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Abstract—In this paper, we study the problem of estimating
the covariance matrix under differential privacy, where the
underlying covariance matrix is assumed to be sparse and of high
dimensions. We propose a new method, called DP-Thresholding,
to achieve a non-trivial l2-norm based error bound, which is
significantly better than the existing ones from adding noise
directly to the empirical covariance matrix. Experiments on the
synthetic datasets show consistent results with our theoretical
claims.

I. INTRODUCTION

Machine Learning and Statistical Estimation have made
profound impact in recent years to many applied domains
such as social sciences, genomics, and medicine. During their
applications, a frequently encountered challenge is how to deal
with the high dimensionality of the datasets, especially for
those in genomics, educational and psychological research. A
commonly adopted strategy for dealing with such an issue is to
assume that the underlying structures of parameters are sparse.
Another often encountered challenge is how to handle

sensitive data, such as those in social science, biomedicine and
genomics. A promising approach is to use some differentially
private mechanisms for the statistical inference and learning
tasks. Differential Privacy (DP) [1] is a widely-accepted
criterion that provides provable protection against identification
and is resilient to arbitrary auxiliary information that might
be available to attackers. Since its introduction over a decade
ago, a rich line of works are now available [2]–[5], which
have made differential privacy a compelling privacy enhancing
technology for many organizations, such as Google [6], Apple
[7].

Estimating or studying the high dimensional datasets while
keeping them (locally) differentially private could be quite
challenging for many problems, such as sparse linear regression
[8]. However, there are also evidences showing that the loss of
some problems under the privacy constraints can be quite small
compared with their non-private counterparts. Examples of such
nature include high dimensional sparse PCA [9], sparse inverse
covariance estimation [10], and high-dimensional distributions
estimation [11]. Thus, it is desirable to determine which high
dimensional problem can be learned or estimated efficiently in
a private manner.

In this paper, we try to give an answer to this question for
a simple but fundamental problem in machine learning and
statistics, called estimating the underlying sparse covariance
matrix of bounded sub-Gaussian distribution. For this problem,
we propose a simple but nontrivial (�, �)-DP method, DP-
Thresholding, and show that the squared l2-norm error is
bounded by O( s log pn�2 ), where s is the sparsity of each row in
the underlying covariance matrix. Experiments on synthetic
datasets confirm the theoretical claims. To our best knowledge,
this is the first paper studying the problem of estimating high
dimensional sparse covariance matrix under (local) differential
privacy.

II. RELATED WORK

Recently, there are several papers studying private distribu-
tion estimation, such as [11]–[15]. For distribution estimation
under the central differential privacy model, [13] considers
the 1-dimensional private mean estimation of a Gaussian
distribution with (un)known variance. The work that is probably
most related to ours is [11], which studies the problem
of privately learning a multivariate Gaussian and product
distributions. The following are the main differences with ours.
Firstly, our goal is to estimate the covariance of a sub-Gaussian
distribution. Even though the class of distributions considered
in our paper is larger than the one in [11], it has an additional
assumption which requires the l2 norm of a sample of the
distribution to be bounded by 1. This means that it does not
include the general Gaussian distribution. Secondly, although
[11] also considers the high dimensional case, it does not
assume the sparsity of the underlying covariance matrix. Thus,
its error bound depends on the dimensionality p polynomially,
which is large in the high dimensional case (p ≫ n), while the
dependence in our paper is only logarithmically (i.e., log p).
Thirdly, the error in [11] is measured by the total variation
distance, while it is by l2-norm in our paper. Thus, the two
results are not comparable. [15] recently also studies the
covariance matrix estimation via iterative eigenvector sampling.
However, their method is just for the low dimensional case
and with Frobenious norm as the error measure.
In this paper, we mainly use Gaussian mechanism to the

covariance matrix, which has been studied in [9], [10], [16].



However, as it will be shown later, simply outputting the
perturbed covariance can cause big error and thus is insufficient
for our problem. Compared to these problems, ours is clearly
more complicated.

III. PRELIMINARIES

A. Differential Privacy
Differential privacy [1] is by now a defacto standard for

statistical data privacy which constitutes a strong standard for
privacy guarantees for algorithms on aggregate databases. One
likely reason that it gains so much popularity is its guarantee of
no significant change on the outcome distribution when there
is one entry change to the dataset. We say that two datasets
D,D′ are neighbors if they differ by only one entry, denoted
as D ∼ D′.

Definition 1 (Differentially Private [1]). A randomized algo-
rithm  is (�, �)-differentially private (DP) if for all neighbor-
ing datasets D,D′ and for all events S in the output space of
, the following holds

ℙ((D) ∈ S) ≤ e�ℙ((D′) ∈ S) + �.

When � = 0,  is �-differentially private.

We will use Gaussian Mechanism [1] to guarantee (�, �)-DP.

Definition 2 (Gaussian Mechanism). Given any function q ∶
n → ℝp, the Gaussian Mechanism is defined as:

G(D, q, �) = q(D) + Y ,

where Y is drawn from Gaussian Distribution  (0, �2Ip) with

� ≥
√

2 ln(1.25∕�)Δ2(q)
� . Here Δ2(q) is the l2-sensitivity of the

function q, i.e.

Δ2(q) = sup
D∼D′

||q(D) − q(D′)||2.

Gaussian Mechanism preservers (�, �)-differential privacy.

B. Private Sparse Covariance Estimation
Let x1, x2,⋯ , xn be n random samples from a p-variate

distribution with covariance matrix Σ = (�ij)1≤i,j≤p, where
the dimensionality p is assumed to be high, i.e., p ≫ n ≥
Poly(log p).
We define the parameter space of s-sparse covariance

matrices as the following:

0(s) = {Σ = (�ij)1≤i,j≤p ∶ �−j,j is s-sparse ∀j ∈ [p]}, (1)

where �−j,j means the j-th column of Σ with the entry �jj
removed. That is, a matrix in 0(s) has at most s non-zero
off-diagonal elements in each column.
We assume that each xi is sampled from a 0-mean and

sub-Gaussian distribution with parameter �2, that is,

E[xi] = 0,ℙ{|vT xi| > t} ≤ e−
t2

2�2 ,∀t > 0 and ‖v‖2 = 1. (2)

This means that all the one-dimensional marginals of xi have
sub-Gaussian tails. We also assume that with probability 1,

‖xi‖2 ≤ 1. We note that such assumptions are quite common
in the differential privacy literature, such as [9].

Let d(�2, s) denote the set of distributions of xi satisfying
all the above conditions (ı.e., (2) and ‖xi‖2 ≤ 1) and with the
covariance matrix Σ ∈ 0(s). The goal of private covariance
estimation is to obtain an estimator Σpriv of the underlying
covariance matrix Σ based on {x1,⋯ , xn} ∼ P ∈ d(�2, s)
while keeping it differnetially private. In this paper, we will
focus on the (�, �)-differential privacy. We use the l2 norm to
measure the difference between Σpriv and Σ, i.e., ‖Σpriv − Σ‖2.

Lemma 1. Let {x1,⋯ , xn} be n random variables sampled
from the Gaussian distribution  (0, �2). Then

Emax
1≤i≤n

|xi| ≤ �
√

2 log 2n, (3)

ℙ{max
1≤i≤n

|xi| ≥ t} ≤ 2ne−
t2

2�2 . (4)

Particularly, if n = 1, we have ℙ{|xi| ≥ t} ≤ 2e−
t2

2�2 .

Lemma 2 ( [17]). If {x1, x2,⋯ , xn} are sampled form a
sub-Gaussian distribution in (2) and Σ∗ = (�∗)1≤i,j≤p =
1
n
∑n
i=1 xix

T
i is the empirical covariance matrix, then there

exist constants C1 and  > 0 such that ∀i, j ∈ [p]

ℙ(|�∗ij − �ij| > t) ≤ C1e
−nt2 8

2 (5)

for all |t| ≤ �, where C1 and  are constants and depend only
on �2. Specifically,

ℙ{|�∗ij − �ij| > 
√

log p
n
} ≤ C1p

−8. (6)

IV. METHOD

A. A First Approach

A direct way to obtain a private estimator is to perturb the
empirical covariance matrix by symmetric Gaussian matrices,
which has been used in previous work on private PCA, such
as [9], [16]. However, as we can see bellow, this method will
introduce big error.
By [16], for any give 0 < �, � ≤ 1 and {x1, x2,⋯ , xn} ∼

P ∈ p(�2, s), the following perturbing procedure is (�, �)-
differentially private:

Σ̃ = Σ∗ +N = (�̃ij)1≤i,j≤p =
1
n

n
∑

i=1
xix

T
i +N, (7)

where N is a symmetric matrix with its upper triangle (
including the diagonal) being i.i.d samples from  (0, �21 );
here �21 =

2 ln(1.25∕�)
n2�2 , and each lower triangle entry is copied

from its upper triangle counterpart. By [18], we know that

‖N‖2 ≤ O(
√

p�1) = O(
√

p
√

log 1�
n� ). We can easily get that

‖Σ̃ − Σ‖2 ≤ ‖Σ∗ − Σ‖2 + ‖N‖2 ≤ O(

√

p log 1�
n�

), (8)



where the second inequality is due to [19]. However, we can
see that the upper bound of the error in (8) is quite large in
the high dimensional case.
Another issue of the private estimator in (7) is that it is

not clear whether it is positive-semidefinite, a property that is
normally expected from an estimator.

B. Post-processing via Thresholding
We note that one of the reasons that the private estimator

Σ̃ in (7) fails is due to the fact that some entries are quite
large which make ‖Σ̃ij − Σij‖2 large for some i, j. To see it
more precisely, by (4) and (5) we can get the following, with
probability at least 1 − Cp−6, for all 1 ≤ i, j ≤ p,

|�̃ij − �ij| ≤ 

√

log p
n

+
4
√

2 ln 1.25�
√

log p

n�
= O(

√

log p
n�2

).
(9)

Thus, to reduce the error, it is natural to think of the following
way. For those �ij with larger values, we keep the corresponding
�̃ij in order to make their difference less than some threshold.
For those �ij with smaller values compared with (9), since the
corresponding �̃ij may still be large, if we threshold �̃ij to 0,
we can lower the error on �̃ij − �ij .

Following the above thinking and the thresholding methods
in [17] and [20], we propose the following DP-Thresholding
method, which post-processes the perturbed covariance matrix
in (7) with the threshold 

√

log p
n + 4

√

2 ln 1.25∕�
√

log p
n� . After

thresholding, we further threshold the eigenvalues of Σ̂ in
order to make it positive semi-definite. See Algorithm 1 for
detail.

Algorithm 1 DP-Thresholding
Input: �, � are privacy parameters, {x1, x2,⋯ , xn} ∼ P ∈
(�2, s).
1: Compute

Σ̃ = (�̃ij)1≤i,j≤p =
1
n

n
∑

i=1
xix

T
i +N,

where N is a symmetric matrix with its upper triangle
(including the diagonal) being i.i.d samples from  (0, �21 );
here �21 =

2 ln(1.25∕�)
n2�2 , and each lower triangle entry is

copied from its upper triangle counterpart.
2: Define the thresholding estimator Σ̂ = (�̂ij)1≤i,j≤n as

�̂ij = �̃ij ⋅ I[|�̃ij| > 
√

log p
n

+
4
√

2 ln 1.25∕�
√

log p
n�

].
(10)

3: Let the eigen-decomposition of Σ̂ as Σ̂ =
∑p
i=1 �iviv

T
i . Let

�+ = max{�i, 0} be the positive part of �i, then define
Σ+ =

∑p
i=1 �

+vivTi .
4: return Σ+.

Theorem 1. For any 0 < �, � ≤ 1, Algorithm 1 is (�, �)-
differentially private.

Proof. By [9] and [16], we know that Step 1 keeps the
matrix (�, �)-differentially private. Thus, Algorithm 1 is (�, �)-
differentially private due to the post-processing property of
differential privacy [1].

For the matrix Σ̂ in (10) after the first step of thresholding,
we have the following key lemma.

Lemma 3. For every fixed 1 ≤ i, j ≤ p, there exists a constant
C1 > 0 such that with probability at least 1 − C1p

− 92 , the
following holds:

|�̂ij − �ij| ≤ 4min{|�ij|, 
√

log p
n

+
4
√

2 ln 1.25∕�
√

log p
n�

}.
(11)

Proof of Lemma 3. Let Σ∗ = (�∗ij)1≤i,j≤p and N = (nij)1≤i,j≤p.

Define the event Aij = {|�̃ij| > 
√

log p
n + 4

√

2 ln 1.25∕�
√

log p
n� }.

We have:

|�̂ij − �ij| = |�ij| ⋅ I(Acij) + |�̃ij − �ij| ⋅ I(Aij). (12)

By the triangle inequality, it is easy to see that

Aij =
{

|�̃ij − �ij + �ij| > 
√

log p
n

+
4
√

2 ln 1.25∕�
√

log p
n�

}

⊂
{

|�̃ij − �ij| > 
√

log p
n

+
4
√

2 ln 1.25∕�
√

log p
n�

− |�ij|
}

and

Acij =
{

|�̃ij − �ij + �ij| ≤ 

√

log p
n

+
4
√

2 ln 1.25∕�
√

log p
n�

}

⊂
{

|�̃ij − �ij| > |�ij| − (
√

log p
n

+
4
√

2 ln 1.25∕�
√

log p
n�

)
}

.

Depending on the value of �ij , we have the following three
cases.

a) Case 1: |�ij| ≤

4

√

log p
n +

√

2 log 1.25∕�
√

log p
n� . For this

case, we have

ℙ(Aij) ≤ ℙ(|�̃ij−�ij| >
3
4

√

log p
n
+
3
√

2 ln 1.25∕�
√

log p
n�

)

≤ C1p
− 92 + 2p−

9
2 . (13)



This is due to the followings:

ℙ
(

|�̃ij − �ij| >
3
4

√

log p
n

+
3
√

2 ln 1.25∕�
√

log p
n�

)

(14)

≤ ℙ
(

|�∗ij − �ij| >
3
4

√

log p
n

+
3
√

2 ln 1.25∕�
√

log p
n�

) − |nij|
)

(15)

= ℙ
(

Bij
⋂

{3
√

2 ln 1.25∕�
√

log p
n�

) − |nij| > 0
})

(16)

+ ℙ
(

Bij
⋂

{3
√

2 ln 1.25∕�
√

log p
n�

) − |nij| ≤ 0
})

(17)

≤ ℙ(|�∗ij − �ij| >
3
4

√

log p
n
) + ℙ(

2
√

3 ln 1.25∕� log p
n�

) ≤ |nij|)
(18)

≤ C1P
− 92 + 2p−

9
2 , (19)

where event Bij denotes Bij = {|�∗ij − �ij| >
3
4

√

log p
n +

2
√

2 ln 1.25∕� log p
n� ) − |nij|}, and the last inequality is due to (4)

and (5).
Thus by (12), with probability at least 1 − C1p

− 92 − 2p−
9
2 ,

we have
|�̂ij − �ij| = |�ij|,

which satisfies (11).
b) Case 2: |�ij| ≥ 2

√

log p
n + 8

√

2 ln 1.25∕�
√

log p
n� ). For this

case, we have

ℙ(Acij) ≤ ℙ(|�̃ij − �ij| ≥ 

√

log p
n

+
4
√

2 ln 1.25∕�
√

log p
n�

)

≤ C1p
−8 + 2p−8,

where the proof is the same as (13-17). Thus, with probability
at least 1 − C1p

− 92 − 2p−8, we have

|�̂ij − �ij| = |�̃ij − �ij|. (20)

Also, by (9), (11) also holds.
c) Case 3: Otherwise,


4

√

log p
n

+

√

2 log 1.25∕�
√

log p
n�

≤ |�ij|

≤ 2
√

log p
n

+
8
√

2 ln 1.25∕�
√

log p
n�

).

For this case, we have

|�̂ij − �ij| = |�ij| or |�̃ij − �ij|. (21)

When |�ij| ≤ 
√

log p
n + 4

√

2 ln 1.25∕�
√

log p
n� , we can see from (9)

that with probability at least 1 − 2p−6 − C1p−8,

|�̃ij − �ij| ≤ 

√

log p
n

+
4
√

2 ln 1.25∕�
√

log p
n�

≤ 4|�ij|.

Thus, (11) also holds.

Otherwise when |�ij| ≤ 
√

log p
n + 4

√

2 ln 1.25∕�
√

log p
n� , (11)

also holds. Thus, Lemma 3 is true.

By Lemma 3, we have the following upper bound on the
l2-norm error of Σ+.

Theorem 2. The output Σ+ of Algorithm 1 satisfies:

E‖Σ̂ − Σ‖22 = O(
s log p log 1�

n�2
), (22)

where the expectation is taken over the coins of the Algorithm
and the randomness of {x1, x2,⋯ , xn}.

Proof. Due the space limit, we leave the proof in the full
version of the paper.

Comparing the bound in the above corollary with the optimal
minimax rate Θ( s log pn ) in [17] for the non-private case, we
can see that the impact of the differential privacy is to make
the number of efficient sample from n to n�2. It is an open
problem to determine whether the bound in Theorem 2 is tight.

V. EXPERIMENTS

In this section, we evaluate the performance of Algorithm 1
practically on synthetic datasets.

a) Data Generation: We first generate a symmetric sparse
matrix Ũ with the sparsity ratio sr, that is, there are sr× p× p
non-zero entries of the matrix. Then, we let U = Ũ + �Ip for
some constant � to make U positive semi-definite and then
scale it to U = U

c by some constant c which makes the norm
of samples less than 1 (with high probability)1. Finally, we
sample {x1,⋯ , xn} from the multivariate Gaussian distribution
 (0, U ). In this paper, we will use set � = 50 and c = 200.

b) Experimental Settings: To measure the performance,
we compare the l2 norm of relative error, respectively. That
is, ‖Σ+−U‖2

‖U‖2
with the sample size n in three different settings:

1) we set p = 100, � = 1, � = 1
n and change the sparse ratio

sr = {0.1, 0.2, 0.3, 0.5}. 2) We set � = 1, � = 1
n , sr = 0.2, and

let the dimensionality p vary in {50, 100, 200, 500}. 3) We fix
p = 200, � = 1

n , sr = 0.2 and change the privacy level as
� = {0.1, 0.5, 1, 2}. We run each experiment 20 times and take
the average error as the final one.

c) Experimental Results: Figure 1 is the result of DP-
Thresholding (Algorithm 1) with l2 relative error, respectively.
From the figure we can see that: 1) if the sparsity ratio is
large i.e., the underlying covairance matrix is more dense, the
relative error will be larger, this is due to the fact showed in
Theorem 2 that the error depends on the sparsity s. 2) The
dimensionality only slightly affects the relative error. That is,
even if we double the value of p, the error increases only
slightly. This is consistent with our theoretical analysis in
Theorem 2 which says that the error of our private estimators
is only logarithmically depending on p (i.e., log p). 3) With

1Although the distribution is not bounded by 1, actually, as we see from
previous section, we can obtain the same result as long as the l2 norm of the
samples is bounded by 1.



Fig. 1. Experiment results of Algorithm 1 for l2-norm relative error. The left one is for different sparsity levels, the middle one is for different dimensionality
p, and the right one is for different privacy level �.

the privacy parameter � increases (which means more private),
the error will become larger. This has also been showed in
previous theorems.
In summary, all the experimental results support our theo-

retical analysis.

VI. CONCLUSION AND DISCUSSION

In the paper, we study the problem of estimating the sparse
covariance matrix of a bounded sub-Gaussian distribution under
differential privacy model and propose a method called DP-
Threshold, which achieves a non-trivial error bound. Experi-
ments on synthetic datasets yield consistent results with the
theoretical analysis.

There are still some open problems for this problem. Firstly,
although the thresholding method can achieve non-trivial error
bound for our private estimator, in practice it is hart to find the
best threshold. Thus, an open problem is how to get the best
threshold. Secondly, as mentioned in the related work section,
there are many recent results on private Gaussian estimation,
which may make the l2 norm of the samples greater than 1.
Thus, it is an interesting problem to extend our method to a
general Gaussian distribution.
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