(Σ) min{λ

1
2
min(Σ), 1}

√
n

+M−1LG‖Σ‖
1
2
2 ‖wols‖2

√
p

m

)
(5.67)

for sufficiently large m,n such that

n ≥ Ω
(LG2τ−2c̄4‖Σ‖2κ

4
xpr

4‖wols‖2
2 log 1

δ
log p2

ξ

ε2λmin(Σ) min{λmin(Σ), 1}
)

(5.68)

m ≥ Ω
(
G2L2‖Σ‖2‖wols‖2

2pτ
−2). (5.69)

where r = maxi∈[n] ‖xi‖2.

5.3 Sparse Linear Regression in LDP model

In the previous two sections, we studied ERM in the NLDP model. in this section, we

will study ERM in the general LDP model. Specifically, we wish to understand the high
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dimensional (sparse) ERM in LDP model. To advance our understanding on the local model,

we study, in this paper, the LDP version of the most simplest problem in ERM, i.e, the sparse

linear regression problem. Linear regression is a fundamental and classical tool for data

analysis, and finds numerous applications in social sciences [212], genomics research [55]

and signal recovery [48]. One frequently encountered challenge for such a technique is how

to deal with the high dimensionality of the dataset, such as those in genomics, educational

and psychological research. A commonly adopted strategy for dealing with such an issue is

to assume that the unknown regression vector is sparse.

There are two commonly used ways for measuring the performance of this problem,

which correspond to two different settings, the statistical learning and the statistical esti-

mation settings. For the first setting, the measurement is based on the optimization error,

i.e. F (θpriv) − minθ∈C F (θ), where F (θ) = E(x,y)∼P(〈x, θ〉 − y)2, and P is an unknown

distribution. For the second setting, y is assumed to be y = 〈x, θ∗〉+ σ, where x ∼ D, D is

a known distribution, σ is a random noise, and θ∗ ∈ Rp is the to-be-estimated vector that

satisfies the condition of ‖θ∗‖0 ≤ s. The estimation error for this setting is represented by

the loss of the squared `2 norm, i.e., ‖θpriv − θ∗‖2
2. In this paper, we will focus on the latter

setting, and assume that x ∼ Uniform{+1,−1}p.

Our contributions can be summarized as follows:

• We first present a negative result which suggests that the ε non-interactive private

minimax risk of ‖θpriv− θ∗‖2
2 is lower bounded by Ω(p log p

nε2
) if the privacy of the whole

dataset {(xi, yi)}ni=1 needs to be preserved. This indicates that it is impossible to

obtain any non-trivial error bound in high dimensional space (i.e. p� n). The private

minimax risk is still lower bounded by Ω( p
nε2

), even in the sequentially interactive

local model. Our proofs are based on a locally differentially private version of the

Fano and Le Cam method [97, 98, 100]. We further reveal that this polynomial

dependency on p cannot be avoided even if the measurement of the loss function or

definitions of differential privacy is relaxed.
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• With the understanding of this limitation, we then propose an ε-sequential interactive

LDP algorithm for the low dimensional sparse case, called Locally Differentially

Private Iterative Hard Thresholding (LDP-IHT), which achieves a near optimal upper

bound. Furthermore, we show that the idea of DP-IHT is actually rather general and

can be used to achieve differential privacy for quite a few other problems. Specifically,

it can be applied to the (Locally) Differentially Private Empirical Risk Minimization

(DP-ERM) problem with sparsity constraints, and achieves an upper bound that

depends only logarithmically on p (i.e., log p) and the sparsity parameter of the

optimal estimator, making it suitable for applications in high dimensions. To our best

knowledge, this is the first paper studying DP-ERM with non-convex constraint set.

Another application of LDP-IHT is the sparse regression problem with non-linear

measurements [357, 350].

• We also give a positive result for high dimensions. Particularly, we consider the

restricted case where only the responses (labels) are required to be private, i.e., the

dataset {xi}ni=1 is assumed to be public and {yi}ni=1 is private (note that this is a valid

assumption as shown in [65, 33]). For this case, we propose a general algorithm

which achieves an upper bound of O( s log p
nε2

) for the estimation error. We show that

this bound is actually optimal, as the ε non-interactive private minimax risk can also

be lower bounded by Ω( s log p
nε2

).

• Finally, we perform our algorithms on both synthetic and real world datasets. Experi-

mental results also support our theoretical analysis.

5.3.1 Related Work

There is a vast number of existing results studying the differentially private linear regression

problem (or more generally, DP-ERM) from different perspectives, such as [73, 24, 334,

253, 181, 257, 277]. Below, we focus only on those with theoretical guarantees on the error.
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For the central model, [334] recently conducted a comprehensive study, from both

theoretical and practical points of views, on the differentially private linear regression

problem. The author gave upper bounds of the optimization error in the statistical learning

setting and the estimation error in the statistical estimation setting, as well as a general

lower bound of the optimization error. There are also other works on this problem (we refer

the reader to the Related Work section in [334] for more details). But all these results are

only for the low dimensional case (i.e. the dimensionality p is a small constant number).

Contrarily, we study mainly, in this paper, the high dimensional sparse case under the

statistical estimation setting and provide both upper and lower bounds of the estimation error

for the non-interactive and sequentially interactive models. A couple of results also exist for

the high dimensional sparse linear regression problem in the central model [181, 270]; but

all of them consider only the optimization error. [34] studied the problem of Bayesian linear

regression, which is incomparable to our problem. [253] focused the confidence interval of

Ordinary Linear Regression while we mainly focus on the estimation error. It is notable that

recently [59] studied the optimal rates of the estimation error of linear regression in both low

dimension and high dimensional sparse settings. Specifically, for (ε, δ)-DP, they showed that

in the low dimension setting, the near optimal rate of estimation error is Õ(
√

p
n

+
p
√

log 1/δ

nε
),

while in the high dimensional setting it is Õ(
√

s log p
n

+
s log p
√

log 1/δ

nε
), here Õ-term omits

log n factor. We will show more details in Remark 5.3.2 for the comparison between sparse

linear regression in the central model and the local model.

Unlike the central model where tremendous progresses have been made, linear regression

in the local model is still not well understood. The only known results are [257, 363, 98, 97].

[97] studied the low dimensional, non-interactive private minimax risk of the estimation

error for the restricted case of keeping the responses private, while we consider the high

dimensional case of the problem in the interactive local model. [257] gave the optimal lower

bound of the optimization error, Θ(
√

p
nε2

), for the low dimensional case which was later

improved to O(( log p
nε2

)
1
4 ) by [363, 299] in the case where the constraint set is a unit `1 norm
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ball. However, their settings are different from ours since they all assume that the norm of

xi is bounded by 1, i.e. ‖xi‖2 ≤ 1, while in our statistical setting, ‖xi‖2 =
√
p. Thus, our

results are incomparable with theirs.

DP-ERM has been studied in [154, 305, 310, 325, 299, 97, 161] under different settings.

However, none of these considered the non-convex constraint case.

To proof the low bounds in this paper, we mainly use private version of the Fano and

Le Cam method, which are initially given by [97, 98, 100]. Based on different settings or

problems, there are different versions of private Fano and Le Cam method. For example,

[316] proposed a generalized private Assouad method to deal with the lower bounds of some

matrix estimation problems in the local differential privacy model. [3] proposed private

Fano, Le Cam and Assouad method under central differential privacy. [2] proved lower

bounds for various testing and estimation problems under local differential privacy using a

notion of chi-squared contractions based on Le Cam’s method and Fano’s inequality.

5.3.2 Problem Set-up

The focus of this paper is the sparse linear regression problem. In this problem, we have n

pair of observations {(xi, yi)}ni=1, where each (xi, yi) ∈ Rp × R. Moreover, there is some

unknown parameter vector θ∗ ∈ Rp that links each pair (xi, yi) by the standard linear model

yi = 〈xi, θ∗〉+ σi,

where |σi| ≤ C is observation noise and C > 0 is some constant. Here θ∗ satisfies the

sparsity constraint, meaning that θ∗ has no more than s� p non-zero entries. The goal is to

estimate the unknown vector θ∗ based on these n observations while also under the local

differential privacy constraint. Specifically, we want to find an estimator θpriv via some

locally differentially private algorithm to make its estimation error ‖θpriv − θ∗‖2
2 be as small

as possible. Specifically, in this paper we will focus on the following collection of samples
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(x, y) ∈ {+1,−1}p × R:

Ps,p,C = {Pθ,σ | x ∼ Uniform{+1,−1}p, y = 〈θ, x〉+σ,where σ is the random noise s.t

E[σ|x] = 0, |σ| ≤ C for some constant C > 0, ‖θ‖2 ≤ 1, ‖θ‖0 ≤ s}. (5.70)

In the above definition, σ is sampled from a bounded stochastic noise domain such as

uniform distribution and could depend on x.

It is notable that in the non-private setting, [244] showed the following optimal minimax

rateMn(θ(Ps,p,C), ‖ · ‖2
2) = Θ(

C2s log p
s

n
).

It is worth noting that there is some difference between our model (5.70) and the sub-

Gaussian linear model, which is a classic model in statistics [244]. That is, here x is assumed

to follow a uniform distribution (which is an often adopted assumption in estimating lower

bounds in differential privacy [53]) in our model, while it is often sampled from general

sub-Gaussian distribution in a sub-Gaussian model. Even though the uniform distribution

can be viewed as a sub-Gaussian distribution, the way of using it in our paper is different.

5.3.3 Keeping the Whole Dataset Private

Lower Bounds of Private Minimax Risk

In this section, we investigate the private minimax risk in the case where the whole dataset

{(xi, yi)}ni=1 needs to be locally private, and show that even if the parameter vector θ∗

is 1-sparse, the polynomial dependence on the dimensionality p in the estimation error

cannot be avoided. This implies that achieving ε-LDP for the high dimensional sparse linear

regression problem is unlikely.

To show the limitations of the problem with respect to the private minimax risk, we

first give some intuition. Consider a raw data record (xi, yi) which is sampled from some

Pθ,σ ∈ P1,p,C , whereP1,p,C has the form as in (5.70). Suppose that we want to use a Gaussian

or Laplacian mechanism on (xi, yi) in order to make the algorithm locally differentially
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private. Then, due to sensitivity, the `1 or `2 norm of (xi, yi) is a polynomial of p. The scale

of the added random noise will also be a polynomial of p, which makes the final estimation

error large.

The following theorem indicates that for some fixed privacy parameter ε ∈ (0, 1), the opti-

mal rate of the ε non-interactive private minimax risk is lower bounded by Ω(min{1, p log p
nε2
}).

Theorem 5.3.1. For a given fixed privacy parameter ε ∈ (0, 1
2
], the ε non-interactive private

minimax risk (measured by the ‖ · ‖2
2 metric) of the 1-sparse high dimensional sparse linear

regression problem P1,p,2 needs to satisfy the following inequality,

MNint
n (θ(P1,p,2), ‖ · ‖2

2, ε) ≥ Ω(min{1, p log p

nε2
}). (5.71)

With the above theorems, our question now is to determine whether there are other

factors in the local model that might allow us to avoid the polynomial dependency on p in

the estimation error.

We first consider the necessity of interaction in the model, since for some problems, such

as convex Empirical Risk Minimization (ERM), there exists a large gap in the estimation

error between the interactive and non-interactive local models [257]. The following theorem

suggests that even if sequential interaction is allowed in the local model, the polynomial

dependence on p is still unavoidable. Note that sequential interaction is a commonly used

model in LDP [97, 257].

Theorem 5.3.2. For a given fixed privacy parameter ε ∈ (0, 1
2
], the ε sequential private

minimax risk (measured by the ‖ · ‖2
2 metric) of the 1-sparse high dimensional sparse linear

regression problem P1,p,2 needs to satisfy the following inequality,

Mint
n (θ(P1,p,2), ‖ · ‖2

2, ε) ≥ Ω(min{1, p

nε2
}). (5.72)

Remark 5.3.1. Since the lower bound of the non-private minimax risk is O( log p
n

) [244], we
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conjecture that the lower bound in Theorem 5.3.2 is not tight and the tightest bound should

be O(p log p
nε2

), which is the same as Theorem 5.3.1. Later, we will propose a near optimal

algorithm (compared with (5.72)) in Section 5.3.3 and leave the problem of finding a tighter

lower bound as future research.

Corollary 5.3.1. Recently, [170] proposed a general framework which could transfer any

k-compositional fully interactive LDP algorithm to sequentially interactive LDP algorithm

with an O(k) blowup in the same complexity. Combining with Theorem 5.3.2, we can claim

that even in the O(p)-compositional fully interactive LDP model, the dependence on the

polynomial of the dimensionality p still cannot be avoided.

Remark 5.3.2. Recently [59] studied the lower bound of linear regression with statistical

error in both low and high dimensional case under central (ε, δ)-DP model. Specifically, they

show that for s-sparse high dimensional case, the private minimax risk under the `2 norm

measurement is lower bound by Ω(
√

s log p
n

+
s log p
√

log 1/δ

nε
) while for the low dimensional

case it is lower bounded by Ω(
√

p
n

+
p
√

log 1/δ

nε
), all of these bounds are optimal up to factors

of Poly(log n). From Theorem 5.3.1 and 5.3.2, we can see that for sparse linear regression

problem, LDP and DP are quite different.

Then, we investigate whether the loss function in the estimation error is too strong. For

example, if let θ∗ = ej and the private estimator θpriv = ei for some i 6= j, then by the

squared `2 norm loss, we have ‖θpriv−θ∗‖2
2 = 2. Since it is possible to get |〈1, θpriv−θ∗〉| = 0,

this seems to suggest that relaxing the loss function could possibly lower the dependency on

p. However, our next theorem gives a negative answer.

Theorem 5.3.3. Consider the loss function L : Θ×Θ 7→ R+, where L(θ, θ′) = |1T (θ−θ′)|.

Then, for any fixed ε ∈ (0, 1
2
], the ε sequential private minimax risk of the loss function L in

the 1-sparse high dimensional sparse linear regression problem P1,p,2 needs to satisfy the
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following inequality,

Mint
n (θ(P1,p,2), L, ε) ≥ Ω(min{1,

√
p

nε2
}). (5.73)

Finally, we consider the possibility of lowering the dependence of p by relaxing the

definition of ε local differential privacy. This is motivated by the following fact in the central

model, where there is a big difference between ε and (ε, δ)-differential privacy for a number

of problems, such as the Empirical Risk Minimization [28] and the 1-way marginal [53].

However, as shown in a recent study [50], any non-interactive (ε, δ)-LDP protocol can be

transformed to an ε-LDP protocol. This implies that relaxing to (ε, δ) LDP cannot avoid the

polynomial dependence.

To further investigate the problem, we consider other types of relaxation for LDP,

such as Local Rényi Differential Privacy (LRDP) [221] and Local Zero-Concentrated

Differential Privacy (LzCDP) [52]. The following theorem shows that the lower bounds on

the minimax risk of the (2, log(1 + ε2)) sequential LRDP and (κ, ρ) sequential LzCDP still

have polynomial dependence on p.

We first recall the definitions of Rényi Differential Privacy and Zero-Concentrated

Differential Privacy and then extend them to the sequentially interactive model. For any

α ≥ 1, we denote the Rényi divergence of distribution P and Q as

Dα(P‖Q) =
1

α− 1
log

∫
(
dP

dQ
)αdQ.

For α = 1, it is just the KL-divergence.

Definition 5.3.1. Similar to the Definition of local differential privacy, a random variable

Zi is a (κ, ρ) locally zero-concentrated differentially private view of Xi if for all α > 1,

z1, z2, · · · , zi−1 and x, x′ ∈ X ,

Dα(Qi(Zi ∈ S | xi, z1:i−1)‖Qi(Zi ∈ S | x′i,= z1:i−1)) ≤ κ+ ρα
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holds for all events S. Similar to the locally differentially private case, we have (κ, ρ) local

zero-concentrated differential privacy (LzCDP) and (κ, ρ) sequential zero-concentrated

differential private minimax risk (sequential zCDP minimax risk).

Definition 5.3.2. Similarly, we have (α, ε) local Rényi differential privacy and (α, ε) (se-

quential) Renyi differential private minimax risk (called sequential RDP minimax risk)

if

Dα(Qi(Zi ∈ S | xi, z1:i−1)‖Qi(Zi ∈ S | x′i, z1:i−1)) ≤ ε.

Theorem 5.3.4. For given fixed privacy parameters 0 < ε ≤ 1, κ, ρ > 0, the (κ, ρ) sequen-

tial zCDP minimax risk (under the ‖ · ‖2
2 metric) of the 1-sparse high dimensional sparse

linear regression problem P1,p,2 needs to satisfy the following inequality,

Mint
n (θ(P1,p,2), ‖ · ‖2

2, (κ, ρ)) ≥ Ω(min{1, p

n(eκ+2ρ − 1)
}).

The (2, log(1 + ε2)) sequential RDP minimax risk (under the ‖ · ‖2
2 metric) of the 1-sparse

high dimensional sparse linear regression problem P1,p,2 needs to satisfy :

Mint
n (θ(P1,p,2), ‖ · ‖2

2, (2, log(1 + ε2))) ≥ Ω(min{1, p

nε2
}).

Near Optimal Upper Bound for Sequential Interactive Local Model

With the understanding of the limitation in high dimensions, we focus, in this section, on

the low dimensional sparse case (i.e., n ≥ Ω( p
ε2

)) and propose an ε sequential interactive

LDP algorithm that achieves a near optimal upper bound on the estimation error (compared

with (5.72)). Instead of considering the 1-sparse case as in Theorem 5.3.2, we study here

the general case, that is, {(xi, yi)}ni=1 ∼ Pθ∗,σ, where Pθ∗,σ ∈ Ps∗,p,C , and assume that some

upper bound of s∗ is already known.

Our method is called Locally Differentially Private Iterative Hard Thresholding (LDP-

IHT), which is a locally differentially private version of the traditional Iterative Hard
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Thresholding method [43]. We consider the following more general optimization problem,

with the intention to extend it to other problems (see Section 5.3.5),

minL(θ;D) =
1

2n

n∑
i=1

(〈xi, θ〉 − yi)2

s.t.‖θ‖2 ≤ 1, ‖θ‖0 ≤ s. (5.74)

The key ideas for solving (5.74) in our Algorithm 5.3.41 are the follows. First, we

partition the users into T groups {St}Tt=1 (where the value of T will be specified later). Then,

in the i-th iteration, each user receives the current estimator θi−1, and all users in group Si

conduct the ε-LDP randomizer procedure [98] on their current gradients xTi (〈xi, θi−1〉 − yi)

(see below for the definition of the Randomizer). After receiving the noisy version of

the gradient from each user, the server runs the iterative hard thresholding algorithm and

produces a new estimator. That is, it executes first a gradient descent step, and then a

truncation step θ′t+1 = Trunc(θ̃t+1, s), where the truncation function simply keeps the

largest s entries of θ̃t+1 (in terms of the magnitude) and converts the rest of the entries to

zero. This can be done by first sorting {|θ̃t+1,j|}pj=1, where θ̃t+1,j is the j-th coordinate of

the vector, then keeping the s-largest ones, and making the entries of all other coordinates 0.

Finally, the algorithm projects θ′t+1 onto the unit `2 norm ball B1.

Randomizer Rr
ε(·) [98] On input x ∈ Rp, where ‖x‖2 ≤ r, the randomizer Rε(x) does

the following. It first sets x̃ = brx
‖x‖2 where b ∈ {−1,+1} a Bernoulli random variable

Ber(1
2

+ ‖x‖2
2r

). We then sample T ∼ Ber( eε

eε+1
) and outputs O(r

√
p)Rε(x), where

Rε(x) =


Uni(u ∈ Sp−1 : 〈u, x̃〉 > 0) if T = 1

Uni(u ∈ Sp−1 : 〈u, x̃〉 ≤ 0) if T = 0

(5.75)

Using the same proof as in [257] we can show that each coordinate of the the randomizer

Rr
ε(x) is sub-Gaussian.
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Lemma 5.3.1 ([257]). Given any vector x ∈ Rp, where ‖x‖2 ≤ r, each coordinate of the

randomizerRr
ε(x) defined above is a sub-Gaussian random vector with variance σ2 = O( r

2

ε2
)

and E[Rε(x)] = x.

Algorithm 5.3.41 LDP-IHT
Input: Private data records {(xi, yi)}ni=1 ∼ Pθ∗,σ, where Pθ∗,σ ∈ Ps∗,p,C , iteration number
T , privacy parameter ε, step size η. Set θ0 = 0. s = 8s∗.

1: For t = 1, · · · , T , define the index set St = {(t−1)
⌊
n
T

⌋
, · · · , t

⌊
n
T

⌋
−1}; if t = T , then

St = St
⋃
{t
⌊
n
T

⌋
, · · · , n}.

2: for t = 1, 2, · · · , T do
3: The server sends θt−1 to all the users. Every use i, i ∈ St, conducts the following

operation: let ∇i = xTi (〈θt−1, xi〉 − yi), compute zi = Rr
ε(∇i), where Rr

ε is the
randomizer defined above with r = O(C

√
p) and send back to the server.

4: The server compute ∇̃t−1 = 1
|St|
∑

i∈St zi.

5: Perform the gradient descent updating θ̃t = θt−1 − η∇̃t−1.
6: θ′t = Trunc(θ̃t−1, s).
7: θt = argθ∈B1

‖θ − θ′t‖2
2.

8: end for
9: Return θT

Before giving the theoretical analysis of Algorithm 5.3.41, we first show the assumption

of the partitioned datasets {XSt}Tt=1.

Assumption 5.3.1. {XSt}Tt=1 satisfies the Restricted Isometry Property (RIP) with parameter

2s+ s∗, where s = 8s∗. That is, for any v ∈ Rp with ‖v‖0 ≤ 2s+ s∗, there exists a constant

∆ which satisfies (1−∆)‖v‖2 ≤ 1
|St|‖XStv‖2

2 ≤ (1 + ∆)‖v‖2
2 for any t ∈ [T ].

Note that for an m×p matrix X = (xT1 , · · · , xTm)T ∼ Uniform{+1,−1}m×p, it satisfies

the RIP condition (with parameter s∗) with probability at least 1− ε if m ≥ c∆−2(s∗ log p+

ln(1/ε)) for some universal constant c (see Theorem 2.12 in [245]). Thus, with probability at

least 1− ξ, {XSt}Tt=1 satisfies Assumption 5.3.1 if n ≥ Ω(∆−2(Ts∗ log p log T
ξ
)). Later, we

will see that T = O(log n). Thus, in order to ensure that Assumption 5.3.1 and n ≥ Ω( p
ε2

)

hold, we need to assume that n
logn
≥ Ω(ps

∗ log p
ε2

).

Theorem 5.3.5. For any ε > 0, Algorithm 5.3.41 is ε sequentially interactive LDP. Moreover,

under Assumption 5.3.1 with ∆ = O(1) and n
logn
≥ Ω(ps

∗ log p
ε2

), if {(xi, yi)}ni=1 ∼ Pθ∗,σ,
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where Pθ∗,σ ∈ Ps∗,p,C , then by taking s = 8s∗ and η = O(1), the output θT of the algorithm

satisfies

‖θT − θ∗‖2 ≤ (
1

2
)T‖θ∗‖2 +O(

C
√
p log p

√
T
√
s∗√

nε
), (5.76)

with probability at least 1− 2T
pc

for some constant c > 0.

Note that Theorem 5.3.5 shows that if s∗ = 1, T = O(log nε2

p log p
), then ‖θT − θ∗‖2

2 =

O(p log p logn
nε2

). Compared with the lower bound in Theorem 5.3.2, it is an optimal upper

bound up to a factor of
√

log p.

We notice that recently [122] also used IHT to distributed DP-sparse PCA. However,

compared with theirs, our method is ε-sequentially LDP while theirs is (ε, δ)-fully interactive

LDP. Thus, the algorithms are quite different.

5.3.4 Keeping the Responses Private

In this section, we consider a restricted case where only the responses or labels (i.e., {yi}ni=1)

are required to be locally differentially private and all the observations {xi}ni=1 are assumed

to be public. Preserving the privacy of the labels has been studied in [65, 33] for private

PAC learning. We also note that keeping the responses private is related to some issues of

physical sensory data and the sparse recovery problem, which has been studied in [216]. In

this case, we can actually assume that {xi}ni=1 ∼ Uniform({+1,−1}p)n are public, and the

collection of probability Ps,p,C in (5.70) is now reduced to the following model:

P ′s,p,C = {Pθ,σ(y1, · · · , yn) | yi = 〈θ∗, xi〉+σi,where ‖θ‖0 ≤ s, ‖θ‖2 ≤ 1 and the random noise |σi| ≤ C}.

(5.77)

The following theorem shows that, for every set of data {(xi, yi)}ni=1, if only {yi}ni=1

needs to be private, then there is an (ε, δ) non-interactively locally differentially private

algorithm DP-IHT, which yields a non-trivial upper bound on the squared `2 norm of the

estimation error (see Algorithm 5.3.42). More specifically, the algorithm first perturbs each
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yi by Gaussian noise to ensure that it is (ε, δ)-LDP. Then, it performs the classical IHT

procedure on the server side. Note that we can combine our algorithm with the protocol in

[50] to obtain an ε non-interactive LDP algorithm.

Algorithm 5.3.42 Label-LDP-IHT
Input: Public dataset {xi}ni=1, private {yi}ni=1 ∈ Pθ∗,σ, where Pθ∗,σ ∈ P ′s∗,p,C , ε, δ are
privacy parameters, T is the number of iteration, η is the step size, and s = 8s∗. Set θ0 = 0.

1: for Each i ∈ [n] do
2: Denote ỹi = yi + zi, where zi ∼ N (0, τ 2), τ 2 = 32C2 ln(1.25/δ)

ε2
.

3: end for
4: for t = 0, 1, · · · , T − 1 do
5: θ̃t+1 = θt − η( 1

n

∑n
i=1(ỹi − 〈xi, θt〉)xTi ).

6: θ′t+1 = Trunc(θ̃t+1, s).
7: θt+1 = argθ∈B1

‖θ − θ′t+1‖2
2.

8: end for
9: Return θT .

Assumption 5.3.2. X = (xT1 , · · · , xTn )T ∈ {−1,+1}n×p satisfies the Restricted Isometry

Property (RIP) with parameter 2s+ s∗, where s = 8s∗. That is, for any v ∈ Rp with ‖v‖0 ≤

2s+ s∗, there exists a constant ∆ which satisfies (1−∆)‖v‖2 ≤ 1
n
‖Xv‖2

2 ≤ (1 + ∆)‖v‖2
2.

Theorem 5.3.6. For any 0 < ε ≤ 1 and 0 < δ < 1, Algorithm 5.3.42 is (ε, δ) (non-

interactively) locally differentially private for {yi}ni=1. Moreover, if X satisfies Assumption

5.3.2 with 0 < ∆ ≤ 2
7
, then by setting s = 8s∗ in Algorithm 5.3.42, there is an η = η(∆)

which ensures that the output θT satisfies the following inequality with probability at least

1− exp(−n)− 2
pc

‖θT − θ∗‖2 ≤ (
1

2
)T‖θ∗‖2 +O(

C log(1/δ)
√
s∗ log p√

nε
). (5.78)

Note that if T = O(log
√
nε

C
√
s∗ log p

) in (5.78), we have ‖θT − θ∗‖2
2 ≤ O(C2 s log p

nε2
). Com-

pared with the bounds in Theorem 5.3.1 and 5.3.2, the dependency on p is reduced from

polynomial to logarithmic, which makes it suitable for handling high dimensional data. We

note that the term O( s log p
n

) also appears in the optimal minimax rate of the high dimensional

sparse sub-Gaussian linear model [244].
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Also note that after obtaining {(xi, ỹi)}ni=1, we can get another private estimator, which

has the same upper bound of O( s log p
nε2

), by performing Lasso θpriv ∈ argθ∈Rp{ 1
2n

∑n
i=1(ỹi −

〈θ, xi〉)2 +λ‖θ‖1}, for some λ = O(
√

log p
nε2

) [227]. However, we would like to point out that

our algorithm is more practical and can be extended to the case of non-linear measurements.

With the above theorem, a natural question is to determine whether the upper bound

in Theorem 5.3.6 can be further improved. The following theorem (adopted from [244])

suggests that it is actually tight as the ε non-interactive local private minimax risk (under the

‖ · ‖2 metric) is lower bounded by Ω(C
2s∗ log p
nε2

).

Theorem 5.3.7. Under Assumption 5.3.2 and for a given fixed privacy parameter ε ∈ (0, 1
2
],

the ε non-interactive local private minimax risk (under the ‖·‖2 metric) satisfies the following

inequality if only {yi}ni=1 needs to be kept locally private

MNint
n (θ(P ′s,p,C), ‖ · ‖2

2, ε) ≥ Ω
(

min{1,
C2s log p

s

nε2(1 + ∆)
}
)
.

5.3.5 Extension to Other Problems

As mentioned earlier, the (Local) DP-IHT method is actually quite general for achieving

differential privacy. In this section, we extend it to other problems. Specifically, we use it to

the DP-ERM problem 12 under some sparsity constraint and the sparse regression problem

with non-linear monotone measurements.

ERM with sparsity constraint

In this section, we consider the sparsity-constrained (ε, δ) DP-ERM problem. That is, the

constraint set C in ERM problem is defined as C = {x : ‖x‖0 ≤ k}, where ‖x‖0 denotes

the number of non-zero entries in vector x. We note that such a formulation encapsulates

several important problems such as the `0-constrained linear/logistic regression [17].

12It is easy to extend to LDP model
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We first introduce some assumptions to the loss function, which are commonly used in

the research of ERM under the sparsity-constrained optimization.

Definition 5.3.3 (Restricted Strong Convexity, RSC). A differentiable function f(x) is

restricted ρs-strongly convex with parameter s if there exists a constant ρs > 0 such that for

any x, x′ with ‖x− x′‖0 ≤ s, we have

f(x)− f(x′)− 〈∇f(x′), x− x′〉 ≥ ρs
2
‖x− x′‖2

2.

Definition 5.3.4 (Restricted Strong Smoothness, RSS). A differentiable function f(x) is

restricted `s-strong smooth with parameter s if there exists a constant `s > 0 such that for

any x, x′ with ‖x− x′‖0 ≤ s, we have

f(x)− f(x′)− 〈∇f(x′), x− x′〉 ≤ `s
2
‖x− x′‖2

2.

Assumption 5.3.3. Denote x∗ = arg minx∈C L(x;D) and ‖x∗‖0 = k∗. We assume that the

objective function L(x;D) is ρs-RSC and `(x, z) is `s-RSS for all z ∈ X with parameter

s = 2k + k∗. We also assume that `(x, z) is G-Lipshitz w.r.t `2 norm for all z ∈ X .

For the sparsity-constrained DP-ERM problem, we follow the idea in Algorithm 5.3.41

to solve the optimization problem (5.74). That is, we first execute a DP-Gradient Descent

step and then perform a hard thresholding operation (see Algorithm 5.3.43 for details).

Theorem 5.3.8. Under Assumption 5.3.3, for any 1 ≥ ε, δ > 0, there exists a constant c > 0

which makes Algorithm 5.3.43 (ε, δ)-DP. Moreover, if the sparsity level k ≥ (1 + 64κ2
s)k
∗,

where κs = `s
ρs

, then by setting η = 1
2`s

and T = O(κs log n2ε2

k∗
), we have

EL(xT ;D)− L(x∗;D) ≤ O(
log n log pk∗ log 1

δ

n2ε2
), (5.79)

where the big O-notation omits the terms of G, ρs and `s.
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Algorithm 5.3.43 DP-IHT
Input: Initial point x0, learning rate η, empirical risk L(x;D), privacy parameters 1 >
ε, δ > 0, and iteration number T .

1: for t = 0, 1, · · · , T − 1 do
2: Let x̃t+1 = xt − η(∇L(xt;D) + zt), where zt ∼ N (0, σ2Ip), σ2 =

cT log 1
δ
G2

n2ε2
for

some constant c.
3: Let xt+1 = Trun(x̃t+1, k).
4: end for
5: Return xT .

Remark 5.3.3. We note that the upper bound in (5.79) depends only logarithmically on p

(i.e., logp), rather than polynomially (i.e., Poly(p)) as in general DP-ERM with (strongly)

convex loss functions [325, 29]. This means that we have obtained a non-trivial upper

bound for the high dimensional case (p � n) of the problem. Recently, [270, 269] also

studied the case of high dimensional DP-ERM with specified constraint set. However, there

are considerable differences. Firstly, the [270] paper considers only linear regression and

`1-norm Lipshitz with the constraint set restricted to an `1-norm ball. Secondly, the [269]

paper shows that its upper bound depends only on the Gaussian width of the underlying

constraint set, instead of p. 13 However, their algorithm is based on the mirror descent

method, which needs the constraint set to be convex. But it is non-convex in our problem.

Thus, these previous results are not comparable with ours.

It would be interesting to find a general condition on the constraint set such that the

upper bound of the problem can be independent of Poly(p). Also, we note that to achieve

the bound in (5.79), the gradient complexity of Algorithm 5.3.43 needs to be Õ(nκs), which

is quite large. We leave it as an open problem to make it more practical.

Non-linear Regression

We now study a model with non-linear non-convex measurement: yi = f(〈θ∗, xi〉) + σ,

where f is some known function and θ∗ is sparse. This model has recently been studied in

13For a constraint set C ⊂ RP , its Gaussian width can depend on p in general.

308



[357, 350]. Note that when f is the identity function, it reduces to the sparse linear regression

model. In this paper, we focus on a special class of functions called (a, b) monotone:

Definition 5.3.5. A function f : R 7→ R is (a, b) monotone for some 0 < a ≤ b if f is

differentiable and f ′(x) ∈ [a, b] for all x ∈ R.

Like in the linear model, we also consider the cases of keeping the whole dataset and

only the responses {yi}ni=1 locally differentially private.

Keeping the Whole Dataset Private

Same as in the linear model case, we consider the following distribution collection of

samples (x, y) ∈ {+1,−1}p × R:

Ps,p,C,f,a,b = {Pθ,σ | x ∼ Uniform{+1,−1}p, y = f(〈θ, x〉)+σ, where σ is the random noise

|σ| ≤ C,C > 0 is some constant ‖θ‖2 ≤ 1, ‖θ‖0 ≤ s, f is (a, b) monotone }. (5.80)

We note that when f(x) = x, it reduces to (1).

To obtain an upper bound of the empirical risk, we can easily extend Algorithm 5.3.42

to the non-linear measurement case (see Algorithm 5.3.44) to solve the following problem

minL(θ;D) =
1

n

n∑
i=1

(f(〈xi, θ〉)− yi)2

s.t.‖θ‖2 ≤ 1, ‖θ‖0 ≤ s. (5.81)

Theorem 5.3.9. For any ε > 0, Algorithm 5.3.44 is ε sequential interactive LDP. Moreover,

if {XSt} satisfies Assumption 1 with 0 ≤ δ′ ≤ 9a2−5b2

14
in Section 4.2 and n

logn
≥ Ω(ps

∗ log p
ε2

),

and {(xi, yi)}ni=1 ∼ Pθ∗,σ, where Pθ∗,σ ∈ Ps∗,p,C,f,a,b (we assume a2

b2
≥ 5

9
), then after taking
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Algorithm 5.3.44 LDP-IHT
Input: Private data records {(xi, yi)}ni=1 ∼ Pθ∗,σ, where Pθ∗,σ ∈ Ps,p,C,f,a,b, T is the
Iteration number, ε is the privacy parameter, and η is the step size. Set θ0 = 0. s is a
parameter to be specified later.

1: For t = 1, · · · , T , define the index set St = {(t− 1)
⌊
n
T

⌋
, · · · , t

⌊
n
T

⌋
− 1}, if t = T , then

St = St
⋃
{t
⌊
n
T

⌋
, · · · , n}.

2: for t = 1, 2, · · · , T do
3: The server sends θt−1 to all the users. Every use i which i ∈ St does the following

operation: let∇i = xTi f
′(〈θt−1, xi〉)(f(〈θt−1, xi〉)− yi), compute zi = Rr

ε(∇i), where
Rr
ε is the randomizer defined in the previous section with r = O(bC

√
p) and send back

to the server.
4: The server compute ∇̃t−1 = 1

|St|
∑

i∈St zi.

5: Do the gradient descent updating θ̃t = θt−1 − η∇̃t−1.
6: θ′t = Trunc(θ̃t, s).
7: θt = argθ∈B1

‖θ − θ′t‖2
2.

8: end for
9: Return θT

s = 8s∗ and η = η(a, b), the output θT satisfies

‖θT − θ∗‖2 ≤ (
1

2
)T‖θ∗‖2 +O(

√
p log p

√
T
√
s√

nε
), (5.82)

with probability at least 1− 2T
pc

for some constant c > 0.

Keeping the Labels Private

For a fixed X = (xT1 , · · · , xTn )T ∈ {+1,−1}n×p, we consider the following collection of

distributions:

P ′s,p,C,f,a,b = {Pθ,σ({yi}ni=1) | yi = f(〈θ∗, xi〉) + σi,where ‖θ‖0 ≤ s, ‖θ‖2 ≤ 1,

the random noise |σi| ≤ C for some constant C > 0, and f is (a, b) monotone}.

The following theorem shows the lower bound of the private minimax risk (under the

‖ · ‖2
2 metric) with respect to the above collection of distributions, which is similar to the

one in Theorem 5.3.6.
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Theorem 5.3.10. Under Assumption 5.3.2 and for a given fixed privacy parameter ε ∈ (0, 1
2
],

the ε non-interactive local private minimax risk (under the ‖·‖2 metric) in the case of keeping

{yi}ni=1 locally private satisfies the following inequality

MNint
n (θ(P ′s,p,C,f,a,b), ‖ · ‖2

2, ε) ≥ Ω(min{1, C2 s log p
s

nb2ε2(1 + ∆)
}).

Comparing to the lower bound in Theorem 5.3.6 in the previous section, we can see that

there is an additional factor of b2 in Theorem 5.3.10, which is due to the fact that the model

is more complicated.

For the upper bound, we adopt a similar approach as in DP-IHT for linear regression.

Particularly, we let L(θ) = 1
2n

∑n
i=1(ỹi − 〈xi, θ〉)2 and then apply the ideas of IHT.

Algorithm 5.3.45 General DP-Iterative Hard Thresholding
Input: Public dataset {xi}ni=1, private {yi}ni=1 ∈ Pθ∗,σ, where Pθ∗,σ ∈ Ps∗,p,C,f,a,b, ε, δ are
privacy parameters, T is the number of iteration, η is the step size, and s is a parameter to
be specified. Set θ0 = 0.

1: for Each i ∈ [n] do
2: Denote ỹi = yi + zi, where zi ∼ N (0, τ 2), τ 2 = 32C2 ln(1.25/δ)

ε2
.

3: end for
4: for t = 0, 1, · · · , T − 1 do
5: θ̃t+1 = θt − η∇L(θt).
6: θ′t+1 = Trunc(θ̃t+1, s).
7: θt+1 = argθ∈B1

‖θ − θ′t+1‖2
2.

8: end for
9: Return θT .

Theorem 5.3.11. For any 0 < ε ≤ 1 and 0 < δ < 1, Algorithm 5.3.45 is (ε, δ) (non-

interactively) locally differentially private for {yi}ni=1. Moreover, if {yi}ni=1 ∈ Pθ∗,σ (where

Pθ∗,σ ∈ P ′s∗,p,C,f,a,b with 1 ≥ a
b
>
√

5
3

) and X satisfies Assumption 1 with 0 < ∆ ≤ 9a2−5b2

14
,

then by setting s = 8s∗ in Algorithm 5.3.45, there is an η = η(∆) which ensures that the

output θT satisfies the following inequality

‖θT − θ∗‖2 ≤ (
1

2
)T‖θ∗‖2 +O(

bC log(1/δ)
√
s∗ log p√

nε
),
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with probability at least 1− T exp(−n)− 2T
pc

.

5.3.6 Experiments

Experiments on Sparse Linear Regression

Data Generation Our data generation process is similar to the one in [161]. We first fix

a parameter vector θ∗ by randomly choosing s∗ coordinates, with each of them sampled

independently from a uniform distribution in interval [0, 1], and setting the remaining

coordinates/entries to zero. Then, we generate the data samples using equation yi =

〈xi, θ∗〉 + σi, where xi ∈ Uniform{−1,+1}p and σi ∈ Uniform[−C,C]. We assume

C = 0.05 in our experiment.

Experiment Results We compare the relative error, i.e. ‖θT−θ
∗‖2

‖θ∗‖2 , with the sample size

n in three different settings, i.e., under varying dimensionality, sparsity and privacy level,

respectively. We run algorithms Label-LDP-IHT with η = 0.2 or η = 0.1, s = s∗,

T = dlog n
p
e, δ = 10−3 and a random normal Gaussian vector as the initial point to obtain

θT . For each experiment, we run the algorithm 10 times and take the one with the lowst

relative error as the final value.

Figure 5.5 and 5.6 depict the results of Algorithm 5.3.41 and 5.3.42, respectively. From

Figure 5.5, we can see that when the dimensionality and the sparsity level increase or the

privacy parameter ε decreases, the relative error increases, especially when the sample size

n is small. When the sample size increases, the relative error will decreases. From Figure

5.6, we can learn that when the dimensionality p increases, unlike Figure 5.5, it does not

cause the relative error to change significantly. This can be explained by the fact that the

error bound is only logarithmically depending on p. Moreover, when the privacy parameter

increases, the relative error decreases. These results confirm our theoretical claims.
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Experiments on Sparsity-constrained DP-ERM

In this section, we test Algorithm 5.3.43 on real world datasets Covertype and rcv1 [64].

Particularly, we study the sparsity-constrained logistic regression problem with `(w, z) =

log(1 + exp(−yi〈w, xi〉)) + λ
2
‖w‖2

2, where yi is the label of xi. As pre-processing, the data

is first normalized. Since there is no ground truth on real data, we run the algorithm in [161]

sufficiently long until ‖wt − wt+1‖2/‖wt‖2 ≤ 10−4 and then use the output L(wt;D) as the

approximate optimal value. With this, we can calculate the optimality gap of our estimator.

In the experiments, we set λ = 10−3, η = 0.1 and δ = 10−3, and use zCDP [52] to achieve

the (ε, δ)-DP.

From Figure 5.7 and 5.8, we can see that when the dimensionality p increases, the

optimality gap does not change too much, which is due to the fact that the error bound is

only logarithmically depending on p. Also, when the sparsity level increases or ε decreases,

the optimality gap increases. Clearly, all these experimental results are consistent with

Theorem 5.3.8.

Tests on Synthetic Datasets For Linear Regression with Non-linear Measurements

Our data generation process is similar to the one in [161]. We first fix a parameter vector

θ∗ by randomly choosing s∗ coordinates, with each of them sampled independently from

a uniform distribution in interval [0, 1], and setting the remaining coordinates/entries to

zero. For the case of non-linear measurements, we assume that yi = f(〈xi, θ∗〉) + σi, where

f(x) := 8x + cosx where xi ∈ Uniform{−1,+1}p and σi ∈ Uniform[−C,C] so that it

satisfies the assumptions in Theorem 5.3.9 . The results are shown in Figure 5.10 and 5.9.

We can see that these results are almost the same as in Figure 5.5 and 5.6, respectively.
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(a) Relative error w.r.t dimen-
sionality

(b) Relative error w.r.t sparsity
level

(c) Relative error w.r.t privacy
level

Figure 5.5: Experimental results on sparse linear regression under LDP while keeping the
whole dataset private (Algorithm 5.3.41).

(a) Relative error w.r.t dimen-
sionality

(b) Relative error w.r.t sparsity
level

(c) Relative error w.r.t privacy
level

Figure 5.6: Experimental results on sparse linear regression under LDP while keeping the
labels private (Algorithm 5.3.42).

(a) Optimality gap w.r.t dimen-
sionality with fixed s = 10
and ε = 2.

(b) Optimality gap w.r.t spar-
sity level with fixed p = 54
and ε = 2

(c) Optimality gap w.r.t pri-
vacy level with fixed p = 54
and s = 10

Figure 5.7: Experimental results on Covertype dataset [90] for `0-constrained logistic
regression under (ε, δ)-DP (Algorithm 5.3.43).
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(a) Optimality gap vs dimen-
sionality with fixed s = 10
and ε = 2.

(b) Optimality gap vs sparsity
level with fixed p = 200 and
ε = 2

(c) Optimality gap vs privacy
level with fixed p = 200 and
s = 10

Figure 5.8: Experimental results on rcv1 dataset [64] for `0-constrained logistic regression
under (ε, δ)-DP (Algorithm 5.3.43).

(a) Relative error vs dimen-
sionality.

(b) Relative error vs sparsity
level.

(c) Relative error vs privacy
level.

Figure 5.9: Experimental results for sparse regression with non-linear measurement under
LDP when keeping the whole dataset private (Algorithm 5.3.44).

(a) Relative error vs dimen-
sionality.

(b) Relative error vs sparsity
level.

(c) Relative error vs privacy
level.

Figure 5.10: Experimental results for sparse regression with non-linear measurement under
LDP when keeping the label private (Algorithm 5.3.45).
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5.3.7 Omitted Proofs

Technical Lemmas

For the estimation error, we first give some definitions and lemmas.

Definition 5.3.6. A random variable X is said to be sub-Gaussian with σ2 if E(X) = 0 and

E[exp(sX)] ≤ exp(
σ2s2

2
),∀s ∈ R.

For the case that X is a d-dimensional random vector, it is sub-Gaussian with σ2 if for any

unit vector u ∈ Sd−1, uTX is sub-Gaussian with σ2.

It is well known that if X1, X2, · · · , Xn are all sub-Gaussian with σ2, then a1X1 + · · ·+

anXn is sub-Gaussian with (
∑n

i=1 a
2
i )σ

2.

We can easily see that if x ∼ Uniform{+1,−1}d, x is sub-Gaussian with σ2 = 1.

Lemma 5.3.2 ([289]). Let X1, X2, · · · , Xn be n random variables such that each Xi is

sub-Gaussian with σ2. Then the following holds

Pr[max
i∈n

Xi ≥ t] ≤ ne−
t2

2σ2 ,

Pr[max
i∈n
|Xi| ≥ t] ≤ 2ne−

t2

2σ2 .

Lemma 5.3.3 ([161]). For any θ ∈ Rk and an integer s ≤ k, if θt = Trunc(θ, s) then for

any θ∗ ∈ Rk with ‖θ∗‖0 ≤ s, we have ‖θt − θ‖2 ≤ k−s
k−s∗ |θ

∗ − θ‖2
2.

Lemma 5.3.4. Let K be a convex body in Rp, and v ∈ Rp. Then for every u ∈ K, we have

‖PK(v)− u‖2 ≤ ‖v − u‖2,

where PK is the operator of projection onto K.
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The following theorem says that whenX ∈ Uniform{+1,−1}n×p, with high probability

it satisfies the Restricted Isometry Property if n is sufficiently large.

Lemma 5.3.5 (Theorem 2.12 in [245]). Let X ∈ {+1,−1}n×p be a Bernoulli Random

Matrix and ξ,∆ ∈ (0, 1). Assume that

n ≥ C∆−2(s log(p/s) + log(1/ξ)).

Then with probability at least 1− ξ, X satisfies the Restricted Isometry Property (RIP) with

sparsity level s and parameter ∆, that is, for every ‖v‖0 ≤ s,

(1−∆)‖v‖2 ≤ 1

n
‖Xv‖2

2 ≤ (1 + ∆)‖v‖2
2.

Note that if X satisfies the Restricted Isometry Property (RIP) with sparsity level s and

parameter ∆, it means that

∆ = max
‖x‖2=1,‖x‖0≤s

‖( 1

n
XTX − Ip×p)x‖2.

Lemma 5.3.6 ([189]). If z ∼ χ2
n, where χ2

n is the Chi-square distribution with parameter n,

then

Pr[z − n ≥ 2
√
nx+ 2x] ≤ exp(−x).

Private Fano and Le Cam Method

Our lower bounds are basic on the locally private version Fano and Le Cam method [98, 100].

Given a finite set V , a family of distributions {Pv, v ∈ V} with Pv ∈ P is 2δ-separated in a

metric ρ if ρ(θ(Pv), θ(Pv′)) ≥ 2δ for all distinct pairs v, v′ ∈ V . Given any 2δ-separated set,

the private Fano’s method for the ε non-interactive private minimax risk can be summarized

by the following lemma.
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Lemma 5.3.7 (Prop. 2 in [98]). Given any 2δ-separated set {Pv, v ∈ V}, and α ∈ (0, 1
2
],

the ε non-interactive private minimax risk satisfies the following inequality

MNint
n (θ(P),Φ ◦ ρ, ε) ≥ Φ(δ)

2

(
1− nα2CNint∞ ({Pv}v∈V) + log 2

log |V|
)
,

where CNint∞ ({Pv}v∈V) = 1
|V| supγ∈B∞

∑
v∈V(ψv(γ))2, B∞ is the 1-ball of the supremum

norm B∞ = {γ ∈ L∞(X ) | ‖γ‖∞ ≤ 1}, and L∞(X ) = {f : X 7→ R | ‖f‖∞ <∞} is the

space of uniformly bounded functions with the supremum norm ‖f‖∞ = supx |f(x)|. Also,

for each v ∈ V , ψv : L∞(X ) 7→ R is a linear function defined by

ψv(γ) =

∫
X
γ(x)dPv(x)− dP̄ (x),

where P̄ is the mixture distribution P̄ = 1
|V|
∑

v∈V P
n
v .

A useful corollary is the following:

Lemma 5.3.8 (Corollaries 2 and 4 in [97]). Let V be randomly and uniformly distributed in

V . Assume that given V = v, Xi is sampled independently according to the distribution of

Pv,i for i = 1, · · · , n. Then, there is a universal constant c < 19 such that for α ∈ (0, 1
2
],

I(Z1, Z2, · · · , Zn;V ) ≤ cε2
n∑
i=1

1

|V|2
∑
v,v′∈V

‖Pv,i − Pv′,i‖2
TV .

The ε non-interactive private minimax risk satisfies

MNint
n (θ(P),Φ ◦ ρ, ε) ≥ Φ(δ)

2

(
1− I(Z1, · · · , Zn;V ) + log 2

log |V|
)
.

Now we introduce the generalized private Le Cam method. Let P0 and P1 be two

collections of distributions in P . We say that P0 and P1 are δ-separated for loss function L

if dL(P0, P1) ≥ δ for all P0 ∈ P0 and P1 ∈ P0, where dL(P0, P1) = infθ∈Θ{L(θ, θ(P0)) +

L(θ, θ(P1)). Then we have the following lemma.
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Lemma 5.3.9 (Theorem 2 in [100]). Consider a set of distributions P , a collection of

distributions on X , {Pv}v∈V ⊂ P , indexed by v ∈ V , as well as a distribution P0 ∈ P . For

each of these distributions, we have i.i.d. observations Xi, that is, samples from the product

with density

dP n
v = Πn

i=1dPv(xi).

We also define the marginal distributions Mn
v (·) =

∫
Q(·|x1:n)dP n

v (x1:n) and M̄n =

1
|V|
∑

v∈VM
n
v , where Q is a private channel. For any ε ∈ (0, 1

2
], the ε sequential private

minimax risk in the loss function L satisfies the following inequality

MInt
n (θ(P), L, ε) ≥ 1

2
min
v∈V

dL(P0, Pv)
(
1− 1

2

√
Dkl(Mn

0 ‖M̄n)
)
,

where

Dkl(M
n
0 ‖M̄n) ≤ nε2

4
C∞({Pv}v∈V) min{eε,max

v∈V
‖ dP
dPv
‖∞}

for any distribution P supported on X . Here

C∞({Pv}v∈V) = inf
suppP ∗∈X

sup
γ
{ 1

|V|
∑
v∈V

φv(γ)2|‖γ‖L∞(P ∗)}.

Where the linear functional φv(f) is defined as

φv(f) :=

∫
f(x)(dP0(x)− dPv(x)).

Proof of Theorem 5.3.1

The main idea of the proof is :

• Find an index set V which corresponds to a 2δ-separated set {Pv, v ∈ V}.

• Obtain an upper bound on C∞({Pv}v∈V), use Lemma 5.3.7 to specify δ, and then get

an lower bound.
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We consider V as the set of {±ej, j ∈ [p]}, where {ej}nj=1 is the standard basis of Rp.

Let θv = δv for some δ < 1 and every v ∈ V . Then for each θv, we define the distribution

Pθv as

Pθv =
{
x ∈ Uniform{+1,−1}p; pθv(y | x, σ) = 〈x, θv〉+σ; where σ =


1− 〈x, θv〉 w.p.1+〈x,θv〉

2

−1− 〈x, θv〉 w.p.1−〈x,θv〉
2

}
.

(5.83)

It is easy to see that Pθv ∈ P1,p,2 since the noise |σ| ≤ 1 + |〈x, θv〉| ≤ 2. Note that the

distribution in (5.83) is equivalent to

pθv((x, y)) =
1 + y〈x, θv〉

2p+1
for (x, y) ∈ {+1,−1}p+1. (5.84)

Also for every fixed (x, y) ∈ {+1,−1}p+1, we have p̄((x, y)) := 1
|V|
∑

v∈V pθv((x, y)) =

1
2p+1 .

Now we show our main lemma used in the proof.

Lemma 5.3.10. The term CNint∞ ({Pv}v∈V) satisfies the following inequality

CNint∞ ({Pv}v∈V) ≤ δ2

p
. (5.85)

Proof of Lemma 5.3.10. By definition, for each v ∈ V we have

ψv(γ) =
∑

(x,y)∈{+1,−1}p+1

γ(x, y)[pv((x, y))− p̄((x, y))]

=
δ

2p+1

∑
(x,y)∈{+1,−1}p+1

γ(x, y)y〈x, v〉

=
δ

2p+1

∑
x∈{+1,−1}p

[γ(x, 1)〈x, v〉 − γ(x,−1)〈x, v〉]
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Thus, we can get

1

|V|
∑
v∈V

ψ2
v(γ) ≤ 2× 1

2p

∑
v∈V

[
( δ

2p+1

∑
x∈{+1,−1}p

γ(x, 1)〈x, v〉
)2

+

( δ

2p+1

∑
x∈{+1,−1}p

γ(x,−1)〈x, v〉
)2

]

=
δ2

p4p+1

∑
v∈V

∑
x1,x2∈{+1,−1}p

[
(
γ(x1, 1)γ(x2, 1) + γ(x1,−1)γ(x2,−1)

)
xT1 vv

Tx2]

=
2δ2

p4p+1

∑
x1,x2∈{+1,−1}p

(
γ(x1, 1)γ(x2, 1)xT1 x2 + γ(x1,−1)γ(x2,−1)xT1 x2

)
,

where the last equation is due to
∑

v∈V vv
T = 2Ip×p. Thus by the definition of CNint∞ ({Pv}v∈V)

we have

CNint∞ ({Pv}v∈V) ≤ 1

2

δ2

p4p
[ sup
γ∈B∞

∑
x1,x2∈X

γ(x1, 1)γ(x2, 1)xT1 x2

+ sup
γ∈B∞

∑
x1,x2∈X

γ(x1,−1)γ(x2,−1)xT1 x2]

=
δ2

2p
[ sup
γ∈B∞

‖EP0 [γ(X, 1)X]‖2 + sup
γ∈B∞

‖EP0 [γ(X,−1)X]‖2],

where P0 is the uniform distribution on {+1,−1}p. Note that since ‖a‖2
2 = sup‖v‖≤1〈v, a〉2

for any vector a, by Cauchy-Schwartz inequality we have

sup
γ∈B∞

‖EP0 [γ(X, 1)X]‖2

= sup
γ∈B∞,‖v‖2≤1

(EP0 [γ(X, 1)vTX])2

≤ sup
γ∈B∞

EP0 [γ(X, 1)2]× sup
‖v‖2≤1

EP0 [(vTX)2]

≤ sup
‖v‖2≤1

vT
∑

x∈{−1,1}p

xxT

2p
v ≤ 1,
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where the second inequality is due to the definition of X and γ. Similarly, we can bound the

term supγ∈B∞ ‖EP0 [γ(X,−1)X‖2] ≤ 1. This completes the proof.

By Lemma 5.3.7 and Lemma 5.3.10 , we can get

MNint
n (θ(P1,p,2),Φ ◦ ρ, α) ≥ δ2

2

(
1−

nε2 δ
2

p
+ log 2

log 2p

)
.

If we take δ2 = Ω(min{1, p log 2p
nε2
}), we can get the proof of the lower bound in Theorem

5.3.1.

Proof of Theorem 5.3.2

Now we use the squared loss as the loss function L(θ, θ′) = ‖θ − θ′‖2
2. Then, dL(P0, P1) =

1
2
‖θ(P0) − θ(P1)‖2

2. Define P0 ∈ P1,p,C as the uniform distribution on {+1,−1}p ×

{+1,−1}, that is,

P0 =
{
x ∈ Uniform{+1,−1}p; pθv(y | x, σ) = 〈x, 0〉+ σ;

where σ =


1− 〈x, 0〉 w.p. 1+〈x,0〉

2

−1− 〈x, 0〉 w.p.1−〈x,0〉
2

}
.

Thus, θ(P0) = 0.

Define the set of distributions {Pv, v ∈ V} in the same way as in the proof of Theorem

5.3.1. Then, we have dL(P0, P1) = 1
2
δ2. As in Lemma 5.3.9, we have Mn

0 and M̄n. For the

KL-divergence Dkl between Mn
0 and M̄n, by Lemma 5.3.9 we have

Dkl(M
n
0 ‖M̄n) ≤ nε2

4
C∞({Pv}v∈V) min{eε,max

v∈V
‖ dP
dPv
‖∞}.

We can easily see that for each γ ∈ B∞ and v ∈ V , we have that ψv(γ) in the proof of

Lemma 5.3.10 is equivalent to φv(γ) in Lemma 5.3.9 for our construction. Thus, by Lemma
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5.3.10 we have C∞({Pv}v∈V) ≤ δ2

p
. Taking P = P0, we get maxv∈V ‖ dPdPv ‖∞ = 1

1−δ . Thus,

if choosing δ2 = Ω(min{1, p
nε2
}), we have

Dkl(M
n
0 ‖M̄n) ≤ nε2δ2(1 + δ)

8p
.

By Lemma 5.3.9, we can get

MInt
n (θ(P1,p,2),Φ ◦ ρ, α) ≥ δ2

4
(1−

√
nε2δ2(1 + δ)

8p
).

Thus, if taking δ2 = Ω(min{1, p
nε2
}), we have the proof.

Proof of Theorem 5.3.3

Now consider the case of L(θ, θ′) = |1T (θ − θ′)|. We can easily obtain dL(P1, P2) ≥

|1T (θ(P2) − θ(P1))|. Consider the same distributions P0, {Pv, v ∈ V} as in the proof of

Theorem 5.3.2, we have minv∈V dL(P0, Pv) ≥ δ. Since Dkl(M
n
0 ‖M̄n) ≤ nε2δ2(1+δ)

8p
for

δ2 = Ω(min{1, p
nε2
}), we have

Mint
n (θ(P1,p,2), L, α) ≥ δ

2
(1−

√
nε2δ2(1 + δ)

8p
).

Thus, we have the proof if set δ2 = Ω(min{1, p
nε2
}) .

Proof of Theorem 5.3.4

Before the proof, let us recall the definition of χ2-local differential privacy [100]:

For any convex function f on R+ with f(1) = 0, the f -divergence of distributions P

and Q is

Df (P‖Q) :=

∫
f(
dP

dQ
)dQ.

Definition 5.3.7. Let f(x) = (x − 1)2. Following the above definitions, we have ε2-χ2-
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divergence local differential privacy and ε-χ2-divergence (sequentially) private minimax

risk if

Df (Qi(Zi ∈ S | xi, z1:i−1)‖Qi(Zi ∈ S | x′i,= z1:i−1)) ≤ ε2.

From the above definitions, it is easy to see that if a channel Q is (κ, ρ) sequentially

locally zero-concentrated differentially private, it is (ε2 = eκ+2ρ − 1 )-χ2-divergence se-

quentially locally differentially private. Also, since (2, log(1 + ε2)) local Renyi differential

privacy is equivalent to ε2-χ-divergence local differential privacy, to prove Theorem 5.3.4,

we only need to show the lower bound of ε2-χ2-divergence sequential local private minimax

risk, which is denoted asMInt
n,χ2(θ(P), L, ε2). To do that, we need the following lemma.

Lemma 5.3.11. [Theorem 2 in [100]] For any ε ∈ (0, 1], the ε2-χ2-divergence sequential

private minimax risk in the loss function L satisfies the following inequality

MInt
n,χ2(θ(P), L, ε2) ≥ 1

2
min
v∈V

dL(P0, Pv)× (1− 1

2

√
Dkl(Mn

0 ‖M̄n)),

where

Dkl(M
n
0 ‖M̄n) ≤ nε2C2({Pv}v∈V) min{eε,max

v∈V
‖dPv
dP
‖∞}

for any distribution P supported onX , and C2({Pv}v∈V) = 1
|V| infsuppP⊂X supγ{

∑
v∈V(φv(γ))2 |

‖γ‖L2(P ) ≤ 1}, where φ(γ) is defined in Lemma 5.3.9.

Now, we will proof Theorem 5.3.4.

The construction of P0 and {Pv, v ∈ V} is the same as in the proof of Theorem 5.3.3.

Thus, by Lemma 5.3.11, we only need to bound C2({Pv}v∈V), instead of C∞({Pv}v∈V).

From the proof of Lemma 5.3.10, we can see that if taking P as a uniform distribution,

then for any γ with ‖γ‖L2(P0) ≤ 1, we always have EP0 [γ(X, 1)2] ≤ 1. This means that

1
|V|
∑

v∈V(ψv(γ))2 ≤ δ2

p
. Thus, we have C2({Pv}v∈V) ≤ δ2

p
. The remaining part of the proof

is the same as the one in the proof of Theorem 5.3.2.
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Proof of Theorem 5.3.5

Follow from the fact that the linear model is a special case of the non-linear measurement.

See the proof of Theorem 5.3.9 in Section 5.3.5 for the case f(x) = x and a = b = 1.

Proof of Theorem 5.3.6

Follow from the fact that the linear model is a special case of the non-linear measurement.

See the proof of Theorem 5.3.11 in Section 5.3.5 for the case f(x) = x and a = b = 1.

Proof of Theorem 5.3.7

Follow from the fact that the linear model is a special case of the non-linear measurement.

See the proof of Theorem 5.3.10 in Section 5.3.5 for the case f(x) = x and a = b = 1.

Proof of Theorem 5.3.8

For the guarantee of (ε, δ)-DP, it follows from the Moment accountant and composition

theorem, see [1, 325] for details.

Let I = It+1
⋃
It
⋃
I∗, where I∗ = supp(x∗), It = supp(xt) and It+1 = supp(xt+1),

and gt = ∇L(xt) + zt. Since ‖xt+1 − xt‖0 ≤ 2k. By the assumption of RSS, we have

L(xt+1) ≤ L(xt) + 〈∇L(xt), xt+1 − xt〉+
`s
2
‖xt+1 − xt‖2

≤ L(xt) + 〈(gt)I , (xt+1 − xt)I〉+
`s
2
‖xt+1 − xt‖2 + ‖zt,I‖‖(xt+1 − xt)I‖2

= L(xt) +
1

2η
‖xt+1,I − xt,I + ηgt,I‖2 − η‖gt,I‖2

2

− 1− η`s
2η

‖xt+1 − xt‖2 + ‖zt,I‖‖(xt+1 − xt)I‖2

= L(xt) +
1

2η
(‖xt+1,I − xt,I + ηgt,I‖2 − η2‖gt,I\(It⋃ I∗)‖2)−

η‖gt,It⋃ I∗‖2
2

− 1− η`s
2η

‖xt+1 − xt‖2 + ‖zt,I‖‖(xt+1 − xt)I‖2, (5.86)

where the second inequality is due to xt+1 − xt = xt+1,I − xt,I .
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We now bound the term of ‖xt+1,I − xt,I + ηgt,I‖2 − η2‖gt,I\(It⋃ I∗)‖2 by the idea in

[161]. Since I\(It
⋃
I∗) = It+1\(It

⋃
I∗) ⊆ It+1, we have

xt+1,I\(It
⋃
I∗) = xt,I\(It⋃ I∗) − ηgt,I\(It⋃ I∗).

Also, since xt,I\(It⋃ I∗) = 0, this means that xt+1,I\(It
⋃
I∗) = −ηgt,I\(It⋃ I∗). Next, we

choose a set R ⊆ It\It+1 such that |R| = |It+1\(It
⋃
I∗)|. Note that such R can be

found since |It+1\(It
⋃
I∗)| = |It\It+1| − |(It+1

⋂
I∗)\It| (which is a consequence of

|It| = |It+1|). Thus, we have

η2‖gt,I\(It⋃ I∗)‖2 = ‖xt+1,I\(It
⋃
I∗)‖2 ≥ ‖xt,R − ηgt,R‖2. (5.87)

With (5.87) and the fact that xt+1,R = 0, we have

‖xt+1,I − xt,I + ηgt,I‖2 − η2‖gt,I\(It⋃ I∗)‖2 (5.88)

≤ ‖xt+1,I − xt,I + ηgt,I‖2 − ‖xt+1,R − xt,R + ηgt,R‖2

= ‖xt+1,I\R − xt,I\R + ηgt,I\R‖2. (5.89)

We then bound the size of |I\R| as |I\R| ≤ |It+1| + |(It\It+1)\R| + |I∗| ≤ k +

|(It+1
⋂
I∗)\It| + k∗ ≤ k + 2k∗. Also, since It+1 ⊆ (I\R), we have xt+1,I\R =
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Trun(xt,I\R − ηgt,I\R, k). Thus, by (5.87) and Lemma 5.3.3 we have

‖xt+1,I − xt,I + ηgt,I‖2 − η2‖gt,I\(It⋃ I∗)‖2

≤ ‖xt+1,I\R − xt,I\R + ηgt,I\R‖2

≤ 2k∗

k + k∗
‖x∗I\R − xt,I\R + ηgt,I\R‖2

≤ 2k∗

k + k∗
‖x∗I − xt,I + ηgt,I‖2

=
2k∗

k + k∗
(‖x∗ − xt‖2 + 2η〈gt,I , (x∗ − xt)I〉+ η2‖gt,I‖2)

=
2k∗

k + k∗
(‖x∗ − xt‖2 + 2η〈∇L(xt), (x

∗ − xt)〉+ η2‖gt,I‖2) +
4k∗

k + k∗
〈zt,I , (x∗ − xt)I〉

≤ 2k∗

k + k∗
[‖x∗ − xt‖2 + 2η(L(x∗)− L(xt)−

ρs
2
‖x∗ − xt‖2)

+ η2‖gt,I‖2] +
4k∗

k + k∗
〈zt,I , (x∗ − xt)I〉

=
4ηk∗

k + k∗
(L(x∗)− L(xt)) +

2(1− ηρs)k∗

k + k∗
‖x∗ − xt‖2 +

2η2k∗

k + k∗
‖gt,I\(It⋃ I∗)‖2

+
2η2k∗

k + k∗
‖gt,(It⋃ I∗)‖2 +

4k∗

k + k∗
〈zt,I , (x∗ − xt)I〉.

Plugging this into (5.86), we get

L(xt+1) ≤ L(xt) +
2k∗

k + k∗
(L(x∗ − L(xt)) +

(1− ηρs)k∗

η(k + k∗)
‖x∗ − xt‖2

+
ηk∗

k + k∗
‖gt,I\(It⋃ I∗)‖2 + (

ηk∗

k + k∗
− η

2
)‖gt,It⋃ I∗‖2 +

2k∗

η(k + k∗)
〈zt,I , (x∗ − xt)I〉

+ ‖zt,I‖‖(xt+1 − xt)I‖2 −
1− η`s

2η
‖xt+1 − xt‖2 (5.90)

≤ L(xt) +
2k∗

k + k∗
(L(x∗ − L(xt)) +

(1− ηρs)k∗

η(k + k∗)
‖x∗ − xt‖2

− (
1− η`s

2η
− k∗

η(k + k∗)
)‖xt+1 − xt‖2+

(
ηk∗

k + k∗
− η

2
)‖gt,It⋃ I∗‖2 +

2k∗

η(k + k∗)
〈zt,I , (x∗ − xt)I〉+ ‖zt,I‖‖(xt+1 − xt)I‖2 (5.91)

≤ L(xt) +
2k∗

k + k∗
(L(x∗ − L(xt)) +

(1− ηρs)k∗

η(k + k∗)
‖x∗ − xt‖2 + (

ηk∗

k + k∗
− η

2
)‖gt,It⋃ I∗‖2

+
2k∗

η(k + k∗)
〈zt,I , (x∗ − xt)I〉+

η(k + k∗)

2((1− η`s)k − (1 + η`s)k∗)
‖zt,I‖2, (5.92)
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where the second inequality is due to the fact that ‖xt+1 − xt‖ ≥ η‖gt,I\(It⋃ I∗)‖ and the

third inequality is due to the fact that ab ≤ a2

4c
+ cb2 for any c > 0.

For the term ‖xt − x∗‖2, we have the following lemma:

Lemma 5.3.12.

‖xt − x∗‖2 ≤ 4

ρ
[L(x∗)− L(xt)] +

8

ρ2
s

‖gt,It⋃ I∗‖2 +
8

ρ2
s

‖zt,I‖2. (5.93)

Proof. From RSC, we have

L(x∗) ≥ L(xt) + 〈∇L(xt), x
∗ − xt〉+

ρs
2
‖x∗ − xt‖2

= L(xt) + 〈∇It⋃ I∗L(xt)− gt,It⋃ I∗ + gt,It
⋃
I∗ , x

∗ − xt〉+
ρs
2
‖x∗ − xt‖2

≥ L(xt)−
2

ρs
‖zt,I‖2 − 2

ρs
‖gt,It⋃ I∗‖2 +

ρs
4
‖x∗ − xt‖2,

where the last inequality is due to ab ≤ a2

4c
+ cb2.

With this lemma, we get

L(xt+1) ≤ L(xt) +
2k∗

k + k∗
(1 +

2(1− ηρs)
ηρs

)(L(x∗)− L(xt))

− (
η

2
− (η2ρ2

s + 8(1− ηρs))k∗

ηρ2
s(k + k∗)

)‖gt,It⋃ I∗‖2 + +
2k∗

η(k + k∗)
〈zt,I , (x∗ − xt)I〉

+ (
η(k + k∗)

2((1− η`s)k − (1 + η`s)k∗)
+

8(1− ηρs)k∗

ηρ2
s(k + k∗)

)‖zt,I‖2. (5.94)

Taking η = 1
2`s

and k ≥ (1 + 64`2s
ρ2
s

)k∗, we further get

L(xt+1) ≤ L(xt) +
ρs
8`s

(L(x∗)− L(xt)) +
4k∗`s

(k + k∗)
〈zt,I , (x∗ − xt)I〉+

37`s
ρ2
s

‖zt,I‖2.

(5.95)
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Lemma 5.3.13. For x ∼ N (0, σ2Ip)

E|x|2∞ ≤ O(σ2 log p)

Proof. By definition of expectation, we have

E|x|2∞ =

∫ ∞
0

Pr[|x|2∞ ≥ t]dt =

∫ O(σ2 log p)

0

Pr[|x|2∞ ≥ t]dt+

∫ ∞
O(σ2 log p)

Pr[|x|2∞ ≥ t]dt

≤ O(σ2 log p) +

∫ ∞
O(σ2 log p)

2p exp(− t

2σ2
)dt

≤ O(σ2 log p) + 2
√

2pσ2 exp(−O(log p)) = O(σ2 log p).

Note that E〈zt,I , (x∗ − xt)I〉 = E〈zt, x∗ − xt〉 = 0. Taking the expectation w.r.t zt and

by the fact that ‖zt,I‖2 ≤ |I||zt|2∞ (from the above lemma), we have

EL(xt+1) ≤ L(xt) +
ρs
8`s

(L(x∗)− L(xt)) +O(
κsk

∗G2 log 1
δ

log pT

ρsn2ε2
). (5.96)

That is

E[L(xt+1)− L(x∗)] ≤ (1− ρs
8`s

)E[L(xt)− L(x∗)] +O(
κsk

∗G2 log p log 1
δ
T

ρsn2ε2
). (5.97)

Thus, taking T = O(κs log(n
2

k∗
)), we get the theorem.

Proof of Theorem 5.3.9

We first show that each stochastic gradient

‖xTi f ′(〈xi, θt−1〉)(f(〈xi, θt−1〉)− yi)‖2 ≤ O(bC
√
p),
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this is due to that

‖xTi f ′(〈xi, θt−1〉)(f(〈xi, θt−1〉)− yi)‖2 ≤ b‖xTi ‖2(f(〈xi, θt−1〉)− yi)

≤ b
√
p(f(1)− yi) ≤ O(bC

√
p),

where the second inequality is due to that 〈xi, θt−1〉 ≤ ‖xi‖∞‖θt−1‖2 ≤ 1, f is monotone

and |yi| = |f〈θ∗, xi〉+ σi| ≤ O(C).

W.o.l.g we assume that each |St| = n
T

. From the randomizerRε(·) and Lemma 5.3.1, we

can see that ∇̃t = T
n

∑
i∈St x

T
i f
′(〈xi, θt−1〉)(f(〈xi, θt−1〉)− yi) + ζt, where each coordinate

of ζt is a sub-Gaussian vector with σ2 = O( bCpT
nε2

).

Let S∗ = supp(θ∗) denote the support of θ∗, and s∗ = |S∗|. Similarly, we define

St = supp(θt), and F t−1 = St−1 ∪ St ∪ S∗. Thus, we have |F t−1| ≤ 2s+ s∗.

We let θ̃t− 1
2

denote the following

θ̃t− 1
2

= θt−1 − η∇̃t−1,Ft−1 ,

where vFt−1 means keeping vi for i ∈ F t−1 and converting all other terms to 0. By the

definition of F t−1, we have θ′t = Trunc(θ̃t− 1
2
, s). Denote by ∆t the difference of θt − θ∗.

We have the following

‖θ̃t− 1
2
− θ∗‖2 = ‖∆t−1 − η([∇Lt(θt−1) + ζt]Ft−1)‖2,

where∇Lt(θt−1) = T
n

∑
i∈St(f(〈xi, θt−1〉)− yi)f ′(〈xi, θt−1〉)xTi . Taking yi = 〈xi, θ∗〉+ σi

and by the triangle inequality we can get

‖θ̃t− 1
2
− θ∗‖2 ≤ ‖∆t−1 − η[

T

n

∑
i∈St

(f(〈xi, θt−1〉)− f(〈xi, θ∗〉))f ′(〈xi, θt−1〉)xTi ]Ft−1‖2+

η
√
|F t−1|[|T

n

∑
i∈St

f ′(〈xi, θt−1〉)σixTi |∞ + |ζt|∞].
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We denote the followings:

At−1 = ‖∆t−1 − η[
T

n

∑
i∈St

(f(〈xi, θt−1〉)− f(〈xi, θ∗〉))f ′(〈xi, θt−1〉)xTi ]Ft−1‖2 (5.98)

Bt−1 = η
√
|F t−1||T

n

∑
i∈St

f ′(〈xi, θt−1〉)σixTi |∞ (5.99)

Ct−1 = η
√
|F t−1||ζt|∞ (5.100)

We first bound Bt−1. Since each xi ∈ Uniform{+1,−1}p, which is sub-Gaussian with 1,

we know that for each coordinate j ∈ [p], T
n

∑
i∈St f

′(〈xi, θt−1〉)σixi,j is sub-Gaussian with

σ2 = T 2

n2

∑
i∈St f

′2(〈xi, θt−1〉)σ2
i ≤ Tb2C2

n
. Thus, by Lemma 5.3.2 we have

Pr[| 1
n

n∑
i=1

f ′(〈xi, θt〉)σixTi |∞ ≤ O(

√
T log pbC√

n
)] ≥ 1− 1

pc
.

This means that with probability at least 1− 1
pc

, we have

Bt ≤ η
√

2s+ s∗O(

√
T log pbC√

n
). (5.101)

For the term Ct−1, by Lemma 5.3.1 and 5.3.2 and since each coordinate ζt,i is sub-Gaussian,

we have Ct−1 ≤ η
√

2s+ s∗O(
√
TpbC log p√

nε2
) with probability at least 1− 1

pc
for some constant

c > 0.

Finally, we bound the term At−1. By the mean value theorem, we know that there exists

a θt−1,i line between θt−1 and θ∗ which satisfies the equation f(〈xi, θt−1〉)− f(〈xi, θ∗〉) =

f ′(〈xi, θt−1,i〉)〈xi, θt−1 − θ∗〉). Hence, we have

T

n

∑
i∈St

(f(〈xi, θt−1〉)− f(〈xi, θ∗〉))f ′(〈xi, θt−1〉)xTi = Dt−1∆t−1,

where Dt−1 = T
n

∑
i∈St f

′(〈xi, θt−1,i〉)f ′(〈xi, θt−1〉)xixTi ∈ Rp×p.
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Since Supp(Dt−1∆t−1) ⊂ F t−1 (by assumption), we have

At−1 = ‖∆t−1 − ηDt−1
Ft−1,·∆t−1‖2 ≤ ‖(I − ηDt−1

Ft−1,Ft−1)‖2‖∆t−1‖2.

Now we bound the term ‖(I − ηDt−1
Ft−1,Ft−1)‖2, where I is the |F t−1|-dimensional identity

matrix.

By the RIP property of X and |F t−1| ≤ 2s+ s∗, we can easily get the following for any

|F t−1|-dimensional vector v

a2[1−∆(2s+ s∗)]‖v‖2
2 ≤ vTDt−1

Ft−1,Ft−1v ≤ b2[1 + ∆(2s+ s∗)].

Thus, ‖(I−ηDt−1
Ft−1,Ft−1)‖2 ≤ max{1−ηa2[1−∆(2s+s∗)], ηb2[1+∆(2s+s∗)]−1}.

This means that if we can find an η satisfying the condition of

5

7

1

a[1−∆(2s+ s∗)]
≤ η ≤ 9

7

1

b2[1 + ∆(2s+ s∗)]
,

then we have ‖(I − ηDt−1
Ft−1,Ft−1)‖2 ≤ 2

7
. Note that such an η can indeed be found if

∆(2s+ s∗) ≤ 5a2−9b2

14
. This means that a

b
>
√

5
3

.

Thus, in total we have the following with probability at least 1− 2
pc

‖θ̃t− 1
2
− θ∗‖2 ≤

2

7
‖∆t−1‖2 +O(

√
Tp(2s+ s∗) log pbC√

nε
).

Our next task is to bound ‖θ′t − θ∗‖2 by ‖θ̃t− 1
2
− θ∗‖2 by Lemma 5.3.3.

Thus, we have ‖θ′t − θ̃t− 1
2
‖2

2 ≤
|Ft−1|−s
|Ft−1|−s∗‖θ̃t− 1

2
− θ∗‖2

2 ≤ s+s∗

2s
‖θ̃t− 1

2
− θ∗‖2

2.

Taking s = 8s∗, we get

‖θ′t − θ̃t− 1
2
‖2 ≤

3

4
‖θ̃t− 1

2
− θ∗‖2
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and

‖θ′t − θ∗‖2 ≤
7

4
‖θ̃t− 1

2
− θ∗‖2 ≤

1

2
‖∆t−1‖2 +O(

√
Tps∗ log pbC√

nε
).

Finally, we need to show that ‖∆t‖2 = ‖θt − θ∗‖2 ≤ ‖θ′t − θ∗‖2, which is due to the

Lemma 5.3.4.

Putting all together, we have the following with probability at least 1− 2
pc

,

‖∆t‖ ≤
1

2
‖∆t−1‖2 +O(

√
Tps∗ log pbC√

nε
).

Thus, we get with probability at least 1− 2T
pc

,

‖∆T‖2 ≤ (
1

2
)T‖θ∗‖2 +O(

√
Tps∗ log pbC√

nε
).

Proof of Theorem 5.3.10

Our proof is inspired by the ones in [97, 350] and [244]. Since it is reduced to the linear

model when f(x) ≡ x, we only need to consider the general case. Similar to the proof of

Theorem 1, we first construct a packing set {Pv : v ∈ V} and then bound C∞({Pv}). To do

so, we need the following lemma.

Lemma 5.3.14. [[244]] For any s ∈ [p], define the set

H(s) := {z ∈ {−1, 0,+1}d | ‖z‖0 = s}

with Hamming distance ρH(z, z′) =
∑d

i=1 1[zj 6= z′j] between the vectors z and z′. Then,

there exists a subset H̃ ⊂ H with cardinality |H̃| ≥ exp( s
2

log p−s
s/2

) such that ρH(z, z′) ≥ s
2

for all z, z′ ∈ H̃.

Now consider the rescaled version of H̃,
√

2
δ
H̃, for some δ ≤ 1√

2
. For any two θ, θ′ ∈ H̃,
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we have

8δ2 ≥ ‖θ − θ′‖2
2 ≥ δ2. (5.102)

Then,
√

2
δ
H̃ is a δ packing in `2 norm with M = |H̃| elements, denoted as {θ1, θ2, · · · , θM}.

For each θi, let σi denote the uniform distribution on the interval [−C,C]. Thus, we have

Pθi , which can be easily verified that Pθi ∈ P ′s,p,C,f,a,b.

Our idea is to use Lemma 5.3.8. Thus, our goal is to bound the sum of the Total Variance∑
v,v′∈V ‖Pv,i − Pv′,i‖2

TV . Now consider the case of Pθ,i and Pθ′,i, where (due to our

construction) Pθ,i is the uniform distribution on the interval of [f(〈xi, θ〉−C, f(〈xi, θ〉+C].

Thus, we have

‖Pθ,i − Pθ′,i‖TV =
1

2

∫
|pθ,i(y)− pθ′,i(y)|dy

≤ 1

2C
|f(〈θ, xi〉)− f(〈θ′, xi〉)| ≤

b

2C
|〈θ − θ′, xi〉|,

where the last inequality is due to the assumption on f . Hence, we have

n∑
i=1

1

|V|2
∑
v,v′∈V

‖Pv,i − Pv′,i‖2
TV ≤

n∑
i=1

b2

4C2

∑
v,v∈V

(θv − θv′)TxixTi (θv − θv′)

=
b2

4C2

1

|V|2
∑
v,v∈V

(θv − θv′)XTX(θv − θv′)

≤ 8
b2(1 + ∆)

4C2
δ2 =

2b2(1 + ∆)δ2

C2
,

where the last inequality is due to the fact that for every pair (v, v′) with ‖θv − θv′‖0 ≤ 2s,

(θv − θv′)XTX(θv − θv′) ≤ n(1 + ∆) holds (by Assumption 1).

Thus by Lemmas 5.3.14 and 5.3.8, we have

Φ(δ)

2
≥ δ2

8
(1−

2cnε2δ2 b
2(1+∆)
C2 + log 2

s
2

log p−s
s/2

).

Taking δ2 = Ω(min{1, s log p/sC2

(1+∆)b2nε2
), we get the result.
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Proof of Theorem 5.3.11

For the guarantee of (ε, δ) locally differentially private, it is due to the fact that xi is known

and each yi ∈ [〈xi, θ∗〉 − C, 〈xi, θ∗〉 − C] (since the random noise σi is bounded by C).

Thus, by the Gaussian Mechanism [107], we can see that it is locally differentially private.

Now we prove Theorem the upper bound.

Let S∗ = supp(θ∗) denote the support of θ∗, and s∗ = |S∗|. Similarly, we define

St+1 = supp(θt+1), and F t = St ∪ St+1 ∪ S∗. Thus, we have |F t| ≤ 2s+ s∗.

We let θ̃t+ 1
2

denote the following

θ̃t+ 1
2

= θt − η∇FtL(θt),

where vFt means keeping vi for i ∈ F t and making all other terms 0. By the definition of

F t, we have θ′t+1 = Trunc(θ̃t+ 1
2
, s). Denote by ∆t+1 the difference of θt+1 − θ∗. We have

the following

‖θ̃t+ 1
2
− θ∗‖2 = ‖∆t − η∇FtL(θt)‖2,

where∇FtL(θt) = [ 1
n

∑n
i=1(f(〈xi, θt〉)− ỹi)f ′(〈xi, θt〉)xTi ]Ft . Plugging ỹi = f(〈θ∗, xi〉) +

σi + zi, where zi ∼ N (0, τ 2), and τ 2 = 32C2 log(1.25/δ)
ε2

into the above equality, we get

‖θ̃t+ 1
2
− θ∗‖2 ≤ ‖∆t − η[

1

n

n∑
i=1

(f(〈xi, θt〉)− f(〈xi, θ∗〉))f ′(〈xi, θt〉)xTi ]Ft‖2+

η
√
|F t|[| 1

n

n∑
i=1

f ′(〈xi, θt〉)σixTi |∞ + | 1
n

n∑
i=1

f ′(〈xi, θt〉)zixTi |∞].
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Define the following terms

At = ‖∆t − η[
1

n

n∑
i=1

(f(〈xi, θt〉)− f(〈xi, θ∗〉))f ′(〈xi, θt〉)xTi ]Ft‖2

Bt = η
√
|F t|| 1

n

n∑
i=1

f ′(〈xi, θt〉)σixTi |∞,

Ct = η
√
|F t|| 1

n

n∑
i=1

f ′(〈xi, θt〉)zixTi |∞.

We first bound Bt. Since each xi ∈ Uniform{+1,−1}p, which is sub-Gaussian with

1, we know that for each coordinate j ∈ [p], 1
n

∑n
i=1 f

′(〈xi, θt〉)σixi,j is sub-Gaussian with

σ2 = 1
n2

∑n
i=1 f

′2(〈xi, θt〉)σ2
i ≤ b2C2

n
. Thus, by Lemma 5.3.2 we have

Pr[| 1
n

n∑
i=1

f ′(〈xi, θt〉)σixTi |∞ ≤ O(

√
log pbC√
n

)] ≥ 1− 1

pc
.

This means that with probability at least 1− 2
pc

, we have

Bt ≤ O(η
√

2s+ s∗
√

log pbC√
n

). (5.103)

Similarly, for Ct we have that with probability at least 1− 1
pc

, the following holds

| 1
n

n∑
i=1

f ′(〈xi, θt〉)zixTi |∞ ≤ O(
b
√

log p
√∑n

i=1 z
2
i

n
).

Since zi is Gaussian with variance τ 2, we know that
∑n

i=1 z
2
i = τ 2

∑n
i=1 r

2
i , where∑n

i=1 r
2
i is a χ2-distribution with parameter n.

By the above concentration bound for χ2-distribution and Lemma 5.3.6, we have∑n
i=1 z

2
i ≤ 5τ 2n with probability at least 1− exp(−n). Thus,

Ct ≤ η
√

2s+ s∗O(
b
√

log pτ√
n

) (5.104)
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with probability at least 1− 1
pc
− exp(−n).

For the term of At, the proof is the same as the one for At−1 in the proof of Theorem

5.3.9, and thus we omit it from here.

By (5.103) and (5.104) and plugging τ 2 = 32C2 log(1.25/δ)
ε2

into (5.104), we have the

following with probability at least 1− 2
pc
− exp(−n)

‖θ̃t+ 1
2
− θ∗‖2 ≤

2

7
‖∆t‖2 +O(

√
(2s+ s∗) log p log(1/δ)bC

nε
).

Putting all together, we have the following with probability at least 1− 2
pc
− exp(−n),

‖∆t+1‖ ≤
1

2
‖∆t‖2 +O(

√
s∗ log p log(1/δ)bC

nε
).

Thus, we get the bound in Theorem 5.3.11 with probability at least 1− 2T
p
−T exp(−n).

For the linear case, since f ′ ≡ 1, (5.103) and (5.104) will be the same in each iteration, the

probability for the linear case becomes 1− 2
pc
− exp(−n).
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Chapter 6

Some Matrix Estimation Problems in

Differential Privacy Model

6.1 Principal Component Analysis in Local Differential

Privacy Model

Principal Component Analysis (PCA) is a fundamental technique for dimension reduction

in statistics, machine learning, and signal processing. As of today, it remains as one of

the most commonly used tools in applications, especially in social sciences [79], financial

econometrics [6], medicine [23], and genomics [208].

With the rapid development of information technologies, big data now ubiquitously

exist in our daily life, which need to be analyzed (or learned) statistically by methods

like regression and PCA. However, due to the presence of sensitive data (especially those

in social science, biomedicine and genomics) and their distributed nature, such data are

extremely difficult to aggregate and learn from. Consider a case where health records are

scattered across multiple hospitals (or even countries), it is challenging to process the whole

dataset in a central server due to privacy and ownership concerns. A better solution is to use

some differentially private mechanisms to conduct the aggregation and learning tasks. .
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In the local model, two basic types of protocols are often used: interactive and non-

interactive. [257] have recently investigated the power of non-interactive differentially

private protocols. This type of protocols is more natural for the classical use cases of the

local model: both projects from Google and Apple use the non-interactive model. Moreover,

implementing efficient interactive protocols in such applications is more difficult due to the

latency of the network. Despite being used in industry, the local model has been much less

studied than the central one. Part of the reason for this is that there are intrinsic limitations

in what one can do in the local model. As a consequence, many basic questions, that are

well studied in the central model, have not been completely understood in the local model,

yet.

In this Chapter, I study PCA under the non-interactive local differential privacy model

and aim to answer the following main question.

What are the limitations and the (near) optimal algorithms of PCA under the non-

interactive local differential privacy model?

We summarize our main contributions as follows:

1. We first study the k-subspace PCA problem in the low dimensional setting and show

that the minimax risk (measured by the squared subspace distance) under ε non-

interactive local differential privacy (LDP) is lower bounded by Ω( λ1λk+1pk

(λk−λk+1)2nε2
),

where p is the dimensionality of the data and n is the number of data records, λ1, λk

and λk+1 is the 1st, k-th and (k+ 1)-th eigenvalue of the population covariance matrix

Σ, respectively. Moreover, we prove that the term Ω( pk
nε2

) is optimal by showing that

there is an (ε, δ)-LDP whose upper bound is O
( λ2

1kp log(1/δ)

(λk−λk+1)2nε2

)
.

2. An undesirable issue of the above result is that the error bound could be too large

in high dimensions (i.e., p� n). In such scenarios, a natural approach is to impose

some additional structural constraints on the leading eigenvectors. A commonly used

constraint is to assume that the leading eigenvectors are row sparse, which is refereed

as sparse PCA in the literature and has been studied intensively in recent years [292,
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58, 293]. Thus, for the high dimensional case, we consider the sparse PCA under the

non-interactive local model and show that the private minimax risk (measured by the

squared subspace distance) is lower bounded by Ω( λ1λk+1

(λk−λk+1)2
ks log p
nε2

), where s is the

sparsity parameter of the underlying subspace. We also give an algorithm to achieve

a near optimal upper bound of O
( λ2

1

(λk−λk+1)2
s2 log p
nε2

)
. With additional assumptions on

the correlation of the population covariance matrix, we further show that our private

estimator is sparsistency, i.e. it recovers the support of the underlying parameter.

3. Finally, we provide an experimental study for our proposed algorithms on both

synthetic and real world datasets, and show that the experimental results support our

theoretical analysis.

6.1.1 Related Work

There is a vast number of papers studying PCA under differential privacy, starting from the

SULQ framework [42], [106, 69, 162, 132, 122, 21]. We compare only those private PCA

results in distributed settings.

For the low dimensional case, Balcan et al. [21] studied the private PCA problem under

the interactive local differential privacy model and introduced an approach based on the

noisy power method. They showed an upper bound which is suitable for general settings,

while ours is mainly for statistical settings. It is worth pointing out that the output in [21] is

only an O(k)-dimensional subspace, instead of an exact k-dimensional subspace; thus their

result is incomparable with ours. Moreover, we provide, in this paper, a lower bound on the

ε non-interactive private minimax risk.

For the private high dimensional sparse PCA, the work most closely related to ours

is the one by Ge et al. [122]. The authors in this paper proposed a noisy iterative hard

thresholding power method, which is an interactive LDP algorithm and proved an upper

bound of O
(

λ1λk
(λk−λk+1)2

s(k+log p)

n(1−ρ
1
4 )

)
for their method, where ρ is a parameter related to ε.

Specifically, they showed that there exists some ’Privacy Free Region’. However, several
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things need to be pointed out. Firstly, our method is for general ε ∈ (0, 1] and non-interactive

settings, while Ge et al. considered the interactive setting with more restricted ε. Secondly,

the assumptions in our paper are less strict than the ones in [122]. Finally, we provide a

lower bound on the private minimax risk.

The optimal procedure in our paper is based on perturbing the covariance by Gaussian

matrices, which has been studied in [106]. However, there are some major differences;

firstly, we show the optimality of our algorithm under the non-interactive local model using

subspace distance as the measurement, while [106] showed the optimality under the (ε, δ)

central model using variance as the measurement. It is notable that in [106] the authors

also provided an upper bound on the subspace distance. However, the lower bound is still

unknown. Secondly, while the optimal algorithm for the low dimensional case is quite

similar, we extend it to the high dimensional case. The optimal procedure in the high

dimensional sparse case is quite different from that in [106]. Thirdly, in this paper,since

we focus the statistical setting while [106] considered the general setting, the upper bound

results are incomparable.

6.1.2 Preliminaries

Let X ∈ Rp a random vector with mean 0 and covariance matrix Σ. k-dimensional PCA is

to find a k dimensional subspace that optimizes the following problem:

minE‖(Ip − ΠG)X‖2
2, s.t. G ∈ Gp,k,

where Gp,k is the Grassmann manifold of k-dimensional subspaces of Rp, and ΠG is the

projection of G. There always exists at least one solution; consider Σ =
∑p

j=1 λjvjv
T
j ,

where λ1 ≥ λ2 ≥ · · · , λp ≥ 0 are the eigenvalues of Σ and v1, v2, · · · , vp ∈ Rp are the

corresponding eigenvectors. If λk ≥ λk+1, then the k-dimensional principal subspace of Σ,

i.e. the subspace S spanned by v1, · · · , vk solves the above optimization problem, where the
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orthogonal projector of S is given by ΠS = VkV
T
k , where Vk = [v1, · · · , vk] ∈ Vp,k, Vp,k

is the set of all p × k orthogonal matrices. For simplicity we denote S = col(Vk), where

col(M) denotes the subspace spanned by the columns vectors of M .

PCA under the non-interactive local model In practice, Σ is unknown, and the only

thing that we have is the set of observation data records {X1, · · · , Xn}, which are i.i.d

sampled from X . Thus, the problem of (non-interactively) locally differentially private

PCA is to find a k-dimensional subspace Spriv which is close to S , where the algorithm that

outputs Spriv must be ε (non-interactively) locally differentially private.

After obtaining a private estimator Spriv, there are multiple ways to measure the success,

such as variance guarantee [106], low rank approximation error [174], etc. In this paper, we

will use the subspace distance as the measurement [106, 122].

Subspace distance Let S and S ′ be two k-dimensional subspaces in Rp. Also denote by

E and F , respectively, the orthogonal matrix corresponds to S and S ′. That is, E = V V T

and F = WW T for some orthogonal matrices V ∈ Vp,k and W ∈ Vp,k. Then, the squared

subspace distance between S and S ′ is defined by the following [264]:

‖ sin Θ(S,S ′)‖2
F = ‖E − F‖2

F =
1

2
‖V V T −WW T‖2

F ,

where ‖ · ‖F is the Frobenious norm. For simplicity, we will overload notation and write

sin Θ(S,S ′) = sin Θ(V,W ).

6.1.3 Low Dimensional Case

In this section, we focus on the general case and always assume n ≥ p. We first derive

a lower bound of the ε non-interactive private minimax risk using the squared subspace

distance as the measurement. By the definition of the ε-private minimax risk, it is important

to select an appropriate class of distributions.
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Class of Distributions

1. We assume that the random vector X is sub-Gaussian, that is X = Σ
1
2Z, where

Z ∈ Rp is some random vector satisfying equations EZ = 0, Var(Z) = Ip and its

sub-Gaussian norm ‖Z‖ψ2 ≤ 1, where

‖Z‖ψ2 := sup
v:‖v‖2≤1

inf{C > 0,E exp |〈Z, v〉
C
|2 ≤ 2},

which means that all the one-dimensional marginals of Xi have sub-Gaussian tails.

We need to note that this assumption on X is commonly used in many papers on PCA

in statistical settings, such as [292, 122].

2. In the study of private PCA, it is always assumed that the `2 norm of each Xi is

bounded by 1, as in [106][122]. For convenience, we relax this assumption in the

following way; for the random vector X ∈ Rp, we assume that ‖X‖2 ≤ 1 with a

probability at least 1− e−Ω(p).

3. Next, we give assumptions on the population covariance matrix Σ. Firstly, we assume

that for the target k-dimensional subspace, λk − λk+1 > 0 so that the principal

subspace is well defined. Next, we define the effective noise variance σ2
k, which is

proposed in [292] and [58]:

σ2
k(λ1, λ2, · · · , λp) :=

λ1λk+1

(λk − λk+1)2
. (6.1)

For a given constant σ2 > 0, we assume that σ2
k ≤ σ2.

We denote the collection of distributions which satisfy the previous conditions 1), 2) and 3)

as P(k, σ2)
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Main Results

The next theorem shows a lower bound of ε non-interactive private minimax risk under

squared subspace distance.

Theorem 6.1.1. Let {Xi}ni=1 be samples from P ∈ P(k, σ2). If p
4
≤ k ≤ 3p

4
, ε ∈ (0, 1

2
] and

n ≥ Ω
(

1
ε2

λ1λk+1

(λk−λk+1)2 min{k, p− k}
)
, then the ε non-interactive private minimax risk in the

metric of squared subspace distance satisfies:

MNint
n (S(P(k, σ2)),Φ ◦ ρ, ε) ≥ Ω

(
σ2 kp

nε2
)
.

Remark 6.1.1. We note that for the non-private case, the minimax risk is lower bounded

by Ω
( λ1λk+1

(λk−λk+1)2
kp
n

)
[58]. Thus, in this case, the impact of the local differential privacy is

to change the number of efficient sample from n to nε2. However, the collection of the

considered distributions needs another assumption which says that ‖X‖2 is bounded by 1

with high probability. This is not necessary in the non-private case [58], but needed in ours

for showing the upper bound.

We also note that although Theorem 6.1.1 holds only for k = Θ(p), while in practice k

always be a constant. As we can see from Section 6.1.6, the lower bound holds for all k if

we relax the condition 2) in our collection of distributions P(σ2, k). It is the same for the

high dimensional sparse case.

Finally, note that in the central differential privacy model, [106] showed that the lower

bound of the k-dimensional PCA is Ω̃(
kp log( 1

δ
)

n2ε2
) for (ε, δ)-differential privacy. However,

this lower bound is measured by the variance of X = (XT
1 , X

T
2 , · · · , XT

n )T ∈ Rn×p, not

the squared subspace distance used in this paper. Although [106] gave an upper bound of

O( kp log(1/δ)

(λ2
k−λ

2
k+1)n2ε2

) in the general setting using the squared subspace distance as measurement,

it is still unknown whether the bound is optimal. Also, their lower bound omits the param-

eters related to the eigenvalues. For the ε differential privacy in the central model, [69]

showed that the lower bound is Ω( p2

n2ε2(λ1−λ2)2 ) in the special case of k = 1. However, it is
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still unknown for the general case of k. Thus, from the above discussion, we can see that the

lower bound of ε non-interactively locally differentially private PCA is similar to the (ε, δ)

differentially private PCA in the central model.

One of the main questions is whether the lower bound in Theorem 6.1.1 is tight. In the

following, we show that the term Ω( pk
nε2

) is tight. By our definition of the parameter space,

we know that for any X ∼ P ∈ P(σ2, k), ‖X‖2 ≤ 1 with high probability. Thus, we always

assume that the event of each ‖Xi‖2 ≤ 1 holds. Note that this assumption also appears in

[122, 106, 21]. The idea is the same as in [106], where each Xi perturbs its covariance and

aggregates the noisy version of covariance, see Algorithm 6.1.46 for details.

Theorem 6.1.2. For any ε, δ > 0, Algorithm 6.1.46 is (ε, δ) (non-interactively) locally

differentially private. Furthermore, with probability at least 1 − e−C1p − 1
pC2

, the output

satisfies:

‖ sin Θ(Ṽk, Vk)‖2
F ≤ O

( λ2
1kp log(1/δ)

(λk − λk+1)2nε2
)
, (6.2)

where C1, C2 are some universal constants.

Algorithm 6.1.46 Local Gaussian Mechanism
Input: data records {Xi}ni=1 ∼ P n for P ∈ P(σ2, k), and for i ∈ [n], ‖X‖2 ≤ 1. ε, δ are
the privacy parameters.

1: for Each i ∈ [n] do
2: Denote X̃iX̃

T
i = XiX

T
i + Zi, where Zi ∈ Rp×p is a symmetric matrix where the

upper triangle ( including the diagonal) is i.i.d samples from N (0, σ2
1); here σ2

1 =
2 ln(1.25/δ)

ε2
, and each lower triangle entry is copied from its upper triangle counterpart.

3: end for
4: Compute S̃ = 1

n

∑n
i=1 X̃iX̃

T
i .

5: Output col(Ṽk) where Ṽk ∈ Rp×k is the principal k-subspace of S̃.

In Theorem 7 of [106], the authors provided a similar upper bound for the (ε, δ)-

differential privacy in the central model. However, they need to assume that the eigenvalues

satisfy the condition λ2
k − λ2

k+1 = ω(
√
p), which is not needed in our Theorem 6.1.2 where

we use some recent result on Davis-Khan theorem (see Section 6.1.6 for details).
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From the analysis, we can see that, to ensure non-interactive LDP, here we should add

a randomized matrix to the covariance matrix, and this will cause an additional factor of

O( 1
ε2

) in the error compared with the non-private case.

From Theorems 6.1.1 and 6.1.2, we can see that there is still a gap of O( λ1

λk+1
) between

the lower and upper bounds. We leave it as an open problem to determine whether these

bounds are tight or not.

6.1.4 High Dimensional Sparse Case

From Theorem 6.1.1, we can see that for the high dimensional case, i.e. p� n, the bound

in (6.2) becomes trivial. Thus, to avoid this issue, we need some additional assumption on

the parameter space. One of the commonly used assumption is sparsity. There are many

definitions of sparsity on PCA and we use the row sparsity in this paper, which has also

been studied in [292, 58, 122].

We first define the (p, q)-norm of a p× k matrix A as the usual `q norm of the vector of

row-wise `p norms of A:

‖A‖p,q := ‖(‖a1∗‖p, ‖a2∗‖p, · · · , ‖ap∗‖p)‖q, (6.3)

where aj∗ denotes the j-th row of A. Note that ‖ · ‖2,0 is coordinate independent, i.e.

‖AO‖2,0 = ‖A‖2,0 for any orthogonal matrix O ∈ Rk×k. We define the row sparse space as

follows.

Definition 6.1.1. Let s be the sparsity level parameter satisfying the condition of k ≤ s ≤ p.

The s-(row) sparse subspace is defined as follows

M0(s) = {col(U), U ∈ Rp×k and orthogonal , ‖U‖2,0 ≤ s}.

We define our parameter space, P(s, k, σ2), to be the same as in the previous section with
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an additional condition that S ∈ M0(s), where S is the k-dimensional principal subspace

of covariance matrix Σ.

Below, we will first derive a lower bound of the non-interactive locally differentially

private PCA in the high dimensional sparse case.

Theorem 6.1.3. Let {Xi}ni=1 be the observations sampled from a distribution P ∈ P(s, k, σ2).

If the privacy parameter ε ∈ (0, 1
2
], n ≥ Ω((s− k)σ

2(k+log p)
ε2

). Then for all k ∈ [p] satisfying

the condition of 2k ≤ s− k ≤ p− k and p
4
≤ k ≤ 3p

4
, the ε non-interactive private minimax

risk in the metric of squared subspace distance satisfies the following

MNint
n (S(P(s, k, σ2), ε) ≥ Ω

(
σ2 s(k + log p)

nε2
)
.

Note that in the non-private case, the optimal minimax risk is Θ
(
σ2 s(k+log p)

n

)
. Thus,

same as in the low dimensional case, the impact of the privacy constraint is to change the

efficient samples from n to nε2.

Next, we consider the upper bound. In the non-private case, the optimal procedure is to

solve the following NP-hard optimization problem [292]:

max〈S, UUT 〉

subject to UTU = Ik, U ∈ Rp×k and ‖U‖2,0 ≤ s, (6.4)

where S is the empirical covariance matrix. Our upper bound is based on (6.4). However,

instead of solving (6.4) on the perturbed version of the empirical covariance matrix, we

perturb the covariance matrix and solve the following optimization problem on the convex

hull of the constraints in (6.4), that is:

X̂ = arg max〈S̃, X〉 − λ‖X‖1,1 (6.5)

subject to X ∈ Fk := {X : 0 � X � I and Tr(X) = k},
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where 〈S,X〉 = Tr(SXT ). Note that the constraints in (6.5), which is called Fantope

[36][293], is the convex hull of the constrains in (6.4). Also, since the constraints in (6.5)

only guarantees that the rank of the output is ≥ k, the output X̂ needs not to be a matrix

with exact rank of k. Thus, in order to obtain a proper k-dimensional subspace, we just

output the k-PCA of X̂ .

Algorithm 6.1.47 Local Gaussian Mechanism-High Dimension
Input: data records {Xi}ni=1 ∼ P n for P ∈ P(s, σ2, k), and for i ∈ [n], ‖X‖2 ≤ 1. ε, δ
are privacy parameters. ρ > is a constant.

1: for Each i ∈ [n] do
2: Denote X̃iX̃

T
i = XiX

T
i + Zi, where Zi ∈ Rp×p is a symmetric matrix where

the upper triangle, including the diagonal, is i.i.d samples from N (0, σ2); here σ2 =
2 ln(1.25/δ)

ε2
, and each lower triangle entry is copied from its upper triangle counterpart.

3: end for
4: Compute S̃ = 1

n

∑n
i=1 X̃iX̃

T
i .

5: Get the optimal solution X̂ in (6.5) or do as the followings
6: Setting Y (0) = 0, U (0) = 0
7: for t = 1, 2, · · · do
8: X(t+1) = PFk(Y (t) − U (t) + S̃

ρ
)

9: Y (t+1) = Sλ/ρ(X(t+1) + U (t)) where S is the entry-wise soft thresholding operator
defined as Sλ/ρ(x) = sign(x) max(|x| − λ/ρ, 0).

10: U (t+1) = U (t) +X(t+1) − Y (t+1)

11: Return Y (t)

12: end for
13: Let k-dimensional principal component of X̂ or Y (t) be Ṽk, output Ŝ = col(Ṽk).

Theorem 6.1.4. For any given 0 < ε, δ < 1, if {Xi}ni=1 ∼ P n for P ∈ P(s, σ2, k) and

‖X‖2 ≤ 1 for all i ∈ [n], then the solution to the optimization problem (6.5) is (ε, δ)

non-interactive locally differentially private. Moreover, if let V̂k denote the k-dimensional

principal component subspace of X̂ and set λ ≤ O(λ1

√
log p
nε2

), then with probability at least

1− 2
p2 − 1

pc
, the following holds

‖ sin Θ(V̂k, Vk)‖2
F ≤ O

( λ2
1

(λk − λk+1)2

s2 log p

nε2
)
,

where c is a universal constant.
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From the analysis, we can see that, to ensure non-interactive LDP, here we still need to

add a randomized matrix to the covariance matrix, which is similar as in the low dimensional

case. And this will cause an additional factor of O( 1
ε2

) in the error compared with the

non-private case in [293].

Since the optimization problem (6.5) is convex, we can follow the approach in [293] to

solve it by using ADMM method (see Algorithm 6.1.47 for the details).

Comparing with the lower bound of the private minimax risk in Theorem 6.1.3, we can

see that the bound in Theorem 6.1.4 is roughly larger than the optimal rate by a factor of

O( λ1

λk+1

s
k
). This means that the upper bound is only near optimal [293]. A remaining open

problem is to determine whether it is possible to get a tighter upper bound that does not

contain the term of s
k

in the gap.

Support recovery under local differential privacy In the high dimensional sparse case,

to ensure that an estimator θ is consistent, we need to demonstrate that ρ(θ, θ∗)→ 0 as n→

∞ and supp(θ) = supp(θ∗). By the definition of row sparsity (6.3), we will show that the

solution of (6.5) can recover the support under some reasonable assumptions. For a matrxi

V ∈ Rp×k, we let supp(V ) = supp((‖V1∗‖2, ‖V2∗‖2, · · · , ‖Vp∗‖2)) = supp(diag(V V T )).

Below we assume that the underlying covariance matrix Σ is limited correlated, i.e.,

satisfies the limited correlation condition (LCC). LCC is first proposed by [193], which is

an extension of the Irrepresentable Condition in [361]. Let J = supp(Vk), and Σ be the

following block representation:

Σ =

ΣJJ ΣJJc

ΣJcJ ΣJcJc

 ,
where ΣJ1J2 denotes the |J1| × |J2| submatrix of Σ consisting of rows in J1 and columns in

J2.

Definition 6.1.2 (LCC). A symmetric matrix Σ satisfies the limited correlation condition
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with constant α ∈ (0, 1], if 8s
λk(Σ)−λk+1(Σ)

‖ΣJcJ‖2,∞ ≤ 1− α.

Under the LCC assumption, we now show that our private estimator can recover the

support J with high probability by a modified argument for the Theorem in [293].

Theorem 6.1.5. Under the same assumption in Theorem 6.1.4, if the covariance matrix

is further assumed to satisfy the LCC condition with α (Definition 6.1.2) and parameters

(n, p, s, λ1, λk, λk+1, ε, δ, α) satisfy the following condition

n ≥ Ω
(s2λ2

1 log 1
δ

log p(8λ1 + λk − λk+1)

ε2α2(λk − λk+1)2

)
, (6.6)

then by setting λ = O(

√
log 1/δ

αε

√
log p
n

), with probability at least 1− 2
p2 − 1

pc
, the solution X̂

to the optimization problem (6.5) is unique and satisfies supp(diag(X̂)) ⊆ J . Moreover, if

either

min
j∈J

√
(VkV T

k )jj ≥ O
( λ1s

√
log 1/δ

αε(λk − λk+1)

√
log p

n

)
or

min
(i,j)∈J2

Σij ≥ O(

√
log 1/δλ1

αε

√
log p

n
), rank(sign(ΣJJ)) = 1

holds, then supp(diag(X̂)) = J .

6.1.5 Experiments

In this section we conduct numerical experiments on both synthetic and real world datasets

to validate our theoretical results on utility and privacy tradeoff.

Low dimensional case

Experimental settings For synthetic datasets, we generate the data samples {Xi}ni=1

independently from a multivariate Gaussian distributionN (0,Σ), where Σ = λ
5p(λ+1))

V V T +

1
5p(λ+1)

Ip for V ∈ Vp,k. It can be shown that ‖Xi‖2 ≤ 1 ∀i ∈ [n] with high probability. We
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Figure 6.1: LDP-PCA in low dimensional case on real world datasets with different sample
size. The left one is for Covertype. The middle one is for Buzz. The right one is for Year
dataset.

Figure 6.2: LDP-PCA in low dimensional case on real world datasets at different levels of
privacy. The left one is for Covertype. The middle one is for Buzz. The right one is for Year
dataset.
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(a) Relative error w.r.t dimen-
sionality

(b) Relative error w.r.t dimen-
sionality

(c) Relative error w.r.t privacy
level

Figure 6.3: LDP-PCA in low dimensional case on synthetic datasets. The left one is for
different target dimensions k over sample size n with fixed ε = 0.5 and p = 40. The middle
one is for different dimensions with fixed n = 105 and ε = 0.5. The right one is for different
level of privacy with fixed n = 105 and p = 40.

(a) Relative error w.r.t dimen-
sionality

(b) Relative error w.r.t sparsity
level

(c) Relative error w.r.t privacy
level

Figure 6.4: LDP-PCA in high dimensional case on synthetic datasets. The left one is for
different target dimensions k over sample size n with fixed ε = 1 and p = 400. The middle
one is for different dimensions with fixed n = 2000 and ε = 1. The right one is for different
level of privacy with fixed n = 2000 and p = 400.

choose n = 105, p = 40, k = {5, 10, 15, 20}, ε = 0.5, δ = 10−4, and λ = 1. For real world

datasets, we run Algorithm 6.1.46 on Covertype and Buzz datasets [90] with normalized

rows for each dataset. The error is measured by the subspace distance ‖V̂kV̂ T
k − VkV T

k ‖F .

For each experiment, we repeat 20 times and take the average as the final result.

Figure 6.1 and 6.2 are the results for the real world datasets while Figure 6.3 is for

synthetic datasets. Figures indicate that 1) the error deceases as the sample size increases
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or ε increases (i.e., becomes less private); 2) the error increases as the dimensionality p

increases or the dimensionality k of the target subspace increases. All these support our

theoretical analysis in Theorem 6.1.2.

High dimensional case

Experimental settings For the high dimensional case, we consider the same distributions

as in the low dimensional case and generate the target subspace V in the following way.

For a given sparsity parameter s, we first generate a random orthogonal matrix Ṽ ∈ Rs×k,

then pad it with rows of zeros, and finally randomly permute the matrix. We set k = 10,

n = 2000, p = 400, s = {15, 20, 40, 80} and ε = 1.

Besides the synthetic datasets, we also test our algorithm on some real world datasets in

[90] and [196]. We first orthogonalize each row of the datasets to 1 as the preprocessing,

then run the method in [338] 50 times, and select the one with the largest variance as the

optimal solution.

Figure 6.3 shows the results on the synthetic data. We can see that 1) as the term of k
n

increases ( n decreases), the error increases accordingly; 2) the error slightly increases when

the dimensionality p increases, which is due to the fact that the upper bound in Theorem

6.1.4 depends only logarithmically on p (i.e., log p); 3) the error decreases when ε increases.

Table 6.1 and 6.2 show the results of the error with different sparsity and privacy, respectively.

We can see that these results are consistent with our theoretical analysis in Theorem 6.1.4.

6.1.6 Omitted Proofs

Proof of Theorem 6.1.1

We first prove the non-interactive case, which is based on the following lemma.

Lemma 6.1.1 (Corollaries 2 and 4 in [97]). Let V be randomly and uniformly distributed in

V . Assume that given V = v, Xi is sampled independently according to the distribution of
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Dataset Size s Error

cancer RNA-Seq (801, 20531)
10 3.162
20 3.381
40 3.668

Leukemia (72, 7128)
10 3.162
20 3.435
40 3.701

Colon cancer (60, 2000)
10 2.449
20 3.058
40 3.228

isolet5 (1559, 617)
10 1.441
20 2.023
40 2.508

lung (203, 3312)
10 2.858
20 3.464
40 3.901

NIPS (11463, 5811)
10 3.643
20 3.881
40 4.472

Table 6.1: Results with different sparsity s for LDP-High dimensional PCA on real world
datasets. For all the datasets, the target dimensions k is set to be k = 10 and ε = 2.

Pv,i for i = 1, · · · , n. Then, there is a universal constant c < 19 such that for any α ∈ (0, 23
35

],

we have

I(Z1, Z2, · · · , Zn;V ) ≤ cε2
n∑
i=1

1

|V|2
∑
v,v′∈V

‖Pv,i − Pv′,i‖2
TV .

The ε non-interactive private minimax risk satisfies

MNint
n (θ(P),Φ ◦ ρ, ε) ≥ Φ(δ)

2

(
1− I(Z1, · · · , Zn;V ) + log 2

log |V|
)
.

Where I(·; ·) is the mutual information.

For the packing set, we have the following lemma:

Lemma 6.1.2. [[58]] Let (Θ, ρ) be a totally bounded metric space. For any subset E ⊂ Θ,

denote by N (E, ε) the ε-covering number of E, that is, the minimal number of balls of

radius ε whose union contained in E. Also denote byM(E, ε) the ε-packing number of E,

that is, the maximal number of points in E whose pairwise distance is at least ε. If there
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Dataset Size ε Error

cancer RNA-Seq (801, 20531)
1 3.559
0.5 3.790
0.1 3.967

Leukemia (72, 7128)
1 4.375
0.5 4.403
0.1 4.518

Colon cancer (60, 2000)
1 3.013
0.5 4.237
0.1 4.310

isolet5 (1559, 617)
1 2.884
0.5 3.405
0.1 3.896

Table 6.2: Results with different privacy levels ε for LDP-High dimensional PCA on real
world datasets. For all the datasets, the target dimensions k is set to be k = 10 and s = 20.

exist 0 ≤ c0 ≤ c1 <∞ and d > 0 such that:

(
c0

ε
)d ≤ N (Θ, ε) ≤ (

c1

ε
)d

for all 0 < ε ≤ ε0, then for any 1 ≥ α > 0, there exists a packing set V = {v1, · · · , vm}

with m ≥ ( c0
αc1

)d such that αε ≤ ρ(vi, vj) ≤ 2ε for each i 6= j.

Now, for the Grassmannian manifold Gp,k we have the following lemma regarding the

metric entropy (due to [267]).

Lemma 6.1.3. For any V ∈ Gp,k, identify the subspace span(V ) with its projection matrix

V V T , and define the metric on Gp,k by ρ(V V T , UUT ) = ‖V V T − UUT‖F . Then for any

ε ∈ (0,
√

2 min{k, p− k}),

(
c0

ε
)k(p−k) ≤ N (Gp,k, ε) ≤ (

c1

ε
)k(p−k),

where c0, c1 are absolute constants.
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Proof of Theorem 6.1.1 By Lemmas 6.1.3 and 6.1.2, we know that there exists a packing

set V with log |V| ≥ k(p − k) log c0
αc1

with 2ε1 ≥ ρ(V V T , UUT ) ≥ αε1, where α and ε1

will be specified later. Now we construct the collection of distributions; for each V ∈ V , we

define

ΣV =
λ

5p(λ+ 1)
V V T +

1

5p(λ+ 1)
Ip, (6.7)

that is, λ1 = λ2 = · · · = λk = 1
5p

and λk+1 = · · · = λp = 1
5p(λ+1)

. Then we let PV

denote the distribution N (0,ΣV ).

Now, we first show that the distribution is contained in our parameter space. For

x ∼ N (0,ΣV ), we know that there exists an orthogonal matrix M ∈ Rp×p which satisfies

Mx ∼ N (0,Diag(ΣV )), where

Diag(ΣV ) =



1
5p

1
5p

. . .

1
5p(λ+1)


.

Thus, we have ‖x‖2
2 = ‖Mx‖2

2 ∼ 1
5p
χ2
k + 1

5p(λ+1)
χ2
p−k. For the χ2-distribution, we have the

following concentration bound:

Lemma 6.1.4 ([189]). If z ∼ χ2
n, then

P[z − n ≥ 2
√
nx+ 2x] ≤ exp(−x).

By Lemma 6.1.4, we have the following with probability at least 1 − exp(−k) −

exp(−(p−k)) ≥ 1−2 exp(−p
4
) (by our definition of k), ‖x‖2

2 ≤ 1
5p

5k+ 1
5p(λ+1)

5(p−k) ≤ 1.

Thus, ‖x‖2 ≤ 1 with probability at least 1−exp(−Ω(p)), which is contained in the parameter

space.

The following lemma shows that the Total Variation distance between PV and PV ′ can

be bounded by the subspace distance between V and V ′.
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Lemma 6.1.5. For any pair of V, V ′ ∈ V , by the KL-distance D(·||·) of two Gaussian

distributions, we have that

D(PV ||PV ′) ≤
λ2

2(1 + λ)
‖ sin Θ(V, V ′)‖2

F .

Thus, by Pinsker’s inequality that is ‖PV − PV ′‖2
TV ≤ λ2

1+λ
‖ sin Θ(V, V ′)‖2

F .

Proof of Lemma 6.1.5.

D(PV ||PV ′) = D(N (0,ΣV )||N (0,ΣV ′))

=
1

2
trace(Σ−1

V ′ (ΣV − ΣV ′)).

Now

Σ−1
V ′ = 5p(λ+ 1)[(1 + λ)−1V ′V ′T + (Ip − V ′V ′T )]

and

ΣV − ΣV ′ =
λ

5p(λ+ 1)
(V V T − V ′V ′T ).

we can get

trace(Σ−1
V ′ (ΣV − ΣV ′)) =

λ2

1 + λ
‖ sin Θ(V, V ′)‖2

F .

By Lemmas 6.1.1, 6.1.2 and 6.1.3, we have

I(Z1, Z2, · · · , Zn;V ) ≤ 4
λ2

1 + λ
cnε2ε21

and

MNint
n (θ(P),Φ ◦ ρ, ε) ≥ α2ε21(1−

4 λ2

1+λ
cnε2ε21 + log 2

k(p− k) log c0
αc1

),

where ε1 ∈ (0,
√

2 min{k, p− k}].

Let α = c0
4c1

and ε21 = k(p−k)

8 λ2

1+λ
cnε2

. We have that if ε21 ≤ 2 min{k, p − k} (which holds
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under the assumption of n ≥ Ω( 1
ε2

λ1λk+1

(λk−λk+1)2 min{k, p− k})), thenMNint
n (θ(P),Φ ◦ ρ, ε) ≥

Ω( (λ+1)k(p−k)
λ2nε2

).

Proof of Theorem 6.1.2

The following lemma is based on [183][112].

Lemma 6.1.6. Suppose that X and {Xi}ni=1 are i.i.d sub-Gaussian random vectors in Rp

with zero mean and covariance matrix 0 � Σ. Let Sn = 1
n

∑n
i=1XiX

T
i be the empirical

covariance matrix, {λi}pi=1 be the eigenvalues of Σ sorted in the descending order, and

r = Tr(Σ)
‖Σ‖2 . Then there exist constants c ≥ 1 and C ≥ 0 such that when n ≥ r, we have the

following:

P(‖Sn − Σ‖2 ≥ s) ≤ exp(− s

c1λ1

√
r/n

),∀s ≥ 0.

Proof of Theorem 6.1.2. Instead of using Davis-Kahan sin−Θ theorem in [85] and Weyl’s

inequality (which is used in [106] based on the assumption that λk − λk+1 = ω(
√
p)), we

will use a generalized version of Davis-Kahan Theorem [354].

Lemma 6.1.7 (Generalized Davis-Kahan Theorem). Let Σ, Σ̂ ∈ Rp×p be two symmetric

matrices, with eigenvalues λ1 ≥ · · · , λp and λ̂1 ≥ · · · ≥ λ̂p, respectively. Fix 1 ≤ r ≤ s ≤

p and assume that min(λr−1 − λr, λs − λs+1) > 0, where λ0 :=∞ and λp+1 := −∞. Let

d := s− r + 1. If V = (vr, vr+1, · · · , vs) ∈ Rp×d and V̂ = (v̂r, v̂r+1, · · · , v̂s) ∈ Rp×d have

orthogonal columns satisfying Σvj = λjvj and Σ̂v̂j = λ̂v̂j for j = r, r + 1, · · · , s, then

‖ sin Θ(V̂ , V )‖F ≤
2 min(

√
d‖Σ̂− Σ‖2, ‖Σ̂− Σ‖F )

min(λr−1 − λr, λs − λs+1)
.

By taking r = 1, s = k in Lemma 6.1.7, we have

‖ sin Θ(col(Ṽk), col(Vk))‖2
F ≤ O(

k‖S̃ − Σ‖2
2

(λk − λk+1)2
).
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Let S denote the non-noise covariance matrix S = 1
n

∑n
i=1 XiX

T
i . Then

‖S̃ − Σ‖2 ≤ ‖S̃ − S‖2 + ‖S − Σ‖2.

For the fist term, we have ‖S̃ − S‖2 = ‖Z‖2, where Z is a symmetric matrix whose upper

triangle, including the diagonal, is i.i.d sample fromN (0, σ2) with σ2 = 2 ln(1.25/δ)
nε2

. Thus, by

Corollary 2.3.6 in [275], we have, with probability at least 1− 1
pΩ(1) , that ‖Z‖2 ≤ O(

√
pσ).

For the second term, by Lemma 6.1.6, we have, with probability at least 1− exp(−C1),

that ‖S − Σ‖2 ≤ O(λ1

√
r
n
). Combining the above results, we get the proof.

Proof of Theorem 6.1.3

The construction of the class of distributions follows the idea presented in [292]. For

self-completeness, we rephrase below some important lemmas. See [292] for the proofs.

Similar to the proof of Theorem 6.1.1, we consider the same class of distribution as in

(6.7). Thus, the key step is to find a packing set in Vp,k. The next lemma provides a general

method for constructing such local packing sets.

Lemma 6.1.8 (Local Stiefel Embedding). Let 1 ≤ d ≤ k ≤ p and the function Aα :

Vp−k,d 7→ Vp,k be defined in block form as

Aα(J) =


(1− α2)

1
2 Id 0

0 Ik−d

αJ 0

 (6.8)

for 0 ≤ α ≤ 1. If J1, J2 ∈ Vp−k,d, then

α2(1− α2)‖J1 − J2‖2
F ≤ ‖ sin Θ(Aα(J1), Aα(J2))‖2

F ≤ α2‖J1 − J2‖2
F .

By Lemmas 6.1.1 and 6.1.8, we have the following lemma.
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Lemma 6.1.9. Let α ∈ [0, 1], ε ∈ (0, 23
35

] and {J1, · · · , JN} ⊂ Vp−k,d for some 1 ≤ d ≤

k ≤ p. For each i ∈ [N ], let Pi be the distribution of N (0,ΣAα(Ji)), where ΣAα(Ji) is in

(6.7). If

min
i 6=j
‖Ji − Jj‖F ≥ δN ,

then the ε non-interactive private minimax risk in the metric of squared subspace distantce

satisfies:

MNint
n (θ(P),Φ ◦ ρ, ε) ≥ δ2

Nα
2(1− α2)

2
[1−

4cα2ε2dn λ2

1+λ
+ log 2

logN
].

For variable selection, we have the following lemma.

Lemma 6.1.10 (Hypercube construction [214]). Let m be an integer satisfying e ≤ m and

s ∈ [1,m]. There exists a subset {J1, · · · , JN} ⊂ Vm,1 satisfying the following properties:

1. ‖Ji‖2,0 ≤ s, ∀i ∈ [N ],

2. ‖Ji − Jj‖2
2 ≥ 1

4
,

3. logN ≥ max{cs[1 + log(m/s)], logm}, where c ≥ 1
30

is an absolute constant.

We choose d = 1 and δN = 1
2

in Lemma 6.1.9 and m = p− k in Lemma 6.1.10. Then,

if set α2 = O(1+λ
λ2

s log p
nε2

), we getMNint
n (θ(P),Φ ◦ ρ, ε) ≥ Ω(1+λ

λ2
s log p
nε2

).

The following lemma shows packing sets in the Grassman manifold.

Lemma 6.1.11 ([237]). Let k and s be integers satisfying 1 ≤ k ≤ s− k and δ > 0. There

exists a subset {J1, · · · , JN} ⊂ Vs,k satisfying the following properties:

1. ‖ sin(Ji, Jj)‖F ≥ k
√
δ for all i 6= j and

2. logN ≥ k(s− k) log( c2
δ

), where c2 > 0 is an absolute constant.

We set s = s− k, m in Lemma 6.1.11 and k = d in Lemma 6.1.9. For each Ji ∈ Vs−k,k

in Lemma 6.1.11, we can turn it into a matrix in Vp−k,k by padding additional rows with

360



zero entries. Thus, if taking δN = O(
√
k
e

) and α2 = Θ(λ+1
λ2

s
nε2

) in Lemma 6.1.9, we have

MNint
n (θ(P),Φ ◦ ρ, ε) ≥ Ω(λ+1

λ2
sk
nε2

). Putting everything together, we have

MNint
n (θ(P),Φ ◦ ρ, ε) ≥ Ω(

1 + λ

λ2
max{s log p

nε2
,
sk

nε2
}) ≥ Ω(

λ+ 1

λ2

s(k + log p)

nε2
).

Proof of Theorem 6.1.4

Our proof follows the framework in [293]. First, we show that the subspace distance is close

to ‖X̂ − VkV T
k ‖2

F , where Vk is the k-dimensional principal subspace of Σ.

Lemma 6.1.12. [[292]] LetA,B be symmetric matrices and VA,k, VB,k be their k-dimensional

principal component subspace, respectively. Let δA,B = max{λk(A)− λk+1(A), λk(B)−

λk+1(B)}. Then, we have

‖ sin Θ(VA,k, VB,k)‖F ≤
√

2
‖A−B‖F

δA,B
.

By Lemma 6.1.12, we get the following lemma.

Lemma 6.1.13.

‖ sin Θ(V̂k, Vk)‖2
F ≤ 2‖X̂ − VkV T

k ‖2
F .

Thus, we have the following bound for ‖X̂ − VkV T
k ‖F .

Lemma 6.1.14 ([293]). Let A be a symmetric matrix and E be its projection onto the

subspace spanned by the eignevectors of A corresponding to its k-largest eigenvalues

λ1 ≥ λ2 ≥ · · · . If δA = λk − λk+1 > 0, then

δA
2
‖E − F‖2

F ≤ 〈A,E − F 〉

for all F satisfying 0 � F � I and Tr(F ) = k.
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Lemma 6.1.15. In the optimization problem (5), if λ ≥ ‖S̃ − Σ‖∞,∞, then

‖X̂ − VkV T
k ‖F ≤

4sλ

λk(Σ)− λk+1(Σ)
,

where ‖A‖∞,∞ = maxi,j |Ai,j| for any matrix A ∈ Rm×n.

Proof of Theorem 6.1.4. Since X̂ and VkV T
k are all feasible for the optimization problem

(5), we have

0 ≤ 〈S̃, X̂ − VkV T
k 〉 − λ(‖X̂‖1,1 − ‖VkV T

k ‖1,1).

In Lemma 6.1.14, taking A = Σ (then E = VkV
T
k ) and F = X̂ , we get

λk − λk+1

2
‖X̂ − VkV T

k ‖2
F ≤ 〈Σ, VkV T

k − X̂〉.

Thus, we have

λk − λk+1

2
‖X̂ − VkV T

k ‖2
F ≤ 〈S̃ − Σ, X̂ − VkV T

k 〉 − λ(‖X̂‖1,1 − ‖VkV T
k ‖1,1).

Since

〈S̃ − Σ, X̂ − VkV T
k 〉 ≤ ‖S̃ − Σ‖∞,∞‖X̂ − VkV T

k ‖1,1

and λ ≥ ‖S̃ − Σ‖∞,∞, we have

λk − λk+1

2
‖X̂ − VkV T

k ‖2
F ≤ λ(‖X̂ − VkV T

k ‖1,1 − ‖X̂‖1,1 + ‖VkV T
k ‖1,1).

Let Q be the subset of indices of the non-zero entries of vkV T
k . We have vkV T

k = (vkV
T
k )Q.

Thus,

‖X̂ − VkV T
k ‖1,1 − ‖X̂‖1,1 + ‖VkV T

k ‖1,1

≤ 2‖(X̂ − VkV T
k )Q‖1,1.
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Also, we have ‖(X̂ − VkV T
k )Q‖1,1 ≤ s‖X̂ − VkV T

k ‖F . This gives us the proof.

By Lemma 6.1.15, we know that our goal is to bound the term of ‖S̃ − Σ‖∞,∞. Note

that by the definition of S̃, we have S̃ = S + Z, where Z is a symmetric Gaussian matrix

with covariance σ2 = 2 log 1.25/δ
nε2

. Thus, we have

‖S̃ − Σ‖∞,∞ ≤ ‖S − Σ‖∞,∞ + ‖Z‖∞,∞.

For the first term, we have the following lemma, since X is assumed to be sub-Gaussian.

Lemma 6.1.16. [[293]] Let S be the sample covariance of an i.i.d. sample of size n from a

sub-Gaussian distribution with population covariance Σ. Then, we have

max
i,j

P(|Sij − Σij| ≥ t) ≤ 2 exp(− 4nt2

(cλ1)2
).

For the second term ‖Z‖∞,∞, we have, with probability at least 1 − 2p2 exp(− t2

σ2 ),

‖Z‖∞,∞ ≤ t. Thus in total, with probability at least 1− 2
p2 − 1

pC
we have ‖S̃ − Σ‖∞,∞ ≤

O(λ1
√

log p√
nε

). Combining thi s with Lemma 6.1.15, we get the proof.

Proof of Theorem 6.1.5

The proof is based on Theorem 1 in [193], which considers the case of general symmetric

matrix S.

X̂ = arg max < S,X > −λ‖X‖1,1 (6.9)

subject to X ∈ Fk := {X : 0 � X � I and Tr(X) = k}.

Lemma 6.1.17 ([193]). If the parameter λ in (6.9) satisfies:

‖S − Σ‖∞,∞
λ

+
8s

λk(Σ)− λk+1(Σ)
‖ΣJcJ‖2,∞ ≤ 1
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and

0 ≤ λk(Σ)− λk+1(Σ)− 4λs(1 +
8λ1(Σ)

λk(Σ)− λk+1(Σ)
),

then the solution to (6.9) is unique and satisfies supp(X̂) ⊆ J . Furthermore, if either

min
j∈J

√
(VkV T

k )jj ≥
4λs

λk(Σ)− λk+1(Σ)
or

min
(i,j)∈J2

Σij ≥ 2λ, rank(sign(ΣJJ)) = 1,

then supp(diag(X̂)) = J .

Proof of Theorem 6.1.5. From the proof in Theorem 6.1.4, we know that with probability

at least 1− 2
p2 − 1

pC
, we have ‖S̃ −Σ‖∞,∞ ≤ O(

λ1

√
log 1/δ log p
√
nε

). By the assumption of LCC

and the assumption of n, we know that if taking λ = Θ(
λ1

√
log 1/δ log p
√
nεα

), all the conditions in

Lemma 6.1.17 are satisfied. Thus, we get the proof.

6.2 Differentially Private Sparse Covariance Matrix Esti-

mation

Estimating or studying the high dimensional datasets while keeping them (locally) dif-

ferentially private could be quite challenging for many problems, such as sparse linear

regression [304], sparse mean estimation [99] and selection problem [286]. However, there

are also evidences showing that the loss of some problems under the privacy constraints

can be quite small compared with their non-private counterparts. Examples of such nature

include high dimensional sparse PCA [122], sparse inverse covariance estimation [302], and

high-dimensional distributions estimation [173]. Thus, it is desirable to determine which

high dimensional problem can be learned or estimated efficiently in a private manner.

In this Chapter, I try to give an answer to this question for a simple but fundamental

problem in machine learning and statistics, called estimating the underlying sparse covari-
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ance matrix of bounded sub-Gaussian distribution. For this problem, I propose a simple but

nontrivial (ε, δ)-DP method, DP-Thresholding, and show that the squared `w-norm error

for any 1 ≤ w ≤ ∞ is bounded by O( s
2 log p
nε2

), where s is the sparsity of each row in the

underlying covariance matrix. Moreover, my method can be easily extended to the local

differentialy privacy model with O( s
2 log p
nε2

) upper bound of error. Finally I proof that this

upper bound in LDP model is tight. To prove the above lower bound, I propose a framework,

called General Private Assouad Lemma, for lower bounding the private minimax risk in

the non-interactive or sequential differential privacy model. Our lemma is a generalization

of the private Assoud lemma in [98], and can be viewed as a general method for locally

differentially private matrix estimation problems.

Experiments on synthetic datasets confirm the theoretical claims. To our best knowledge,

this is the first paper studying the problem of estimating high dimensional sparse covariance

matrix under (local) differential privacy.

6.2.1 Related Work

Recently, there are several papers studying private distribution estimation, such as [173,

169, 176, 118, 12]. For distribution estimation under the central differential privacy model,

[176] considers the 1-dimensional private mean estimation of a Gaussian distribution with

(un)known variance. The work that is probably most related to ours is [173], which studies

the problem of privately learning a multivariate Gaussian and product distributions. The

following are the main differences with ours. Firstly, our goal is to estimate the covariance

of a sub-Gaussian distribution. Even though the class of distributions considered in our

paper is larger than the one in [173], it has an additional assumption which requires the

`2 norm of a sample of the distribution to be bounded by 1. This means that it does not

include the general Gaussian distribution. Secondly, although [173] also considers the high

dimensional case, it does not assume the sparsity of the underlying covariance matrix. Thus,

its error bound depends on the dimensionality p polynomially, which is large in the high
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dimensional case (p� n), while the dependence in our paper is only logarithmically (i.e.,

log p). Thirdly, the error in [173] is measured by the total variation distance, while it is

by `w-norm in our paper. Thus, the two results are not comparable. Fourthly, the methods

in [173] seem difficult to be extended to the local model. [12] recently also studies the

covariance matrix estimation via iterative eigenvector sampling. However, their method is

just for the low dimensional case and with Frobenious norm as the error measure.

Distribution estimation under local differential privacy has been studied in [118, 169].

However, both of them study only the 1-dimensional Gaussian distribution. Thus, it is quite

different from the class of distributions in our paper.

In this paper, we mainly use Gaussian mechanism to the covariance matrix, which has

been studied in [106, 122, 302]. However, as it will be shown later, simply outputting the

perturbed covariance can cause big error and thus is insufficient for our problem. Compared

to these problems, ours is clearly more complicated.

Using information-theoretic techniques to prove lower bounds in the local differential

privacy model has also been studied in many papers, such as [99, 98, 97, 169]. [99, 98, 97]

proposed several general frameworks for bounding the private minimax risk, such as the

private versions of Le Cam lemma, Fano lemma, and Assouad lemma. However, none of

these methods can be applied to our problem since all the previous lemmas can only be

used in the one-directional case (i.e., the underlying parameter is a vector), while it is a

two-directional case (i.e., the underlying parameter is a matrix) in our problem. Moreover,

all of the previous methods need to obtain some upper bounds of some hard distribution

instances under the total variation distance (or KL-divergence) while in our problem we use

χ2-divergence, which makes our method quite different from the previous ones. The method

that is the most related to ours is the private Assouad lemma proposed in [98] which can

be seen as a special case of our general private Assoud lemma. Recently, [99] revisited the

private Assouad lemma and proposed a general theorem with tighter lower bounds via some

results in the theory of communication complexity. However, our theorems are incomparable
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with theirs since we cannot use their theorem directly to our problem.

6.2.2 Private Sparse Covariance Estimation

Let x1, x2, · · · , xn be n random samples from a p-variate distribution with covariance

matrix Σ = (σij)1≤i,j≤p, where the dimensionality p is assumed to be high, i.e., p� n ≥

Poly(log p).

We define the parameter space of s-sparse covariance matrices as the following:

G0(s) = {Σ = (σij)1≤i,j≤p : σ−j,j is s-sparse ∀j ∈ [p]}, (6.10)

where σ−j,j means the j-th column of Σ with the entry σjj removed. That is, a matrix in

G0(s) has at most s non-zero off-diagonal elements in each column.

We assume that each xi is sampled from a 0-mean and sub-Gaussian distribution with

parameter σ2, that is,

E[xi] = 0,P{|vTxi| > t} ≤ e−
t2

2σ2 ,∀t > 0 and ‖v‖2 = 1. (6.11)

This means that all the one-dimensional marginals of xi have sub-Gaussian tails. We also

assume that with probability 1, ‖xi‖2 ≤ 1. We note that such assumptions are quite common

in the differential privacy literature, such as [122].

Let Pd(σ2, s) denote the set of distributions of xi satisfying all the above conditions

(ı.e., (6.11) and ‖xi‖2 ≤ 1) and with the covariance matrix Σ ∈ G0(s). The goal of private

covariance estimation is to obtain an estimator Σpriv of the underlying covariance matrix

Σ based on {x1, · · · , xn} ∼ P ∈ Pd(σ2, s) while keeping it differnetially private. In this

paper, we will focus on the (ε, δ)-differential privacy. We use the `2 norm to measure the

difference between Σpriv and Σ, i.e., ‖Σpriv − Σ‖2.

Lemma 6.2.1. Let {x1, · · · , xn} be n random variables sampled from Gaussian distribution
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N (0, σ2). Then

Emax
1≤i≤n

|xi| ≤ σ
√

2 log 2n, (6.12)

P{max
1≤i≤n

|xi| ≥ t} ≤ 2ne−
t2

2σ2 . (6.13)

Particularly, if n = 1, we have P{|xi| ≥ t} ≤ 2e−
t2

2σ2 .

Lemma 6.2.2 ([60]). If {x1, x2, · · · , xn} are sampled form a sub-Gaussian distribution in

(6.11) and Σ∗ = (σ∗)1≤i,j≤p = 1
n

∑n
i=1 xix

T
i is the empirical covariance matrix, then there

exist constants C1 and γ > 0 such that ∀i, j ∈ [p]

P(|σ∗ij − σij| > t) ≤ C1e
−nt2 8

γ2 (6.14)

for all |t| ≤ δ, where C1 and γ are constants and depend only on σ2. Specifically,

P{|σ∗ij − σij| > γ

√
log p

n
} ≤ C1p

−8. (6.15)

6.2.3 Main Method in Central DP Model

A First Approach

A direct way to obtain a private estimator is to perturb the empirical covariance matrix by

symmetric Gaussian matrices, which has been used in previous work on private PCA, such

as [106, 122]. However, as we can see bellow, this method will introduce big error.

By [106], for any give 0 < ε, δ ≤ 1 and {x1, x2, · · · , xn} ∼ P ∈ Pp(σ2, s), the

following perturbing procedure is (ε, δ)-differentially private:

Σ̃ = Σ∗ +N = (σ̃ij)1≤i,j≤p =
1

n

n∑
i=1

xix
T
i +N, (6.16)

where N is a symmetric matrix with its upper triangle ( including the diagonal) being i.i.d
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samples from N (0, σ2
1); here σ2

1 = 2 ln(1.25/δ)
n2ε2

, and each lower triangle entry is copied from

its upper triangle counterpart. By [275], we know that ‖N‖2 ≤ O(
√
pσ1) = O(

√
p
√

log 1
δ

nε
).

We can easily get that

‖Σ̃− Σ‖2 ≤ ‖Σ∗ − Σ‖2 + ‖N‖2 ≤ O(

√
p log 1

δ

nε
), (6.17)

where the second inequality is due to [282]. However, we can see that the upper bound of

the error in (6.17) is quite large in the high dimensional case.

Another issue of the private estimator in (6.16) is that it is not clear whether it is

positive-semidefinite, a property that is normally expected from an estimator.

Post-processing via Thresholding

We note that one of the reasons that the private estimator Σ̃ in (6.16) fails is due to the fact

that some entries are quite large which make ‖Σ̃ij −Σij‖2 large for some i, j. To see it more

precisely, by (6.13) and (6.14) we can get the following, with probability at least 1− Cp−6,

for all 1 ≤ i, j ≤ p,

|σ̃ij − σij| ≤ γ

√
log p

n
+

4
√

2 ln 1.25
δ

√
log p

nε
= O(γ

√
log p

nε2
). (6.18)

Thus, to reduce the error, it is natural to think of the following way. For those σij with

larger values, we keep the corresponding σ̃ij in order to make their difference less than some

threshold. For those σij with smaller values compared with (6.18), since the corresponding

σ̃ij may still be large, if we threshold σ̃ij to 0, we can lower the error on σ̃ij − σij .

Following the above thinking and the thresholding methods in [60] and [38], we propose

the following DP-Thresholding method, which post-processes the perturbed covariance

matrix in (6.16) with the threshold γ
√

log p
n

+
4
√

2 ln 1.25/δ
√

log p

nε
. After thresholding, we further

threshold the eigenvalues of Σ̂ in order to make it positive semi-definite. See Algorithm
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6.2.48 for detail.

Algorithm 6.2.48 DP-Thresholding
Input: ε, δ are privacy parameters and {x1, x2, · · · , xn} ∼ P ∈ P(σ2, s).

1: Compute

Σ̃ = (σ̃ij)1≤i,j≤p =
1

n

n∑
i=1

xix
T
i +N,

where N is a symmetric matrix with its upper triangle (including the diagonal) being
i.i.d samples from N (0, σ2

1); here σ2
1 = 2 ln(1.25/δ)

n2ε2
, and each lower triangle entry is

copied from its upper triangle counterpart.
2: Define the thresholding estimator Σ̂ = (σ̂ij)1≤i,j≤n as

σ̂ij = σ̃ij · I[|σ̃ij| > γ

√
log p

n
+

4
√

2 ln 1.25/δ
√

log p

nε
]. (6.19)

3: Let the eigen-decomposition of Σ̂ as Σ̂ =
∑p

i=1 λiviv
T
i . Let λ+ = max{λi, 0} be the

positive part of λi, then define Σ+ =
∑p

i=1 λ
+viv

T
i .

4: return Σ+.

Theorem 6.2.1. For any 0 < ε, δ ≤ 1, Algorithm 6.2.48 is (ε, δ)-differentially private.

For the matrix Σ̂ in (6.19) after the first step of thresholding, we have the following key

lemma.

Lemma 6.2.3. For every fixed 1 ≤ i, j ≤ p, there exists a constant C1 > 0 such that with

probability at least 1− C1p
− 9

2 , the following holds:

|σ̂ij − σij| ≤ 4 min{|σij|, γ
√

log p

n
+

4
√

2 ln 1.25/δ
√

log p

nε
}. (6.20)

By Lemma 6.2.3, we have the following upper bound on the `2-norm error of Σ+.

Theorem 6.2.2. The output Σ+ of Algorithm 6.2.48 satisfies:

E‖Σ̂− Σ‖2
2 = O(

s2 log p log 1
δ

nε2
), (6.21)

where the expectation is taken over the coins of the Algorithm and the randomness of

{x1, x2, · · · , xn}.
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Corollary 6.2.1. For any 1 ≤ w ≤ ∞, the matrix Σ̂ in (6.19) after the first step of

thresholding satisfies

‖Σ̂− Σ‖2
w ≤ O(s2 log p log 1

δ

nε2
), (6.22)

where the w-norm of any matrix A is defined as ‖A‖w = sup ‖Ax‖w‖x‖w . Specifically, for a

matrix A = (aij)1≤i,j≤p, ‖A‖1 = supj
∑

i |aij| is the maximum absolute column sum, and

‖A‖∞ = supi
∑

j |aij| is the maximum absolute row sum.

Comparing the bound in the above corollary with the optimal minimax rate Θ( s
2 log p
n

) in

[60] for the non-private case, we can see that the impact of the differential privacy is to make

the number of efficient sample from n to nε2. It is an open problem to determine whether

the bound in Theorem 6.2.2 is tight.

6.2.4 Extension to Local Differential Privacy

One advantage of our Algorithm 6.2.48 is that it can be easily extended to the locally

differentially private (LDP) model.

Differential privacy in the local model. In LDP, we have a data universe D, n players

with each holding a private data record xi ∈ D, and a server that is in charge of coordinating

the protocol. An LDP protocol proceeds in T rounds. In each round, the server sends a

message, which sometime is called a query, to a subset of the players, requesting them to run

a particular algorithm. Based on the queries, each player i in the subset selects an algorithm

Qi, run it on her data, and sends the output back to the server.

Definition 6.2.1. [299] An algorithm Q is (ε, δ)-locally differentially private (LDP) if for

all pairs x, x′ ∈ D, and for all events E in the output space of Q, we have Pr[Q(x) ∈ E] ≤

eεPr[Q(x′) ∈ E] + δ. A multi-player protocol is ε-LDP if for all possible inputs and runs of

the protocol, the transcript of player i’s interaction with the server is ε-LDP. If T = 1, we

say that the protocol is (ε, δ) non-interactive LDP.

371



Algorithm 6.2.49 LDP-Thresholding
Input: ε, δ are privacy parameters, {x1, x2, · · · , xn} ∼ P ∈ P(σ2, s).

1: for E doach i ∈ [n]
2: Denote x̃ix̃Ti = xix

T
i + zi, where zi ∈ Rp×p is a symmetric matrix with its upper tri-

angle ( including the diagonal) being i.i.d samples from N (0, σ2); here σ2 = 2 ln(1.25/δ)
ε2

,
and each lower triangle entry is copied from its upper triangle counterpart.

3: end for
4: Compute Σ̃ = (σ̃ij)1≤i,j≤p = 1

n

∑n
i=1 x̃ix̃

T
i ,

5: Define the thresholding estimator Σ̂ = (σ̂ij)1≤i,j≤n as

σ̂ij = σ̃ij · I[|σ̃ij| > γ

√
log p

n
+

4
√

2 ln 1.25/δ
√

log p√
nε

]. (6.23)

6: Let the eigen-decomposition of Σ̂ as Σ̂ =
∑p

i=1 λiviv
T
i . Let λ+ = max{λi, 0} be the

positive part of λi, then define Σ+ =
∑p

i=1 λ
+viv

T
i .

7: return Σ+.

Inspired by Algorithm 6.2.48, it is easy to extend our DP algorithm to the LDP model.

The idea is that each Xi perturbs its covariance and aggregates the noisy version of covari-

ance, see Algorithm 6.2.49 for detail.

The following theorem shows that the error bound of the output in Algorithm 6.2.49 is

the same as the the bound in Theorem 6.2.2 asymptotically, whose proof is almost the same

as in Theorem 6.2.2.

Theorem 6.2.3. The output Σ+ of Algorithm 6.2.49 satisfies:

E‖Σ̂− Σ‖2
2 = O(

s2 log p log 1
δ

nε2
), (6.24)

where the expectation is taken over the coins of the Algorithm and the randomness of

{x1, x2, · · · , xn}. Moreover, Σ̂ in (6.23) satisfies ‖Σ̂− Σ‖2
w = O(

s2 log p log 1
δ

nε2
).

6.2.5 Lower Bound in Local Differential Privacy Model

In this section we introduce our general framework for lower bounding. Before that, we first

review the classical Assouad lemma [283] and its two-directional generalization [60].
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Assouad lemma

Assouad’s method works with a hypercube V = {−1,+1}r for some r ∈ N. It transforms

an estimation problem into multiple hypothesis testing problems using the structure of

the problem in an essential way. Let {Pv}v∈V ∈ P be a family of distributions with

its corresponding parameters {θv}v∈V indexed by the hypercube. Similar to the standard

reduction from estimation to testing, we consider the following random process. Let V be a

random vector uniformly chosen from the hypercube {−1,+1}r. After that, the samples

X1, X2, · · · , Xn are drawn from the distribution Pv conditioned on V = v. For each j ∈ [r],

we define the mixture of distributions

P n
j,+1 =

1

2r−1

∑
v:vj=1

P n
v , P

n
j,−1 =

1

2r−1

∑
v:vj=−1

P n
v , (6.25)

where P n
v is the product distribution of X1, · · · , Xn. Then, Assouad lemma can be stated as

follows.

Lemma 6.2.4 (Assouad Lemma). Under the conditions stated in the above paragraph,

Mn(θ(P),Φ ◦ ρ) ≥ α

4

r∑
j=1

[1− ‖P n
j,+1 − P n

j,−1‖TV ], (6.26)

where ‖ · ‖TV is the total variation distance, α = minH(v,v′)≥1,v,v′∈V
Φ(ρ(θv ,θv′ ))

2H(v,v′)
, and H(v, v′)

is the hamming distance between θ and θ′, i.e., H(v, v′) =
∑r

j=1 1{vj 6= v′j}.

Instead of restricting to a hypercube V , the general Assouad lemma in [60] works

with the Cartesian product of a hypercube and the r-th power of a finite set of vectors.

Specifically, for a given r ∈ N and a finite set of p-dimensional vectors B ⊂ Rp\{01×p}, let

V = {−1,+1}r and Λ ⊆ Br. Define T = V ⊗ Λ = {τ = (v, λ) : v ∈ V and λ ∈ Λ}. This

means that one can view an element λ ∈ Λ as an r × p matrix with each row coming from

set B, and V as a set of parameters with each row indicating whether a given row of λ is
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present or not. Similar to Assouad lemma, we assume that there is a family of distributions

in the class P , {Pτ}τ∈T indexed by T and its corresponding parameters {θτ}τ∈T .

Let DΛ = |Λ|. For a given a ∈ {−1,+1} and j ∈ [r], we let Ti,a = {τ : υi(τ) = a},

where υi(τ) is the i-th coordinate of the first component of τ . It is easy to see that |Ti,a| =

2r−1DΛ. We have the following mixture of distributions

P n
j,a =

1

2r−1DΛ

∑
τ∈Tj,a

P n
τ , Pj,a =

1

2r−1DΛ

∑
τ∈Tj,a

Pτ . (6.27)

Lemma 6.2.5 (General Assouad’s Lemma [57]). Under the conditions stated in above

paragraph, we have the following

Mn(θ(P),Φ ◦ ρ) ≥ α

4

r∑
j=1

[1− ‖P n
j,+1 − P n

j,−1‖TV ],

where α satisfies

α = min
H(υ(τ),υ(τ ′))>1,υ(τ),υ(τ ′)∈V

Φ(ρ(θτ , θτ ′))

2H(υ(τ), υ(τ ′))
,

and υ(τ) is the first component of τ .

Now, we present the locally private version of Lemma 6.2.5. Suppose that we draw

samples Z1, · · · , Zn according to ε-LDP channel Q(·|X1:n). Then, conditioned on V = τ ,

the private sample is distributed according to the marginal distribution Mn
τ :

Mn
τ (S) =

∫
Qn(S|x1, x2, · · · , xn)dP n

τ (x1, x2, · · · , xn). (6.28)

Specifically, when Q is non-interactive, we have Mn
τ = (

∫
Q(·|x)dPτ (x))⊗n. Similarly to

(6.27), we can define Mn
j,a and Mj,a for a ∈ {−1,+1} and j ∈ [r]. Thus, combining the

above with Lemma 6.2.5, we have the following theorem:

Theorem 6.2.4. Under the conditions given in Lemma 6.2.5, the ε private minimax risk
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satisfies:

Mn(θ(P),Φ ◦ ρ, ε) ≥ α

4

r∑
j=1

[1− ‖Mn
j,+1 −Mn

j,−1‖TV ]. (6.29)

For the sequential private minimax risk, we have the following general lower bound.

Theorem 6.2.5. Under the conditions given in Theorem 6.2.4 and further assuming that

ε ∈ (0, 1
2
], the ε sequential private minimax risk in the metric Φ ◦ ρ satisfies

MInt
n (θ(P ,Φ◦ρ, ε) ≥ αr

4
[1−

(nε2
2r

sup
γ∈B∞(X )

r∑
j=1

(

∫
X
γ(x)(dPj,+1−dPj,−1))2

) 1
2 ], (6.30)

where B∞ is the 1-ball of supremum norm B∞ = {γ ∈ L∞(X ) | ‖γ‖∞ ≤ 1}, and

L∞(X ) = {f : X 7→ R | ‖f‖∞ < ∞} is the space of uniformly bounded functions with

the supremum norm ‖f‖∞ = supx |f(x)|.

Note that the lower bound in Theorem 6.2.5 reduces to the same one in the private

Assouad lemma [98] when Λ contains only one matrix which every row is non-zero. Thus,

we call Theorem 6.2.4 as the General Private Assouad Lemma. Particularly, if we restrict

our attention only to the non-interactive LDP mechanisms, we have the following theorem

bounding the private minimax risk, which will be used to prove our lower bounds in this

paper.

Theorem 6.2.6. Under the conditions given in Theorem 6.2.4 and further assuming that

ε ∈ (0, ln 2
2

], the ε non-interactive private minimax risk in the metric Φ ◦ ρ satisfies

MNint
n (θ,Φ ◦ ρ, ε) ≥ rα

4
× min

1≤j≤r
(1−

√
1

2
(ε2Dχ2(Pj,+1‖Pj,−1))n), (6.31)

where Dχ2(·‖·) is the χ2-divergence, that is, Dχ2(P‖Q) =
∫ (dP−dQ)2

dQ
for distributions P

and Q.

The inequality in Lemma 6.2.12 is weaker than the one in Theorem 1 of [98] in the

sense that it becomes the later one if combining the inequality of ‖Mj,+1 −Mj,−1‖TV ≤
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Dχ2(Mj,+1‖Mj,−1).

Remark 6.2.1. We note that comparing to existing general lower bounding methods on

the private minimax risk, such as [98, 99, 95], Theorem 6.2.6 is quite different. Firstly,

while all previous lower bounds depend only linearly on the sample size n, the lower bound

in Theorem 6.2.6 depends exponentially on n. Secondly, due to the special structure of

our indexing set T , Theorem 6.2.6 is more suitable for matrix estimation problems, while

previous methods are more suitable for vector estimation problems. Thirdly, previous

lower bounds are measured by (or derived from) the mutual information, the total variation

distance, or the KL-divergence between the hard distribution instances, while in Theorem

6.2.6, the lower bound is measured by the χ2- divergence between distributions. This

indicates that although Theorem 6.2.6 is stronger than the previous ones, as it can be seen

later in the sparse covariance estimation problem, it is easier to obtain a lower bound on the

χ2-divergence of the hard instances than other measurements. This is also the reason that

existing methods cannot be applied to our problem.

From (6.31), we can see that, to obtain the lower bound, one needs to bound the

terms of Dχ2(Pj,+1‖Pj,−1) for all j, which are quite complicated since they are mixture

distributions. To simplify the task, we fix all the other terms and consider only the j-th

term, which can be seen as an r × p matrix with all other rows fixed, except for the j-th

one. Formally, for an element τ ∈ T , we define the projection υA(τ) = (υi(τ))i∈A for a set

A ⊆ {1, 2 · · · , r}, and the set {−j} = [r]\{j}. λA(τ) and λ−i(τ)(λi(τ))i∈A can be defined

similarly, where λi(τ) is the i-th coordinate of the second component of τ . Denote by ΛA

the set ΛA = {λA(τ) : τ ∈ T}. For a ∈ {+1,−1}, b ∈ {−1,+1}r−1 and c ∈ Λ−j ⊆ Br−1,

we let

TΛj(a,b,c) = {τ ∈ T : υj(τ) = a, υ−j(τ) = b, λ−j(τ) = c}
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and DΛj(a,b,c) = |TΛj(a,b,c)|. Let P̄ n
j,a,b,c denote the mixture distribution

P̄ n
j,a,b,c =

1

DΛj(a,b,c)

∑
τ∈TΛj(a,b,c)

P n
τ , (6.32)

and M̄n
j,a,b,c be its corresponding marginal distribution. Similar to Theorem 6.2.6, we have

the following corollary.

Corollary 6.2.2. Under the conditions given in Theorem 6.2.4 and further assuming that

ε ∈ (0, ln 2
2

], the ε non-interactive private minimax risk in the metric Φ ◦ ρ satisfies

MNint
n (ψ(θ),Φ ◦ ρ, ε) ≥ rα

4
× min

1≤j≤r

(1−
√
ε2n

2
Averageυ−j ,λ−j(Dχ2(P̄j,+1,υ−j ,λ−j‖P̄j,−1,υ−j ,λ−j))

n), (6.33)

where the average over υ−j, λ−j is induced by the uniform distribution over T .

Lower Bound of Private Sparse Covariance Estimation

We follow the settings in [60, 312]. Let X1, · · · , Xn be random samples from a zero-mean

p-variate distribution with covariance matrix Σ = (σij)1≤i,j≤p. The goal of sparse covariance

matrix estimation is to estimate the unknown matrix Σ based on samples {X1, · · · , Xn},

and the locally private version is to determine a locally differentially private estimator. In

this paper, we focus on the high dimensional case, that is, c1n
β ≤ p ≤ exp(c2n) for some

β > 1, c1, c2 > 0. We assume that the underlying covariance is sparse. That is, Σ ∈ G(s)

with

G(s) = {Σ = (σij)1≤i,j≤p : ‖σ−j,j‖0 ≤ s, ∀j ∈ [p]}, (6.34)

where σ−j,j is the j-th column of Σ with σj,j removed, i.e., a matrix in G(s) has at most

s-nonzero off-diagonal elements on each column.

Moreover, we assume that each Xi is sampled from a ρ-sub-Gaussian distribution. That
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is, for all t > 0 and ‖v‖2 = 1,

P{|〈v,X〉| > t} ≤ exp(
−t2

2ρ
), (6.35)

which means that all the one-dimensional marginals of X have sub-Gaussian tails.

Additionally, in private matrix-related estimation problems, it is always assumed that

the `2 norm of each Xi are bounded by 1 [106, 122, 295, 312]. In this paper, we relax the

bounded norm assumption in the following way; for the random vector X ∈ Rp, we assume

that ‖X‖2 ≤ 1 with probability at least 1− e−Ω(p). This leads us to the following class of

distributions P(τ, s).

P(ρ, s) = {P : X ∼ P satisfies (6.35) and ‖X‖2 ≤ 1

w.p at least 1− e−Ω(p),EX = 0,Σ = E[XXT ] ∈ G(s)}. (6.36)

Before showing the lower bound, we first describe our construction of the hard indexing set

T with their distributions {Pτ}τ∈T instances, which is motivated by the ones in [60].

We first construct the parameter set, which is the same as in [60]. Let r = bp
2
c and B be

the collection of all row vectors b = (vj)1≤j≤p such that vj = 0 for all 1 ≤ j ≤ p− r and

vj = 0 or 1 for p− r + 1 ≤ j ≤ p under the constraint that ‖b‖0 = k (where the value of k

will be specified later). We can view each (b1, · · · , br) as an r × p matrix with the i-th row

being bi.

Then, we define the set T and its corresponding distributions. Define Λ ⊂ Br to be

the set of all elements in Br such that each column is less than or equal to 2k. For each

matrix λ = (λ1, λ2, · · · , λr) ∈ Λ, define a p× p matrix Am(λm) by making the m-th row

and column of Am(λm) be λm and the rest of entries be 0.

Next, we construct the distributions. Let T = V ⊗ Λ. For each τ = (v, λ), we define a
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matrix Pτ = N (0,Σ(τ)) with the matrix Σ(τ) having the following form

Σ(τ) = cIp + cαn,p,ε

n∑
j=1

vjAj(λj), (6.37)

where c > 0 is some constant to be specified later and αn,p,ε = γ
√

log p
nε2

for some universal

small enough constant γ.

We first choose c, γ and k to make the Gaussian distribution N (0,Σ(τ)) contained in

the class (6.36).

Lemma 6.2.6. Under the assumption of n ≥ C s2 log p
ε2

, if let c ≤ min{ρ
2
, 1

10p
} and k =

max{d s
2
e−1, 0}, then there is a γ, which depends only onC, such thatN (0,Σ(τ)) ∈ P(ρ, s)

for every τ ∈ T , where T is the set defined in the above paragraph.

In order to use Theorem 6.2.6, we need to bound the term

α = min
H(υ(τ),υ(τ ′))>1,υ(τ),υ(τ ′)∈V

‖Σ(τ)− Σ(τ ′)‖2
2

2H(υ(τ), υ(τ ′))
,

which is due to the following Lemma in [60].

Lemma 6.2.7. Under the conditions given in Lemma 6.2.6, we have α ≥ (kαn,p,ε)2

p
.

The following key lemma gives a lower bound on the term

Averageυ−j ,λ−j(Dχ2(P̄j,+1,υ−j ,λ−j‖P̄j,−1,υ−j ,λ−j))
n.

Lemma 6.2.8. Under the conditions on T , Σ(τ) and the conditions of given in Lemma

6.2.6, the following holds for every j ∈ [r], when γ is sufficiently small and p is sufficiently

large

Averageυ−j ,λ−j(Dχ2(P̄j,+1,υ−j ,λ−j‖P̄j,−1,υ−j ,λ−j))
n ≤ 3

4

1

ε2n
.

We now have the following lemma for the term (Σ1−Σ0)(Σ2−Σ0), which corresponds

to the Lemma 10 in [60]:
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Lemma 6.2.9. Let Σ0,Σ1,Σ2 be the same covariance matrices as above. Define J to be the

number of overlapping cαn,p,ε’s between Σ1 and Σ2 on the first row, and define the matrix Q

as the following

Q = (qij)1≤i,j≤p = (Σ1 − Σ0)(Σ2 − Σ0).

Then there are index subsets Ir and Ic in {2, · · · , p} with |Ir| = |Ic| = k and |Ir
⋂
Ic| = J

qij =


Jc2α2

n,p,ε, i = j = 1

c2α2
n,p,ε, i ∈ Ir and j ∈ Ic

0, otherwise

(6.38)

And the matrix (Σ0 − Σ1)(Σ0 − Σ2) has rank 2 with two identical non-zero eigenvalues

Jc2α2
n,p,ε.

Thus by Lemma 6.2.9 and the Lemma 11 in [60] we have:

Lemma 6.2.10 (Lemma 11 in [60]). Let Rv−1,λ−1

1,λ1,λ′1
satisfies

R
v−1,λ−1

λ1,λ′1
= −2 log(1− Jc2α2

n,p,ε) +R
v−1,λ−1

1,λ1,λ′1
(6.39)

Then uniformly over J , we have

E(λ1,λ′1)|J [E(v−1,λ−1)|(λ1,λ′1)[exp(
n

2
(R

v−1,λ−1

1,λ1,λ′1
))] ≤ 3

2
.

Next we will prove our lemma. By (6.82) and Lemma 6.2.10 we now have

Eλ1,λ′1
[E(v−1,λ−1)|(λ1,λ′1)[exp(

n

2
(R

v−1,λ−1

λ1,λ′1
))− 1]

= EJ{exp[−n log(1− Jc2α2
n,p,ε)]×

E(λ1,λ′1)|J [E(v−1,λ−1)|(λ1,λ′1)[exp(
n

2
(R

v−1,λ−1

1,λ1,λ′1
))]− 1}

≤ EJ{
3

2
exp[−n log(1− Jc2α2

n,p,ε)]− 1}
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Recall that J is the number of overlapping cαn,p,ε’s between Σ1 and Σ2 on the first row.

Thus J has the hypergeometric distribution as λ1, λ
′
1 vary in B for each given λ−1. For

0 ≤ j ≤ k, the same as in [60], we have

E(I{J = j}) =

(
k

j

)(
pλ−1 − k
k − j

)
/

(
pλ−1

k

)
≤ (

k2

p/4− 1− k
)j.

Thus, we have

EJ{
3

2
exp[−n log(1− Jc2α2

n,p,ε)]− 1}

≤
k∑
j=0

(
k2

p/4− 1− k
)j{3

2
exp[−n log(1− jc2α2

n,p,ε)]− 1}

≤ 1

ε2n

k∑
j=0

(
k2

p/4− 1− k
)j{3

2
exp[−n log(1− jc2γ2 log p

n
)]− 1} (6.40)

≤ 1

ε2n

k∑
j=0

(
k2

p/4− 1− k
)j{3

2
exp[2jc2γ2 log p]}+

1

ε2n
1

2

≤ 1

ε2n
3

2

∑
j≥1

(p1−1/βp−2γ2c2)−j +
1

2

1

ε2n
(6.41)

≤ C
1

ε2n

∑
j≥1

(p1/2−1/2β)−j +
1

2

1

ε2n
≤ 3

4

1

ε2n
(6.42)

Where (6.40) is due to that, let a = 1
ε2

and b = jc2γ2 log p
n

, then it is sufficient to prove

− log(1− ab) ≤ log a− log(1− b)

≡ 1

1− ab
≤ a

1− b

≡ b(a+ 1) ≤ 1

The final inequality is true due to that b(a + 1) ≤ 2ab ≤ 2kc2γ2 log p
nε2
≤ 1 when γ is small

enough.

(6.41) is due to that k2 = O( nε
2

log p
) = O( n

log p
) = O(p

1/β

log p
), and γ2 ≤ β−1

54β
for sufficient

large p. Combining Lemmas 6.2.6, 6.2.7 and 6.2.8 with r = bp
2
c, by Corollary 6.2.2 we
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have the following lower bound theorem.

Theorem 6.2.7. If ε ∈ (0, ln 2
2

], n ≥ C s2 log p
ε2

and p ≥ c1n
β for β > 1, then the ε non-

interactive private minimax risk in the metric of squared spectral norm satisfies the following

inequality

MNint
n (Σ(P(s, ρ)),Φ ◦ ρ, ε) ≥ Ω(

s2 log p

nε2
). (6.43)

For the upper bound, [312] recently showed that if each ‖Xi‖2 ≤ 1 and {Xi}ni=1 ∼ P ,

where P ∈ P(s, ρ), then by using a thresholding method on the perturbed empirical

covariance matirx with some well-defined threshold, the output Σ̃ satisfies ‖Σ̃ − Σ‖2
2 ≤

O( s
2 log p
nε2

) with high probability. Combining this upper bound with Theorem 6.2.7, we can

see that the bound Θ( s
2 log p
nε2

) is actually tight (i.e., optimal).

We note that for the non-private case, the optimal rate of minimax risk under the same

measurement is Θ( s
2 log p
n

) [60]. Thus, in this case, the impact of the local differential privacy

is to change the number of efficient samples from n to nε2. However, the collection of the

considered distributions needs another assumption, which says that ‖X‖2 is bounded by

1 with high probability. This is not necessary in the non-private case [60], but needed for

showing the upper bound.

Moreover, [312] also show that there is an (ε, δ) non-interactive LDP algorithm whose

output Σ̃ satisfies ‖Σ̃− Σ‖2
w ≤ O( s

2 log p
nε2

) for every w ∈ [1,∞] with high probability. One

natural question is whether it is optimal. The following corollary provides an affirmative

answer.

Corollary 6.2.3. Under the assumptions given in Theorem 6.2.7, for each w ∈ [1,∞], the ε

non-interactive private minimax risk in the metric of squared `w norm satisfies the following

MNint
n (Σ(P(s, ρ)),Φ ◦ ρ, ε) ≥ Ω(

s2 log p

nε2
), (6.44)

where the `w-norm of any matrix A is defined as ‖A‖w = sup ‖Ax‖w‖x‖w .
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There are still some open problems. Firstly, both Theorem 6.2.6 and 6.2.7 are restricted

to non-interactive LDP protocols. The first open question is whether they can be extended

to the sequential LDP model. Secondly, from Theorem 6.2.6 we can see that the lower

bound holds under the assumption of ε ∈ (0, ln 2
2

]. Thus, the second open question is whether

the range of ε can be enlarged, or whether better result can be achieved when ε is larger,

such as those in [351]? Recently, [96] extended the classical private Assouad lemma to

the case where ε ∈ [0,∞) via some results in the theory of communication complexity.

However, their theorem cannot be used in our problem. The main reason is that, in their

main results (Theorem 10 and Corollary 11 in [96]), they need the two distributions P1

and P−1 satisfy strong data processing inequalities (SDPI), and also they should satisfy

| log dP1

dP−1
| is bounded by a constant under the assumption that the coordinates of X are

independent. However, it is quite hard to bound the term or proof the SDPI property for our

distributions in (6.37) due to the facts that the coordinates of the samples are dependent and

the forms of our distributions are quite complicated. Thus, to extend to general ε ∈ (0,∞)

case we need new methods, which will be left for future work. The third open question is

whether Theorem 6.2.5 and 6.2.6 can be used to other matrix-related estimation problems?

We leave them for future research.

6.2.6 Experiments

In this section, we evaluate the performance of Algorithm 6.2.48 and 6.2.49 practically on

synthetic datasets.

Data Generation We first generate a symmetric sparse matrix Ũ with the sparsity ratio

sr, that is, there are sr × p× p non-zero entries of the matrix. Then, we let U = Ũ + λIp

for some constant λ to make U positive semi-definite and then scale it to U = U
c

by some

constant c which makes the norm of samples less than 1 (with high probability)1. Finally,

1Although the distribution is not bounded by 1, actually, as we see from previous section, we can obtain
the same result as long as the `2 norm of the samples is bounded by 1.
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we sample {x1, · · · , xn} from the multivariate Gaussian distribution N (0, U). In this paper,

we will use set λ = 50 and c = 200.

Experimental Settings To measure the performance, we compare the `1 and `2 norm

of relative error, respectively. That is, ‖Σ
+−U‖2
‖U‖2 or ‖Σ

+−U‖1
‖U‖1 with the sample size n in

three different settings: 1) we set p = 100, ε = 1, δ = 1
n

and change the sparse ratio

sr = {0.1, 0.2, 0.3, 0.5}. 2) We set ε = 1, δ = 1
n

, sr = 0.2, and let the dimensionality p

vary in {50, 100, 200, 500}. 3) We fix p = 200, δ = 1
n

, sr = 0.2 and change the privacy

level as ε = {0.1, 0.5, 1, 2}. We run each experiment 20 times and take the average error as

the final one.

Experimental Results Figure 6.5 and 6.6 are the results of DP-Thresholding (Algorithm

6.2.48) with `2 and `1 relative error, respectively. Figure 6.7 and 6.8 are the results of

LDP-Thresholding (Algorithm 6.2.49) with `2 and `1 relative error, respectively. From the

figures we can see that: 1) if the sparsity ratio is large i.e., the underlying covairance matrix

is more dense, the relative error will be larger, this is due to the fact showed in Theorem

6.2.2 and 6.2.3 that the error depends on the sparsity s. 2) The dimensionality only slightly

affects the relative error. That is, even if we double the value of p, the error increases only

slightly. This is consistent with our theoretical analysis in Theorem 6.2.2 and 6.2.3 which

says that the error of our private estimators is only logarithmically depending on p (i.e.,

log p). 3) With the privacy parameter ε increases (which means more private), the error will

become larger. This has also been showed in previous theorems.

In summary, all the experimental results support our theoretical analysis.
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Figure 6.5: Experiment results of Algorithm 6.2.48 for `2-norm relative error. The left one
is for different sparsity levels, the middle one is for different dimensionality p, and the right
one is for different privacy level ε.

Figure 6.6: Experiment results of Algorithm 6.2.48 for `1-norm relative error. The left one
is for different sparsity levels, the middle one is for different dimensionality p, and the right
one is for different privacy level ε.

Figure 6.7: Experiment results of Algorithm 6.2.49 for `2-norm relative error. The left one
is for different sparsity levels, the middle one is for different dimensionality p, and the right
one is for different privacy level ε.
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Figure 6.8: Experiment results of Algorithm 6.2.49 for `1-norm relative error. The left one
is for different sparsity levels, the middle one is for different dimensionality p, and the right
one is for different privacy level ε.

6.2.7 Omitted Proofs

Proof of Theorem 6.2.1

By [122] and [106], we know that Step 1 keeps the matrix (ε, δ)-differentially private. Thus,

Algorithm 1 is (ε, δ)-differentially private due to the post-processing property of differential

privacy [107].

Proof of Lemma 6.2.3

Let Σ∗ = (σ∗ij)1≤i,j≤p and N = (nij)1≤i,j≤p. Define the event Aij = {|σ̃ij| > γ
√

log p
n

+

4
√

2 ln 1.25/δ
√

log p

nε
}. We have:

|σ̂ij − σij| = |σij| · I(Acij) + |σ̃ij − σij| · I(Aij). (6.45)

By the triangle inequality, it is easy to see that

Aij =
{
|σ̃ij − σij + σij| > γ

√
log p

n
+

4
√

2 ln 1.25/δ
√

log p

nε

}
⊂
{
|σ̃ij − σij| > γ

√
log p

n
+

4
√

2 ln 1.25/δ
√

log p

nε
− |σij|

}
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and

Acij =
{
|σ̃ij − σij + σij| ≤ γ

√
log p

n
+

4
√

2 ln 1.25/δ
√

log p

nε

}
⊂
{
|σ̃ij − σij| > |σij| − (γ

√
log p

n
+

4
√

2 ln 1.25/δ
√

log p

nε
)
}
.

Depending on the value of σij , we have the following three cases.

Case 1 |σij| ≤ γ
4

√
log p
n

+

√
2 log 1.25/δ

√
log p

nε
. For this case, we have

P(Aij) ≤ P(|σ̃ij−σij| >
3γ

4

√
log p

n
+

3
√

2 ln 1.25/δ
√

log p

nε
) ≤ C1p

− 9
2 +2p−

9
2 . (6.46)

This is due to the followings:

P
(
|σ̃ij − σij| >

3γ

4

√
log p

n
+

3
√

2 ln 1.25/δ
√

log p

nε

)
(6.47)

≤ P
(
|σ∗ij − σij| >

3γ

4

√
log p

n
+

3
√

2 ln 1.25/δ
√

log p

nε
)− |nij|

)
(6.48)

= P
(
Bij

⋂{3
√

2 ln 1.25/δ
√

log p

nε
)− |nij| > 0

})
(6.49)

+ P
(
Bij

⋂{3
√

2 ln 1.25/δ
√

log p

nε
)− |nij| ≤ 0

})
(6.50)

≤ P(|σ∗ij − σij| >
3γ

4

√
log p

n
) + P(

2
√

3 ln 1.25/δ log p

nε
) ≤ |nij|) (6.51)

≤ C1P
− 9

2 + 2p−
9
2 , (6.52)

where event Bij denotes Bij = {|σ∗ij − σij| >
3γ
4

√
log p
n

+
2
√

2 ln 1.25/δ log p

nε
)− |nij|}, and the

last inequality is due to (6.13) and (6.14).

Thus by (6.45), with probability at least 1− C1p
− 9

2 − 2p−
9
2 , we have

|σ̂ij − σij| = |σij|,
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which satisfies (6.20).

Case 2 |σij| ≥ 2γ
√

log p
n

+
8
√

2 ln 1.25/δ
√

log p

nε
). For this case, we have

P(Acij) ≤ P(|σ̃ij − σij| ≥ γ

√
log p

n
+

4
√

2 ln 1.25/δ
√

log p

nε
) ≤ C1p

−8 + 2p−8,

where the proof is the same as (13-17). Thus, with probability at least 1− C1p
− 9

2 − 2p−8,

we have

|σ̂ij − σij| = |σ̃ij − σij|. (6.53)

Also, by (6.18), (6.20) also holds.

Case 3 Otherwise,

γ

4

√
log p

n
+

√
2 log 1.25/δ

√
log p

nε
≤ |σij| ≤ 2γ

√
log p

n
+

8
√

2 ln 1.25/δ
√

log p

nε
).

For this case, we have

|σ̂ij − σij| = |σij| or |σ̃ij − σij|. (6.54)

When |σij| ≤ γ
√

log p
n

+
4
√

2 ln 1.25/δ
√

log p

nε
, we can see from (6.18) that with probability at

least 1− 2p−6 − C1p
−8,

|σ̃ij − σij| ≤ γ

√
log p

n
+

4
√

2 ln 1.25/δ
√

log p

nε
≤ 4|σij|.

Thus, (6.20) also holds.

Otherwise when |σij| ≤ γ
√

log p
n

+
4
√

2 ln 1.25/δ
√

log p

nε
, (6.20) also holds. Thus, Lemma

6.2.3 is true.
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Proof of Theorem 6.2.2

We first show that ‖Σ+ − Σ‖2 ≤ 2‖Σ̂− Σ‖2. This is due to the following

‖Σ+ − Σ‖2 ≤ ‖Σ+ − Σ̂‖2 + ‖Σ̂− Σ‖2 ≤ max
i:λi≤0

|λi|+ ‖Σ̂− Σ‖2

≤ max
i:λi≤0

|λi − λi(Σ)|+ ‖Σ̂− Σ‖2 ≤ 2‖Σ̂− Σ‖2,

where the third inequality is due to the fact that Σ is positive semi-definite.

This means that we only need to bound ‖Σ̂− Σ‖2. Since Σ̂− Σ is symmetric, we know

that ‖Σ̂− Σ‖2 ≤ ‖Σ̂− Σ‖1 [131]. Thus, it suffices to prove that the bound in (6.21) holds

for ‖Σ̂− Σ‖1.

We define event Eij as

Eij = {|σ̂ij − σij| ≤ 4 min{|σij|, γ
√

log p

n
+

4
√

2 ln 1.25/δ
√

log p

nε
}}. (6.55)

Then, by Lemma 6.2.3, we have P(Eij) ≥ 1− 2C1p
− 9

2 .

Let D = (dij)1≤i,j≤p, where dij = (σ̂ij − σij) · I(Ec
ij). Then, we have

‖Σ̂− Σ‖2
1 ≤ ‖Σ̂− Σ−D +D‖2

1

≤ 2‖Σ̂− Σ−D‖2
1 + 2‖D‖2

1

≤ 4(sup
j

∑
i 6=j

|σ̂ij − σij|I(Eij))
2 + 2‖D‖2

1 +O(
log p log 1

δ

nε2
). (6.56)

We first bound the first term of (6.56). By the definition of Eij and Lemma 3, we can upper
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bounded it by

(sup
j

∑
i 6=j

|σ̂ij − σij|I(Eij))
2

≤ 16(sup
j

∑
i 6=j

min{|σij|, γ
√

log p

n
+

4
√

2 ln 1.25/δ
√

log p

nε
})2

≤ 16s2(γ

√
log p

n
+

4
√

2 ln 1.25/δ
√

log p

nε
)2

≤ O(s2 log p log 1/δ

nε2
), (6.57)

where the second inequality is due to the assumption that at most s elements of (σij)i 6=j are

non-zero.

For the second term in (6.56), we have

E‖D‖2
1 ≤ p

∑
ij
d2
ij = pE

∑
ij

[(σ̂ij − σij)2I(Ec
ij

⋂
{σ̂ij = σ̃ij})

+ (σ̂ij − σij)2I(Ec
ij

⋂
{σ̂ij = 0})]

= pE
∑
ij

[(σ̃ij − σij)2I(Ec
ij) + p

∑
ij

Eσ2
ijI(Ec

ij

⋂
{σ̂ij = 0})]. (6.58)

For the first term in (6.58), we have

p
∑
ij

E{(σ̃ij − σij)2I(Ec
ij)} ≤ p

∑
ij

[E(σ̃ij − σij)6]
1
3P

2
3 (Ec

ij) (6.59)

≤ Cp · p2 1

nε2
p−3 = O(

1

nε2
),

where the first inequality is due to Hölder inequality and the second inequality is due to the

fact that E(σ̃ij − σij)8 ≤ C3[E(σ∗ij − σij)8 + En8
ij]. Since nij is a Gaussian distribution, we

have [240] En8
ij ≤ C4σ

8
1 = O( 1

nε
). For the first term E(σ∗ij −σij)8, since xi is sampled from

a sub-Gaussian distribution (6.11), by Whittle Inequality (Theorem 2 in [343] or [60]), the

quadratic form σ∗ij satisfies E(σ∗ij − σij)8 ≤ C5
1
n

for some positive constant C5 > 0.
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For the second term of (6.58), we have

p
∑
ij

Eσ2
ijI(Ec

ij

⋂
{σ̂ij = 0})

= p
∑
ij

Eσ2
ijI(|σij| > 4γ

√
log p

n
+

16
√

2 ln 1.25/δ
√

log p

nε
)

× I(|σ̃ij| ≤ γ

√
log p

n
+

4
√

2 ln 1.25/δ
√

log p

nε
)

≤ p
∑
ij

Eσ2
ijI(|σij| > 4γ

√
log p

n
+

16
√

2 ln 1.25/δ
√

log p

nε
)

× I(|σij| − |σ̃ij − σij| ≤ γ

√
log p

n
+

4
√

2 ln 1.25/δ
√

log p

nε
)

≤ p
∑
ij

σ2
ijEI(|σij| > 4γ

√
log p

n
+

16
√

2 ln 1.25/δ
√

log p

nε
)I(|σ̃ij − σij| ≥

3

4
|σij|)

≤ p
∑
ij

σ2
ijEI(|σij| > 4γ

√
log p

n
+

16
√

2 ln 1.25/δ
√

log p

nε
)I(|σ∗ij − σij|+ |nij| ≥

3

4
|σij|)

≤ p
∑
ij

σ2
ijP
({
|σ∗ij − σij| ≥

3

4
|σij| − |nij|

}⋂{
|σij| > 4γ

√
log p

n
+

16
√

2 ln 1.25/δ
√

log p

nε

})
= p

∑
ij

σ2
ijP
({
|σ∗ij − σij| ≥

3

4
|σij| − |nij|

}⋂{
|nij| ≤

1

4
|σij|

}⋂
{
|σij| > 4γ

√
log p

n
+

16
√

2 ln 1.25/δ
√

log p

nε

})
+ p

∑
ij

σ2
ijP
({
|σ∗ij − σij| ≥

3

4
|σij| − |nij|

}
⋂{
|nij| ≥

1

4
|σij|

}⋂{
|σij| > 4γ

√
log p

n
+

16
√

2 ln 1.25/δ
√

log p

nε

})
(6.60)

≤ p
∑
ij

σ2
ijP
({
|σ∗ij − σij| ≥

1

2
|σij|

}⋂{
|σij| > 4γ

√
log p

n
+

16
√

2 ln 1.25/δ
√

log p

nε

})
+ p

∑
ij

σ2
ijP
({
|nij| ≥

1

4
|σij|

}⋂{
|σij| > 4γ

√
log p

n
+

16
√

2 ln 1.25/δ
√

log p

nε

})
.

(6.61)
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For the second term of (6.61), by Lemmas 1 and 2 we have

p
∑
ij

σ2
ijP({|nij| ≥

1

4
|σij|}

⋂
{|σij| > 4γ

√
log p

n
+

16
√

2 ln 1.25/δ
√

log p

nε
})

≤ p
∑
ij

σ2
ijP(|nij| ≥ γ

√
log p

n
+

4
√

2 ln 1.25/δ log p

nε
})P(|nij| >

1

4
σij)

≤ Cp
∑
ij

σ2
ij · exp(−

(γ
√

log p
n

+ 4σ1

√
log p)2

2σ2
1

) exp(−
σ2
ij

32σ2
1

)

≤ Cσ2
1p · p2 exp(−γ

2 log p

2nσ2
1

)p−8 (6.62)

≤ Cσ2
1p
−5 2nσ2

1

γ2 log p
= O(

log 1/δ

nε2
). (6.63)

For the first term of (6.61), by Lemma 2 we have

p
∑
ij

σ2
ijP({|σ∗ij − σij| ≥

1

2
|σij|}

⋂
{|σij| ≥ 4γ

√
log p

n
})

≤ p

n

∑
ij

nσ2
ij exp(−n

2σ2
ij

γ2
)I(|σij| ≥ 4γ

√
log p

n
)

≤ p

n

∑
ij

[nσ2
ij exp(−n

σ2
ij

γ2
)] exp(−n

σ2
ij

γ2
)I(|σij| ≥ 4γ

√
log p

n
)

≤ C
p3

n
p−16 = O(

1

n
). (6.64)

Thus in total, we have E‖D‖2
1 = O( log 1/δ

nε2
). This means that E‖Σ̂−Σ‖2

1 = O( s
2 log p log 1/δ

nε2
),

which completes the proof.

Proof of Corollary 6.2.1

By Riesz-Thorin interpolation theorem [101], we have

‖A‖w ≤ max{‖A‖1, ‖A‖2, ‖A‖∞}
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for any matrix A and any 1 ≤ w ≤ ∞. Since Σ+ − Σ is a symmetric matrix, we have

‖Σ+ − Σ‖2 ≤ ‖Σ+ − Σ‖1 and ‖Σ+ − Σ‖1 = ‖Σ+ − Σ‖∞. Thus, by the proof of Theorem

6.2.2 we get this corollary.

Proof of Theorem 6.2.5

The proof follows the proof of Theorem 3 in [98]. We will mainly prove the following

lemma

Lemma 6.2.11. [Theorem 3 in [98]] Under the condition in Theorem 1, for any ε sequential

interactive private channel Q we have

r∑
j=1

[Dkl(M
n
j,+1‖Mn

j,−1) +Dkl(M
n
j,−1‖Mn

j,+1)]

≤ (eε − 1)2n sup
γ∈B∞(X )

r∑
j=1

(

∫
X
γ(x)(dPj,+1 − dPj,−1))2

By Lemma 6.2.11 we can easily get Theorem 1, which is due to the Pinsker’s inequality

and Cauchy-Schwartz:

r∑
j=1

‖Mn
j,+1 − Mn

j,−1‖TV ≤
1

2

√
r
( r∑
j=1

Dkl(M
n
j,+1‖Mn

j,−1) + Dkl(M
n
j,−1‖Mn

j,+1)
) 1

2 .

Proof of Theorem 6.2.6

By Theorem 6.2.4, we have

MNint
n (θ(P),Φ ◦ ρ, ε) ≥ rα

4
min
j∈[r]

(1− ‖Mn
j,+1 −Mn

j,−1‖TV ).
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By the non-interactivity, we have Mn
j,a = (

∫
Q(·|x)dPj,a)

⊗n. Let Mj,a =
∫
Q(·|x)dPj,a. By

Pinsker inequality, we have the following

|Mn
j,+1 −Mn

j,−1‖2
TV ≤

1

2
Dkl(M

n
j,+1‖Mn

j,−1) (6.65)

≤ 1

2
Dχ2(Mn

j,+1‖Mn
j,−1) (6.66)

=
1

2
(Dχ2(Mj,+1‖Mj,−1))n (6.67)

≤ 1

2
(min{4, e2ε}(eε − 1)2‖Pj,+1 − Pj,−1‖2

TV )n (6.68)

≤ 1

2
(min{2, e

2ε

2
}ε2Dχ2(Pj,+1‖Pj,−1)))n, (6.69)

where (6.65) is due to Pinsker inequality, (6.66) is by the relation between KL-divergence

and χ2-divergence Dkl(P‖Q) ≤ log(1 +Dχ2(P‖Q)) ≤ Dχ2(P‖Q) [283], (6.67) is due to

the non-interactivity, (6.69) is by Pinsker inequality and inequalities (eε − 1)2 ≤ 2ε2 and

e2ε ≤ 2. Next, we prove (6.68).

Lemma 6.2.12.

Dχ2(Mj,+1‖Mj,−1) ≤ min{4, e2ε}(eε − 1)2‖Pj,+1 − Pj,−1‖2
TV .

Proof. W.l.o.g, we can assume that the density function of Mj,a is mj,a(z) =
∫
q(z|x)dPj,a

and q(·|x) is the density function of Q(·|x). By the definition, we have

Dχ2(Mj,+1‖Mj,−1) =

∫
(mj,+1(z)−mj,−1(z))2

mj,−1(z)
dz (6.70)

≤
∫
c2
ε infx q

2(z|x)(eε − 1)2‖Pj,+1 − Pj,−1‖2
TV∫

q(z|x)dPj,a
dz (6.71)

≤ c2
ε(e

ε − 1)2‖Pj,+1 − Pj,−1‖2
TV

∫
inf
x
q(z|x)dz

≤ c2
ε(e

ε − 1)2‖Pj,+1 − Pj,−1‖2
TV , (6.72)

where cε = min{2, eε}, (6.70) is by the definition of χ2-divergence, (6.71) is by Lemma 3
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in [98] and (6.72) is due to the fact that
∫

infx q(z|x)dz ≤ 1.

Proof of Corollary 6.2.2

The key observation is that the distributions P n
j,a can be represented by a linear combination

of {P̄ n
j,a,b,c}b,c∈T−j , where the set T−j is

T−j = {0, 1}r−1 ⊗ Λ−i

= {(b, c) : ∃τ ∈ T s.t υ−i(τ) = b and λ−i(τ) = c}.

That is, P n
j,a =

∑
(b,c)∈T−j wb,cP̄

n
j,a,b,c, where wb,c =

DΛj(a,b,c)

2r−1DΛ
(note that since DΛj(a,b,c) is

independent of a, we omit it). Also,
∑

(b,c)∈T−j wb,c = 1. Thus, P n
j,a can be seen as an

average over (b, c). The same also holds for Mn
j,a.

By the convexity of total variation norm and Lemma 6.2.12, we have

‖Mn
j,+1 −Mn

j,−1‖TV ≤
∑

(b,c)∈T−j

wb,c‖M̄n
j,+1,b,c − M̄n

j,−1,b,c‖TV

= Averageb,c‖M̄n
j,+1,b,c − M̄n

j,−1,b,c‖TV .

By a similar argument given in the proof of Theorem 6.2.6, we get

‖M̄n
j,+1,b,c − M̄n

j,−1,b,c‖2
TV ≤ Dχ2(M̄j,+1,υ−j ,λ−j‖M̄j,−1,υ−j ,λ−j)

n

≤ 1

2
(min{2, e

2ε

2
}ε2Dχ2(P̄j,+1,b,c‖P̄j,−1,b,c)))

n

≤ 1

2
(ε2Dχ2(P̄j,+1,b,c‖P̄j,−1,b,c)))

n.

Thus, by the inequality Averageb,c‖M̄n
j,+1,b,c − M̄n

j,−1,b,c‖TV )2 ≤ Averageb,c‖M̄n
j,+1,b,c −

M̄n
j,−1,b,c‖2

TV , we have the proof.
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Proof of Lemma 6.2.6

We first bound the term of ‖Σ(τ)‖2. Note that since Σ(τ) is symmetric, we have ‖Σ(τ)‖2 ≤

‖Σ(τ)‖1. By the construction of Σ(τ), we can see that the `1 norm of each column in Σ(τ)

is less than 1 + 2kαn,p,ε ≤ 1 + sγ
√

log p
nε2

. Thus, we have ‖Σ(τ)‖2 ≤ c+ csγ
√

log p
nε2

.

We need N (0,Σ(τ)) satisfying (6.35). By [342], we know that it is sufficient to have

‖Σ(τ)‖2 ≤ ρ.

Let Σ(τ) = V TQV be the SVD decomposition and Q = diag(λ1, · · · , λp). Then, for

X ∼ N (0,Σ(τ)), we have V X ∼ N (0, Q). Thus, ‖X‖2
2 = ‖V X‖2

2 ≤ ‖Σ(τ)‖2Y , where

Y is a χ2
p random variable. For the χ2-distribution, we have the following concentration

bound.

Lemma 6.2.13 ([189]). If z ∼ χ2
n, then

P[z − n ≥ 2
√
nx+ 2x] ≤ exp(−x).

Thus, with probability at least 1− exp(−p), we have Y ≤ 5p. This means that, to ensure

‖X‖2 ≤ 1, it is sufficient to have 5p‖Σ(τ)‖2 ≤ 1. Thus, we need that

c+ csγ

√
log p

nε2
≤ min{ρ, 1

5p
}. (6.73)

Taking c = min{ρ/2, 1
10p
} and choosing a small enough γ ≤

√
C
2

, we can get the proof.

Proof of Lemma 6.2.7

Let the vector v = (vi)1≤i≤p be a p-vector with vi = 0 for 1 ≤ i ≤ p − r and vi = 1 for

p − r + 1 ≤ i ≤ p. Denote w = (wi)1≤i≤p = (Σ(τ) − Σ(τ ′))v. Note that for each i, if

|υi(τ) − υi(τ ′)| = 1, then we have |wi| = kαn,p,ε. Then there are at least H(υi(τ), υi(τ
′)
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number of elements wi with |wi| = kαn,p,ε, which implies

‖(Σ(τ)− Σ(τ ′))v‖2
2 ≥ H(υi(τ), υi(τ

′)(kαn,p,ε)
2.

Since ‖v‖2
2 ≤ p, we have

‖Σ(τ)− Σ(τ ′)‖2
2 ≥
‖(Σ(τ)− Σ(τ ′))v‖2

2

‖v‖2
2

≥ H(υi(τ), υi(τ
′)(kαn,p,ε)

2

p

Thus, α ≥ (kαn,p,ε)2

p
.

Proof of Lemma 6.2.8

Our proof is similar to the proof of Lemma 6 in [60] with difference parameters. Here we

only give a sketch of the proof.

Without loss of generality, we only consider the case where j = 1. And we denote the

density function of P̄1,a,v−1,λ−1 be p̄1,a,v−1,λ−1 . Also, we have

Dχ2(P̄1,+1,υ−1,λ−1‖P̄1,−1,υ−1,λ−1) =

∫
p̄2

1,1,v−1,λ−1
(x)

p̄1,−1,v−1,λ−1(x)
dx− 1.

By the definition, we know that the covariance matrix of the distribution P̄1,−1,υ−1,λ−1

has the form

Σ0 =

 c 01×(p−1)

0(p−1)×1 S(p−1)×(p−1)

 (6.74)

Here S(p−1)×(p−1) = (sij)2≤i,j≤p is a symmetric matrix uniquely determined by (v−1, λ−1)

where for i ≤ j,

sij =


1, i = 1

cαn,p,ε, vi = λi(j) = 1

0, otherwise

(6.75)
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Let

Λ1(m) = {a ∈ B : ∃τ ∈ T s.t. λ1(τ) = a, λ−1 = m}

which gives the rest of all possible values of the first row with the rest of the rows fixed,

that λ−1(τ) = m. Let nλ−1 be the number of columns of λ−1 with the column sum

equal to 2k for which the first row has no choice but to take value 0 in this column. Set

pλ−1 = r − nλ−1 . We have pλ−1 ≥ p
4
− 1. Since 2knλ−1 ≤ rk, the total number of 1s in the

upper triangular matrix by the construction of the parameter set, we thus have nλ−1 ≤ r
2
,

thus pλ−1 = r − nλ−1 ≥ r
2
≥ p

4
− 1. Thus we have |Λ1(λ−1)| =

(pλ−1

k

)
. Then from the

definition, we have P̄1,1,v−1,λ−1 is an average of
(pλ−1

k

)
multivariate normal distribution with

the covariance matrix has the following form:

 c r1×(p−1)

r(p−1)×1 S(p−1)×(p−1)

 (6.76)

With ‖r‖0 = k with non-zero elements of r equal cαn,p,ε and the submatrix S(p−1)×(p−1) is

the same as the ones in Σ0 in (6.74).

We have the following lemma, given by [60]

Lemma 6.2.14. Let gi be the density function of N (0,Σi) for i = 0, 1, 2, then we have

∫
g1g2

g0

= [det(I − Σ−2
0 (Σ1 − Σ0)(Σ2 − Σ0)]−

1
2 . (6.77)

Let Σ0 defined above and determined by v−1, λ−1. Let Σ1 and Σ2 be the form above

with the first row λ1, λ
′
1, respectively. Set

R
v−1,λ−1

λ1,λ′1
= − log det(I − Σ−2

0 (Σ0 − Σ1)(Σ0 − Σ2)). (6.78)
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Now we denote the average as the expectation, then we have

Eυ−1,λ−1(Dχ2(P̄1,+1,υ−1,λ−1‖P̄1,−1,υ−1,λ−1))n (6.79)

≤ Eυ−1,λ−1 [E(λ1,λ′1)|λ−1
[exp(

n

2
(R

v−1,λ−1

λ1,λ′1
− 1))] (6.80)

≤ Eυ−1,λ−1 [E(λ1,λ′1)|λ−1
[exp(

n

2
(R

v−1,λ−1

λ1,λ′1
))− 1] (6.81)

= Eλ1,λ′1
[E(v−1,λ−1)|(λ1,λ′1)[exp(

n

2
(R

v−1,λ−1

λ1,λ′1
))− 1] (6.82)

where λ1 and λ′1 are independent and uniformly distributed over Λ1(λ−1) for given λ−1, and

the distribution of (v−1, λ−1) given (λ1, λ
′
1) is inform over T−1(λ1, λ−1), where

T−1(a1, a2) = {−1,+1}r−1 ⊗ {c ∈ Λ−1 : ∃τi ∈ T, i = 1, 2

s.t. λ1(τi) = ai, λ−1(τi) = v}

Proof of Theorem 6.2.7

By Corollary 6.2.2, Lemma 6.2.8 and 6.2.7 we have

MNint
n (ψ(θ),Φ ◦ ρ, ε) ≥ rα

4
× min

1≤j≤r

(1−
√
ε2n

2
Averageυ−j ,λ−j(Dχ2(P̄j,+1,υ−j ,λ−j‖P̄j,−1,υ−j ,λ−j))

n)

≥ p

2

k2α2
n,p,ε

p
(1−

√
ε2n

2

3

4

1

ε2n
)

≥ Ω(
s2 log p

nε2
).

Proof of Corollary 6.2.3

First, by the Riesz-Thorin Interpolation Theorem [57], we know that for every symmetric ma-

trixM , ‖M‖2 ≤ ‖M‖w for allw ∈ [1,∞]. Thus we have under `w norm, by Lemma 6 we al-

ways have αn,p,ε ≥ (kαn,p,ε)2

p
, also since the term Averageυ−j ,λ−j(Dχ2(P̄j,+1,υ−j ,λ−j‖P̄j,−1,υ−j ,λ−j)
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is independent on the norm, so we have the corollary.

6.3 Differentially Private Sparse Inverse Covariance Ma-

trix Estimation

Estimating the inverse covariance matrix (also called precision matrix) in high dimensional

space is a fundamental problem in statistics and finds applications in many fields such

as machine leaning, signal processing, computational biology, etc [355]. It provides a

good way for discovering the interactions among variables in high dimensional datasets,

especially those from genetics, medicine, and healthcare. The inverse covariance matrix is

also a natural way for parameterizing the Gaussian graphical model. One problem that often

occurs in applying such a model is how to deal with sensitive data. For example, datasets

related to gene expression may contain private information of individuals. Thus, it becomes

a challenge for estimating the inverse covariance while preserving privacy. In this part, we

study the problem under the differential privacy model, and provide some results on this

problem.

Differentially Private Sparse Inverse Covariance Estimation Let {x1, · · · , xn} be n

instances sampled from a Gaussian distribution N (0,Σ), where each instance xi ∈ Rd

for i ∈ [n] and Σ ∈ Rd×d is the covariance matrix. The inverse covariance problem is

to recover Σ−1 in a high dimensional setting, where n � d. Note that if n ≥ d, we can

solve the problem by optimizing Θ∗ = S−1 = arg minΘ∈Sd++
− log det Θ + 〈S,Θ〉, where

S = 1
n

∑n
i=1 xix

T
i is the empirical covariance. But in a high dimensional setting, the above

optimization problem is ill-posed, since S is rank-deficient. To make it well-defined, we

borrow an idea in LASSO and use an `1 norm regularization in the objective function, which
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assumes that Θ∗ is sparse. Thus, the objective function becomes the following:

Θ∗ρ = arg min
Θ∈Sd++

{− log det Θ + 〈S,Θ〉+ ρ‖Θ‖1}, (6.83)

where ρ > 0 is the penalty parameter, 〈S,Θ〉 = tr(SΘT ), and ‖Θ‖1 =
∑

i,j |Θi,j|.

Under the differential privacy model, our problem is to obtain Θpriv so that ‖Θpriv−Θ∗ρ‖F

is as small as possible.

Below is summary of our main contributions to this problem. Table 6.3 lists the related

error bounds.

Perturbation method Mechanism Error upper bound Keeping covariance matrix semidefinite? Type of privacy

Output Wishart O( log dd4

nερ2 ) Yes ε-DP

Covariance Wishart O(
log dd

3
2 max{‖Θ∗ρ‖22,‖Θpriv‖22}

nε
) Yes ε-DP

Covariance Laplacian O(
d2 max{‖Θ∗ρ‖22,‖Θpriv‖22}

nε
) No ε-DP

Covariance Wishart O(
max{‖Θ∗ρ‖22,‖Θpriv‖22} ln(1/δ)d

3
2

nε2
) Yes (ε, δ)-DP

Covariance Gaussian O(
d
√

ln( 1
δ

) max{‖Θ∗ρ‖22,‖Θpriv‖22}
εn

) No (ε, δ)-DP

Covariance Gaussian O(
d
√

ln( 1
δ

) max{‖Θ∗ρ‖22,‖Θpriv‖22}
ε
√
n

) No (ε, δ)-Local DP

Table 6.3: The error upper bound of methods in the paper, which is measured by ‖Θpriv −
Θ∗ρ‖F , here we assume the `2-norm of each xi is bounded by 1.

• We first present an output-perturbation algorithm (See Algorithm 6.3.50) based on the

sensitivity of (6.83). Unlike the commonly used Laplacian or Gaussian mechanisms in

differential privacy, we adopt the Wishart distribution to preserve the positive definite

property for the resulting matrix.

• To reduce the error bound of the above algorithm, we then introduce a general method

by perturbing the covariance matrix, and analyze the error upper bound for different

perturbing matrices.

• We show that our covariance perturbation method can also be extended to distributed

settings and the local differential privacy model. In the local differential privacy model,
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each individual discloses his/her personal information through some differentially

private algorithms and shares with the public only the output; a server then collects

the disclosed information and analyzes it. This is quite different from the central

differential privacy model, where institutions release databases of information or

answer queries of such databases.

• Finally, we evaluate the performance of our algorithms using both synthetic and real

world datasets. Experimental results confirm our theoretical analysis.

To the best of our knowledge, this is the first paper studying the sparse inverse covariance

estimation problem under the differential privacy model.

6.3.1 Related Work

There is a large number of papers studying the sparse inverse covariance estimation problem

from different perspectives. For example, [246, 56] investigated the issue of statistical

consistency of the problem, and [209, 250, 81, 150] considered how to efficiently solve the

associated optimization problem (6.83).

Perhaps, the most closely related work to ours is differentially private PCA, since it also

relies on random matrices to preserve privacy. For example, [162, 158] used the Wishart

mechanism to achieve ε-differentially private PCA, and [68, 106, 321] adopted the Gaussian

mechanism to analyze the optimal bound of PCA under the (ε, δ)-differential privacy model.

Note that although our paper uses the same mechanisms (as the aforementioned results), the

way for analyzing the error bound is quite different. While the above results mainly relied

on techniques in linear algebra, ours is based on some optimization techniques (due to the `1

regularization and the positive definite requirement for the resulting matrix). Thus, existing

approaches/techniques cannot be used to analyze our problem.
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6.3.2 Preliminaries

Notations For a matrix X , we let σl(X) denote the l-th largest singular value of X , tr(X)

denote the trace of X , detX denote the determinant of X , ‖X‖F denote the Frobenius

norm, and ‖X‖2 denote the spectral norm. Also, we let Sn++ be the set of n × n positive

definite matrices. We write 0 � X to mean that X is positive semidefinite and X � Y to

mean that 0 � Y −X . We use Id to denote the identity d× d matrix. Note that we assume

that the `2 norm of each data record xi is bounded by 1.

Before introducing Wishart mechanism used in this part, we first introduce Wishart

distribution.

Definition 6.3.1. A d× d random symmetric positive definite matrix W is said to have a

Wishart distribution W ∼ Wd(m,C) if its probability density function is

p(W ) =
(detW )

m−d−1
2

2
md
2 (detC)

m
2 Γd(

m
2

)
exp(−1

2
tr(C−1W )), (6.84)

where m > d− 1 and C is a d× d positive definite matrix.

One property of Wishart distribution is its multivariate extension of the χ2-distribution.

More specifically, if v1, v2 · · · , vm are i.i.d sampled from a d-dimensional multivariate

Gaussian distribution N (0, C),
∑m

i=1 viv
T
i ∼ Wd(m,C). We will use this property in

distributed settings.

Next we show how to select the parameters m and C to ensure differential privacy.

Lemma 6.3.1 ((ε, δ)-differential privacy [254]). Fix ε ∈ (0, 1) and δ ∈ (0, 1
e
). For a fixed

constant B > 0, let A be an n × d matrix, where each row of A has bounded `2-norm B.

Let N be a matrix sampled from W(m,B2Id) for m ≥ d + 14
ε2

ln(4
δ
). Then, outputting

X = ATA+N is (ε, δ)-differentially private.

Lemma 6.3.2 (ε-differential privacy [162]). Fix ε > 0 and let A be an n× d matrix, where

each row of A has bounded `2-norm of B. Let N ∼ Wd(d + 1, C), where C = 3
2nε
B2Id.
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Then, outputting X = ATA+N is ε-differentially private.

Below we list some theorems related to the tail bound of a Wishart distribution, which

will be used later in our error bound analysis.

Lemma 6.3.3 ([254]). Fix δ′ ∈ (0, 1
e
), and a random matrix X ∼ Wd(m,V ), where

m > (
√
d+
√

2 log 2
δ′

)2. Then, with probability at least 1− δ′, the following holds for every

j = 1, · · · , d

σj(X) ∈ (
√
m± (

√
d+

√
2 log

2

δ′
))2σj(V ). (6.85)

For the tail bound of the noise added by an ε-differential private algorithm, we have the

following lemma.

Lemma 6.3.4 ([370]). If X ∼ Wd(m,V ), then with probability at least 1− 2d exp(−θ) for

any θ ≥ 0, the following holds for each l = 1, · · · , d

|σl(
1

m
X)− σl(V )| ≤ (

√
2θk2

l (r + 1)

m
+

2θklr

m
)σl(V ), (6.86)

where r = tr(V )
σ1(V )

and kl = σ1(V )
σl(V )

.

If taking V = B2Id,m = d + 1, and θ = log 2d
δ′

, Lemma 6.3.4 tells us that with

probability at least 1 − δ′, we have σl(X) ≤ O(d log d
δ′
B2) for each l = 1 · · · , d. This

means that there is a factor of log d compared with Lemma 6.3.3.

6.3.3 Sparse Inverse Covariance Estimation

Before presenting our methods, we first introduce some properties of the optimization

problem (6.83). For ρ > 0, the problem is strongly convex and thus has a unique optimal

solution Θ∗ρ, which satisfies the following condition.

Lemma 6.3.5 ([81, 209]). The solution of (6.83), Θ∗ρ, satisfies that αId � Θ∗ρ � βId, for

α =
1

‖S‖2 + ρd
, β = min{d− α tr(S)

ρ
, γ}, (6.87)
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where γ has the following value

γ =


2‖(S + ρ

2
Id)
−1‖1 − tr((S + ρ

2
Id)
−1), if S /∈ Sd++

min{‖S−1‖1, (d− ρ
√
dα)‖S−1‖2 − (d− 1)α}, else.

(6.88)

Proximal Operator Now we consider a general optimization problem with the following

form

min
x∈X

F (x) = f(x) + g(x), (6.89)

where X is a Hilbert space with inner product 〈·, ·〉 and associated with norm ‖ · ‖, f is

a continuously differentiable, convex function, and g is a lower semi-continuous convex

function. For a given lower semi-continuous convex function g, the proximity of g, denoted

by proxg : X → X , is given by

proxg(x) = arg min
y∈X
{g(y) +

1

2
‖x− y‖2}.

One of the basic results in [77] says that for every η > 0, x∗ ∈ X is an optimal solution of

(6.89) if and only if

x∗ = proxηg(x
∗ − η∇f(x∗)). (6.90)

For our problem (6.83), f(Θ) = − log det Θ + 〈S,Θ〉 and g(Θ) = ρ‖Θ‖1. Since f(Θ) is

continuously differentiable in Sd++, Θ∗ρ can be determined by

Θ∗ρ = proxηg(Θ
∗
ρ − η(S −Θ∗−1

ρ )). (6.91)

6.3.4 Output Perturbation Method

In this section, we present an ε-differentially private algorithm based on the output perturba-

tion strategy (see Algorithm 6.3.50 for details), and analyze the sensitivity and stability of

the problem (6.83). Although the method has some undesirable features, the error bound
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analysis and the guarantee of differential privacy are useful for our later methods.

Algorithm 6.3.50 Output Perturbation
Input: D = {xi}ni=1, S = 1

n

∑n
i=1 xix

T
i ∈ Rd×d, where the `2-norm of each row xi is

bounded by 1, ρ > 0. ε > 0 is the privacy parameter.
1: Compute

Θ∗ρ = arg min
Θ∈Sd++

{− log det Θ + 〈S,Θ〉+ ρ‖Θ‖1},

return Θ̃∗ρ = Θ∗ρ +N , where N ∼ Wd(d+ 1, C), C = d
5
2

nερ2 Id.

Theorem 6.3.1 (Privacy guarantee). For any ε > 0, Algorithm 6.3.50 is ε-differentially

private.

By Lemma 6.3.4, we have the following error upper bound.

Theorem 6.3.2. For Algorithm 6.3.50, with probability at least 1 − δ for any 0 < δ < 1,

we have

‖Θ̃∗ρ −Θ∗ρ‖F ≤ O(
log d

δ
d4

nερ2
), (6.92)

where Θ∗ρ is the optimal solution of the original problem (6.83).

Remark 6.3.1. Note that in Algorithm 6.3.50, a Wishart matrix needs to be added to the

output to ensure that the resulting matrix is positive definite (as required by problem (6.83)).

Since other random matrices, such as symmetric Laplacian matrices, may not be positive

definite [117], adding them to the output may not yield the desired solution.

Although Algorithm 6.3.50 provides an ε-differentially private algorithm for the inverse

covariance estimation problem. It also leaves quite a few unresolved issues. Firstly, from

Theorem 6.3.2, we know that the error bound heavily depends on the dimensionality (i.e.,

d4 log d), which could be too large for high dimensional datasets. Thus, a natural question

is whether the error bound in (6.92) can be further reduced. Secondly, for many problems,

the error bound of an (ε, δ)-differentially private algorithm is often lower than that of an

ε-differentially private algorithm (e.g., Differentially Private Empirical Risk Minimization
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[29, 326]). Thus, an interesting question is whether the problem considered in this paper

also follows the same pattern. Thirdly, the goal of the sparse inverse covariance estimation

problem is to obtain a sparse estimator. However, the output perturbation strategy in

Algorithm 6.3.50 could destroy the sparsity property of the resulting estimator. Thus, it is

desirable to obtain a solution which always yields a sparse private estimator. Below we will

address the three issues by proposing a covariance perturbation method.

6.3.5 Covariance Perturbation Method

As shown in (6.99), the sensitivity of problem (6.83) is high (since β is often large). This

means that we need to add a large amount of noise in Algorithm 6.3.50 to ensure the

ε-differential privacy. To deal with this problem, along with the aforementioned issues, we

propose in this section a general method which perturbs the empirical covariance S (see

Algorithm 6.3.51), instead of the output. This allows us to significantly reduce the amount

of noise that needs to be added. Also, it can be implemented by using different kinds of

random matrices N . To compare the performance for different mechanisms, we analyze the

error bound for each of them. We first determine the relationship between error bound and

the noise matrix N .

Algorithm 6.3.51 Covariance Perturbation
Input: D = {xi}ni=1, where the `2-norm of each row xi is bounded by 1, ρ > 0. ε, δ ≥ 0
are the privacy parameters.

1: Let S = 1
n

∑n
i=1 xix

T
i ; sample a symmetric matrix N ∈ Rd×d ∼ P , which makes

S +N ε- or (ε, δ)-differentially private. Let S̃ = S +N .
2: Compute and return

Θ̂∗ρ = arg min
Θ∈Sd++

{− log det Θ + 〈S̃,Θ〉+ ρ‖Θ‖1}.

Theorem 6.3.3. The output Θ̂∗ρ of Algorithm 6.3.51 satisfies the following inequality

‖Θ̂∗ρ −Θ∗ρ‖F ≤ max{‖Θ∗ρ‖2
2, ‖Θ̂∗ρ‖2

2}‖N‖F , (6.93)
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where Θ∗ρ is the optimal solution of the original problem (6.83).

From the above theorem, we can see that the error is measured by the Frobenius norm

of the added random matrix. Below, we consider those random matrices that ensure ε-

differential privacy. The first one is due to Lemmas 6.3.2 and 6.3.4.

Theorem 6.3.4. In Algorithm 6.3.51, for any ε > 0, if choose P = Wd(m,C) with

C = 3
2εn
Id and m = d + 1, it is ε-differentially private for any ε > 0. Moreover, with

probability at least 1− δ′, the following holds

‖Θ̂∗ρ −Θ∗ρ‖F ≤ O(
log d

δ′
d

3
2 max{‖Θ∗ρ‖2

2, ‖Θ̂∗ρ‖2
2}

nε
). (6.94)

Next, we consider the case that N is sampled from a Laplacian distribution. Since the

covariance matrix is symmetric, the added noise also needs to be symmetric, the following

lemma is due to [275].

Theorem 6.3.5. In Algorithm 6.3.51, for any ε > 0, if N is a symmetric Laplacian matrix

N whose entries are i.i.d drawn from Lap(0, 2d
nε

), then it is ε-differentially private. Moreover,

with high probability, the following holds

‖Θ̂∗ρ −Θ∗ρ‖F ≤ O(
d2 max{‖Θ∗ρ‖2

2, ‖Θ̂∗ρ‖2
2}

nε
). (6.95)

Remark 6.3.2. Comparing Theorems 6.3.4 and 6.3.5, we can see that the error in (6.94) is

less than that in (6.95) (if we omit the term max{‖Θ∗ρ‖2
2, ‖Θ̂∗ρ‖2

2}). Another advantage is

that adding Wishart matrix not only preserves the symmetry property, but also guarantees

the positive semi-definite property of the covariance matrix. Thus, for ε-differential privacy,

it is better to use Wishart mechanism.

Next, we consider (ε, δ)-differential privacy and also start with adding Wishart matrices.

The following theorem is due to Lemmas 6.3.1 and 6.3.3.
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Theorem 6.3.6. For any ε ∈ (0, 1) and δ ∈ (0, 1
e
), if choose P =Wd(m,C) with C = 1

n
Id

and m = d + 14
ε2

ln(4
δ
) in Algorithm 6.3.51, it is (ε, δ)-differentially private. Moreover, if

m > (
√
d+

√
2 log 2

δ′
)2 for 0 < δ′ < 1, then with probability at least 1− δ′, the following

holds

‖Θ̂∗ρ −Θ∗ρ‖F ≤ O(
max{‖Θ∗ρ‖2

2, ‖Θ̂∗ρ‖2
2} ln(1/δ) ln(1/δ′)d

3
2

nε2
). (6.96)

Now, we consider adding symmetric Gaussian matrices.

Theorem 6.3.7. In Algorithm 6.3.51, for any ε > 0 and 0 < δ < 1, if N is a symmetric

Gaussian matrix N whose entries are i.i.d drawn fromN (0, β2), where β =

√
2 ln( 1.25

δ
)

nε
, then

it is (ε, δ)-differentially private. Moreover, with high probability, the following holds

‖Θ̂∗ρ −Θ∗ρ‖F ≤ O(
d
√

ln(1
δ
) max{‖Θ∗ρ‖2

2, ‖Θ̂∗ρ‖2
2}

εn
). (6.97)

Remark 6.3.3. From the above two theorems, we can see that although the Wishart mecha-

nism preserves the positive definite property of S̃, which is not the case for the Gaussian

mechanism [117], it has an additional factor of
√
d in its error bound compared with the

Gaussian mechanism (if we omit the term max{‖Θ∗ρ‖2
2, ‖Θ̂∗ρ‖2

2}). Thus, if we need a more

accurate solution, Gaussian mechanism is a better choice.

Now, we address the three issues raised in last section. Firstly, for the large error bound

in Theorem 6.3.2, we know from Theorem 6.3.4 that the covariance perturbation based

ε-differentially private algorithm always has a lower error bound than that of an output

perturbation based algorithm (since max{‖Θ∗ρ‖2
2, ‖Θ̂∗ρ‖2

2} ≤ d2

ρ2 by (6.3.5)). Secondly, if

we view ε as a constant and omit the term of max{‖Θ∗ρ‖2
2, ‖Θ̂∗ρ‖2

2}, the error bound of the

(ε, δ)-differentially private algorithm with covariance perturbation strategy is lower than

it under ε-differential privacy, and Gaussian mechanism achieves the lowest error bound.

Thirdly, another advantage of the covariance perturbation method is that it produces a sparse

solution.
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By using the idea of covariance perturbation and some properties of the random matrices,

we can extend our methods to other settings.

Firstly, by using the property of Wishart distribution, we can extend our method to

distributed settings. In a distributed environment, we assume that there are n players and

one central server; each player i ∈ [n] stores one data record xi ∈ Rd (note that it is easy to

extend to the case where each server has any number of data records); the dimensionality

d of the data points is assumed to be larger than the number n of players. The following

algorithm (i.e., Algorithm 6.3.52) is either (ε, δ)- or ε-differentially private. Since it is

equivalent to Algorithm 6.3.51 with Wishart matrix perturbation, the error bound is, thus,

the same as in Theorem 6.3.4 and 6.3.6.

Algorithm 6.3.52 Distributed Setting
Input: Each player i ∈ [n] has a data record xi ∈ Rd with its `2 norm bounded by 1. ε, δ
are the privacy parameters.

1: for Each Player i ∈ [n] do
2: Sample vi ∼ N (0, C), where C is the same as in Theorem 6.3.4 for ε-differential

privacy and the same as in Theorem 6.3.6 for (ε, δ)-differential privacy.
3: Compute and send Ai = 1

n
xix

T
i + viv

T
i to the central server.

4: end for
5: In the central server, i.i.d sample k vectors [u1, u2, · · · , uk], where ui ∼ N (0, C),
k = m− n, where m is the same as in Theorem 6.3.4 for ε-differential privacy and the
same as in Theorem 6.3.6 for (ε, δ)-differential privacy. Let B =

∑k
i=1 uiu

T
i . Compute

S̃ =
∑n

i=1Ai +B and

Θ̂∗ρ = arg min
Θ∈Sd++

{− log det Θ + 〈S̃,Θ〉+ ρ‖Θ‖1}.

Based on the idea of covariance perturbation and the property of Gaussian matrices, we

can easily have an (ε, δ)-LDP algorithm (see Algorithm 6.3.53, the same for ε-LDP) with

the following error bound.

Theorem 6.3.8. For any ε > 0 and 0 < δ < 1, Algorithm 4 is (ε, δ)-LDP. Moreover, with
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high probability, the output Θ̂∗ρ satisfies the inequality

‖Θ̂∗ρ −Θ∗ρ‖F ≤ O(
d
√

ln(1
δ
) max{‖Θ∗ρ‖2

2, ‖Θ̂∗ρ‖2
2}

ε
√
n

).

Algorithm 6.3.53 Local Differential Privacy
Input: Each player i ∈ [n] has a data record xi ∈ Rd with its `2 norm bounded by 1. ε, δ
are the privacy parameters.

1: for Each Player i ∈ [n] do
2: Generate a symmetric Gaussian Matrix Ni whose entries are i.i.d drawn from

N (0, β2), where β =

√
2 ln( 1.25

δ
)

nε

3: Compute and send Ai = 1
n
xix

T
i +Ni to the central server.

4: end for
5: In the central server, compute S̃ =

∑n
i=1Ai, and solve the following

Θ̂∗ρ = arg min
Θ∈Sd++

{− log det Θ + 〈S̃,Θ〉+ ρ‖Θ‖1}.

Comparing with (ε, δ)-differential privacy in the central model, we can see that the only

difference is the term of n. Also, since LDP is more rigorous than DP, we can see that

although Algorithms 6.3.52 and 6.3.53 are both for distributed settings, the error bound of

Algorithm 6.3.53 is worse (if we omit the term max{‖Θ∗ρ‖2
2, ‖Θ̂∗ρ‖2

2}).

6.3.6 Experiments

In this section, we present some numerical results on both real-world and synthetic datasets

to evaluate the performance of our proposed differentially private algorithms. More experi-

ments are left to the full paper.

We first introduce the algorithms that we are going to compare; all related methods are

described in the previous section. For ε-differentially private algorithm, we will compare

with output perturbation, Laplace and Wishart covariance perturbation methods. For (ε, δ)-

differentially private algorithm, we will compare with SULQ Framework [42], Wishart and

Gaussian covariance perturbation methods.

411



We let Θ̂∗ρ denote the output of the differentially private algorithm and Θ∗ρ denote the

optimal solution of the original problem. To evaluate the performance of the proposed

methods, we choose Relative Error, which is defined as ‖Θ̂
∗
ρ−Θ∗ρ‖F
‖Θ∗ρ‖F

. If the relative error is

greater than 200, we use NA to indicate.

For synthetic datasets, we first fix the dimensionality d and create a sparse matrix U with

nonzero entries equal to -1 or 1 with equal probability. Then, we compute S = (U ∗ UT )−1

as the true covariance matrix. The inverse covariance matrix S−1 = UUT is, thus, sparse.

Given the inverse covariance matrix S−1 = UUT , we then draw n = r× d samples from the

Gaussian distribution N (0, S) to simulate the high-dimensional settings, where r denotes

the ratio of n (i.e., the sample size) over d (i.e., the dimensionality of the samples). We test

our proposed methods for d = 400 and r = 0.5, 1.0, 1.5.

For real-world datasets, we use the colon cancer dataset [11] and the Parkinson’s disease

dataset [200] to evaluate our proposed methods. The colon cancer dataset contains infor-

mation of 69 individuals with 2000 attributes. We choose 300 variables for the experiment.

The size of Parkinson’s disease dataset is (192, 22). The datasets are normalized before

processing.

For each experiment, we choose ε = 0.5, 1, 1.5, respectively. For (ε, δ)-DP, we let

δ = 0.01. To solve the optimization problem (6.83), we set ρ = 0.001 and use the method

in [251]. All experiments run in MATLAB.

Synthetic Datasets Real-world Datasets

ε Methods r = 0.5 r = 1.0 r = 1.5 Colon Parkinson’s

Wishart 0.993 0.9918 0.9914 0.995 0.9140
0.5 Output NA NA NA NA NA

Laplace 101.4 52.85 35.42 190.57 9.950

Wishart 0.986 0.9863 0.9856 0.993 0.8899
1.0 Output NA NA NA NA NA

Laplace 49.44 25.41 16.83 95.01 4.690

Wishart 0.9817 0.9815 0.9806 0.9907 0.8796
1.5 Output NA NA NA NA NA

Laplace 32.30 16.41 10.76 63.67 3.913

Table 6.4: Performance comparisons of the ε-differentially private algorithms on both
synthetic and real-world datasets.
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Synthetic Datasets Real-world Datasets

ε Methods r = 0.5 r = 1.0 r = 1.5 Colon Parkinson’s

Wishart 0.9999 0.9997 0.9993 1.636 1.00
0.5 SQLU NA NA NA NA 0.7419

Gaussian 0.1285 0.1607 0.1759 0.3039 0.1527

Wishart 0.9982 0.9947 0.9906 1.1155 0.990
1.0 SQLU NA NA NA NA 0.7318

Gaussian 0.1254 0.1605 0.1737 0.1081 0.1514

Wishart 0.9954 0.9895 0.9837 1.0474 0.9992
1.5 SQLU NA NA NA NA 0.7065

Gaussian 0.1252 0.1595 0.1701 0.0833 0.1514

Table 6.5: Performance comparisons of the (ε, δ)-differentially private algorithms on both
synthetic and real-world datasets.

Results Analysis The experimental results of the ε-differentially private algorithms on

both synthetic and real-world datasets are shown in Table 6.4. From the table, we can see

that in all the cases, Wishart and Laplacian mechanisms achieve better performance than

the output perturbation method. Furthermore, Wishart mechanism is the best among the

three types of methods. From Table 6.5, we can see that the Gaussian method has the lowest

relative error among all (ε, δ)-differentially private algorithms. Also, Gaussian mechanism

has the lowest relative error among all the compared methods. In general, the relative error

becomes smaller for larger ε. But in some cases, the relative error are almost same for

different ε values. This could be due to the fact the difference of these ε values is small. In

summary, all the above results are consistent with our theoretical analysis.

6.3.7 Omitted Proofs

Proof of Theorem 6.3.1

For convenience, we denote Step 1 as A. That is, Θ∗ρ = A(D). Also, we let D′ be a

neighboring dataset, and S ′ = S − 1
n
vvT + 1

n
v′v′T , Θ′∗ρ = A(D′). Then by (6.91), we have,

for any η > 0,

‖Θ∗ρ −Θ′∗ρ ‖F = ‖proxηg(Θ
∗
ρ − η(S −Θ∗−1

ρ ))− proxηg(Θ
′∗
ρ − η(S ′ −Θ

′∗−1
ρ ))‖F .

413



Then, by the non-expansive property of the proximal operator, we have

‖Θ∗ρ −Θ′∗ρ ‖F ≤ ‖(Θ∗ρ − η(S −Θ∗−1
ρ ))− (Θ′∗ρ − η(S ′ −Θ

′∗−1
ρ ))‖F .

If let f(Θ∗ρ) = Θ∗ρ + ηΘ∗−1
ρ , we have the following inequality:

‖Θ∗ρ −Θ′∗ρ ‖F ≤ ‖f(Θ∗ρ)− f(Θ′∗ρ )‖F + η‖S − S ′‖F . (6.98)

For the last term, we have ‖S −S ′‖F = ‖ 1
n
(vvT − v′v′T )‖F ≤ 2

n
. In order to bound the first

term, we need the following lemma, which has been proved in [250].

Lemma 6.3.6 ([250]). For Θ1,Θ2 ∈ Sd++, η > 0, we have

‖f(Θ1)− f(Θ2)‖F ≤ max{|1− η

a2
|, |1− η

b2
|}‖Θ1 −Θ2‖F ,

where a = max{σmax(Θ1), σmax(Θ2)} and b = min{σmin(Θ1), σmin(Θ2)}.

Take Θ∗ρ,Θ
′∗
ρ into Lemma 6.3.6 and set 0 < η < b2 in (6.98), we now have

‖Θ∗ρ −Θ′∗ρ ‖F ≤
2β2

n
, (6.99)

where β = max{‖Θ∗ρ‖2, ‖Θ′∗ρ ‖2}. Now we will show the ε-differential privacy. Since for
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every W ,

Pr[Θ∗ρ +N = W ]

Pr[Θ′∗ρ +N = W ]
=

Pr[N = W −Θ∗ρ]

Pr[N = W −Θ′∗ρ ]

=
exp (−1

2
tr(C−1(W −Θ∗ρ))

exp (−1
2

tr(C−1(W −Θ′∗ρ ))

= exp(−1

2
tr(C−1(Θ∗ρ −Θ′∗ρ ))

≤ exp(
1

2
‖C−1‖F‖Θ∗ρ −Θ′∗ρ ‖F )

≤ exp(
1

2

√
d
nερ2

d
5
2

2β2

n
)

≤ exp(ε).

Where the last inequality comes from (6.3.5).

Proof of Theorem 6.3.3

The proof is the same as Theorem 6.3.1, we have ‖Θ̂∗ρ − Θ∗ρ‖F ≤ ‖f(Θ̂∗ρ) − f(Θ′∗ρ )‖F +

η‖S − S̃‖F . Thus by Lemma 6.3.5 and take 0 < η < min{σ2
min(Θ̂∗ρ), σ

2
min(Θ∗ρ)}, we have

the theorem.
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Chapter 7

Some Other Machine Learning

Problems

7.1 Inferring Ground Truth From Crowdsourced Data Un-

der Local Attribute Differential Privacy

Nowadays, crowdsourcing gains an increasing popularity as it can be adopted to solve many

challenging question answering tasks that are easy for humans but difficult for the computer,

and it has many real-world machine learning or data mining applications. For example,

patients who are taking new drugs can answer the question on whether a specific drug has a

certain side-effect [235]. Also there are many commercial web service for crowdsourcing

such as Amazon Mechanical Turk (AMT). In these and many more applications, crowds of

users can contribute their efforts to answer questions of interest, which largely reduces the

financial cost and benefits various application domains.

Due to the variety in the quality of users, the information quality of the answers given

by the users varies significantly. Some users may have sufficient domain knowledge and can

provide accurate answers while others may submit biased or wrong answers. This diversity

of users motivates a basic and important problem in crowdsourcing: how the do the server
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get the accurate answers (or ground truth) via these noisy answers while also could infer the

underlying ability of each user. This problem is called Ground Truth Inference1 [365] and

there is a large amount of work study this problem in both Machine Learning [358], Data

Mining [366] and Theoretical Computer Science [197, 156, 93] communities.

However, in the problem of ground truth inference, collecting individual users answers

may cause the privacy issue on the users. For example, individual users can report the

relevance between a search query and a webpage, but their answers may leak their personal

preference. Patients’ reactions to drugs are valuable for physicians to discover drugs’ side-

effect, but these also contain sensitive information. Moreover, recently it has been reported

that AMT platform was leveraged by politicians to access a large pool of Facebook profiles

and collects ten of thousands of individuals demographic data [266].

Ground truth inference in Local Differential Privacy model has been first studied by

[198] and was later extended by [266] to the sparse crowdsourcing data case. Although

their methods are effective with tolerable accuracy loss practically, there are still some basic

theoretical open problems which have not been studied or solved. First, it is still unknown

what is the average error of the private estimators with respect to the underlying ground truth.

Secondly, while all the previous work focus on the quality private ground truth estimator, we

do not known whether we can infer the ability of each user under LDP model and what is the

estimation error with respect to the underlying ability of users. Finally, previous work only

shows that their methods have better performance than the private major voting algorithm

through experiments on some datasets. However, there is still no theoretically result which

shows the priority of their methods formally or mathematically.

In this section, I partially solve the above theoretical issues. That is, instead of consider-

ing the LDP model, in this section I will focus on one of its relaxations called local attribute

differential privacy (LADP) model. This is motivated by the fact that in practice of ground

truth inference, instead of keeping the each whole data record of each user private, it is

1Note that in the data mining community this problem is also called Truth Discovery.
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always the case that only a small number of answers given by users may contain sensitive

information, which means it is sufficient to protect some attributes of a vector (if we see

the set of answers of each user as a vector). LADP corresponds to an adversary cannot

infer a single attribute value despite he knows the values of all other attributes and thus

is more suitable for ground truth inference. We study the previous issues of ground truth

inference in LADP model. In particularly, I propose a method called private Dawid-Skene

method which outputs the private truth estimators and private ability of users. Specifically,

our contributions can be summarized as the followings.

• I first show that my private Dawid-Skene method is LADP. Then I provide the result

on the average error of the private truth estimators w.r.t the ground truth. I show

that under some statistical assumptions of the problem and if the initial vector of the

algorithm is closed enough to the ground truth, then the average error will be upper

bounded by exp(−nṽ) with high probability, where n is the number of users and ṽ is

the term called collective private wisdom which is related to the privacy level ε (see

Theorem 7.1.2 for details).

• I also show that under the same assumptions, the output of private ability of users

has the estimation error of O(
√

logm
mε2

), where m is the number of tasks with high

probability (see Theorem 7.1.3 for details).

• Finally, I compare our method with the classical private major voting algorithm.

To show the priority of my method, I propose a special instance. I show that the

estimation error given by the private major voting error is always greater than the

error given by our algorithm, which means the private major voting is always worse

than our method on this instance theoretically. See Theorem 7.1.4 for details.
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7.1.1 Related Work

There is much attention on studying crowdsourcing system in LDP model. For example,

[248] consider the problem of publishing high dimensional crowdsourced data in LDP

model. [155] propose a method which could generating synthetic crowdsourced data via

some Privacy-Test. However, their methods are incomparable with ours due to that there

utility is different with ours and also there is no theoretical guarantees on their output.

Among all the previous work, maybe [198] and [266] are the most relevant to ours.

In [198] the authors propose a two-layer perturbation mechanism based on randomized

response to protect users privacy. [266] consider the case where the data is sparse and

propose a private mechanism based on the formula of Matrix Factorization and randomized

response. However, as we mentioned before, first, their methods can only output private

estimators of the ground truth and it is unknown whether they can also estimate the ability

of users. Secondly, there is no theoretical guarantees of the average error of the ground

truth. Moreover, in all of these work they compared with the private major voting algorithm

practically on some datasets and showed that their method have better performance. However,

there is no theoretical guarantees on these comparisons. Thus, our work provides some

theoretical guarantees which have not been solved in these previous work.

Our method is motivated by the classical Dawid-Skene method [86], which laid a solid

foundation in the field of crowdscourcing. Extensions of the framework under a Bayesian

setting were investigated by [72]. However, there is no previous study on the private version

of Dawid-Skene method. Moreover, compared with the classical Dawid-Skene method, here

we need some modifications such as perturbation and projection.

7.1.2 Preliminaries

In this section, we review the definition of ground truth estimation in crowdsourcing, local

attribute differential privacy and the classical Dawid-Skene algorithm.
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Local Attribute Differential Privacy

In this section, we will mainly focus on Local Attribute Differential Privacy (LADP), which

is a relaxation of LDP and has been studied in many previous papers, such as [180, 141, 146,

206]. Mathematically it can be defined as the follows.

Definition 7.1.1 (Local Attribute Differential Privacy). A randomized algorithm A is ε-

locally is differentially private if for all x, x′ ∈ X with there is some i where x and x′ are

differ in the i-th coordinate and all for all events S in the output of A, we have

P(A(x) ∈ S) ≤ eεP(A(x′) ∈ S).

We note that the only difference between LDP and LADP is in LADP we have an

additional restriction on x, x′. LADP corresponds to an adversary cannot infer a single

attribute value despite he knows the values of all other attributes.

Problem Setting

We now start by formally define the problem of Ground Truth Inference. Conceptually,

there are two parties, sever and user, are involved in the crowdsourced question answering.

We assume there are m tasks and n users, each task j ∈ [m] is independent with other tasks

and is associated with a label y∗j ∈ {0, 1} which is called the ground truth. We note that

in practice the number of tasks m is much larger than the number of users n, such as the

Web and AdultCotent datasets [266]. The users, who represent the individual participants,

provide their own answer 0 or 1 to each of these tasks and send them to the server. However,

there is one main issue. Due to the quality of the users, these answers are noisy. It is more

challenging that the underlying quality of the workers are also unknown. Mathematically,

to model the users’ quality, [86] proposed the so-called confusion matrix. The confusion
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matrix for the i-the worker is denoted asπ(i)
00 , π

(i)
01

π
(i)
10 , π

(i)
11


where the number π(i)

kl represents the probability for the i-th user to give answer l given the

ground truth is k. In our paper, we will study a special class of the confusion matrix, where

the ability of the i-th user is characterized by the probability of success p∗i ∈ [0, 1] with the

confusion matrix p∗i , 1− p∗i
1− p∗i , p∗i

 .
Equivalently, here we will assume that for each user i ∈ [n], his/her abilities are the same

for all the m tasks.

After collecting the users answers, the server aggregate them to derive the final inference

and estimation. The goal is not only inferring the truth labels {y∗j}mi=1, but also estimating

the abilities of the users, i.e., {p∗i }ni=1.

The main privacy concern of users is that the submitted answers many contain their

sensitive information and thus users are not willing to leak these answers to other parties.

This prevents users from sharing their own answers with the server. The server, who is

assumed to be untrusted, may try to infer additional knowledge of users forms their submitted

answers. The unfaithful behavior of server can be driven by financial incentives or other

benefits. Motivated by this, it is naturally to study the problem of ground truth inference

under LDP model. However, the definition if LDP might be too strong for the problem of

ground truth inference. Since in the problem, it is always the case that only some of the

tasks are related to users sensitive information. Thus it is sufficient of we can protect these

tasks instead of the whole data record of each user in LDP model, which is just the LADP

model.

Thus, motivated by the strong need to provide users with privacy protection. In the
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Private Ground Truth Inference problem, we want to design ε-LADP algorithms whose

outputs {yj}nj=1 and {p∗i }ni=1 are close to {y∗j}mi=1 and {p∗i }ni=1, respectively.

7.1.3 Main Method

In this section we will propose our method and analyze its theoretical performance. Before

that, we first recall the classical Dawid-Skene method [86].

Dawid-Skene Method

Now we consider the problem of ground truth inference in the non-private case (see Section

7.1.2). We first observe that the ability of the works {pi}ni=1 can be easily estimated by using

the frequency of success of the workers if the ground truth {y∗j}mj=1 is known. Motivated by

this, [86] proposed to estimate {pi}ni=1 by maximizing the marginal likelihood function by

giving the ground truth:

P(X|y, p) = Πj∈[m]Πi∈[n]P(Xij|yj, pi)

= Πj∈[m]Πi∈[n]p
I(Xij=yj)
i (1− pi)I(Xij=1−yj), (7.1)

where I is the indicator function 2. Integrating out the ground truth with a uniform prior, the

marginal likelihood is

P(X|p) = Πj∈[m]

(1

2
Πi∈[n]p

Xij
i (1 − pi)

1−Xij +
1

2
Πi∈[n](1 − pi)

Xijp
1−Xij
i

)
. (7.2)

Thus, the the maximum likelihood estimator (MLE) based on (7.2) is defined as

p̂ = arg max
p

logP (X|p).

2Given an event A, I(A) = 1 if A happens and otherwise it is 0.
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After getting the MLE solution p̂ = (p̂1, p̂2, · · · , p̂n), we can plug it into the Bayes formula

and get an estimator for the ground truth y∗:

ŷj =
Πi∈[n]p̂

Xij
i (1− p̂i)1−Xij

Πi∈[n]p̂
Xij
i (1− p̂i)1−Xij + Πi∈[n](1− p̂i)Xij p̂

1−Xij
i

, (7.3)

Note that we implicitly use the uniform prior in the Bayes formula and the resulting

estimator ŷ is a soft label, taking value in [0, 1]m. Now the pair of estimator (p̂, ŷ) is the

global optimizer of the following objective function.

F (p, y) =
∑
i

∑
j

yj
(
Xij log pi + (1−Xij) log(1− pi)

)
+

∑
i

∑
j

(1−yi)
(
Xij log(1−pi)+(1−Xij) log pi)+

∑
j

(yj log
1

yj
+(1−yj) log

1

1− yj
.

(7.4)

[226] showed that optimizing over logP(X|p) is equivalent as optimizing over F (p, y),

i.e., (p̂, ŷ) = arg maxF (p, y), while the latter one is more tractable. In order to maximize

(7.4), one natural and heuristic way is to iteratively update p an y. That is, given an initial

estimator y(0), the t-th step of the iterative algorithm is

p(t) = arg maxF (p, y(t−1)), y(t) = arg maxF (p(t), y). (7.5)

Calculating (7.5) directly, we have the followings:

p
(t)
i =

1

m

∑
j∈[m]

(
(1−Xij)(1− y(t−1)

j ) +Xijy
(t−1)
j

)
, (7.6)

y
(t)
j ∝ Πi∈[n](p

(t)
i )Xij(1− p(t)

i )1−Xij , (7.7)

1− y(t)
j ∝ Πi∈[n](p

(t)
i )1−Xij(1− p(t)

i )Xij . (7.8)

Eq. (7.6)-(7.8), are given by [86] and are called Dawid-Skene method.
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Private Dawid-Skene Estimation

Now we propose the our Private Dawid-Skene method. The idea is that for each user i ∈ [n]

who process answers (Xi1, Xi2, · · · , Xij), he/she perturbs each answer by the following

distribution:

X̂ij =


Xij w.p. eε

eε+1

1−Xij w.p. 1
eε+1

.

(7.9)

After the server getting these perturbed answers {X̂ij}i∈[n],j∈[m], it then performs the Dawid-

Skene estimator on these perturbed answers, see Algorithm 7.1.54 for details. However, we

note that instead of performing (7.6) for updating the abilities of users, here we perform a

projected version, that is

p
(t)
i = ΠC(λ)

1

m

∑
j∈[m]

(
(1−Xij)(1− y(t−1)

j ) +Xijy
t−1
j

)
. (7.10)

Where ΠC(λ) is the projection operator on a interval C(λ) = [λ, 1 − λ] with some small

λ > 0. The motivation is that in the case of the estimator p(t)
i is 0 or 1 for some i ∈ [n]

and t ∈ [T ], p(t)
i will be trapped in its current value, which might be a poor local optimizer.

Thus, in order to avoid, we perform the projector operator to keep p(t)
i be slightly away from

0 or 1. Later, we will see that an appropriate value of λ is crucial for the rate of convergence.

We note that this operator also has been used and studied in [121].

Also, we note that, after the T -th iteration, instead of releasing the the estimators of the

ability p(T )
i directly, we have to post-process them via Step 7 in Algorithm 7.1.54. This is

due to that, {pTi }i∈[n] are some biased estimators of the underlying ability {p∗i }i∈[n] since the

perturbation procedure in Step 2. Thus, in order to get some useful estimators we need to

rescale them. We will see later for the reason of choosing these terms for rescaling.

Finally, since the terms {yj}j∈[m] are soft labels contained in [0, 1]m, in order to get hard

labels as final answers, we need to do a round procedure in step 8. We will show that it will
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not effect the error to much.

Algorithm 7.1.54 Private Dawid-Skene Method
Input: T is the number of iteration, ε > 0 is the privacy parameter, y(0) is the initial vector,
worker i ∈ [n] process the answers Xi = (Xi1, · · · , Xim) ∈ {0, 1}m.

1: for Each worker i ∈ [n] do
2: Perturb each Xij, j ∈ [m] by the distribution (7.9) and get X̂ij . Then send {X̂ij}mj=1

to the server.
3: end for
4: for t = 1, · · · , T do
5: The server perform the updating (7.10), (7.7), (7.8) on {X̂ij}i∈[n],j∈[m] and get
{p(t)

i }i∈[n], {y(t)
j }j∈[m].

6: end for
7: For each i ∈ [n], let p̂(T )

i = eε+1
eε−1

(p
(T )
i − 1

eε+1
).

8: For each j ∈ [m], let ŷ(T )
j = I(y(T )

j ≥ 1
2
).

9: return p̂(T ) = {p̂(T )
i }i∈[n] and {ŷ(T )

j }mj=1.

The following theorem shows that the algorithm is LADP. Not only LADP, it is also

easy to see that Algorithm 7.1.54 is also mε locally differentially private.

Theorem 7.1.1. For any given ε > 0, Algorithm 7.1.54 is ε-LADP.

7.1.4 Theoretical Guarantees

In this section, we will give the estimation errors of the outputs {p̂(T )
i }i∈[n] and {y(T )

j }mj=1 to

the underlying abilities and ground truth, respectively. Before showing the explicit result,

we first introduce some critical quantities.

First, for each user i ∈ [n], we define the term of private effective ability as

µ̂i =
eε − 1

eε + 1
µi +

1

eε + 1
, (7.11)

where µi is the effective ability proposed by [121]:

µi = p∗i I{p∗i ≥
1

2
}+ (1− p∗i )I{p∗i <

1

2
}. (7.12)
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Intuitively, µi measures how much information we can get from the user i: when p∗i >
1
2

it is just the underlying ability, when pi < 1
2

then we can use the information to detect

and invert the answers. µ̂i can be thought as the private version of µi due to the effect of

perturbation by (7.9). When the algorithm is extremely private i.e., ε→ 0, we can see that

µ̂i → 1
2
, that is all the workers become spammers. Equivalently, from (7.9) we can see that

P(X̂ij = 0) = P(X̂ij = 1) = 1
2
, which means we cannot get any useful information from

the perturbed observations. However, when the algorithm tends to be non-private, that is

ε→∞, we have µ̂i → µi, in this case the private effective ability will be the same as the

effective ability. We note that for both µi, µ̂i are in [1
2
, 1].

Now we define the term of collective private wisdom υ̂ as

υ̂ =
1

n

n∑
i=1

(2µ̂i − 1)2. (7.13)

υ̂ measures the proportion of experts among the crowd under the privacy constraint, when

the ε→ 0, then υ̂ → 0 since in the extreme private case we cannot distinguish which one is

the expert. When ε→∞, then υ̂ → υ = 1
n

∑
i(2µi − 1)2, which is the collective wisdom

in [121].

Note that the objective functionF (p, y) in (7.4) is non-convex with the fixed {X̂ij}i∈[n],j∈[m].

Thus, alternating maximization procedures (7.6) and (7.7) will only converge to some local

minimum. However, in the following theorem, we will show that under the setting of

m� n, with some appropriate initial vector y(0), the iterations {y(t)
j }j∈[m] after the first step

will be in the neighborhood of the ground truth {y∗j}j∈[m] with high probability.

Theorem 7.1.2. Assume n and m are sufficiently large so that n ≤ m ≤ en, logm
n
≤ v̂ and

the initial vector y(0) satisfies

1

m

∑
j∈[m]

|y(0)
j − y∗j | ≤

√
logm

m
. (7.14)
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Whenever the parameter λ of Algorithm 7.1.54 are chose in the range

16

v̂

√
logm

m
≤ λ ≤ 1

8
− 1

2

√
logm

m
. (7.15)

Then for any y∗ ∈ {0, 1}m, we have

1

m

∑
j∈[m]

|ŷ(T )
j − y∗j | ≤ 2 exp(−1

2
nv̂). (7.16)

with probability at least 1− C′

m
for some constant C ′ > 0.

From Theorem 7.1.2, we can see that as long as the our initial guess has the average

error of Õ( 1√
m

), then for some λ the average error will decreases to exp(−1
2
nv̂). We can see

that when ε deceases, this upper bound will increase, which means the error will be larger.

Equivalently, this shows that when the algorithm is more private, the error bound will be

larger. When ε = 0, the upper bound becomes 1
2

and will be trivial.

The following theorem states that our algorithm not only can almost infer the ground

truth, but also can estimate the users’ abilities with some statistical error.

Theorem 7.1.3. Under the assumptions in Theorem 7.1.2. For 0 < ε ≤ 1 we have the

followings with probability at least 1− C′

m
for some C ′ > 0:

max
i∈[n]
|p̂(T )
i − p∗i | ≤ 6

√
logm

mε2
, (7.17)

Eq. (7.17) characterize the accuracy for users’ abilities from the worst-case. We know the

rate of error is Õ( 1
mε2

), which means that it will decreases as the number of tasks increases.

Moreover, when the algorithm is more private, the bound will be larger.
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7.1.5 Comparison with Private Major Voting

In order to show the priority of our method theoretically, in this part, we will compared our

algorithm with the most trivial method i.e., private major voting. The algorithm of private

major voting is quite simple; the steps of the user side is the same as steps 1-3 in Algorithm

7.1.54 while each user send the private answers to the server. After collecting all of the

private answers, the server will do major voting and decide the output for each task, that is

for all j ∈ [m]

ȳj = I(
∑
i∈[n]

X̂ij ≥
n

2
). (7.18)

Now we will provide a case where the upper bound (7.16) is lower than the bound of private

major voting, which means our algorithm has better performance than private major voting

theoretically. Formally, suppose that there are dnδe number of experts, i.e., p∗i = 1 and the

left workers are spammers, i.e., p∗i = 1
2
. Here we assume that δ ∈ (0, 1

2
), that is only a small

proportion of workers are experts.

Next theorem show that the expected average error of the outputs {ȳj}j∈[m] in (7.18) of

private major voting is larger than the average error in Theorem 7.1.2 if ε in some range.

Theorem 7.1.4. For any ε > 0, private major voting is ε-LADP. Moreover, if ε > ln 85
15

and

n > C for some sufficiently large constant C (only related to δ), then the outputs {ȳj}j∈[m]

satisfy

1

m

∑
j∈[m]

E|ȳj − y∗j | ≥ 2
(

exp(−1

2
(
eε − 1

eε + 1
)2dnδe)

)
≥ 1

m

∑
j∈[m]

|ŷ(T )
j − y∗j |, (7.19)

where {ŷ(T )
j } are outputs of Algorithm 7.1.54.
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7.1.6 Omitted Proofs

Proof of Theorem 7.1.1

Now considerXi, X
′
i ∈ {0, 1}m differ in the j-th coordinate, i.e.,Xi = (Xi1, Xi2, · · · , Xij, · · · , Xim)

and Xi = (Xi1, Xi2, · · · , X ′ij, · · · , Xim). For any S ∈ {0, 1}m, by the independence and

the definition of (7.9) we have

P(X̂i ∈ S)

P(X̂ ′i ∈ S)
=

P(X̂ij = Sj)

P(X̂ ′ij = Sj)
(7.20)

when Xij = 1 and Xij = 0 and Sj = 1 then (7.20) equals eε. When Sj the then (7.20)

equals 1
eε
≤ eε. The same for the case where Xij = 0 and Xij = 1. Thus in total we can see

that (7.20) less equals than eε, which satisfies the definition of LADP. Moreover, due to the

post-processing property of differential privacy [104], we know that Algorithm 7.1.54 is

LADP.

Proof of Theorem 7.1.2

By the definition of X̂ij and the assumption, we can represent it as

X̂ij = y∗jTij + (1− y∗j )(1− Tij) (7.21)

where Tij is a Bernoulli random variable with parameter

p̂∗i =
eε

eε + 1
p∗i +

1

eε + 1
(1− p∗i ) =

eε − 1

eε + 1
p∗i +

1

eε + 1
. (7.22)

We notice that Tij means that the i-th worker answers the j-th task correctly.

We also define the projected version of p̂∗j as

p̂∗λ,i = λI(p̂∗i < λ) + p̂∗i I(λ ≤ p̂∗i ≤ 1− λ) + (1− λ)I(p̂∗i > 1− λ).

429



To proof Theorem 7.1.2, we first proof a stronger claim that for each iteration t ≥ 1,

{y(t)
j }j∈[m] satisfies Eq. (7.16) with probability at least 1− C′

m
.

We denote the error of {y(t)
j }j∈[m] as rt, that is

rt =
1

m

∑
j∈[m]

|y(t)
j − y∗j |.

By assumption (7.14) we know r0 ≤
√

logm
m

. We first prove the following lemma:

Lemma 7.1.1. Define the events

E1 = {max
i∈[n]
| 1
m

∑
j∈[m]

(Tij − p̂∗i )| ≤
√

logm

m
}.

E2 = {max
j∈[m]
|
∑
i∈[n]

(Tij − p̂∗i ) log
p̂∗λ,i

1− p̂∗λ,i
| ≤ 2 log(

1

λ
)
√
n logm}.

Then P(E1

⋂
E2) ≥ 1− C′

m
for some C ′ > 0.

Proof of Lemma 7.1.1. To proof this, we recall the Hoeffiding’s inequality

Lemma 7.1.2 (Hoeffiding’s inequality). For independent bounded random variables {Xi}i∈[n]

satisfying Xi ∈ [ai, bi] for all i ∈ [n], we have for any t ≥ 0

P
(
| 1
n

∑
i∈[n]

(Xi − EXi)| > t
)
≤ 2 exp(

−2n2t2∑
i∈[n](bi − ai)2

).

Note that for the Event E1, by Lemma 7.1.2, we have P(E1) ≥ 1− C1

m
for some C1 > 0.

For the event E2, we note that by the definition of p̂∗λ,i we have

log
p̂∗λ,i

1− p̂∗λ,i
≤ log

1− λ
λ
≤ log

1

λ
.

Thus, by Lemma 7.1.2, we know there is a C2 > 0, where P(E2) ≥ 1− C2

m
.
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In the following we will always assume events E1 and E2 in Lemma 7.1.1 hold. Next

we will prove the following lemma:

Lemma 7.1.3. Under the event E1, as long as 2λ + rt−1 ≤ 1
4

and m ≥ 9, we have for all

t ≥ 1:

max
i∈[n]
| log

p
(t)
i

1− p(t)
i

− log
p̂∗λ,i

1− p̂∗λ,i
| ≤ 2

λ

√
logm

m
+

2

λ
rt−1.

Proof of Lemma 7.1.3. We note that from Eq. (7.6) and Eq. (7.10) on {X̂ij}i∈[n],j∈[m] we

can get

p
(t)
i = λI(p̄(t)

i < λ) + p̄
(t)
i I(λ ≤ p̄

(t)
i ≤ 1− λ) + (1− λ)I(p̄(t)

i > 1− λ).

Where p̄(t)
i is the value of (7.6), i.e., the vector before projecting. By the definitions (7.21)

and (7.6) we can get the following via simple calculations:

|p̄(t)
i − p̂∗i | ≤ |

1

m

∑
j

(Tij − p̂∗i )|+ rt−1. (7.23)

To show (7.23), by definition of p̄(t)
i we have

p
(t)
i =

1

m

∑
j∈[m]

(
(1− X̂ij)(1− y(t−1)

j ) + X̂ijy
(t−1)
j

)
. (7.24)

Now we fix j ∈ [m] and assume that y∗j = 1, then by (7.21) we have X̂ij = Tij , we can get

|(1− X̂ij)(1− y(t−1)
j ) + X̂ijy

(t−1)
j − p̂∗i | = |2Tijy(t−1)

j − Tij − y(t−1)
j + 1− p∗i |. (7.25)

When Tij = 0, (7.25) is |y(t−1)
j − 1 + p∗i | ≤ |p∗i | + |y

(t−1)
j − y∗j |. When Tij = 1, (7.25) is

|y(t−1)
j − p∗i | ≤ |1− p∗i |+ ||y

(t−1)
j − y∗j |. Thus in total we have (7.25) less than |Tij − p∗i |+

||y(t−1)
j − y∗j |. The same for the case when y∗j = 0.

Taking the average from 1 to m we can get (7.23).
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Now we have for each i ∈ [n]

| log
p

(t)
i

1− p(t)
i

− log
p̂∗λ,i

1− p̂∗λ,i
| ≤

p
(t)
i

1−p(t)
i

− p̂∗λ,i
1−p̂∗λ,i

min{ p
(t)
i

1−p(t)
i

,
p̂∗λ,i

1−p̂∗λ,i
}

(7.26)

≤ 2

λ
|p(t)
i − p̂∗λ,i| (7.27)

≤ 2

λ
|p̄(t)
i − p̂∗i |+

4

λ
I(|p̄(t)

i − p̂∗i | > 1− 2λ) (7.28)

≤ 2

λ
(| 1
m

∑
j

(Tij − p̂∗i )|+ rt−1) +
4

λ
I(| 1
m

∑
j

(Tij − p̂∗i )| >
3

4
) (7.29)

≤ 2

λ

√
logm

m
+

2

λ
rt−1. (7.30)

Where the first inequality (7.26) is due to the following inequality

| log x− log y| ≤ |x− y|
min{x, y}

.

The inequality (7.27) is due to that λ ≤ p
(t)
i , p̂

∗
λ,i ≤ 1− λ and simple calculation.

The inequality (7.28) is due to the following. When |p̄(t)
i − p̂∗i | > 1−2λ, then |p(t)

i − p̂∗λ,i| ≤ 2.

Otherwise by the definition we have either p̄(t)
i or p̂∗i is in the interval [λ, 1 − λ], thus we

have |p(t)
i − p̂∗λ,i| ≤ |p̄

(t)
i − p̂∗i | due to the property of contraction of the projection.

The inequality (7.29) is due to the following. By (7.23) we have

I(|p̄(t)
i − p̂∗i | > 1− 2λ) ≤ I(| 1

m

∑
j

(Tij − p̂∗i )|+ rt−1 > 1− 2λ)

= I(| 1
m

∑
j

(Tij − p̂∗i )| > 1− 2λ− rt−1)

≤ I(| 1
m

∑
j

(Tij − p̂∗i )| >
3

4
), (7.31)

where the last inequality is due to the assumption that 2λ+ rt−1 ≤ 1
4
.

The inequality (7.29) is due to the assumption of the event E1 in Lemma 7.1.1 holds.

Thus, we get the proof.
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Now we back to the proof of Theorem 7.1.2.

Since we already know that r0 ≤
√

logm
m

and we want to show it hold for all rt.

We will prove it by induction, assume rt−1 ≤
√

logm
m

holds. Denote the terms

Atj, B
t
j, j ∈ [m] as

Atj = log Πi∈[n](p
(t)
i )X̂ij(1− p(t)

i )1−X̂ij =
∑
i

(
X̂ij log p

(t)
i + (1− X̂ij) log(1− p(t)

i )
)

Bt
j = log Πi∈[n](1− p(t)

i )X̂ij(p
(t)
i )1−X̂ij =

∑
i

(
X̂ij log(1− p(t)

i ) + (1− X̂ij) log p
(t)
i

)
.

Then by the definition of {y(t)
j }mj=1 we have

rt =
1

m

∑
j

|y(t)
j − y∗j | =

1

m

∑
j

|
exp(Atj)

exp(Atj) + exp(Bt
j)
− y∗j |

=
1

m

∑
j

|
exp(Atj −Bt

j)

exp(Atj −Bt
j) + 1

− y∗j |

=
1

m

∑
j

1

1 + exp(
∑

i(2Tij − 1) log
p

(t)
i

1−p(t)
i

)

≤ 1

m

∑
j

exp(−
∑
i

(2Tij − 1) log
p

(t)
i

1− p(t)
i

)

≤ 1

m

∑
j

exp(−
∑
i

(2Tij − 1) log
p̂∗λ,i

1− p̂∗λ,i
+

4n

λ

√
logm

m
)

≤ 1

m

∑
j

exp(−
∑
i

(2p̂∗i − 1) log
p̂∗λ,i

1− p̂∗λ,i
) exp(

4n

λ

√
logm

m
+ 4 log

1

λ

√
n logm).

Where the equalities are followed by the direct computation. The second inequality is by

Lemma 7.1.3 and the assumption of rt−1 ≤
√

logm
m

, the third inequality is due to Lemma

7.1.1.
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For the exponent in the first term we have

∑
i

(2p̂∗i − 1) log
p̂∗λ,i

1− p̂∗λ,i

= (
∑
i:p̂∗i<λ

+
∑

i:λ≤p̂∗i≤1−λ

+
∑

i:p̂∗i>1−λ

)(2p̂∗i − 1) log
p̂∗λ,i

1− p̂∗λ,i

≥
(
|{i : p̂∗i < λ}|+ |{i : p̂∗i > 1− λ}|

)
(1− 2λ) log

1− λ
λ

+
∑

i:λ≤p̂∗i≤1−λ

(2p̂∗i − 1) log
p̂∗λ,i

1− p̂∗λ,i

≥
(
|{i : p̂∗i < λ}|+ |{i : p̂∗i > 1− λ}|

)
+

∑
i:λ≤p̂∗i≤1−λ

(2p̂∗i − 1)2

≥
∑
i

(2p̂∗i − 1)2

In the following we will show that (2p̂∗i −1)2 = (2µ̂i−1)2, by this we have
∑

i(2p̂
∗
i −1)2 =

nv̂. This is due to the following equation:

µ̂i = p̂∗i I(p̂∗i ≥
1

2
) + (1− p̂∗i )I(p̂∗i <

1

2
). (7.32)

Thus, in total we have

rt ≤ exp(
4n

λ

√
logm

m
+ 4 log

1

λ

√
n logm− nυ̂) (7.33)

≤ exp(−1

2
nυ̂) ≤

√
logm

m
. (7.34)

Where the second inequality is due to the assumption on the range of λ.

Next, due to the rounding procedure (Step 8 of Algorithm 7.1.54) and

|I(yj ≥
1

2
)− 1| ≤ 2|yj − 1|

|I(yj <
1

2
)− 1| ≤ 2|yj − 0|

We have 1
m

∑
j∈[m] |ŷ

(T )
j − y∗j | ≤ 2 exp(−1

2
nυ̂).
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Proof of Theorem 7.1.3

For (7.17), due to (7.23) we can see for each j ∈ [n]

|p(T )
j − p̂∗j | ≤

√
logm

m
+ rt−1 ≤ 2

√
logm

m
.

By the definition of p̂∗i . We have

|p(T )
j −

eε − 1

eε + 1
p∗j +

1

eε + 1
| ≤ 2

√
logm

m

which implies

|p̂(T )
j − p∗j | ≤ 2

eε + 1

eε − 1

√
logm

m
≤ 6

ε

√
logm

m
.

Proof of Theorem 7.1.4

To proof Theorem 7.1.4, we need the Berry-Essen Lemma in [255]:

Lemma 7.1.4. Let X1, · · · , Xn be i.i.d random variables with mean 0 and variance σ2.

Define the function Fn(t) = P( 1
σ
√
n

∑
iXi ≤ t). Then we have

sup
t∈R
|Fn(t)− Φ(t)| ≤ cE|X1|3

σ
√
n

, (7.35)

where c < 0.4748 and Φ(t) is the cumulative distribution function of the standard Gaussian

distribution N (0, 1).

By the definition of majority voting and the definition in (7.21) we have |ȳj − y∗j | =

I( 1
n

∑
i Tij <

1
2
). To prove this, we first consider the case where y∗j = 1. Then by (7.21) we
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have

|ȳj − y∗j | = |I(
∑
i∈[n]

X̂ij ≥
n

2
)− 1|

= |I(
∑
i∈[n]

Tij ≥
n

2
)− 1| = I(

1

n

∑
i

Tij <
1

2
).

The same for the case where y∗j − 1.

Thus

1

m

∑
j∈[m]

E|ȳj − y∗j | =
1

m

∑
j∈[m]

P(
1

n

∑
i

Tij <
1

2
)

= P(
1

n

∑
i

Ti <
1

2
),

where {Ti}i∈[n] are independent Bernoulli random variable with parameter p̂∗i in (7.22).

By the definition (7.22), we known that if p∗i = 1
2

then p̂∗i = 1
2
, if p∗i = 1 then

p̂∗i = eε

eε+1
. W.l.o.g we assume p∗i = 1

2
for i ≤ n− dnδe. By Lemma 7.1.4 with E[Ti − 1

2
] =

0,Var(Ti − 1
2
) = 1

4
and E|Ti − 1

2
|3 = 1

8
for i ≤ n− dnδe we have

sup
t
|P{ 2√

n− dnδe

∑
i≤n−dnδe

(Ti −
1

2
) ≤ t} − Φ(t)| ≤ (n− dnδe)− 1

2

16
. (7.36)

Also by direct calculation we have

P(
1

n

∑
i

Ti <
1

2
) ≥ P{ 2√

n− dnδe

∑
i≤n−dnδe

(Ti −
1

2
)

≥ − dnδe√
n− dnδe

} × P{Ti = 1,∀i > n− dnδe}

Thus by (7.36) we have

P(
1

n

∑
i

Ti <
1

2
) ≥ (

eε

eε + 1
)dn

δe × {Φ(− dnδe√
n− dnδe

)− (n− dnδe)− 1
2

16
}. (7.37)
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We know that since δ < 1
2
, thus for sufficiently large n we have Φ(− dnδe√

n−dnδe
) ≥ 1

4
and

(n−dnδe)−
1
2

16
≤ 1

8
, which are due to that

lim
n→∞

Φ(− dnδe√
n− dnδe

) = Φ(0) =
1

2
,

lim
n→∞

(n− dnδe)− 1
2

16
= 0.

Thus

P(
1

n

∑
i

Ti <
1

2
) ≥ (

eε

eε + 1
)dn

δe1

8
.

On the other side by Theorem 7.1.2 we have

1

m

∑
j∈[m]

|ŷ(T )
j − y∗j | ≤ 2

(
exp(−1

2
(
eε − 1

eε + 1
)2dnδe)

)
.

Now we will show that for large enough n:

2
(

exp(−1

2
(
eε − 1

eε + 1
)2dnδe)

)
≤ (

eε

eε + 1
)dn

δe1

8
. (7.38)

Denote v = eε

eε+1
∈ [0.85, 1), it is equivalent to show

exp(−1
2
(2v − 1)2dnδe)
vdnδe

≤ 1

16
(7.39)

Thus, it is sufficient if we can show the following

lim
n→∞

exp(−1
2
(2v − 1)2dnδe)
vdnδe

= 0. (7.40)

we note LHS of (7.40) equals to exp((−1
2
(2v − 1)2 − log v)dnδe), we will show f(v) =

1
2
(2v − 1)2 + log v > 0 under our assumption on ε. This is due to that f(v) is an increasing

function, it is easy to see that f(0.85) > 0. Thus we proof Eq. (7.40).
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7.2 Differentially Private Expectation Maximization Algo-

rithm

As one of the most popular techniques for estimating the maximum likelihood of mixture

models or incomplete data problems, Expectation Maximization (EM) algorithm has been

widely applied to many areas such as genomics [188], finance [113], and crowdsourcing

[86]. EM algorithm is well-known for its convergence to an empirically good local estimator

[346]. Recent studies have further revealed that it can also provide finite sample statistical

guarantees [19, 369, 339, 353]. Specifically, [19] showed that classical EM and its gradient

ascent variant (gradient EM) are capable of achieving the first local convergence (theory) and

finite sample statistical rate of convergence. They also provided a (near) optimal minimax

rate for some canonical statistical models such as Gaussian mixture model (GMM), mixture

of regressions model (MRM) and linear regression with missing covariates (RMC).

The wide applications of EM also present some new challenges to this method. Particu-

larly, due to the existence of sensitive data and their distributed nature in many applications

like social science, biomedicine, and genomics, it is often challenging to preserve the privacy

of such data as they are extremely difficult to aggregate and learn from. Consider a case

where health records are scattered across multiple hospitals (or even countries), it is not

possible to process the whole dataset in a central server due to privacy and ownership

concerns. A better solution is to use some differentially private mechanisms to conduct the

aggregation and learning tasks.

Thus, to be able to use (gradient) EM algorithm to learn from these sensitive data, it is

urgent to design some DP versions of the (gradient) EM algorithm. [242] proposed the first

DP EM algorithm which mainly focuses on the practical behaviors of the method. Their

algorithm needs quite a few assumptions on the model and the data, which make it difficult to

extend to some canonical models mentioned above. Furthermore, unlike the aforementioned

non-private case, their algorithm does not provide any finite sample statistical guarantee on
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the solution (see Related Work section for detailed comparison). Thus, it is still unknown

whether there exists any DP variant of the (gradient) EM algorithm that has finite

sample statistical guarantees.

To answer this question, I propose in this section the first (ε, δ)-DP (Gradient) EM

algorithm with finite sample statistical guarantees. Specifically,

• I first show that, given an appropriate initialization βinit (i.e., ‖βinit − β∗‖2 ≤ κ‖β∗‖2

for some constant κ ∈ (0, 1)), if the model satisfies some additional assumptions and

the number of sample n is large enough, the output βpriv of our DP EM algorithm is

guaranteed to have a bounded estimation error, ‖βpriv − β∗‖2 ≤ Õ(d
√
τ√
nε

), with high

probability, where d is the dimensionality and τ is an upper bound of the second

moment of each coordinate of the gradient function.

• I then apply that general framework to the three canonical models: GMM, MRM and

RMC. Our private estimator achieves an estimation error that is upper bounded by

Õ( d√
nε

), Õ( d
3
2√
nε

) and Õ( d
3
2√
nε

) for GMM, MRM and RMC, respectively. It is notable

that they are the first statistical guarantees for MRM and RMC in the Differential

Privacy model, and the error bound for GMM is near optimal in some cases. I also

conduct thorough experiments on the these three models. Experimental results on

these models are consistent with theoretical analysis.

7.2.1 Related Work

As mentioned previously, designing DP version of EM algorithm is still not well studied. To

our best knowledge, the only work on DP EM algorithm is given by [242]. However, their

result is incomparable with ours for the following reasons. Firstly, our work aims to achieve

finite sample statistical guarantees for the DP EM algorithm, while [242] mainly focuses

on designing practical DP EM algorithm that does not provide any statistical guarantees.

Particularly, [242] assumed that datasets are pre-processed such that the `2-norm of each
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data record is less than 1. This means that their algorithm will likely introduce additional

bias on the statistical guarantees. Secondly, [242] studied only the exponential family so that

noise can be directly added to the sufficient statistics. However, most of the latent variable

models do not satisfy such an assumption. This includes the MRM and RMC models to be

considered in this section.

In this section, we implement our general framework on three specific models, and DP

GMM is the only one that has been studied previously. Specifically, [233] provided the first

result for the general k-GMM based on the sample-and-aggregate framework. Later on,

[172] improved the result by a factor of
√
d/ε, and also claimed that their sample complexity

is near optimal. Compared with their result, our proposed algorithm ensures that when the

error α is some constant, it has the same sample complexity. Also, although their algorithm

has polynomial time complexity), it is actually not very practical and thus no practical study

has been conducted. Moreover, their algorithm is heavily dependent on a previous clustering

algorithm; it is unclear whether it can be extended to other mixture models. From these two

perspectives, our framework is more general and practical.

7.2.2 Preliminaries

Expectation Maximization

Let Y and Z be two random variables taking values in the sample spaces Y and Z , respec-

tively. Suppose that the pair (Y, Z) has a joint density function fβ∗ that belongs to some

parameterized family {fβ∗|β∗ ∈ Ω}. Rather than considering the whole pair of (Y, Z), we

observe only component Y . Thus, component Z can be viewed as the missing or latent

structure. We assume that the term hβ(y) is the margin distribution over the latent variable

Z, i.e., hβ(y) =
∫
Z fβ(y, z)dz. Let kβ(z|y) be the density of Z conditional on the observed

variable Y = y, that is, kβ(z|y) =
fβ(y,z)

hβ(y)
.

Given n observations y1, y2, · · · , yn of Y , the EM algorithm is to maximize the log-
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likelihood maxβ∈Ω `n(β) =
∑n

i=1 log hβ(yi). Due to the unobserved latent variable Z, it is

often difficult to directly evaluate `n(β). Thus, we consider the lower bound of `n(β) . By

Jensen’s inequality, we have

1

n
[`n(β)− `n(β′)] ≥ 1

n

n∑
i=1

∫
Z
kβ′(z|yi) log fβ(yi, z)dz

− 1

n

n∑
i=1

∫
Z
kβ′(z|yi) log fβ′(yi, z)dz. (7.41)

Let Qn(β; β′) = 1
n

∑n
i=1 qi(β; β′), where

qi(β; β′) =

∫
Z
kβ′(z|yi) log fβ(yi, z)dz.

3 (7.42)

Also, it is convenient to let Q(β; β′) denote the expectation of Qn(β; β′) w.r.t {yi}ni=1, that

is,

Q(β; β′) = Ey∼hβ∗
∫
Z
kβ′(z|y) log fβ(y, z)dz. (7.43)

We can see that the second term on the right hand side of (7.41) is independent on β.

Thus, given some fixed β′, we can maximize the lower bound function Qn(β; β′) over

β to obtain sufficiently large `n(β) − `n(β′). Thus, in the t-th iteration of the standard

EM algorithm, we can evaluate Qn(·; βt) at the E-step and then perform the operation of

βt+1 = maxβ∈Ω Qn(β; βt) at the M-step. See [215] for more details.

In addition to the exact maximization implementation of the M-step, we add a gradient

ascent implementation of the M-step, which performs an approximate maximization via a

gradient descent step.

Gradient EM Algorithm [19] When Qn(·; βt) is differentiable, the update of βt to βt+1

consists of the following two steps.

• E-step: Evaluate the functions in (7.42) to compute Qn(·; βt).

3We use q(β;β′) for general sample y.
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• M-step: Update βt+1 = βt + η∇Qn(βt; βt), where∇ is the derivative of Qn w.r.t the

first component and η is the step size.

Next, we give some examples that use the gradient EM algorithm. Note that they are the

typical examples for studying the statistical property of EM algorithm [339, 19, 353, 369].

Gaussian Mixture Model (GMM) Let y1, · · · , yn be n i.i.d samples from Y ∈ Rd with

Y = Z · β∗ + V, (7.44)

where Z is a Rademacher random variable (i.e., P(Z = +1) = P(Z = −1) = 1
2
), and

V ∼ N (0, σ2Id) is independent of Z for some known standard deviation σ. We have

∇q(β; β) = [2wβ(y)− 1] · y − β, (7.45)

where wβ(y) = 1
1+exp(−〈β,y〉/σ2)

.

Mixture of (Linear) Regressions Model (MRM) Let (x1, y1), (x2, y2), · · · , (xn, yn) be n

samples i.i.d sampled from Y ∈ R and X ∈ Rd with

Y = Z〈β∗, X〉+ V, (7.46)

where X ∼ N (0, Id), V ∼ N (0, σ2), Z is a Rademacher random variable, and X, V, Z are

independent. In this case we have

∇q(β; β) = (2wβ(x, y)− 1) · y · x− xxT · β, (7.47)

where wβ(x, y) = 1
1+exp(−y〈β,x〉/σ2)

.

Linear Regression with Missing Covariates (RMC) We assume that Y ∈ R and X ∈ Rd

satisfy

Y = 〈X, β∗〉+ V, (7.48)
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where X ∼ N (0, Id) and V ∼ N (0, σ2) are independent. Let x1, x2, · · · , xn be n observa-

tions of X with each coordinate of xi missing (unobserved) independently with probability

pm ∈ [0, 1). In this case, we have

∇q(β; β) = y ·mβ(xobs, y)−Kβ(xobs, y)β, (7.49)

where the functions mβ(xobs, y) ∈ Rd and Kβ(xobs, y) ∈ Rd×d are defined as:

mβ(xobs, y) = z � x+
y − 〈β, z � x〉

σ2 + ‖(1− z)� β‖2
2

(1− z)� β (7.50)

and

Kβ(xobs, y) = diag(1− z) +mβ(xobs, y) · [mβ(xobs, y)]T

− [(1− z)�mβ(xobs, y)] · [(1− z)�mβ(xobs, y)]T , (7.51)

where vector z ∈ Rd is defined as zj = 1 if xj is observed and zj = 0 is xj is missing, and

� denotes the Hadamard product of matrices.

Next, we provide several definitions on the required properties of functions Qn(·; ·)

and Q(·; ·). Note that some of them have been used in previous studies on the statistical

guarantees of EM algorithm [19, 339, 369].

Definition 7.2.1. Function Q(·; β∗) is self-consistent if β∗ = arg maxβ∈Ω Q(β; β∗). That

is, β∗ maximizes the lower bound of the log likelihood function.

Definition 7.2.2 (Lipschitz-Gradient-2(γ,B)). Q(·; ·) is called Lipschitz-Gradient-2(γ,B),

if for the underlying parameter β∗ and any β ∈ B for some set B, the following holds

‖∇Q(β; β∗)−∇Q(β; β)‖2 ≤ γ‖β − β∗‖2. (7.52)

We note that there are some differences between the definition of Lipschitz-Gradient-2
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and the Lipschitz continuity condition in the convex optimization literature [230]. Firstly,

in (7.52), the gradient is w.r.t the second component, while the Lipschitz continuity is w.r.t

the first component. Secondly, the property holds only for fixed β∗ and any β, while the

Lipschitz continuity is for all β, β′ ∈ B.

Definition 7.2.3 (µ-smooth). Q(·; β∗) is µ-smooth, that is if for any β, β′ ∈ B, Q(β; β∗) ≥

Q(β′; β∗) + (β − β′)T∇Q(β′; β∗)− µ
2
‖β′ − β‖2

2.

Definition 7.2.4 (υ-strongly concave). Q(·; β∗) is υ-strongly concave, that is if for any

β, β′ ∈ B, Q(β; β∗) ≤ Q(β′; β∗) + (β − β′)T∇Q(β′; β∗)− υ
2
‖β′ − β‖2

2.

In the following we will propose the assumptions that will be used throughout the

whole section. Note that these assumptions are commonly used in other works on statistical

analysis of EM algorithm such as [20, 369, 339].

Assumption 7.2.1. We assume that function Q(·; ·) in (7.43) is self-consistent, Lipschitz-

Gradient-2(γ,B), µ-smooth, υ-strongly concave over some set B. Moreover, we assume

that ∀j ∈ [d] and β ∈ B, there is some known upper bound τ on the second-order moment

of the j-coordinate of∇q(β, β), i.e., E(∇jq(β, β))2 ≤ τ and for each i ∈ [n],∇jqi(β, β) is

independent with others.

Due to the similarity with the Gradient Descent algorithm and the simplicity of illustrat-

ing our idea compared with the original EM algorithm, we will first focus on DP Gradient

EM algorithm.

7.2.3 Main Method

Main Difficulty

In the previous section, we introduced the Gradient EM algorithm, which updates the

estimator via the gradient ∇Qn(βt; βt). It is notable that this idea is quite similar to the

Gradient Descent algorithm. Moreover, we know that there are several DP versions of the
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(Stochastic) Gradient Descent algorithm such as [29, 328, 260, 298, 192]. The key idea of

DP Gradient Descent is adding some randomized noise such as Gaussian noise to preserve

DP property in each iteration, and by the composition theorem of DP ([104]), the whole

algorithm will still be DP. Thus, motivated by this, to design a DP variant of Gradient EM

algorithm, the most direct way is adding some Gaussian noise to the gradient ∇Qn(βt; βt)

in each iteration and updating the parameter.

However, it is notable that we cannot add Gaussian noise directly to the gradient in

the Gradient EM algorithm. The main reason is that all previous DP Gradient Descent

algorithms need to assume that each component of the gradient (which correspond to the

function ∇qi in (7.42)) is bounded, or the loss function is O(1)-Lipschitz, such as Logistic

Regression, so that its `2-norm sensitivity is bounded and thus the Gaussian mechanism can

be used. However, in the Gradient EM algorithm, each component (∇qi(βt; βt) in (7.42)) is

unbounded in most of the cases. For example, we can easily show the following fact.

Theorem 7.2.1. Consider the GMM in (7.44), there is a case with fixed β, such that for

each constant c, with positive probability w.r.t y we have ‖∇q(β; β)‖2 ≥ c.

Thus, to design a DP (Gradient) EM algorithm, the major difficulty lies in how to process

the gradient to make its sensitivity bounded. Two main approaches are used in previous

work: (1) [242] assumed that datasets are pre-processed such that the `2 norm of each sample

is bounded by 1. However, as mentioned previously, our goal is to achieve the statistical

guarantees for the DP (Gradient) EM algorithm. If a similar approach is adopted in our

algorithm, the (manual) normalization can easily destroy many statistical properties of the

data and force the private estimator to introduce additional bias, making it inconsistent.4 (2)

Instead of normalizing the datasets, [1] first clipped the gradient to ensure that the `2-norm

of each component of the gradient is bounded by the threshold C, and then added Gaussian

noise (see Algorithm 7.2.55 for more details). However, such an approach may cause two

issues. First, in general clipping gradient could introduce additional bias even in statistical
4An estimator βn is consistent if limn→∞ ‖βn − β∗‖2 = 0.
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estimation, which has also been pointed out in [261]. Second, the threshold C heavily affects

the convergence speed and selecting the best C is quite difficult (see Experimental section

for more details). Due to these two reasons, it is hard to study the statistical guarantees of

Algorithm 7.2.55. Thus, we need a new approach to pre-process the gradient to ensure that

it has not only bounded `2-norm but also consistent statistical guarantee.

Algorithm 7.2.55 Clipped DP Gradient EM
Input: D = {yi}ni=1 ⊂ Rd, privacy parameters ε, δ; Qn(·; ·) and its q(·; ·), initial parameter
β0, gradient norm C, step size η and the number of iterations T .

1: for t = 1, 2, · · · , T do
2: For each i ∈ [n], evaluate the function in (7.42) to compute qi(β; βt−1).
3: Clip gradient:

∇q̄i(βt−1; βt−1) =
∇qi(βt−1; βt−1)

max{1, ‖∇qi(βt−1;βt−1)‖2
C

}
.

4: Update βt = βt+η(∇Q̄n(βt−1; βt−1)+N (0, C2σ2Id), where∇Q̄n(βt−1; βt−1)) =
1
n

∑n
i=1∇q̄i(βt−1; βt−1) and σ2 = c

T log 1
δ

n2ε2
for some constant c.

5: end for
6: Return βT

Our Method

In this section, we will propose our method to overcome the aforementioned difficulties.

Our method is motivated by a robust and private mean estimator for heavy-tailed distri-

butions, which was given in [331], and it is derived from the robust mean estimator in [148].

To be self-contained, we first review their estimator. Now, we consider a 1-dimensional

random variable x and assume that x1, x2, · · · , xn are i.i.d. sampled from x. The estimator

consists of three steps:

Scaling and Truncation For each sample xi, we first re-scale it by dividing s (which will

be specified later). Then, we apply the re-scaled one to some soft truncation function φ.
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Finally, we put the truncated mean back to the original scale. That is,

s

n

n∑
i=1

φ(
xi
s

) ≈ EX. (7.53)

Here, we use the function given in [62],

φ(x) =


x− x3

6
, −

√
2 ≤ x ≤

√
2

2
√

2
3
, x >

√
2

−2
√

2
3
, x < −

√
2.

(7.54)

Note that a key property for φ is that φ is bounded, that is, |φ(x)| ≤ 2
√

2
3

.

Noise Multiplication Let η1, η2, · · · , ηn be random noise generated from a common distri-

bution η ∼ χ with Eη = 0. We multiply each data xi by a factor of 1 + ηi, and then perform

the scaling and truncation step on the term xi(1 + ηi). That is,

x̃(η) =
s

n

n∑
i=1

φ(
xi + ηixi

s
). (7.55)

Noise Smoothing In this final step, we smooth the multiplicative noise by taking the

expectation w.r.t. the distributions. That is,

x̂ = Ex̃(η) =
s

n

n∑
i=1

∫
φ(
xi + ηixi

s
)dχ(ηi). (7.56)

Computing the explicit form of each integral in (7.56) depends on the function φ(·) and the

distribution χ. Fortunately, [62] showed that when φ is in (7.54) and χ ∼ N (0, 1
β
) (where β

will be specified later), we have for any a and b > 0

Eηφ(a+ b
√
βη) = a(1− b2

2
)− a3

6
+ C(a, b), (7.57)
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where C(a, b) is a correction form which is easy to implement and it has the following

explicit form: we first define the following notations:

V− :=

√
2− a
b

, V+ =

√
2 + a

b

F− := Φ(−V−), F+ := Φ(−V+)

E− := exp(−
V 2
−

2
), E+ := exp(−

V 2
+

2
),

where Φ denotes the CDF of the standard Gaussian distribution. Then

C(a, b) = T1 + T2 + · · ·+ T5,

where

T1 :=
2
√

2

3
(F− − F+)

T2 := −(a− a3

6
)(F− + F+)

T3 :=
b√
2π

(1− a2

2
)(E+ − E−)

T4 :=
ab2

2

(
F+ + F− +

1√
2π

(V+E+ + V−E−)

)
T5 :=

b3

6
√

2π

(
(2 + V 2

−)E− − (2 + V 2
+)E+

)
.

[148] showed the following estimation error for the mean estimator x̂ after these three

steps.

Lemma 7.2.1 (Lemma 5 in [148]). Let x1, x2, · · · , xn be i.i.d. samples from distribution

x ∼ µ. Assume that there is some known upper bound on the second-order moment, i.e.,

Eµx2 ≤ τ . For a given failure probability ζ, if set β = 2 log 1
ζ

and s =
√

nτ
2 log 1

ζ

, then with
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probability at least 1− ζ the following holds

|x̂− Ex| ≤ O(

√
τ log 1

ζ

n
). (7.58)

To obtain an (ε, δ)-DP estimator, the key observation is that the bounded function φ

in (7.54) also makes the integral form of (7.56) bounded by 2
√

2
3

. Thus, we know that the

`2-norm sensitivity is s
n

4
√

2
3

. Hence, the query

A(D) = x̂+ Z,Z ∼ N (0, σ2), σ2 = O(
s2 log 1

δ

ε2n2
) (7.59)

will be (ε, δ)-DP, which leads to the following result.

Lemma 7.2.2 (Theorem 6 in [331]). Under the assumptions in Lemma 7.2.1, with probabil-

ity at least 1− ζ the following holds

|A(D)− E(x)| ≤ O(

√
v log 1

δ
log 1

ζ

nε2
). (7.60)

It is notable that in Lemma 7.2.2 we just need to assume that x has bounded second

order moment, instead of bounded norm. However, since we need weaker assumptions here,

the error bound in (7.60) is larger than it for the bounded distributions [54].

Inspired by the previous private 1-dimensional mean estimation, we propose our method

(Algorithm 7.2.56). In Algorithm 7.2.56, the key idea is that, in the t-th iteration of Gradient

EM algorithm, we first apply the previous private estimator to each coordinate of the gradient

∇Qn(βt−1; βt−1), and then perform the M-step. We can easily show that Algorithm 7.2.56

is (ε, δ)-DP.

Theorem 7.2.2 (Privacy guarantee). For any 0 < ε, δ < 1, Algorithm 7.2.56 is (ε, δ)-DP.

In the following, we will show the statistical guarantee for the models under Assumption

7.2.1, if the initial parameter β0 is closed to the underlying parameter β∗ enough.
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Algorithm 7.2.56 DP Gradient EM Algorithm
Input: D = {yi}ni=1 ⊂ Rd, privacy parameters ε, δ, Q(·; ·) and its qi(·; ·), initial parameter
β0 ∈ B, τ which satisfies Assumption 7.2.1, the number of iterations T (to be specified
later), step size η and failure probability ζ > 0.

1: Let ε̃ =
√

log 1
δ

+ ε−
√

log 1
δ
, s =

√
nτ

2 log d
ζ

, β = log d
ζ
.

2: for t = 1, 2, · · · , T do
3: For each j ∈ [d], calculate the robust gradient by (7.53)-(7.57) and add Gaussian

noise, that is

gt−1
j (βt−1) =

1

n

n∑
i=1

(
∇jqi(β

t−1, βt−1)
(
1−
∇2
jqi(β

t−1, βt−1)

2s2β

)
−
∇3
jqi(β

t−1, βt−1)

6s2

)
+
s

n

n∑
i=1

C

(
∇jqi(β

t−1, βt−1)

s
,
|∇jqi(β

t−1, βt−1)|
s
√
β

)
+ Zt−1

j , (7.61)

where Zt−1
j ∼ N (0, σ2) with σ2 = 8τdT

9βnε̃2
.

4: Let vector ∇̃Qn(βt−1) ∈ Rd denote ∇̃Qn(βt−1) =
(gt−1

1 (βt−1), gt−1
2 (βt−1), · · · , gt−1

d (βt−1)).
5: Update βt = βt−1 + η∇̃Qn(βt−1).
6: end for

Theorem 7.2.3 (Statistical guarantee of Algorithm 7.2.56). Let the parameter set B = {β :

‖β − β∗‖2 ≤ R} for R = κ‖β∗‖2 for some constant κ ∈ (0, 1). Assume that Assumption

7.2.1 holds for parameters γ,B, µ, v, τ satisfying the condition of 1− 2 v−γ
v+µ
∈ (0, 1). Also,

assume that ‖β0 − β∗‖2 ≤ R
2

, n is large enough so that

Ω̃((
1

v − γ
)2
d2τT log 1

δ
log 1

ζ

ε2R2
) ≤ n. (7.62)

Then, with probability at least 1− 2Tζ, we have, for all t ∈ [T ], βt ∈ B. If it holds and if

taking T = O(µ+v
v−γ log n) and η = 2

µ+v
, we have

‖βT − β∗‖2 ≤ Õ
(
R

√
v + µ

(v − γ)3

d log 1
δ

log 1
ζ

√
τ

√
nε2

)
, (7.63)

where the Õ-term and Ω̃-term omit log d, log n and other factors (see Appendix for the

explicit form of the result).
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Remark 7.2.1. There are several points that need to note. Firstly, the assumptions of the

parameter set β and the initial parameter β0 are commonly used in other papers on statistical

guarantees of (Gradient) EM algorithm such as [20, 369, 339]. Even though Theorem 7.2.3

requires that the initial estimator be close enough to the optimal one, our experiments show

that the algorithm actually performs quite well for any random initialization. Secondly, in

(7.62) we need to assume that n ∝ 1
R2 , where R is the radius of B. This is due to that in

Algorithm 7.2.56, we need to keep each βt ∈ B under perturbation. When R is small, we

have to let the noise be small enough, which means that n should be large enough. Finally,

for specific models, R, v, µ, γ are constants, this means that the error in (7.63) is Õ(d
√
τ√
nε

).

However, here τ depends on the model, which may also depend on d and ‖β∗‖2.

7.2.4 Implications for Some Specific Models

In this section, we apply our framework (i.e., Algorithm 7.2.56) to the models mentioned

in the Preliminaries section. To obtain results for these models, we only need to find the

corresponding B, γ, k, R, v, µ, τ to ensure that Assumption 7.2.1 and the assumptions in

Theorem 7.2.3 hold.

Gaussian Mixture Model

The following lemma ensures the properties of Lipschitz-Gradient-2(γ,B), smoothness,

strongly concave and self-consistency for model (7.44).

Lemma 7.2.3 ([19, 353]). If ‖β
∗‖2
σ
≥ r, where r is a sufficiently large constant denoting the

minimum signal-to-noise ratio (SNR), then there exists an absolute constant C > 0 such that

the properties of self-consistent, Lipschitz-Gradient-2(γ,B), µ-smoothness and υ-strongly

concave hold for function Q(·; ·) with γ = exp(−Cr2), µ = υ = 1, R = k‖β∗‖2, k =

1
4
, and B = {β : ‖β − β∗‖2 ≤ R}.

We can show the following second-order moment bound for∇jq(β, β).
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Lemma 7.2.4. With the same notations as in Lemma 7.2.3, for each β ∈ B, the j-the

coordinate of∇q(β; β) (i.e., ∇jq(β; β)) satisfies the following inequality

Ey(∇jq(β; β))2 ≤ O((‖β∗‖2
∞ + σ2)).

Also, for fixed j ∈ [d], each∇jqi(β; β), where i ∈ [n], is independent with others.

Combining with Lemma 7.2.3, 7.2.4 and Theorem 7.2.3 we have the following statistical

guarantee for GMM.

Theorem 7.2.4. With the same notations as in Lemma 7.2.3, in Algorithm 7.2.56 assume

that ‖β0 − β∗‖2 ≤ 1
8
‖β∗‖2 and n is large enough so that

Ω̃(
d2
√
‖β∗‖2

∞ + σ2 log 1
δ

log 1
ζ

ε2‖β∗‖2
2

) ≤ n. (7.64)

Moreover, if take T = O(log n) and η = O(1), then we have with probability at least

1− 2Tζ

‖βT − β∗‖2 ≤ Õ
(
‖β∗‖2

d log 1
δ

log 1
ζ

√
‖β∗‖2

∞ + σ2

√
nε2

)
, (7.65)

where the Õ, Ω̃ terms omit logarithmic and other factors.

Remark 7.2.2. Note that if we assume that σ, ‖β∗‖2 = O(1), then the error in (7.65) is

upper bounded by Õ( d√
nε

). This means that to achieve the error of α ∈ (0, 1), the sample

complexity is Õ( d2

α2ε
). It is notable that for GMM, the near optimal rate is Õ(d2( 1

α2 + 1
αε

)

[172].5 Thus when ε is some constant, our result matches their near optimal rate. However,

as mentioned in previous section, their algorithm is too complicated to be practical and it is

difficult to extend their method to other Mixture models. Also, we assume that the SNR is

large, which is reasonable since it has been shown that for Gaussian Mixture Model with

5Note that although [172] used TV distance, while we use the Euclidean distance, we can easily transfer
our result to a result based on TV distance via Pinsker’s inequality and the KL diatance between two Gaussian
distributions.
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low SNR, the variance of noise makes it harder for the algorithm to converge [210], which

is the same for MRM.

Mixture of Regressions Model

The following lemma, which was given in [19, 353], shows the properties of Lipschitz-

Gradient-2(γ,B), smoothness and strongly concave for model (7.46).

Lemma 7.2.5 ([19, 353]). If ‖β
∗‖2
σ
≥ r, where r is a sufficiently large constant denoting

the required minimal signal-to-noise ratio (SNR), then function Q(·; ·) of the Mixture of

Regressions Model has the properties of self-consistent, Lipschitz-Gradient-2(γ,B), µ-

smoothness, and υ-strongly with γ ∈ (0, 1
4
), µ = υ = 1,B = {β : ‖β − β∗‖2 ≤ R}, R =

k‖β∗‖2, and k = 1
32
.

Lemma 7.2.6. With the same notations as in Lemma 7.2.5, for each β ∈ B, the j-the

coordinate of∇qi(β; β), i.e.,∇jq(β; β) satisfies the following inequality

Ey(∇jq(β; β))2 ≤ O(max{(‖β∗‖2
2 + σ2)2, d‖β∗‖2

2}).

Also, for fixed j ∈ [d], each∇jqi(β; β) is independent with others for i ∈ [n].

Theorem 7.2.5. With the same notations as in Lemma 7.2.5, in Algorithm 7.2.56 assume

that ‖β0 − β∗‖2 ≤ 1
64
‖β∗‖2 and n is large enough so that

Ω̃(
d2 max{(‖β∗‖2

2 + σ2)2, d‖β∗‖2
2} log 1

δ
log 1

ζ

ε2‖β∗‖2
2

) ≤ n.

Moreover, if take T = O(log n) and η = O(1), then we have, with probability at least

1− 2Tζ ,

‖βT − β∗‖2 ≤ Õ
(d‖β∗‖2 log 1

δ

√
max{‖β∗‖2

2 + σ2, d‖β∗‖2
2}√

nε2

)
, (7.66)

where the Õ-term and Ω̃-term omit logarithmic factors.
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Remark 7.2.3. If we assume that ‖β∗‖ and σ = O(1), then the error in (7.66) is upper

bounded by Õ( d
3
2√
nε

), which has an additional factor of
√
d compared with the bound in

(7.65) for GMM. We note that this is the first statistical result for MRM in the DP model.

Linear Regression with Missing Covariates

Lemma 7.2.7 ([19, 353]). If ‖β
∗‖2
σ
≤ r and pm < 1

1+2b+2b2
, where r is a constant denoting

the required maximum signal-to-noise ratio (SNR) and b = r2(1 + k)2 for some constant

k ∈ (0, 1), then function Q(·; ·) of the linear regression with missing covariates has the

properties of self-consistent, Lipschitz-Gradient-2(γ,B), µ-smoothness and υ-strongly with

γ =
b+ pm(1 + 2b+ 2b2)

1 + b
< 1, µ = υ = 1,

B = {β : ‖β − β∗‖2 ≤ R}, where R = k‖β∗‖2.

Lemma 7.2.8. With the same assumptions as in Lemma 7.2.7, for each β ∈ B and j ∈ [d] ,

∇jq(β; β) satisfies

E(∇jq(β; β))2 ≤ O((
√
d‖β∗‖2 + σ2 + ‖β∗‖2

2)2). (7.67)

Also, for fixed j ∈ [d], each∇jqi(β; β), where i ∈ [n], is independent with others.

Theorem 7.2.6. With the same notations as in Lemma 7.2.7, in Algorithm 7.2.56 assume

that ‖β0 − β∗‖2 ≤ k
2
‖β∗‖2 and n is large enough so that

Ω̃(
d2(
√
d‖β∗‖2 + σ2 + ‖β∗‖2

2)2 log 1
δ

log 1
ζ

ε2‖β∗‖2
2

) ≤ n.

Moreover, if take T = O(log n) and η = O(1), then we have, with probability at least

1− 2Tζ ,

‖βT − β∗‖2 ≤ Õ
(d log 1

δ
log 1

ζ
‖β∗‖2(

√
d‖β∗‖2 + σ2 + ‖β∗‖2

2)
√
nε2

)
,
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where the Õ, Ω̃ terms omit logarithmic and other factors.

Note that unlike the previous two models, we assume here that SNR is upper bounded

by some constant which is unavoidable as pointed out in [201].

7.2.5 Statistical Guarantees of DP Expectation Maximization Algo-

rithm

Motivated by idea of the Differentially Private version of Gradient EM algorithm in the

previous section, in this section, we will propose a DP variant of EM algorithm.

Recall that compared with the Gradient EM algorithm, the main difference in EM algo-

rithm is that, in each iteration, we will update the parameter as βt+1 = arg maxβ∈Ω Qn(β; βt),

where the Qn-function is in (7.42). Thus, to design a DP variant, we need to post-process the

parameter βt+1 via the private 1-dimensional mean estimation of heavy-tailed distribution.

Just as the way we post-process the Gradient in Algorithm 7.2.56, we wish to post-process

each coordinate of βt+1 to make it DP. However, unlike the Gradient EM algorithm where the

∇Qn(β; β′) can be written as a sum of n independent components 1
n

∑
n=1∇qi(β; β′), βt+1

in the EM algorithm may not be written as n independent components (see the Examples

below), or even there is no explicit form of βt+1. Thus, compared with the Assumption

7.2.1, we need addition assumptions on the form of βt+1 = arg maxβ∈ΩQn(β; βt), which

may not hold for some canonical models.

Assumption 7.2.2. We assume that for a fixed β′ ∈ B, the optimal solution Mn(β′) =

arg maxβ∈Ω Qn(β; β′) satisfies Mn(β′) = 1
n

∑n
i=1 fi(β

′), where fi(·) is a function of yi.

Moreover, we assume that for each pair i 6= i′, fi(β′), fi′(β′) are independent. For any fixed

j ∈ d, the j-th coordinate of f(β) 6 has bounded second order moment, i.e., E(fj(β))2 ≤ τ .

We also assume that function Q(·; ·) in (7.43) is self-consistent, Lipschitz-Gradient-2(γ,B),

υ-strongly concave over some set B.

6We denote function f(·) as the function for general y.
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Note that compared with Assumption 7.2.1, Assumption 7.2.2 does not need Q to be

smooth. However, it needs some unnatural assumptions in the form of Mn(β′). To show

that these assumptions are strong (especially the condition that fi, fi′ are independent for

each pair i 6= i′), in the following, we will check the three canonical models in the previous

section to see whether Assumption 7.2.2 holds.

Gaussian Mixture Model For GMM in (7.44), the Q function can be written as

Qn(β; β′) = − 1

2n

n∑
i=1

(
wβ′(yi)‖yi − β‖2

2 + [1− wβ′(yi)]‖yi + β‖2
2

)
.

where wβ(y) = 1
1+exp(−〈β,y〉/σ2)

. Thus, for Mn(β′) = arg maxβ∈Rd Qn(β; β′) we have

Mn(β′) =
2

n

n∑
i=1

wβ′(yi)yi −
1

n

n∑
i=1

yi,

Thus

Mn(β′) =
1

n

n∑
i=1

fi(β
′)

for fi(β′) = 2wβ′(yi)yi − yi and for each i ∈ [n], fj is independent with others. Later,

combing with Lemma 7.2.3 we will show GMM satisfies Assumption 7.2.2.

Mixture of Regressions Model For MRM in (7.46), the Qn function can be written as

Qn(β; β′) =
1

2n

(
− wβ′(xi, yi)(y − 〈xi, β〉)2 + [1− wβ′(xi, yi)](y + 〈xi, β〉)2

)
,

where wβ(x, y) = 1
1+exp(−y〈β,x〉/σ2)

. Thus, for Mn(β′) = arg maxβ∈Rd Qn(β; β′) we have

Mn(β′) = (
1

n

n∑
i=1

xix
T
i )−1 · ( 1

n

n∑
i=1

[2wβ′(xi, yi)− 1]yixi).
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Thus Mn(β′) = 1
n

∑n
i=1 fi(β

′) for fi(β′) = ( 1
n

∑n
i=1 xix

T
i )−1 · [2wβ′(xi, yi)− 1]yixi. How-

ever, we can see that due to the term of ( 1
n

∑n
i=1 xix

T
i )−1, for each i ∈ [n], fi is dependent

with others. Thus, MRM does not satisfy Assumption 7.2.2.

Linear Regression with Missing Covariates For RMC in (7.48), the Qn function can be

written as

Qn(β; β′) =
1

n

n∑
i=1

yiβ
Tmβ′(x

obs
i , yi)−

1

2n

n∑
i=1

βTKβ′(x
obs
i , yi)β

′,

where the functions mβ′(x
obs, y), Kβ′(x

obs, y) are in (7.50) and (7.51), respectively. Thus,

for Mn(β′) = arg maxβ∈Rd Qn(β; β′) we have

Mn(β′) = (
1

n

n∑
i=1

Kβ′(x
obs
i , yi))

−1 · ( 1

n

n∑
i=1

yimβ′(x
obs
i , yi)).

ThusMn(β′) = 1
n

∑n
i=1 fi(β

′) for fi(β′) = ( 1
n

∑n
i=1 Kβ′(x

obs
i , yi))

−1(yimβ′(x
obs
i , yi)). How-

ever, we can see that due to the term of ( 1
n

∑n
i=1Kβ′(x

obs
i , yi))

−1, for each i ∈ [n], fi is

dependent with others. Thus, RMC does not satisfy Assumption 7.2.2.

From the previous models, we can see that two of them do not satisfy the condition of fi

is independent with others. We note that this assumption is necessary for our analysis of

statistical guarantees, since we will use the private 1-dimensional mean estimator, which

needs the i.i.d assumption on the samples. Thus, from this point of view, we can see that our

DP Gradient EM algorithm needs to be presented before the DP EM algorithm.

7.2.6 DP EM Algorithm

Next we will detail our DP EM algorithm and provide its statistical guarantee under Assump-

tion 7.2.2, see Algorithm 7.2.57 for details. The key idea is that in each iteration, instead of

post-processing the j-th coordinate of the gradient ∇qi(βt−1, βt−1), we will post-process

j-th coordinate of the term fi(β
t−1), i.e., fi,j(βt−1) via the previous private 1-dimension
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mean estimator. We can easily show Algorithm 7.2.57 is (ε, δ)-DP.

Algorithm 7.2.57 DP EM Algorithm
Input: D = {yi}ni=1 ⊂ Rd, privacy parameters ε, δ, Q(·; ·) and its fi(·) in Assumption
7.2.2, initial parameter β0 ∈ B, τ which satisfies Assumption 7.2.2, the number of iterations
T (to be specified later), and failure probability ζ .

1: Let ε̃ =
√

log 1
δ

+ ε−
√

log 1
δ
, s =

√
nτ

2 log d
ζ

, β = log d
ζ
.

2: for t = 1, 2, · · · , T do
3: For each j ∈ [d], calculate the robust estimator by (7.53)-(7.57) and add Gaussian

noise, that is

gt−1
j (βt−1) =

1

n

n∑
i=1

(
fi,j(β

t−1)
(
1−

f 2
i,j(β

t−1)

2s2β

)
−
f 3
i,j(β

t−1)

6s2

)
+

1

n

n∑
i=1

C

(
fi,j(β

t−1)

s
,
|fi,j(βt−1)|
s
√
β

)
+ Zt−1

j , (7.68)

where fi,j(βt−1) is the j-th coordinate of fi(βt−1) and Zt−1
j ∼ N (0, σ2) with σ2 =

8τdT
9βnε̃2

.
4: Let vector f̃(βt−1) ∈ Rd to denote f̃(βt−1) =

(gt−1
1 (βt−1), gt−1

2 (βt−1), · · · , gt−1
d (βt−1)).

5: Update βt = f̃(βt−1).
6: end for

Theorem 7.2.7 (Privacy guarantee). For any 0 < ε, δ < 1, Algorithm 7.2.56 is (ε, δ)-DP.

Proof. The proof is almost the same as that of Theorem 7.2.2; we thus omit it here.

As in Theorem 7.2.3, in the following, we will show the statistical guarantee for the

models under the Assumption 7.2.2, if the initial parameter β0 is close enough to the

underlying parameter β∗.

Theorem 7.2.8 (Statistical guarantee of Algorithm 7.2.57). Let the parameter set B = {β :

‖β − β∗‖2 ≤ R} for R = κ‖β∗‖2 for some constant κ ∈ (0, 1). Assume that Assumption

7.2.2 holds for parameters γ,B, v, τ satisfying the condition of 1 − 2 v−γ
v+µ
∈ (0, 1). Also,

assume that ‖β0 − β∗‖2 ≤ R
2

, n is large enough so that

Ω̃((
v

v − γ
)2
d2τT log 1

δ
log 1

ζ

ε2R2
) ≤ n. (7.69)

458



Then with probability at least 1− 2Tζ , we have for all t ∈ [T ], βt ∈ B. If it holds and if we

take T = O( v
v−γ log n), then we have

‖βT − β∗‖2 ≤ Õ
(
R

√
v

(v − γ)3

d log 1
δ

log 1
ζ

√
τ

√
nε2

)
, (7.70)

where the Õ-term and Ω̃-term omit log d, log n and other factors (see Appendix for the

explicit form of the result).

Comparing with Theorem 7.2.8 and Theorem 7.2.3, if we omit other factors instead of

n, d, ε, δ, we can see that the two error bounds are asymptotically the same.

In the following we will apply our general framework to the GMM model in (7.44). Just

the same as in Theorem 7.2.4, we will first show that fj(β) has a bounded second order

moment.

Lemma 7.2.9. Consider the function f(·) in GMM. Then, for each j ∈ [d] we have

Ef 2
j (β) ≤ O(‖β∗‖2

∞ + σ2).

Thus, combining with Lemma 7.2.3, Lemma 7.2.9 and Theorem 7.2.8 we have asymp-

totically the same result as in Theorem 7.2.4. We omit the details here.

7.2.7 Experiments

In this section, we evaluate the performance of Algorithm 7.2.56 on three canonical models:

GMM, MRM, and RMC. Since in the paper we mainly focus on the statistical setting and

its theoretical behaviors, we only evaluate our algorithm on the synthetic data. Note that

previous papers on the statistical guarantees of EM algorithm all evaluating their algorithms

on synthetic data only such as [19, 353, 369]. Thus, evaluating experiments on synthetic

data only is sufficient and reasonable for the paper.

Baseline Methods We compare our approach against two baseline algorithms. One is the
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(a) GMM, n = 1000, d =
20, ε = 0.2

(b) MRM, n = 1000, d =
20, ε = 0.2

(c) RMC, n = 1000, d =
20, ε = 0.2

Figure 7.1: Estimation error of Algorithm 7.2.55 (clipped) v.s. iteration t under different
clipping threshold C

(a) n = 2000, d = 10 (b) n = 2000, ε = 0.5 (c) d = 10, ε = 0.5

Figure 7.2: Estimation error of GMM w.r.t privacy budget ε, data dimension d, data size n
and iteration t

(a) n = 2000, d = 10 (b) n = 2000, ε = 0.5 (c) d = 10, ε = 0.5

Figure 7.3: Estimation error of MRM w.r.t privacy budget ε, data dimension d, data size n
and iteration t.

(a) n = 2000, d = 10 (b) n = 2000, ε = 0.5 (c) d = 10, ε = 0.5

Figure 7.4: Estimation error of RMC w.r.t privacy budget ε, data dimension d, data size n
and iteration t
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gradient EM algorithm [19], namely, EM, as our non-private baseline method. The other

is clipped DP Gradient EM (Algorithm 7.2.55), namely, clipped, as our private baseline

method.

Experimental Settings For each of these models, we generate synthesized datasets ac-

cording to the underlying distribution. We also utilize ‖β − β∗‖2 to measure the estimation

error. Instead of choosing the initial parameter β0 that is close to the optimal one, we

consider random initialization. As we will see later, even if we select random initial parame-

ter, the performance of our private estimator is good enough. We set signal-to-noise ratio

‖β∗‖2
σ

= 3. For the privacy parameters, we choose ε = {0.2, 0.5, 1} and δ = O( 1
n
).

Experimental Results Firstly, we will show that the performance of Algorithm 7.2.55

is heavily affected by the clipping threshold C. As shown in Figure 7.1, we conduct the

algorithm on three canonical models with fixed data size n, dimension data d, and privacy

budget ε. If C is set to be a small value (e.g., 0.1), it significantly reduces the adding noise

in each iteration but at the same time it leads much information loss in gradient estimation.

Conversely, if C is set too high (e.g., 5 or 10), the noise variance becomes high, resulting in

introducing too much noise to the estimation. Thus, selecting the optimal C is quite difficult

since too large or too small values ofC has a negative effect on the performance of Algorithm

7.2.55. Even for C = 1 that achieves lowest estimation error among other threshold values,

the estimation error does not decay as the number of iterations increases, whereas under the

same privacy guarantee, our proposed algorithm achieves the same convergence behavior

as EM, and thoroughly outperforms Algorithm 7.2.55. For fair comparison, we thus fixed

C = 1 for Algorithm 7.2.55 in the following experiments.

In Figure 7.2, 7.3 and 7.4, we test how the privacy budget ε, data dimension d and data

size n affect the estimation error ‖β− β∗‖2 of all algorithms on three canonical models over

iteration t. We can see that the estimation error of our proposed algorithm in each of the three

models decreases when ε increases, d decreases or n increases, which are consistent with

our theoretical results. In these figures, our algorithm exhibits nearly the same convergence
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behavior as the non-private baseline method and outperforms Algorithm 7.2.55.

In Figure 7.5, 7.6 and 7.7, we set T = 22 and compute the estimation error on β = βT .

We plot ‖β−β∗‖2 of all algorithm on three canonical models over data size n, data dimension

d and privacy budget ε. As we can see from these figures, our proposed algorithm (Algorithm

2) on the three canonical models significantly outperforms the clipped algorithm (Algorithm

1).

(a) n = 2000, d = 10 (b) n = 2000, ε = 0.5 (c) d = 10, ε = 0.5

Figure 7.5: Estimation error of GMM w.r.t privacy budget ε, data dimension d and data size
n (we set β = βT with T = 22)

(a) n = 2000, d = 10 (b) n = 2000, ε = 0.5 (c) d = 10, ε = 0.5

Figure 7.6: Estimation error of MRM w.r.t privacy budget ε, data dimension d and data size
n (we set β = βT with T = 22)

(a) n = 2000, d = 10 (b) n = 2000, ε = 0.5 (c) d = 10, ε = 0.5

Figure 7.7: Estimation error of RMC w.r.t privacy budget ε, data dimension d and data size
n (we set β = βT with T = 22)
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7.2.8 Omitted Proofs

Technical Lemmas

First, we will we recall some definitions and lemmas on the sub-exponential and sub-

Gaussian random variables. See [289] for details.

Definition 7.2.5. For a sub-exponential random vector X , its sub-exponential norm ‖X‖ψ1

is defined as

‖X‖ψ1 = sup
p≥1

p−1(E|X|p)
1
p .

Definition 7.2.6 (ξ-sub-exponential). A random variable X with mean E(X) is ξ-sub-

exponential for ξ > 0 if for all |t| < 1
ξ
, E{exp(t[X − E(X)])} ≤ exp( ξ

2t2

2
).

Lemma 7.2.10. Let X be a sub-exponential random variable, then there are absolute

constants C, c > 0, such that when |t| ≤ c
‖X‖ψ1

,

E[exp(tX)] ≤ exp(Ct2‖X‖2
ψ1

).

Lemma 7.2.11. From Definition 7.2.5, 7.2.6 we can see that for a zero-mean sub-exponential

random variable X , it second-order moment is bounded, i.e., EX2 ≤ O(‖X‖2
ψ1

).

Lemma 7.2.12 (Bernstein’s inequality). Let X1, · · · , Xn be n i.i.d realizations of υ-sub-

exponential random variable X with mean µ. Then,

Pr(| 1
n

n∑
i=1

Xi − µ| ≥ t) ≤ 2 exp(−nmin(− t
2

υ2
,
t

2υ
)).

Definition 7.2.7. A random variable X is sub-Gaussian with variance σ2 if for all t > 0,

the following holds

Pr(|X − EX| ≥ t) ≤ 2 exp(− t2

2σ2
).
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Definition 7.2.8. For a sub-Gaussian random variable X , its sub-Gaussian norm ‖X‖ψ2 is

defined as

‖X‖ψ2 = sup
p≥1

p−
1
2 (E|X|p)

1
p .

Lemma 7.2.13. If X is sub-Gaussian or sub-exponential, then ‖X − EX‖ψ2 ≤ 2‖X‖ψ2 or

‖X − EX‖ψ1 ≤ 2‖X‖ψ1 holds, respectively.

Lemma 7.2.14. For two sub-Gaussian random variablesX1, X2,X1·X2 is a sub-exponential

random variable with

‖X1 ·X2‖ψ1 ≤ C max{‖X1‖2
ψ2
, ‖X2‖2

ψ2
}.

Lemma 7.2.15. Let X1, X2, · · · , Xk be k independent zero-mean sub-Gaussian random

variables, and X =
∑k

j=1Xj . Then, X is sub-Gaussian with ‖X‖2
ψ2
≤ C

∑k
j=1 ‖Xj‖2

ψ2
for

some absolute constant C > 0.

Next, we provide some symmetrization results of random variables, which will be used

in our proofs. See [44] for details.

Lemma 7.2.16. Let y1, y2, · · · , yn be the n independent realizations of the random vector

Y ∈ Y , and F be a function class defined on Y . For any increasing convex function φ(·),

the following holds

E{φ[sup
f∈F
|

n∑
i=1

f(yi)− E(f(Y ))|]} ≤ E{φ[sup
f∈F
|

n∑
i=1

εif(yi)|]},

where ε1, · · · , εn are i.i.d Rademacher random variables that are independent of y1, · · · , yn.

Lemma 7.2.17. Let y1, · · · , yn be n independent realization of the random vector Z ∈ Z

and F be a function class defined on Z . If Lipschitz functions {φi(·)}ni=1 satisfy the

following for all v, v′ ∈ R

|φi(v)− φi(v′)| ≤ L|v − v′|
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and φi(0) = 0, then for any increasing convex function φ(·), the following holds

E{φ[| sup
f∈F

n∑
i=1

εiφi(f(yi))|]} ≤ E{φ[2|L sup
f∈F

n∑
i=1

εif(yi)|]},

where ε1, · · · , εn are i.i.d Rademacher random variables that are independent of y1, · · · , yn.

Proof of Theorem 7.2.1

Note that by (7.45), we have

∇q(β; β) = [
2

1 + exp(−〈β, y〉/σ2)
− 1] · y − β.

W.l.o.g, we assume that β = (1, 0, · · · , 0)T and σ = 1 in the GMM model. Then, we can

see that for each constant c ≥ 0, if

‖y
3
‖2 ≥ c+ ‖β‖2

〈β, y〉 ≥ ln 2

y ≥ 0

and denote the set of y satisfying the above assumptions as S, we have

‖∇q(β; β)‖2 ≥ ‖
y

3
‖2 − ‖β‖2 ≥ c.

The above assumptions hold if y = (ln 2 + 1, 3s, a3, a4, · · · , ad), where s ≥ c and

a3, · · · , ad ≥ 0. We can easily see that P[y ∈ S] > 0 since y follows a mixture of

Gaussian distributions.

Proof of Theorem 7.2.2

We first convert (ε, δ)-DP to ρ-zCDP by using the following lemma
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Lemma 7.2.18 ([52]). Let M : X n 7→ Y be a randomized algorithm. If M is ρ-zCDP, it is

(ρ+ 2
√
ρ log 1

δ
, δ)-DP for all δ > 0.

Thus, it suffices to show that Algorithm 7.2.56 is ε̃2 = (
√
ε+ log 1

δ
−
√

log 1
δ
)2-zCDP.

The following lemma shows that adding some Gaussian noise will preserve zCDP.

Lemma 7.2.19. Given a function q : X n → Rp, the Gaussian Mechanism is defined as:

MG(D, q, ε) = q(D) + Y, where Y is drawn from a Gaussian Distribution N (0, σ2Ip) is
∆2

2(q)

2σ2 -zCDP. ∆2(q) is the `2-sensitivity of the function q, i.e., ∆2(q) = supD∼D′ ||q(D) −

q(D′)||2.

By Lemma 7.2.2 we know ∆2(gt−1
j (βt−1)) = 4

√
2

3
s
n

. By simple calculation we can show

that in each iteration and each coordinate, outputting gt−1
j (βt−1) will be ε̃2

dT
-zCDP. Thus by

the composition property of zCDP, we know that it is ε̃2-zCDP.

Proof of Theorem 7.2.3

Consider t-th iteration, under the assumption that βt−1 ∈ B we have

‖βt − β∗‖2 = ‖βt−1 + η∇̃Qn(βt−1)− β∗‖2

≤ ‖βt−1 + η∇Q(βt−1; βt−1)− β∗‖2 + η‖∇̃Qn(βt−1)−∇Q(βt−1; βt−1)‖2

(7.71)

We first bound the first term of (7.71).

‖βt−1 + η∇Q(βt−1; βt−1)− β∗‖2

≤ ‖βt−1 + η∇Q(βt−1; β∗)− β∗‖2 + η‖∇Q(βt−1; βt−1)−∇Q(βt−1; β∗)‖2 (7.72)
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We then consider the first term of (7.72). We note that the self-consistent property in

Definition 7.2.1 implies that

β∗ = arg max
β

Q(β; β∗), (7.73)

which means that β∗ is a maximizer of Q(β; β∗). Thus, the proof follows from the conver-

gence rate of the strongly convex and smooth functions Q(β; β∗) in [230]. For the step size

η = 2
µ+υ

, we have

‖βt−1 + η∇Q(βt−1; β∗)− β∗‖2 ≤ (
µ− υ
µ+ υ

)‖βt−1 − β∗‖2. (7.74)

Thus, by the Lipschitz-Gradient-2(γ,B) condition, we get the following of (7.72)

‖βt−1 + η∇Q(βt−1; βt−1)− β∗‖2

≤ ‖βt−1 + η∇Q(βt−1; β∗)− β∗‖2 + η‖∇Q(βt−1; βt−1)−∇Q(βt−1; β∗)‖2

≤ (
µ− υ
µ+ υ

)‖βt−1 − β∗‖2 + ηγ‖βt−1 − β∗‖2

= (1− 2
v − γ
µ+ v

)‖βt−1 − β∗‖2 (7.75)

where the the last inequality is due to taking η = 2
µ+v

.

Next we bound the second term of (7.71). For convenience we denote the first sum of

(7.61) (i.e., the robust mean estimator ) as g̃t−1
j (βt−1). So we have

‖∇̃Qn(βt−1)−∇Q(βt−1; βt−1)‖2
2 =

d∑
j=1

(gt−1
j (βt−1)− E∇jq(β

t−1; βt−1))2 (7.76)

≤
d∑
j=1

(g̃t−1
j (βt−1)− E∇jq(β

t−1; βt−1))2 +
d∑
j=1

|Zt−1
j |2

(7.77)

The first equality is due to Assumption 7.2.1. For the second term of (7.77), by the high
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probability concentration bound of Gaussian random variable we have for fixed j with

probability at least 1− ζ
d
, |Zt−1

j |2 ≤
8τdT log d

ζ

9βnε̃2
. Thus with probability at least 1− ζ we have

d∑
j=1

|Zt−1
j |2 ≤

8τd2T log d
ζ

9βnε̃2
.

For the first term of (7.77), by Lemma 7.2.1 and taking ζ = ζ
d
, we have for a fixed j ∈ [d],

(g̃t−1
j (βt−1) − E∇jq(β

t−1; βt−1))2 ≤ O(
τ log d

ζ

n
). Thus, with probability at least 1 − ζ, we

have
d∑
j=1

(g̃t−1
j (βt−1)− E∇jq(β

t−1; βt−1))2 ≤ O(
dτ log d

ζ

n
).

Hence, we have, with probability at least 1− 2ζ , for some constant C2

‖∇̃Qn(βt−1)−∇Q(βt−1; βt−1)‖2 ≤ C2

d
√
τT log d

ζ√
βnε̃2

. (7.78)

Plugging (7.78) and (7.75) into (7.71), we have, with probability 1 − 2ζ and for some

constant C3,

‖βt − β∗‖2 ≤ (1− 2
v − γ
µ+ v

)‖βt−1 − β∗‖2 + C3
2

µ+ v
·
d
√
τT log d

ζ√
βnε̃2

(7.79)

Next, we will show that when n is large enough, if ‖β0 − β∗‖2 ≤ R
2

then ‖βt − β∗‖2 ≤ R
2

holds (and thus β ∈ B) for all t ∈ [T ] if (7.79) holds for all t ∈ [T ] (and this hold with

probability at least 1− 2Tζ).

We will use induction. When t = 1, by (7.79) we have

‖β1 − β∗‖2 ≤ (1− 2
v − γ
µ+ v

)‖β0 − β∗‖2 + C3
2

µ+ v
·
d
√
τT log d

ζ√
βnε̃2

≤ (1− 2
v − γ
µ+ v

)
R

2
+ C3

2

µ+ v
·
d
√
τT log d

ζ√
βnε̃2

.
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If C3
2

µ+v
·
d
√
τT log d

ζ√
βnε̃2

≤ 2 v−γ
µ+v
· R

2
, then we can see that ‖β1 − β∗‖2 ≤ R

2
. This holds if

C4(
1

v − γ
)2
d2τT log d

ζ

R2βε̃2
≤ n

for some constant C4.

Next, we will assume that (7.79) holds for all t ∈ [T ] and β ∈ B for all t ∈ [T ]. For

convenience, we denote ι = 1− 2 v−γ
µ+v

. By (7.79), we have

‖βT − β∗‖2 ≤ (1− 2
v − γ
µ+ v

)T‖β0 − β∗‖2 + C3(1 + ι+ ι2 + · · · ) 2

µ+ v
·
d
√
τT log d

ζ√
βnε̃2

≤ (1− 2
v − γ
µ+ v

)T
R

2
+ C3

1

1− ι
· 2

µ+ v
·
d
√
τT log d

ζ√
βnε̃2

= (1− 2
v − γ
µ+ v

)T
R

2
+O(

1

v − γ

d
√
τT log d

ζ√
βnε̃2

).

Taking T = O(µ+v
v−γ log nε̃

d
), we have, with probability at least 1− 2Tζ ,

‖βT − β∗‖2 ≤ Õ(R

√
µ+ v

(v − γ)3

d
√
τ log n log d

ζ√
βnε̃2

).

Since ε̃ =
√

log 1
δ

+ ε−
√

log 1
δ
, by using the Taylor series of the function

√
x+ 1−

√
x,

we have ε̃ = O( ε√
log 1

δ

). Thus, we have the proof.

Proof of Lemma 7.2.4

To prove Lemma 7.2.4, we need a stronger lemma.

Lemma 7.2.20. The j-the coordinate of∇q(β; β) is ξ-sub-exponential with

ξ = C1

√
‖β∗‖2

∞ + σ2, (7.80)
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where C1 is some absolute constant. Also, for fixed j ∈ [d], each ∇jqi(β; β), where i ∈ [n],

is independent with others.

If Lemma 7.2.20 holds, then by Lemma 7.2.11 we can get Lemma 7.2.4.

Proof of Lemma 7.2.20. From (7.45) it is oblivious that each∇jqi(β; β), where i ∈ [n], j ∈

[d], is independent with others. Next, we prove the property of sub-exponential for each

coordinate.

Note that

∇jq(β; β)) = [2wβ(y)− 1]yj − βj,

and

EY∇jq(β; β)) = EY (2wβ(Y )Yj − Yj)− βj.

By the symmetrization lemma in Lemma 7.2.16, we have the following for any t > 0

E{exp(t|[∇jq(β; β)− E∇jq(β; β)]|)} ≤ E{exp(t|ε[2wβ(y)− 1]yj|)}, (7.81)

where ε is a Rademacher random variable.

Next, we use Lemma 7.2.17 with f(yj) = yj , F = {f}, φ(v) = [2wβ(y) − 1]v and

φ(v) = exp(u · v). It is easy to see that φ is 1-Lipschitz. Thus, by Lemma 7.2.17 we have

E{exp(t|ε[2wβ(y)− 1]yj|)} ≤ E{exp[2t|εyj|]}. (7.82)

By the formulation of the model, we have yj = zβ∗j + vj , where z is a Rademacher

random variable and vj ∼ N (0, σ2). It is easy to see that yj is sub-Gaussian and

‖yj‖ψ2 = ‖z · β∗j + vj‖ψ2 ≤ C ·
√
‖z · βj‖2

ψ2
+ ‖vj‖2

ψ2
≤ C ′

√
|β∗j |2 + σ2, (7.83)

for some absolute constantsC,C ′, where the last inequality is due to the facts that ‖zjβ∗j ‖ψ2 ≤

|β∗j | and ‖vi,j‖ψ2 ≤ C ′′σ2 for some C ′′ > 0.
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Since |εyj| = |yj|, ‖εyj‖ψ2 = ‖yj‖ψ2 and E(εyj) = 0, by Lemma 5.5 in [289] we have

that for any u′ there exists a constant C(4) > 0 such that

E{exp(u′ · ε · yj)} ≤ exp(u′2 · C(4) · (|β|2j + σ2)). (7.84)

Thus, for any t > 0 we get

E{exp(2t · |ε · yj|)} ≤ 2 exp(t2 · C(5) · (|β|2j + σ2)) (7.85)

for some constant C(5). Therefore, in total we have the following for some constant C(6) > 0

E{exp(t|[∇jq(β; β)−E∇jq(β; β)]|)} ≤ exp(t2·C(6)·(|β|2j+σ2)) ≤ exp(t2·C(6)·(‖β∗‖2
∞+σ2)).

(7.86)

Combining this with Lemma 7.2.13 and the definition, we know that∇jq(β; β) isO(
√
‖β∗‖2

∞ + σ2)-

sub-exponential.

Proof of Lemma 7.2.6

Just as in the proof of Lemma 7.2.4, we will show that∇jq(β; β) is sub-exponential instead.

Lemma 7.2.21. For each β ∈ B, the j-the coordinate of∇q(β; β) is ξ-sub-exponential with

ξ = C max{‖β∗‖2
2 + σ2, 1,

√
d‖β∗‖2}, (7.87)

where C > 0 is some absolute constant. Also, for fixed j ∈ [d], each ∇jqi(β; β), where

i ∈ [n], is independent with others.

Proof of Lemma 7.2.21. From (7.47) it is oblivious that for fixed j ∈ [d], each∇jqi(β; β),

where i ∈ [n], is independent with others. Next, we prove the property of sub-exponential.
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Note that E∇jq(β; β) = E2wβ(x, y)y · xj − βj . Thus, we have

∇jq(β; β)− E∇jq(β; β) = 2wβ(x, y)yxj − E[]2wβ(x, y)yxj]︸ ︷︷ ︸
A

+ [xxTβ − β]j︸ ︷︷ ︸
B

− yxj︸︷︷︸
C

.

(7.88)

For term A and any t > 0, we have

E{exp(t|A|)} ≤ E{exp[t|2εwβ(x, y)yxj|]}. (7.89)

Using Lemma 7.2.17 on f(yxj) = yxj , F = f , φi(v) = 2wβ(x, y)v and φ(v) = exp(uv),

we have

E{exp[t|2εwβ(x, y)yxj|] ≤ E{exp[4t|εyxj|]}. (7.90)

Note that since y = z〈β∗, x〉+ v and ‖z〈β∗, x〉‖ψ2 = ‖〈β∗, x〉‖ψ2 ≤ C‖β∗‖2 and ‖v‖ψ2 ≤

C ′σ for some constants C,C ′ > 0, by Lemma 7.2.15 we know that there exists a constant

C ′′ > 0 such that

‖y‖ψ2 ≤ C ′′
√
‖β∗‖2

2 + σ2. (7.91)

Thus, by Lemma 7.2.14 we have

‖yxj‖ψ1 ≤ max{C ′′2(‖β∗‖2
2 + σ2), C ′′′} ≤ C4 max{‖β∗‖2

2 + σ2, 1}. (7.92)

For term B, we have

E{exp[t|B|]} = E{exp[t|
d∑

k=1

xjxkβk − βj|]}, (7.93)

where xj, xk ∼ N (0, 1). Now, by Lemma 7.2.14 we have ‖xjxkβk‖ψ1 ≤ |βk|C(5) for some

constant C(5) > 0. Thus, we get ‖
∑d

k=1 xjxkβk‖ψ1 ≤ C(5)‖β‖1.

Also, we know that ‖β‖1 ≤
√
d‖β‖2. Furthermore, we have ‖β‖2 ≤ ‖β∗‖2 + ‖β∗ −

β‖2 ≤ O(‖β∗‖2), since β ∈ B (by assumption). From Lemma 7.2.14, we get ‖B‖ψ1 ≤
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C(6)
√
d‖β∗‖2 with some constant C(6) > 0.

Thus, we know that there exist some constants C(7) > 0 and C(8) > 0 such that

‖∇jq(β; β)− E∇jq(β; β)‖ψ1 ≤ C(7) max{‖β∗‖2
2 + σ2, 1}+ C(8)

√
d‖β∗‖2

≤ C(9) max{‖β∗‖2
2 + σ2, 1,

√
d‖β∗‖2}.

This means that∇jq(β; β) is O(max{‖β∗‖2
2 + σ2, 1,

√
d‖β∗‖2})-sub-exponential.

Proof of Lemma 7.2.8

Just as in the proof of Lemma 7.2.4, we will show that∇jq(β; β) is sub-exponential instead.

Lemma 7.2.22. For each β ∈ B and j ∈ [d] , ∇jq(β; β) is ξ-sub-exponential with

ξ = C[(1+k)(1+kr)2
√
d‖β∗‖2+max{(1+kr)2, σ2+‖β∗‖2

2}] = O(
√
d‖β∗‖2+σ2+‖β∗‖2

2)

(7.94)

for some constant C > 0. Also, for fixed j ∈ [d], each ∇jqi(β; β), where i ∈ [n], is

independent with others.

Proof of Lemma 7.2.22. From (7.49) it is oblivious that for fixed j ∈ [d], each∇jqi(β; β),

where i ∈ [n], is independent with others. Next, we prove the property of sub-exponential.

For simplicity, we use notations m̄ = mβ(xobs, y), m̄ = β(xobs, y), K̄ = Kβ(xobs
i , y),

and K̄ = Kβ(xobs, y). Then, we have

∇q(β; β)−E∇q(β; β) = mβ(xobs, y)y − E[mβ(xobs, y)y]︸ ︷︷ ︸
A

+

B︷ ︸︸ ︷(
Kβ(xobs, y)− EKβ(xobs, y)

)
β .

(7.95)
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For the j-th coordinate of A, we have

Aj = m̄jy − E[m̄jy]. (7.96)

We note that m̄j is a zero-mean sub-Gaussian random variable with ‖m̄j‖ψ2 ≤ C(1 + kr)

(see Lemma B.3 in [339])

Lemma 7.2.23. Under the assumption of Lemma 6, for each j ∈ [d], m̄j is sub-Gaussian

with mean zero and ‖m̄j‖ψ2 ≤ C(1 + kr).

Thus, by Lemma 7.2.14 we have

‖m̄jy‖ψ1 ≤ C max{‖m̄j‖2
ψ2
, ‖y‖2

ψ2
} ≤ C ′max{(1 + kr)2, σ2 + ‖β∗‖2

2}, (7.97)

where the last inequality is due to the fact that y = 〈β∗, x〉+v. Thus, ‖y‖2
ψ2
≤ C3(‖〈β∗, x〉‖2

ψ2
+

‖v‖2
ψ2

) for some C3.

For term B, we have

K̄j = (1− zj)βj︸ ︷︷ ︸
C

+
d∑

k=1

m̄jm̄kβk︸ ︷︷ ︸
D

−
d∑

k=1

[(1− zj)m̄j][(1− zk)m̄k]βk︸ ︷︷ ︸
E

. (7.98)

For term C, we have the following (by Example 5.8 in [289])

‖(1− zj)βj‖ψ2 ≤ |βj| ≤ ‖β‖∞ ≤ (1 + k)
√
s‖β∗‖2. (7.99)

For term D, by Lemma 7.2.23 and 7.2.14 we have

‖
d∑

k=1

m̄jm̄kβk‖ψ1 ≤
d∑

k=1

|βk|‖m̄jm̄k‖ψ1 ≤
d∑

k=1

|βk|C2(1 + kr)2 ≤ C4(1 + kr)2‖β‖1.

(7.100)
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Since β ∈ B, we get ‖β‖1 ≤
√
d‖β‖2 ≤ (1 + k)

√
d‖β∗‖2. Thus, we have

‖
d∑

k=1

m̄jm̄kβk‖ψ1 ≤ C4

√
s(1 + kr)2‖β∗‖2. (7.101)

For term E, since 1− z ∈ [0, 1], we have ‖(1− zj)m̄j‖ψ2 ≤ ‖m̄j‖ψ2 ≤ C(1 + kr). Hence,

by Lemma 7.2.14 we get

‖
d∑

k=1

[(1− zj)m̄j][(1− zk)m̄k]βk‖ψ1 ≤
d∑

k=1

|βk|‖[(1− zj)m̄j][(1− zk)m̄k]‖ψ1

≤
d∑

k=1

|βk|C(1 + kr)2 ≤ C6(1 + kr)2
√
s‖β∗‖2.

(7.102)

This gives us

‖K̄j‖ψ1 ≤ C7

√
s(1 + k)(1 + kr)2‖β∗‖2. (7.103)

By Lemma 7.2.13, we get

‖∇jq(β; β)− E∇jq(β; β)‖ψ1

≤ 2‖∇jq(β; β)‖ψ1 ≤ C8[(1 + k)(1 + kr)2
√
s‖β∗‖2 + max{(1 + kr)2, σ2 + ‖β∗‖2

2}].

(7.104)

Proof of Theorem 7.2.8

For each iteration we denote M(βt−1) = arg maxQ(β; βt−1), by the strongly concavity of

Q(β; β∗) we have

〈∇Q(M(βt−1); β∗)−∇Q(β∗; β∗),M(βt−1)− β∗〉 ≥ v‖M(βt−1)− β∗‖2
2.
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On the other hand, by the Lipschitz-Gradient condition and the assumption ofM(βt−1), βt−1 ∈

B, we have

〈∇Q(M(βt−1); β∗)−∇Q(M(βt−1); βt−1), β∗−M(βt−1)〉 ≤ γ‖βt−1−β∗‖2‖β∗−M(βt−1)‖2.

Also by the optimality of M(βt−1) we have

〈∇Q(M(βt−1); β∗)−∇Q(β∗; β∗),M(βt−1)− β∗〉 ≤

〈∇Q(M(βt−1); β∗)−∇Q(M(βt−1); βt−1), β∗ −M(βt−1)〉.

Thus, we have

v‖M(βt−1)− β∗‖2
2 ≤ γ‖βt−1 − β∗‖2‖2β

∗ −M(βt−1)‖2.

That is, ‖M(βt−1) − β∗‖2 ≤ γ
v
‖βt−1 − β∗‖2. Next, we will bound the term of ‖βt −

M(βt−1)‖2.

Under the assumption that fi is independent with others, just as almost the same as in

(7.76)-(7.78) via Lemma 7.2.2, we have that with probability at least 1− ζ ,

‖βt −M(βt−1)‖2 = ‖f̃(βt−1)−M(βt−1)‖2 ≤ O(
d
√
τT log d

ζ√
βnε̃2

).

Thus, we have with probability at least 1− ζ

‖βt − β∗‖2 ≤
γ

v
‖βt−1 − β∗‖2 +O(

d
√
τT log d

ζ√
βnε̃2

).

Since we need to make βt ∈ B, this will be true under the assumption that

O(
d
√
τT log d

ζ√
βnε̃2

) ≤ v − γ
v

R.
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If this holds, then we have with probability at least 1− Tζ

‖βt − β∗‖2 ≤ (
γ

v
)TR +O(

v

v − γ

d
√
τT log d

ζ√
βnε̃2

),

Taking T = O( v
v−γ log n) and ε̃ = O( ε√

log 1
δ

), we have the result.

Proof of Lemma 7.2.9

To prove Lemma 7.2.9, we need a stronger lemma.

Lemma 7.2.24. The j-the coordinate of f(β) is ξ-sub-exponential with

ξ = C1

√
‖β∗‖2

∞ + σ2, (7.105)

where C1 is some absolute constant. Also, for fixed j ∈ [d], each fi,j(β), where i ∈ [n], is

independent with others.

If Lemma 7.2.24 holds, then by Lemma 7.2.11 we can get Lemma 7.2.9.

Proof of Lemma 7.2.24. The proof is almost the same as that of Lemma 7.2.4.

It is oblivious that each fi(β), where i ∈ [n], is independent with others. Next, we prove

the property of sub-exponential for each coordinate.

Note that

fj(β) = [2wβ(y)− 1]yj,

and

EY fi(β) = EY (2wβ(Y )Yj − Yj).

By the symmetrization lemma in Lemma 7.2.16, we have the following for any t > 0

E{exp(t|[fj(β)− Efj(β)]|)} ≤ E{exp(t|ε[2wβ(y)− 1]yj|)}, (7.106)
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where ε is a Rademacher random variable.

Next, we use Lemma 7.2.17 with f(yj) = yj , F = {f}, φ(v) = [2wβ(y) − 1]v and

φ(v) = exp(u · v). It is easy to see that φ is 1-Lipschitz. Thus, by Lemma 7.2.17 we have

E{exp(t|ε[2wβ(y)− 1]yj|)} ≤ E{exp[2t|εyj|]}. (7.107)

By the formulation of the model, we have yj = zβ∗j + vj , where z is a Rademacher

random variable and vj ∼ N (0, σ2). It is easy to see that yj is sub-Gaussian and

‖yj‖ψ2 = ‖z · β∗j + vj‖ψ2 ≤ C ·
√
‖z · βj‖2

ψ2
+ ‖vj‖2

ψ2
≤ C ′

√
|β∗j |2 + σ2 (7.108)

for some absolute constantsC,C ′, where the last inequality is due to the facts that ‖zjβ∗j ‖ψ2 ≤

|β∗j | and ‖vi,j‖ψ2 ≤ C ′′σ2 for some C ′′ > 0.

Since |εyj| = |yj|, ‖εyj‖ψ2 = ‖yj‖ψ2 and E(εyj) = 0, by Lemma 5.5 in [289] we have

that for any u′ there exists a constant C(4) > 0 such that

E{exp(u′ · ε · yj)} ≤ exp(u′2 · C(4) · (|β|2j + σ2)). (7.109)

Thus, for any t > 0 we get

E{exp(2t · |ε · yj|)} ≤ 2 exp(t2 · C(5) · (|β|2j + σ2)) (7.110)

for some constant C(5). Therefore, in total we have the following for some constant C(6) > 0

E{exp(t|[fj(β)−Efj(β)]|)} ≤ exp(t2 ·C(6) · (|β|2j +σ2)) ≤ exp(t2 ·C(6) · (‖β∗‖2
∞+σ2)).

(7.111)

Combining this with Lemma 7.2.13 and the definition, we know that fj(β) isO(
√
‖β∗‖2

∞ + σ2)-

sub-exponential.
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Chapter 8

Conclusion and Future Research

8.1 Conclusion

Big data has become a key resource for discovery in recent years. With the technical

advancements of data acquisition in many fields, we are now generating exponentially more

data in a multitude of formats. This flood of complex data poses significant opportunities to

discover and understand the critical interplay among different domains. However, due to the

existence of sensitive data, we are not yet able to utilize them to their full potential. This

is mainly due to the fact that most of the learning models or classifiers are vulnerable to

various attack techniques (e.g., model inversion attack [116] and membership attack [256]),

and thus cannot protect private information satisfactorily.

An effective way to resolve this issue is to design differentially private machine learn-

ing algorithms. Differential Privacy (DP) [107], with roots in cryptography, is a strong

mathematical scheme for privacy preserving. It allows for rich statistical and machine

learning analysis, and is now becoming a standard for private data analysis. Despite the

rapid development of DP in theory, its adoption to machine learning community remains

slow. One of my research goals during my Ph.D study is to speed up this process. For

this purpose, in this dissertation I have studied a number of fundamental machine learning
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problems in the differential privacy model. For this purpose, I have studied a number of

fundamental machine learning problems in the differential privacy model, which can be

divided into three categories.

Differentially Private Empirical Risk Minimization: Empirical Risk Minimization (ERM)

is one of the most fundamental problem in supervised learning which encompasses a large

family of classical models such as linear regression, LASSO, ridge regression, SVM, logistic

regression, sigmoid regression, and neural networks. Due to its importance, its differentially

private version ( called DP-ERM) has become one of the core problems in both machine

learning and differential privacy communities [66]. In the past few years, I have made both

extensive and in-depth studies on DP-ERM. Particularly, I have explored quite a few new

directions for the problem, and obtained a number of new and more practical algorithms

with theoretical guarantees on the utility, which can be categorized into two classes based

on their settings.

• Central Model: In the Central Model of Differential Privacy, there is a trusted curator

that can store and compute on the entire sensitive data to produce a statistical release

or synthetic data. This model has already been used in Uber and will be adopted

by the Unite States Census Bureau for the 2020 census. For this problem, I have

first studied DP-ERM with convex loss functions . Based on different assumptions,

I have designed the state-of-the-art algorithms that achieve (near) optimal utility

bounds. Then, I extended those techniques to the case of non-convex loss functions

and adopted two ways to measure the error. I have used gradient norm to measure

the error and obtained the first algorithm for population risk and the first result in

high dimensions. Subsequently, I have also used the Expected Excess Empirical Risk

(EEER) to measure the error, which allows us to obtain quality guaranteed solutions

in a way similar to convex loss functions. I provided the first results on the bounds of

excess empirical and population risks, as well as finer bounds for some special models

such as robust regression and sigmoid regression. I am also the first to show that it
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is possible to escape saddle points privately, which is quite useful in deep learning.

Moreover, I also obtained more practical algorithms with the improved bound and the

ability of escaping saddle points privately. Finally, I have extended DP-ERM with

point-wise loss to pairwise loss functions and provided the first result on this topic.

Specifically, I showed some theoretical results for utilities on both off-line and online

settings, as well as their corresponding algorithms. Moreover, I have initiated the

study of DP-ERM with heavy-tailed datasets [331] and gave the first algorithm with

theoretical guarantees on the quality.

• Local Model: Instead of using a trusted curator, in the local differential privacy model

(LDP), the curator is untrusted and each individual manages his/her own data and

discloses them to a server through some differentially private mechanisms. The server

collects the private data of each individual and combines them into a resulting data

analysis. Based on the type of interactions between the server and each individual,

there are two types of protocols: non-interactive LDP and interactive LDP. Compared

with interactive LDP, non-interactive LDP (NLDP) is more repelling to the real-world

applications due to its easy implementation and less influence by the network latency

issue, and has been used in industries such as Apple [273], Google [109] and Microsoft

[92]. DP-ERM in the NLDP model has not been well studied. Previous paper [257]

gives a negative result showing that the sample complexity of the problem needs to be

at least exponential in the dimensionality for general convex loss functions, which

makes DP-ERM non-applicable in high dimensions.

To resolve this issue, I have conducted a series of research on this topic. I first

demonstrated that the sample complexity can actually be reduced if the loss function is

smooth enough. Later, I showed that the sample complexity for Lipschitz Generalized

Linear loss functions can be quasi-polynomial and linear in the dimensionality. Next

I considered a relaxed model of NLDP where some additional public unlabeled

data are available to the coordinator. For this model, I am able to show that under
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some reasonable assumptions, the sample complexity can be fully polynomial for

smooth Generalized Linear Models. This finally makes DP-ERM applicable to high

dimensional datasets, which is confirmed by experiments. Later, the problem I have

studied is the sparse linear regression problem. I showed that it is not possible to

achieve any algorithm with non-trivial bound of utility in both non-interactive and

interactive LDP models if the dimensionality is high, but near optimal or even optimal

solution with non-trivial utility bound is achievable if the dimensionality is low or

only the labels/responses need to be private.

Matrix Estimation Problems in Differential Privacy Model: My work on this topic

mainly focuses on the behavior of high dimensional statistical matrix estimation. I have

pioneered the studies of a number of problems in the NLDP model, with most of them

being their respectively first study. Specifically, I have considered the problem of PCA

in the NLDP model , and provided lower bounds for both the low dimensional and the

high dimensional sparse cases, along with their corresponding near optimal algorithms. I

have also studied the high dimensional sparse covariance matrix estimation problem of

sub-Gaussian distributions, and presented an efficient algorithm. As a by-product, I also

gave a general framework for proving such type of lower bounds.

Other Problems: Besides the aforementioned problems, I have also studied several machine

learning related problems. I have investigated the problem of crowdsourcing estimation

and proposed a new method called private Dawid-Skene estimator to achieve the first

theoretically guaranteed solution on the utility of the problem.

In another work, I focused on designing Differentially Private variant of Expectation

Maximization algorithm with statistical guarantees. Specifically, I provided a general

framework and proofed the first theoretical guarantees of Mixture Linear Regression model

in DP model.
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8.2 Future Research

Compared with the classical topics in machine learning, differentially private machine

learning is far less understood, in the this Chapter I will mention some new directions and

future work.

Private Learning for Irregular Data

Compared with the datasets used in the studies of private learning, most of the sensitive data

in real-world applications are quite irregular. For example, datasets in medicine and finance

are often heavy-tailed, non i.i.d, follow some heterogeneous distributions and may even

contain outliers. Such irregularities violate the assumptions made by most of the existing

private learning algorithms, and thus can make them no longer differentially private. Recent

study [259] also shows that the presence of adversarial examples or outliers in the data

can cause the learning models significantly more vulnerable to privacy attacks. Thus, it is

urgently needed to design private and robust algorithms for these irregular datasets.

Making Trustworthy Algorithms Private

Most of the existing trustworthy algorithms focus only on aspects related to trust, and often

do not consider the privacy issue, which could cause privacy breach. Similarly, most of

the private learning algorithms are untrustworthy, and may cause other ethical issues. For

example, [16] shows that existing private algorithms may cause fairness issue. Thus, one

of the future directions is understanding the trade-off between these several trustworthy

terminologies, such as security, privacy and accuracy, also fairness, privacy and accuracy.

Differentially Private Deep Learning

Although there are many papers study deep learning in the differential privacy model, all of

them consider the practical behaviors. Thus, it is still unclear about the theoretical behaviors
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of Differentially Private (Deep) Neural Network. To solve this issue, one possible way is to

start with the classical neural network (such as one-hidden layer neural network). Compared

with DP-ERM with non-convex loss functions, there are many challenges on Differentially

Private Deep Learning, such as in Deep Neural Network it is always over-parameterized

where the number of nodes is far greater than the size of dataset. Also, some activation

functions such as ReLU, is not differentiable.

Machine Learning Problems in Variant Privacy Models

In this disseration, I mainly focused on the central DP and local DP model. However,

there are still other intermediate privacy, such as the Hybrid Differential Privacy Model,

Central/Local DP with public but unlabeled data, Multi-party setting, Federated Learning

setting and Shuffled DP model. Thus, a future direction will be designing DP algorithms for

machine learning problems in these different DP models, and also understanding the gaps

between these privacy models.

Combining with Other Privacy Enhancing Techniques

Theoretically, in this paper we have showed some limitations of DP and LDP models, which

may prevent using these two models for some machine learning problems. Moreover, recent

some papers also showed that the practical behaviors of DP/LDP is bad for some problems,

due to the large amount of noise these algorithms added. Thus, one direction is how to

improve the practical performance of DP algorithms. One possible way is combining with

other privacy-preserving techniques, such as Multiparty Secure Computation, Homomorphic

Encryption, Zero-Knowledge Proof and Blockchain methods, with differential privacy to

enhance the privacy-preserving ability and also learning ability of the current DP machine

learning algorithms.
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[55] Petra Bŭžková. “Linear regression in genetic association studies”. In: PLoS One 8.2
(2013), e56976.

[56] T Tony Cai, Weidong Liu, and Harrison H Zhou. “Estimating sparse precision
matrix: Optimal rates of convergence and adaptive estimation”. In: arXiv preprint
arXiv:1212.2882 (2012).

[57] T Tony Cai, Weidong Liu, Harrison H Zhou, et al. “Estimating sparse precision
matrix: Optimal rates of convergence and adaptive estimation”. In: The Annals of
Statistics 44.2 (2016), pp. 455–488.

[58] T Tony Cai, Zongming Ma, Yihong Wu, et al. “Sparse PCA: Optimal rates and
adaptive estimation”. In: The Annals of Statistics 41.6 (2013), pp. 3074–3110.

489



[59] T Tony Cai, Yichen Wang, and Linjun Zhang. “The Cost of Privacy: Optimal Rates
of Convergence for Parameter Estimation with Differential Privacy”. In: arXiv
preprint arXiv:1902.04495 (2019).

[60] T Tony Cai, Harrison H Zhou, et al. “Optimal rates of convergence for sparse
covariance matrix estimation”. In: The Annals of Statistics 40.5 (2012), pp. 2389–
2420.

[61] Qiong Cao, Zheng-Chu Guo, and Yiming Ying. “Generalization bounds for metric
and similarity learning”. In: Machine Learning (2016).

[62] Olivier Catoni and Ilaria Giulini. “Dimension-free PAC-Bayesian bounds for matri-
ces, vectors, and linear least squares regression”. In: arXiv preprint arXiv:1712.02747
(2017).

[63] T-H Hubert Chan, Elaine Shi, and Dawn Song. “Private and continual release of
statistics”. In: ACM Transactions on Information and System Security (2011).

[64] Chih-Chung Chang and Chih-Jen Lin. “LIBSVM: A library for support vector
machines”. In: ACM Transactions on Intelligent Systems and Technology 2 (3 2011).
Software available at http://www.csie.ntu.edu.tw/˜cjlin/libsvm,
27:1–27:27.

[65] Kamalika Chaudhuri and Daniel Hsu. “Sample complexity bounds for differentially
private learning”. In: Proceedings of the 24th Annual Conference on Learning
Theory. 2011, pp. 155–186.

[66] Kamalika Chaudhuri and Claire Monteleoni. “Privacy-preserving logistic regres-
sion”. In: Advances in Neural Information Processing Systems. 2009.

[67] Kamalika Chaudhuri, Claire Monteleoni, and Anand D Sarwate. “Differentially
private empirical risk minimization”. In: Journal of Machine Learning Research
12.Mar (2011), pp. 1069–1109.

[68] Kamalika Chaudhuri, Anand Sarwate, and Kaushik Sinha. “Near-optimal differen-
tially private principal components”. In: Advances in Neural Information Processing
Systems. 2012, pp. 989–997.

[69] Kamalika Chaudhuri, Anand D Sarwate, and Kaushik Sinha. “A near-optimal algo-
rithm for differentially-private principal components”. In: The Journal of Machine
Learning Research 14.1 (2013), pp. 2905–2943.

[70] Changyou Chen, Nan Ding, and Lawrence Carin. “On the convergence of stochastic
gradient MCMC algorithms with high-order integrators”. In: Advances in Neural
Information Processing Systems. 2015.

490

http://www.csie.ntu.edu.tw/~cjlin/libsvm


[71] Chunhui Chen and Olvi L Mangasarian. “A class of smoothing functions for non-
linear and mixed complementarity problems”. In: Computational Optimization and
Applications 5.2 (1996), pp. 97–138.

[72] Xi Chen, Qihang Lin, and Dengyong Zhou. “Optimistic knowledge gradient policy
for optimal budget allocation in crowdsourcing”. In: International conference on
machine learning. 2013, pp. 64–72.

[73] Yan Chen et al. “Differentially private regression diagnostics”. In: Data Mining
(ICDM), 2016 IEEE 16th International Conference on. IEEE. 2016, pp. 81–90.

[74] Yudong Chen, Lili Su, and Jiaming Xu. “Distributed statistical machine learning in
adversarial settings: Byzantine gradient descent”. In: Proceedings of the ACM on
Measurement and Analysis of Computing Systems 1.2 (2017), p. 44.

[75] Tzuu-Shuh Chiang, Chii-Ruey Hwang, and Shuenn Jyi Sheu. “Diffusion for global
optimization in Rˆn”. In: SIAM Journal on Control and Optimization 25.3 (1987),
pp. 737–753.
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