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Abstract

In this paper, we study the problem of estimating smooth Generalized Linear Models
(GLMs) in the Non-interactive Local Differential Privacy (NLDP) model. Different from
its classical setting, our model allows the server to access some additional public but un-
labeled data. In the first part of the paper we focus on GLMs. Specifically, we first
consider the case where each data record is i.i.d. sampled from a zero-mean multivari-
ate Gaussian distribution. Motivated by the Stein’s lemma, we present an (ε, δ)-NLDP
algorithm for GLMs. Moreover, the sample complexity of public and private data for the
algorithm to achieve an `2-norm estimation error of α (with high probability) is O(pα−2)
and Õ(p3α−2ε−2) respectively, where p is the dimension of the feature vector. This is a
significant improvement over the previously known exponential or quasi-polynomial in α−1,
or exponential in p sample complexities of GLMs with no public data. Then we consider
a more general setting where each data record is i.i.d. sampled from some sub-Gaussian
distribution with bounded `1-norm. Based on a variant of Stein’s lemma, we propose an
(ε, δ)-NLDP algorithm for GLMs whose sample complexity of public and private data to
achieve an `∞-norm estimation error of α is O(p2α−2) and Õ(p2α−2ε−2) respectively, under
some mild assumptions and if α is not too small (i.e., α ≥ Ω( 1√

p )). In the second part

of the paper, we extend our idea to the problem of estimating non-linear regressions and
show similar results as in GLMs for both multivariate Gaussian and sub-Gaussian cases.
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Finally, we demonstrate the effectiveness of our algorithms through experiments on both
synthetic and real-world datasets. To our best knowledge, this is the first paper showing
the existence of efficient and effective algorithms for GLMs and non-linear regressions in
the NLDP model with public unlabeled data. 12
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1. Introduction

Generalized Linear Model (GLM) is one of the most fundamental models in statistics and
machine learning. It generalizes the ordinary linear regression by allowing the linear model
to be related to the response variable via a link function and by allowing the magnitude
of the variance of each measurement to be a function of its predicted value. GLM was
introduced as a way of unifying various statistical models, including linear, logistic and
Poisson regressions and it has a wide range of applications in various domains, such as
social sciences (Warne, 2017), genomics research (Takada et al., 2017), finance (McNeil
and Wendin, 2007) and medical research (Lindsey and Jones, 1998). The model can be
formulated as follows.

GLM: Let y ∈ [0, 1] be the response variable that belongs to an exponential family with
natural parameter ψ. 3 That is, its probability density function can be written as p(y|ψ) =
exp(ψy − Φ(ψ))h(y), where Φ is the cumulative generating function. Given observations
y1, · · · , yn such that yi ∼ p(yi|ψi) for ψ = (ψ1, · · · , ψn), the maximum likelihood function
can be written as p(y1, y2, · · · |ψ) = exp(

∑n
i=1 yiψi − Φ(ψi))Π

n
i=1h(yi). In GLM, we assume

that ψ is modeled by linear relations, i.e., ψi = 〈xi, w∗〉 for some w∗ ∈ Rp and feature vector
xi. Thus, finding the maximum likelihood estimator (MLE) is equivalent to minimizing
1
n

∑n
i=1[Φ(〈xi, w〉)− yi〈xi, w〉]. The goal is to find w∗, which is equivalent to minimizing its

population version
w∗ = arg min

w∈Rp
E(x,y)[Φ(〈x,w〉)− y〈x,w〉]. (1)

One often encountered challenge for using GLMs in real world applications is how to
handle sensitive data, such as those in social science and medical research. As a commonly-
accepted technique for preserving privacy, Differential Privacy (DP) (Dwork et al., 2006)
provides provable protection against re-identification attacks and is resilient to arbitrary
auxiliary information that might be available to attackers. It allows for rich statistical and
machine learning analysis, and is becoming a de facto notion for private data analysis.

As a popular way of achieving DP, Local Differential Privacy (LDP) has received con-
siderable attention in recent years and has been adopted in industry (Ding et al., 2017;
Erlingsson et al., 2014; Tang et al., 2017). In LDP, each individual manages his/her proper
data and discloses them to a server through some DP mechanisms. The server collects the
(now private) data of each individual and combines them into a resulting data analysis.
Information exchange between the server and individuals could be either only once or mul-
tiple times. Correspondingly, protocols for LDP are called non-interactive LDP (NLDP) or

1. The first three authors contributed equally to this paper.
2. An abstract version of this paper was presented at The 32nd International Conference on Algorithmic

Learning Theory (ALT 2021) (Wang et al., 2021).
3. For simplicity in this paper we assume y is in [0, 1]. We will leave the case where y could be unbounded

as future research.
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interactive LDP. Due to its ease of implementation (e.g. no need to deal with the network
latency issue), NLDP is often preferred in practice.

While there are many results on estimating GLMs in the DP and interactive LDP
models such as (Chaudhuri et al., 2011; Bassily et al., 2014; Jain and Thakurta, 2014;
Kasiviswanathan and Jin, 2016), estimating GLMs in NLDP is still not well-understood
due to the limitation of number of interaction round in the privacy model. Recently (Smith
et al., 2017; Wang et al., 2018; Zheng et al., 2017) and (Wang et al., 2019b) provided
comprehensively studies on this problem. However, all of these results are on the negative
side. More specifically, they showed that to achieve an error of α, the sample complexity
needs to be quasi-polynomial or exponential in α−1 (based on different assumptions) (Wang
et al., 2019b; Zheng et al., 2017), or exponential in the dimension p (Smith et al., 2017;
Wang et al., 2018) (see Related Work section for more details). Recently, (Dagan and
Feldman, 2020) showed that an exponential lower bound (either in p or α−1) on the number
of samples for solving the standard task of learning a large-margin linear separator in the
NLDP model. Due to these negative results, there is no study on the practical performance
of these algorithms.

To address this high sample complexity issue of estimating GLMs in NLDP, a possible
way is to make use of some recent developments in the central DP model. Quite a few results
(Bassily and Nandi, 2019; Hamm et al., 2016; Papernot et al., 2016, 2018; Bassily et al.,
2018; Liu et al., 2021) have suggested that by allowing the server to access some public but
unlabeled data in addition to the private data, it is possible to further reduce the sample
complexity in the central DP model, under the assumption that these public data samples
have the same marginal distribution as the private ones. It has been also shown that such
a relaxed setting is likely to enable better practical performance for various problems such
as Empirical Risk Minimization (ERM) and Deep Neural Networks (Hamm et al., 2016;
Papernot et al., 2016). Thus, it would be interesting to know whether the relaxed setting
on public unlabeled data can also help to reduce sample complexity of GLMs in the NLDP
model.

With this thinking, our main questions now become the following. Can we further
reduce the sample complexity of GLMs in the NLDP model if the server has
additional public but unlabeled data? Moreover, is there any efficient algorithm
for this problem?

In this paper, we provide positive answers to the above two questions, see Table 1 for
our results. Specifically, our contributions can be summarized as follows:

1. Firstly, motivated by the Stein’s lemma (Lemma 5), we show that when the covariate
(feature vector) x follows an (unknown) zero-mean multivariate Gaussian distribution,
i.e., x ∼ N (0,Σ) with some Σ ∈ Rp×p, there exists an (ε, δ)-NLDP algorithm for
GLMs. Moreover, the sample complexity of public and private data for the algorithm
to achieve an `2-norm estimation error of α (with high probability), is O(pα−2) and
Õ(p3α−2ε−2) (with other terms omitted) respectively. We note that this is the first
result that achieves a fully polynomial sample complexity for a general class of loss
functions in the NLDP model with public unlabeled data.

2. Then we consider a more general case where the covariate x in GLMs is sub-Gaussian
with bounded `1-norm. Based on a variant of Stein’s lemma we propose an (ε, δ)-
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Methods Sample Complexity Measure Loss Function With public data? Data

(Smith et al., 2017) O(pε−2α−2) Excess Risk Linear Regression No `2-norm Bounded

(Smith et al., 2017) Õ(4pα−(p+2)ε−2) Excess Risk Lipschitz No `2-norm Bounded

(Smith et al., 2017) Õ(2pα−(p+1)ε−2) Excess Risk Lipschitz and Convex No `2-norm Bounded

(Wang et al., 2018) Õ
(
(c0p

1
4 )pα−(2+ p

2
)ε−2

)
Excess Risk (8, T )-smooth No `2-norm Bounded

(Wang et al., 2018) Õ(4p(p+1)D2
pε
−2α−4) Excess Risk (∞, T )-smooth No `2-norm Bounded

(Wang et al., 2019b, 2020) p ·
(
C
α3

)O(1/α3)
/εO( 1

α3 ) Excess Risk Lipschitz Convex GLM No `2-norm Bounded

(Zheng et al., 2017) p( 8
α)O(log log( 1

α
))(4

ε )
O(log( 1

α
)) Excess Risk Convex ∞-Smooth GLM No `2-norm Bounded

This paper O(p3α−2ε−2) `2-norm Error
Smooth GLM
(with additional assumptions)

Yes Gaussian

This paper
O(p2α−2ε−2)
for α ≥ Ω( 1√

p)
`∞-norm Error

Smooth GLM
(with additional assumptions)

Yes
`1-norm Bounded
and Sub-Gaussian

Table 1: Comparisons on the sample complexities (of private data) for achieving error α
under different measurements for GLMs in the non-interactive LDP model, where
c0, C are constants and Dp is a function of dimension p. For bounded norm case
we assume that ‖xi‖ ≤ 1 for every i ∈ [n]. For multivariate Gaussian case we
assume xi ∼ N (0,Σ) with some unknown Σ.

NLDP algorithm for GLMs. Moreover, under some mild assumptions, the sample
complexity of private and public data to achieve an `∞-norm error of α is Õ(p2ε−2α−2)
and Õ(p2α−2) (with other terms omitted) respectively, if α is not too small (i.e.,
α ≥ Ω( 1√

p)).

3. We then extend our idea to the problem of estimating non-linear regressions. By
using the Stein’s lemma and the zero-bias transformation (Goldstein et al., 1997),
we propose (ε, δ)-NLDP algorithms both cases where x is multivariate Gaussian and
sub-Gaussian with bounded `1-norm. Moreover, we show similar estimation errors as
in the GLMs case.

4. Finally, we provide extensive experimental study of our algorithms on both synthetic
and real-world datasets. The experimental results suggest that our methods are effi-
cient and effective, and they are consistent with our theoretical analysis. Moreover,
based on these results we also find some aspects that need further theoretical investi-
gation.

2. Related Work

Private learning with public unlabeled data has been studied previously in (Hamm et al.,
2016; Papernot et al., 2016, 2018; Bassily et al., 2018; Liu et al., 2021). These results differ
from ours in quite a few ways. Firstly, all of them consider either the multiparty setting
or the central DP model and cannot be extended to the NLDP model. Consequently, none
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of them can be used to solve our problems. Specifically, Hamm et al. (2016) considered
the multiparty setting where each party possesses several data records. Their method
needs each party to use its data to get a classifier. However, this approach could not be
extended to local DP model since in our case each party only has one data sample and it
is impossible to get any useful classifier based on one data sample only. Papernot et al.
(2016, 2018) considered training some Deep Neural Networks in the DP model by using
the subsample-and-aggregate framework in (Nissim et al., 2007). However, there is no
provable sample complexity for their methods. Bassily et al. (2018) studied DP-ERM in
the central model, which is later extended by (Liu et al., 2021). Their method is based on
combining the function of distance to instability and the sparse vector technique. However,
both the subsample-and-aggregate framework and the sparse vector technique cannot be
used in the local DP model. Secondly, public data samples in those methods are also used
quite differently from ours. Specifically, all of the above approaches use private data to get
private classifiers. Based on these classifiers, they label the public data and conduct the
learning process on the public data (now with pseudo labels), while in this paper we use
the public data to approximate some crucial constants. Finally, all of the previous methods
rely on the known model or the explicit form of loss function, while in our algorithms the
loss functions could be unknown to users; also the server could estimate multiple different
GLMs with the same sample complexity.

The problems considered in this paper can be viewed as restricted cases of the ERM
problem in NLDP model. Due to its challenging nature, ERM in NLDP has only been
considered in a few papers, such as (Smith et al., 2017; Wang et al., 2018, 2019b; Zheng et al.,
2017; Daniely and Feldman, 2018; Wang and Xu, 2019), see Table 1 for a summary. Smith
et al. (2017) gave the first result on convex ERM in NLDP and provided an algorithm with
a sample complexity of O(2pα−(p+1)ε−2). They showed that the exponential dependency
on the dimension p is unavoidable in the worst case. Later, Wang et al. (2018) showed that
when the loss function is smooth enough, the exponential term of α−Ω(p) can be reduced
to polynomial. However, there is still another exponential term in their sample complexity.
Recently, Wang et al. (2019b, 2020) further showed that the sample complexity for any
1-Lipschitz convex GLM can be reduced to only linear in p and exponential in α−1, which
extends a results in (Zheng et al., 2017) whose sample complexity is linear in p and quasi-
polynomial in α−1 for smooth GLMs. In this paper, we show, for the first time, that the
sample complexity of GLMs can be reduced to fully polynomial with the help of some public
but unlabeled data under some mild assumptions. There are also some results for specific
loss functions. For example, (Wang and Xu, 2019) studied the high dimensional sparse
linear regression problem and (Daniely and Feldman, 2018) considered the problem of PAC
learning halfspaces with polynomial samples. Since these results are only for some special
loss functions (instead of a family of functions), they are incomparable with ours.

As we mentioned earlier, there is a long list of work studies GLMs in the central DP
model and the interactive LDP model. In the central DP model, Jain and Thakurta (2014)
provided the first study and showed that to achieve an error α of the excess population
risk, there is an (ε, δ)-DP algorithm with sample complexity Õ(ε−2α−2). Recently, Song
et al. (2021) showed a sharper sample complexity bound of Õ(

√
rankε−1α−1), where rank is

the rank of the feature matrix formed by stacking the feature vectors as column, which
always holds that rank ≤ n. Bassily et al. (2021) provided an algorithm which runs
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in (nearly) linear time instead of super-linear in the previous work and its sample com-
plexity is Õ(max{

√
rankε−1α−1, α−2}). They also extended from the `2-norm Lipschitz

case and the convex setting to the `1-norm Lipschitz case and the weakly-convex set-
ting. Arora et al. (2022b) studied DP-GLM where the loss is smooth and non-negative
but not necessarily Lipschitz. They showed a near optimal sample complexity, which is
Õ(max{α−2, α−

3
2 ε−1,

√
pε−1α−1}) (if ‖w∗‖2 ≤ 1). Besides convex loss functions, Arora

et al. (2022a) recently studied non-convex GLMs in the DP model and showed that to
achieve an error α of the `2-norm of the gradient of the population risk function, there
is an ε, δ)-DP algorithm whose sample complexity is Õ(max{α−2,

√
rankε−1α−1, α−

5
2 ε−1}).

Cai et al. (2020) studied DP-GLM under statistical settings. In the low dimensional case
where the covariate x satisfies ‖x‖2 ≤

√
p, to achieve an α `2-norm estimation error, they

provided an algorithm with a near optimal sample complexity of Õ(max{pα−1, pε−1α−
1
2 }).

Moreover, under the high dimensional sparse setting, in the case where ‖x‖∞ ≤ 1 and
with some additional assumptions, they presented an algorithm with sample complexity
Õ(max{s∗ε−1, s∗ε−1α−

1
2 }), where s∗ is the underlying sparsity of w∗. (Hu et al., 2022)

recently generalized these results to the case where the covariates are heavy-tailed. In the
interactive LDP model, Duchi et al. (2013) provided the first study on ERM in the se-
quentially interactive LDP model and showed the (nearly) optimal minimax rate of sample
complexity should be Õ(pε−2α−2) to achieve an error α of the excess population risk when
the loss function is `2-norm Lipschitz.

3. Preliminaries

Since in this paper we mainly focus on multivariate Gaussian and sub-Gaussian covariates,
we first recall some definitions. More details can be found in (Vershynin, 2018).

Definition 1 (Sub-Gaussian) For a given constant κ, a random variable x ∈ R is said

to be sub-Gaussian if it satisfies supm≥1
1√
m
E[|x|m]

1
m ≤ κ. The smallest such κ is the sub-

Gaussian norm of x and it is denoted by ‖x‖ψ2. A random vector x ∈ Rp is called a
sub-Gaussian vector if there exists a constant κ such that for any unit vector v, we have
‖〈x, v〉‖ψ2 ≤ κ.

For sub-Gaussian data, we need the following assumptions on its distribution throughout
the paper.

Assumption 1 For a random vector x that is sub-Gaussian with zero mean and covariance
matrix Σ, we assume the following conditions hold

• Its distribution is supported on a `1-norm ball of radius r.

• For the matrix Σ, its corresponding Σ
1
2 is diagonally dominant, where Σ

1
2 is the square

root of matrix Σ. 4

4. A square matrix is said to be diagonally dominant if, for every row of the matrix, the magnitude of
the diagonal entry in a row is larger than or equal to the sum of the magnitudes of all the other (non-
diagonal) entries in that row. For a semi-definite positive matrix M ∈ Rp×p, let its SVD composition

be M = UTΣU , where Σ = diag(λ1, · · · , λp), then M
1
2 is defined as M

1
2 = UTΣ

1
2U , where Σ

1
2 =

diag(
√
λ1, · · · ,

√
λp).
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• Let v = Σ−
1
2x be the whitened random vector of x, each vi has constant first and

second conditional moments, i.e., ∀j ∈ [p] and w̃ = Σ
1
2w∗, E[vij |

∑
k 6=j w̃vik] = O(1)

and E[v2
ij |
∑

k 6=j w̃vik] = O(1).

In Assumption 1 there are three terms. The first one is natural as it has also been used in
the previous studies on DP-GLM. For the other two terms, we note that they are crucial for
Lemma 10 and Theorem 22, which are only used in utility analysis. Thus, even these two
assumptions do not hold, we still have the privacy guarantees. Moreover, it is straightfor-
ward to observe that when the whitened covariates v have independent, but not necessarily
identical entries, these two terms hold. We leave it as an open problem to further relax
these assumptions.

Differential Privacy (DP): In DP, we have data universe X ⊆ Rp and Y ⊆ R, and a
dataset D ∈ (X × Y)n whose size is n and the dataset is stored in some trusted curator.
Each data record (x, y) ∈ D sampled from some distribution P, where x ∈ Rp is the feature
vector and y ∈ R is the label of response. We say that two datasets D,D′ ⊆ X are neighbors
if they differ by only one data record, which is denoted as D ∼ D′.

Definition 2 (Differential Privacy (Dwork et al., 2006)) We call a randomized al-
gorithm Q is (ε, δ)-differentially private (DP) if for all neighboring datasets D,D′ and for
all events E in the output space of Q, the following holds

P(Q(D) ∈ E) ≤ eεP(Q(D′) ∈ E) + δ.

When δ = 0, A is ε-DP.

Local Differential Privacy (LDP): Instead of the trusted curator, in LDP model (Ka-
siviswanathan et al., 2011), each player (data provider) perturb his/her private data record
locally via some DP algorithms before sending it to the curator. Specifically, there are n
players with each holding a private data record (x, y) ∈ X × Y sampled from some distri-
bution P, and a server that is in charge of coordinating the protocol. An LDP protocol
proceeds in T rounds. In each round, the server sends a message, which is often called a
query, to a subset of the players, requesting them to run a particular algorithm. Based on
the query, each player i in the subset selects an algorithm Qi, runs it on her/his own data,
and sends the output back to the server.

Definition 3 (Local Differential Privacy (Kasiviswanathan et al., 2011)) A random-
ized algorithm Q is (ε, δ)-locally differentially private (LDP) if for all pairs x, x′ ∈ D, and
for all events E in the output space of Q, we have

P(Q(x) ∈ E) ≤ eεP(Q(x′) ∈ E) + δ.

When δ = 0, A is ε-LDP. A multi-player protocol is (ε, δ)/ε-LDP if for all possible inputs
and runs of the protocol, the transcript of player i’s interaction with the server is (ε, δ)/ε-
LDP. If T = 1, we say that the protocol is (ε, δ)/ε non-interactive LDP (NLDP).

In this paper, we will mainly focus on (ε, δ)-NLDP and we will mainly use the Gaussian
mechanism (Dwork et al., 2006) to guarantee (ε, δ)-LDP.

7



Wang, Hu, Zhang, Gaboardi and Xu

Lemma 4 (Gaussian Mechanism (Dwork et al., 2006)) Given any function q : (X ×
Y)n → Rd, the Gaussian mechanism is defined asMG(D, q, ε) = q(D)+Y, where Y is drawn

from Gaussian Distribution N (0, σ2Id) with σ ≥
√

2 ln(1.25/δ)∆2(q)

ε . Here ∆2(q) is the `2-
sensitivity of the function q, i.e., ∆2(q) = supD∼D′ ||q(D)− q(D′)||2. Gaussian mechanism
preserves (ε, δ)-differential privacy.

Our Model: Different from the above classical NLDP model where only one private
dataset D = {(xi, yi)}ni=1 exists, the NLDP model in our setting allows the server to have
an additional public but unlabeled dataset D′ = {xj}n+m

j=n+1 ⊂ Xm, where each xj is sampled
from Px, which is the marginal distribution of P (i.e., it has the same distribution as each
xi).

4. Privately Estimating Generalized Linear Models

In this section, we study GLMs in our privacy model and we aim to privately estimate w∗ in
(1) by using both private data {(xi, yi)}ni=1 and public unlabeled data {xj}n+m

j=n+1. Our goal is

to achieve a fully polynomial sample complexity for n andm, i.e., n,m = Poly(p, 1
ε ,

1
α , log 1

δ ),
such that there is an (ε, δ)-NLDP algorithm with estimation error less than α (with high
probability).

4.1 Gaussian Case

We first consider a simpler case that each data record is sampled from some unknown
Gaussian distribution N (0,Σ). The idea of our method is motivated by the following result,
which is derived from the Stein’s lemma (Brillinger, 2012).

Lemma 5 ((Brillinger, 2012)) If x ∼ N (0,Σ), then w∗ in (1) can be written as w∗ =
cΦ × wols, where cΦ is the fixed point of z 7→ (E[Φ(2)(〈x,wols〉z)])−1 (if we assume that
E[Φ(2)(〈x,wols〉z)] 6= 0) and wols = Σ−1E[xy] is the Ordinary Least Squares (OLS) vector.
5

From Lemma 5, we can see that to estimate w∗, it is sufficient to estimate wols and its
corresponding constant cΦ. Specifically, to estimate wols in a non-interactive local differen-
tially private manner, a direct way is to let each player perturb her/his sufficient statistics,
i.e., xix

T
i and yixi. After receiving the private OLS estimator ŵols,6 the server can then

estimate the constant cΦ by using the public unlabeled data and ŵols. From the defini-
tion, it is easy to see that cΦ is independent of the label y. Thus, cΦ can be estimated
by using the empirical version of E[Φ(2)(〈x,wols〉z)]. That is, find the root of the function
1− c

m

∑n+m
j=n+1 Φ(2)(c〈xj , ŵols〉). Several methods are available for finding roots, and in our

algorithms we will use the Newton’s method which has a quadratic convergence rate.

However, there is a challenge for this approach. That is, Lemma 5 needs to assume x
is Gaussian, which implies that the sensitivity of the terms ‖xixTi ‖F and ‖yixi‖2 could be
unbounded. To address this issue, we will use the concentration inequality on the `2-norm

5. Φ(2) is the second order derivative function of function Φ, similar for Φ(3) in the later sections.

6. Note that when n is large enough we can show ŵols is well defined, see Appendix for details.
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of Gaussian distributions, and clip each xi to let it has bounded `2-norm. Specifically, we
are motivated by the following lemma:

Lemma 6 (Gaussian case of (Hsu et al., 2012)) Let x ∼ N (0,Σ) ∈ Rp. For all t > 0,

P(‖x‖22 ≥ trace(Σ) + 2
√

trace(Σ2)t+ 2‖Σ‖2t) ≤ e−t. (2)

Since trace(Σ) ≤ p‖Σ‖2 and trace(Σ2) ≤ (trace(Σ))2, from Lemma 6 we have with
probability at least 1− 1

n2 , ‖x‖2 ≤ r ≡
√

10p‖Σ‖2 log n. Motivated by this we clip each xi
to x̄i = xi min{1, r

‖xi‖2 } and now the terms ‖x̄ix̄Ti ‖F and ‖yix̄i‖2 are bounded. However,

we can see the clipping threshold depends on the term of ‖Σ‖2, which is unknown in
advance. To estimate this term, we can use the empirical covariance matrix of the public
data {xj}n+m

j=n+1. See Algorithm 1 for details.

Algorithm 1 Non-interactive LDP for smooth GLMs with public data (Gaussian)

1: Input: Private data {(xi, yi)}ni=1 ∈ (Rp×[0, 1])n, where |yi| ≤ 1, {xi}n+m
j=1 ∼ N (0,Σ) for

some unknown Σ and {xj}n+m
j=n+1 are public, loss function Φ : R 7→ R, privacy parameters

ε, δ, and initial value c ∈ R.
2: for The server do
3: Calculate Σm = 1

m

∑n+m
j=n+1 xjx

T
j and send it to each user.

4: end for
5: for Each user i ∈ [n] do
6: Let x̄i = xi min{1, r

‖xi‖2 }, where r ≡
√

20p‖Σm‖2 log n.

7: Release x̂ixTi = x̄ix̄
T
i +E1,i and x̂iyi = x̄iyi+E2,i, where E1,i ∈ Rp×p is a symmetric

matrix and each entry of the upper triangle matrix is sampled from N (0,
32r4 log 2.5

δ
ε2

) and

E2,i ∈ Rp is sampled from N (0,
32r2 log 2.5

δ
ε2

Ip).
8: end for
9: for The server do

10: Let X̂TX =
∑n

i=1 x̂ix
T
i and X̂T y =

∑n
i=1 x̂iyi. Calculate ŵols = (X̂TX)−1X̂T y.

11: Calculate ỹj = xTj ŵ
ols for each j = n+ 1, · · · , n+m.

12: Find the root ĉΦ such that 1 = ĉΦ
m

∑n+m
j=n+1 Φ(2)(ĉΦỹj) by using Newton’s root-finding

method (or other methods):
13: for t = 1, 2, · · · until convergence do

14: c = c− c 1
m

∑n+m
j=n+1 Φ(2)(cỹj)−1

1
m

∑n+m
j=n+1{Φ(2)(cỹj)+cỹjΦ(3)(cỹj)}

.

15: end for
16: end for
17: return ŵglm = ĉΦ · ŵols.

Theorem 7 For any 0 < ε, δ < 1, Algorithm 1 is (ε, δ) non-interactive LDP.

Next we will show the estimation error bound of the output in Algorithm 1, before that we
need the following assumptions for loss functions.

Assumption 2 We assume

9
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• |Φ(2)(·)| ≤ L and Φ(3)(·) is G-Lipschitz.

• There exist constants c̄ and τ > 0, the function f(c) = cE[Φ(2)(〈x,wols〉c)] satisfies
the condition of f(c̄) ≥ 1 + τ , where wols is in Lemma 5 and x ∼ N (0,Σ).

• The derivative of f in the interval [0, c̄] does not change the sign, i.e., its absolute
value is lower bounded by some constant M > 0.

Note that the first condition ensures that Φ(1) is Lipschitz, and the second and the last
conditions are to ensure that the function f − 1 has a root and ĉΦ close to cΦ for large
enough m, see Theorem 16 and 17 for some concrete instances that satisfy the assumption.

Theorem 8 Let x1, · · · , xn ∈ Rp be i.i.d realizations of a random vector x ∼ N (0,Σ).
Moreover, under Assumption 2, for sufficiently large m,n such that

n ≥ Ω̃
(p3‖w∗‖22 log 1

δ log 1
ξ

ε2
)

(3)

m ≥ Ω
(
‖w∗‖22p). (4)

Then for any ζ ∈ (0, 1), with probability at least 1− exp(−Ω(p))− ξ

‖ŵglm − w∗‖2 ≤ Õ
(p 3

2 ‖w∗‖22
√

log 1
δ log 1

ξ

ε
√
n

+

√
p‖w∗‖22√
m

)
,

where Big-Õ and Big-Ω̃ notations omit the terms of ‖Σ‖2, G, L,M, c̄, τ, cΦ, λmin(Σ) (the
smallest eigenvalue of Σ) and other logarithmic factors (see Appendix for the explicit form
of m and n).

Theorem 8 suggests that if ‖w∗‖2 = O(1), then for any given error α, there is an (ε, δ)-
NLDP algorithm whose sample complexity of private (n) and public unlabeled (m) data,
to achieve the `2-norm error of α, is Õ(p3ε−2α−2) and O(pα−2), respectively. We note that
m ≤ n, which means that the sample complexity of the public data is less than that of the
private data. We also note that the sample complexity of the public data is independent of
the privacy parameters ε and δ.

Actually, there is one possible way to improve the practical performance of Algorithm
1 (and all other algorithms in the paper). The key observation is that, in the procedure of

estimating the OLS estimator, the empirical covariance matrix X̂TX does not depend on
labels. Thus, we can further use those public unlabeled data to give a more precise estimator

of the covariance matrix. That is, we can let X̂TX = 1
m+n(

∑n
i=1 x̂ix

T
i +

∑n+m
j=n+1 xjx

T
j ) and

X̂T y = 1
n

∑n
i=1 x̂iyi. However, by using the similar proof as in the proof of Theorem 8,

we can see that the upper bound of error will be asymptotically the same as the bound in
Theorem 8 (and all other theorems in the paper). In the experimental section we will adopt
this improved approach.

Remark 9 It is notable that the public dataset is only used in line 11-15 of Algorithm 1
(similar to other algorithms), where we use it to find a root of some function and to estimate

10



LDP GLM Estimation

‖Σ‖2 in the Gaussian case. Actually we can adjust our idea to a 2-round LDP algorithm in
the canonical model, i.e., there is no public unlabeled data (suppose we already know ‖Σ‖2
for the Gaussian case). That is, in the first round we get ŵols by using half privacy budget
and the server sends it to all the users. In the second round, each user uses another half
privacy budget to compute a noisy version of ỹj = xTj ŵols and sends it to the server. Then
the server uses these noisy version of ỹj to estimate the constant of cΦ. We note that due
to the noise we added in the second round for each term of ỹj, there could be a large amount
of error when using ĉΦ to estimate cΦ, and this will cause the private estimator has large
error. In the experiments section, we will practically show that this approach will leads
worse performance.

4.2 Sub-Gaussian Case

The main weakness of the previous result is that due to Lemma 5, Theorem 8 only holds for
Gaussian distributions. Fortunately, recently Erdogdu et al. (2019) generalized the Stein’s
lemma to bounded sub-Gaussian random vectors. Compared with the Gaussian case, in

this case there is an additional additive error of O(‖w
∗‖2∞√
p ). Formally, we have the following

lemma.

Algorithm 2 Non-interactive LDP for smooth GLMs with public data (General)

1: Input: Private data {(xi, yi)}ni=1 ⊂ (Rp × [0, 1])n, where ‖xi‖1 ≤ r and |yi| ≤ 1, public
unlabeled data {xj}n+m

j=n+1, loss function Φ : R 7→ R, privacy parameters ε, δ, and initial
value c ∈ R.

2: for Each user i ∈ [n] do

3: Release x̂ixTi = xix
T
i +E1,i, where E1,i ∈ Rp×p is a symmetric matrix and each entry

of the upper triangle matrix is sampled from N (0,
32r4 log 2.5

δ
ε2

).

4: Release x̂iyi = xiyi + E2,i, where E2,i ∈ Rp is sampled from N (0,
32r2 log 2.5

δ
ε2

Ip).
5: end for
6: for The server do
7: Let X̂TX =

∑n
i=1 x̂ix

T
i and X̂T y =

∑n
i=1 x̂iyi. Calculate ŵols = (X̂TX)−1X̂T y.

8: Calculate ỹj = xTj ŵ
ols for each j = n+ 1, · · · , n+m.

9: Find the root ĉΦ such that 1 = ĉΦ
m

∑n+m
j=n+1 Φ(2)(ĉΦỹj) by using Newton’s root-finding

method (or other methods):
10: for t = 1, 2, · · · until convergence do

11: c = c− c 1
m

∑n+m
j=n+1 Φ(2)(cỹj)−1

1
m

∑n+m
j=n+1{Φ(2)(cỹj)+cỹjΦ(3)(cỹj)}

.

12: end for
13: end for
14: return ŵglm = ĉΦ · ŵols.

Lemma 10 ((Erdogdu et al., 2019)) Let x1, · · · , xn ∈ Rp be i.i.d realizations of a ran-
dom vector x that is zero-mean sub-Gaussian with covariance matrix Σ and satisfies As-
sumption 1. Let v = Σ−

1
2x be the whitened random vector of x and denote ‖v‖ψ2 = κx.

If the function Φ(2) is Lipschitz with constant G, then for cΦ = 1
E[Φ(2)(〈xi,w∗〉)]

(assuming

11
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E[Φ(2)(〈xi, w∗〉)] 6= 0), the following holds for GLM in (1)

‖ 1

cΦ
· w∗ − wols‖∞ ≤ O(Grκ3

x

√
ρ2ρ∞

‖w∗‖2∞√
p

), (5)

where ρq for q = {2,∞} is the conditional number of Σ in `q-norm, i.e., ρq = ‖Σ‖q‖Σ−1‖q
where ‖A‖q = supx 6=0

‖Ax‖q
‖x‖q for matrix A, and wols = Σ−1E[xy] is the OLS vector.

Lemma 10 indicates that we can use the same idea as in the previous section to estimate
w∗. Note that the forms of constant cΦ in Lemma 5 and 10 are different while one depends
on wols and the other one depends on w∗. However, since by (5) we know w∗ and cΦw

ols

are close. Thus, intuitively we can still use 1
E[Φ(2)(〈xi,wols〉c̄Φ])

to approximate cΦ, where c̄Φ is

the root of cE[Φ(2)(〈xi, wols〉c)]− 1 which could be approximated by using public unlabeled
data. Combining these ideas, we present Algorithm 2.

Theorem 11 For any 0 < ε, δ < 1, Algorithm 2 is (ε, δ) non-interactive LDP.

The following theorem shows the sample complexity of the bounded sub-Gaussian dis-
tributions. Similar to Assumption 2, we need the following assumptions for loss functions.

Assumption 3 We assume

• |Φ(2)(·)| ≤ L and Φ(3)(·) is G-Lipschitz.

• For some constant c̄ and τ > 0, the function f(c) = cE[Φ(2)(〈x,wols〉c)] satisfies the
condition of f(c̄) ≥ 1+τ , where wols is in Lemma 10 and the distribution of x satisfies
Assumption 1.

• The derivative of f in the interval [0,max{c̄, cΦ}] does not change the sign (i.e., its
absolute value is lower bounded by some constant M > 0), where cΦ is in Lemma 10.

It seems that Assumption 3 is almost the same as Assumption 2. However, since these
two assumptions rely on the underlying distribution of (x, y), which are different in these
two cases. Thus, the two assumptions are different. Moreover, the third conditions in
Assumption 3 and Assumption 2 are different due to different intervals and different forms
of cΦ.

Theorem 12 Under Assumption 1 and 3, for sufficiently large m,n such that

m ≥ Ω
(
‖w∗‖2∞max{1, ‖w∗‖2∞}p2

)
,

n ≥ Ω̃
(p2‖w∗‖2∞max{1, ‖w∗‖2∞} log 1

δ log 1
ξ

ε2
)
. (6)

Then for any ζ ∈ (0, 1), with probability at least 1 − exp(−Ω(p)) − ξ, the output ŵglm in
Algorithm 2 satisfies

‖ŵglm − w∗‖∞ ≤ Õ
(‖w∗‖2∞max{1, ‖w∗‖2∞}p√

m

+
‖w∗‖2∞max{1, ‖w∗‖2∞}p

√
log 1

δ log 1
ξ

ε
√
n

+
‖w∗‖3∞max{1, ‖w∗‖∞}√

p

)
, (7)
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where Big-Õ and Big-Ω notations omit the terms of ‖Σ‖2, ρ2, ρ∞, G, L, τ,M, c̄, r, κx, cΦ and
λmin(Σ), and other logarithmic factors (see Appendix for the explicit forms of m and n).

Remark 13 Similar to the Gaussian case, Theorem 12 suggests that if we omit all the
other terms and assume that ‖w∗‖∞ = O(1), then for any given error α ≥ Ω( 1√

p), there is

an (ε, δ)-NLDP algorithm whose sample complexity of private data (n) and public unlabeled
data (m) to achieve an estimation error of α (in `∞-norm), is Õ(p2ε−2α−2) and O(p2α−2),
respectively. While compared with the Gaussian case, here we need larger m. However, as
we will see in the experiments section, in practice we do not need such large size for public
data.

Compared with the complexity for private data in Gaussian case, it seems that the com-
plexity in the sub-Gaussian case is less. However, due to different measure of estimation er-
ror (`2-norm v.s. `∞-norm) and different assumptions (‖w∗‖2 = O(1) v.s. ‖w∗‖∞ = O(1)),
these two results are incomparable.

Compared with the previous work on linear regression in NLDP model. It seems that
our sample complexities for the general GLMs are worse than the previous results. How-
ever, these results are incomparable due to different settings and assumptions. Specifically,
when ‖xi‖2 ≤ 1 and ‖w∗‖2 ≤ 1, Smith et al. (2017) proposed an algorithm with a sample
complexity of Õ(pα−2ε−2) for the optimization error. While in this paper we mainly focus
on the estimation error. Moreover, in the Gaussian case, we have each ‖xi‖2 ≤ O(

√
p) with

high probability and in the sub-Gaussian case we assume ‖w∗‖∞ ≤ O(1), these assumptions
are different with the assumptions in (Smith et al., 2017). Zheng et al. (2017) proposed
an algorithm whose sample complexity is Õ(α−4ε−2) for the optimization error, under the
assumptions of ‖xi‖1 ≤ 1 and ‖w∗‖1 ≤ 1, which are also different with ours. Recently,
Wang and Xu (2019) also considered the `2-norm statistical error, it relies on assumptions
that w∗ is 1-sparse, which is not needed in our setting. Besides these differences, we also
have to mention that in this paper we need some additional assumptions ( i.e., Assumption
1) on the data distribution compared with the those previous results.

Remark 14 Algorithm 1 and 2 have several advantages over the existing approaches. Firstly,
different from the approaches that are based on (Stochastic) Gradient Descent methods to
solve DP-ERM (e.g., (Wang et al., 2017)), our algorithm is parameter-free. That is, we
do not need to choose a specific step size, an iteration number or initial vectors. Secondly,
compared with some previous work on GLM in NLDP model such as (Zheng et al., 2017;
Smith et al., 2017; Wang et al., 2019b), all of our above results do not need to assume that
the loss function Φ(·) is convex. Thirdly, since the private data only contributes to obtaining
the OLS estimator, and only the constant ĉΦ depends on the loss function Φ, these indicate
that with probability at least 1 − T exp(−Ω(p)) − ξ, our algorithm can simultaneously be
implemented on T different loss functions to achieve the same error α for each loss with
almost the same sample complexity as in Theorem 12 or Theorem 8 (if they all satisfy the
corresponding assumption). This implies that we can answer at most O(exp(O(p)) number
of GLM queries with constant probability to achieve error α for each query with the same
sample complexity as in Theorem 12 (Theorem 8). To our best knowledge, this is the first
result which can answer multiple non-linear queries in the NLDP model with polynomial
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sample complexity. Previous results are either for linear queries (Blasiok et al., 2019; Bass-
ily, 2018), or in the central DP model (Ullman, 2015). Moreover, we can see when the
dimension p increases, we could answer more GLMs queries. It sounds counter-intuitive
that with larger dimension, one can handle more loss functions. However, we note that in
this case we also need more data samples to achieve the fixed error α.

Note that in Theorem 12, Φ(2) is assumed to be bounded. Although this is a commonly-
used assumption in the previous work such as (Wang et al., 2018, 2019a), actually this
condition can be further relaxed to the condition that Φ(2)(〈x,w〉) is sub-Gaussian in some
range of w.

Assumption 4 For a random vector x that is sub-Gaussian with zero mean and covariance
matrix Σ, we assume the following conditions hold

• sup
w:‖w−Σ

1
2wols‖2≤1

‖Φ(2)(〈x,w〉)‖ψ2 ≤ κg for some constant κg and Φ(3)(·) is G-

Lipschitz.

• For some constant c̄ and τ > 0, the function f(c) = cE[Φ(2)(〈x,wols〉c)] satisfies the
condition of f(c̄) ≥ 1+τ , where wols is in Lemma 10 and the distribution of x satisfies
Assumption 1.

• The derivative of f in the interval [0,max{c̄, cΦ}] does not change the sign (i.e., its
absolute value is lower bounded by some constant M > 0), where cΦ is in Lemma 10.

Theorem 15 Under Assumption 1 and 4, for sufficiently large m,n such that

m ≥ Ω̃
( ε2np

(E[‖x‖2])2‖wols‖22

)
, (8)

n ≥ Ω̃
(p2‖w∗‖2∞max{1, ‖w∗‖2∞} log 1

δ log 1
ξ

ε2
)
. (9)

Then the following holds with probability at least 1− exp(−Ω(p))− ξ,

‖ŵglm − w∗‖∞ ≤ Õ
(p‖w∗‖∞max{1, ‖w∗‖3∞}

√
log 1

δ log 1
ξ

ε
√
n

+

‖w∗‖2∞max{1, ‖w∗‖2∞}√
p

+ ‖w∗‖∞max{1, ‖w∗‖∞}
1

E[‖x‖2]

p√
m

)
, (10)

where the Big-Õ and Big-Ω̃ notations omit the terms of ρ2, ρ∞, ‖Σ‖2, λmin(Σ), r, κx, κg,
G,M, τ, c̄, cΦ and other logarithmic factors (see Appendix for the explicit forms of m and
n).

From the above theorem, we can see that even with more relaxed assumptions, to achieve
the `∞-norm error α, the sample complexities in Theorem 15 is asymptotically same as the
ones in Theorem 12 up to some logarithmic factors (if we omit other terms and m,n satisfy
(8) and (9)).
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A not so desirable issue of Theorem 8, 12 and 15 is that they need quite a few as-
sumptions/conditions. Although some of them commonly appear in some related work, the
assumptions on function f seem to be a little weird. Fortunately, this is a not big issue
in both practice and theory. For the theory side, in the following, motivated by (Erdogdu
et al., 2019), we will provide two examples which satisfy Assumption 2. Moreover, for the
practical side, as we will see later, our experiments show that the algorithm actually per-
forms quite well for many loss functions that may not satisfy these assumptions (such as the
cubic function). Also, we note that the error bounds in Theorem 12 and 15 dependent on
the `1-norm of of xi, while the previous results only depend on the `2-norm bound (Smith
et al., 2017; Zheng et al., 2017). We leave the problem of relaxing/lifting these assumptions
for future research.

Theorem 16 (Logistic Loss) Consider the model (1) where the function Φ(z) = log(1 +

ez) (then |Φ(2)(·)| ≤ 1 and Φ(2)(·) is 1-Lipschitz), x ∼ N (0, 1
pIp), ‖w

∗‖2 =
√
p

4 and ‖wols‖2 =
√
p

20 . Then when c̄ = 6 and τ = 0.22, the function f(c) = cE[Φ(2)(〈x,wols〉c)] > 1 + τ .
Moreover, f ′(z) is bounded by constant M = 0.1 on [0, c̄] from below and cΦ < c̄.

Theorem 17 (Boosting Loss) Consider the model (1) where the function Φ(z) = z
2 +√

1 + z2

4 (then |Φ(2)(·)| ≤ 1
4 and Φ(2)(·) is 3

16 -Lipschitz), x ∼ N (0, 1
pIp), ‖w

∗‖2 =
√
p

4 and

‖wols‖2 =
√
p

20 . Then when c̄ = 6 and τ = 0.22, the function f(c̄) = c̄E[Φ(2)(〈x,wols〉c̄)] >
1 + τ . Moreover, f ′(z) is bounded by constant M = 0.1 on [0, c̄] from below and cΦ < c̄.

5. Privately Estimating Non-linear Regressions

In this section, we extend our ideas in the previous section to the problem of estimating
non-linear regressions in NLDP model with public unlabeled data. Specifically, we assume
that there is an underlying vector w∗ ∈ Rp with ‖w∗‖2 ≤ 1 such that

y = f(〈x,w∗〉) + σ, (11)

where x is the feature vector sampled from some distribution (for simplicity, we assume
that its mean is zero) and y is the response. σ is a zero-mean noise which is independent
of x and is bounded by some constant C = O(1) (i.e., σ ∈ [−C,C]). f is some known
differentiable link function with f(0) 6=∞ 7. It is notable that these assumptions have also
been used in some previous work such as (Wang and Xu, 2019; Duchi and Ruan, 2018) in
other privacy models. In our model, the goal is to obtain some estimator wpriv of w∗, based
on the private dataset D = {(xi, yi)}ni=1 and the public unlabeled dataset D′ = {xj}n+m

j=n+1

via some NLDP algorithm.

5.1 Gaussian Case

Similar to the previous section, we first consider the case where x ∼ N(0,Σ) with some
unknown Σ ∈ Rp×p. Motivate by Lemma 5, we first show the following result via the
Stein’s lemma.

7. This assumption can be relaxed to ”there is a point x such that f(x) 6= 0”.
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Theorem 18 If x ∼ N (0,Σ), then w∗ in (11) can be written as w∗ = cf × wols, where cf
is the fixed point of z 7→ (E[f ′(〈x,wols〉z)])−1 (if we assume that E[f ′(〈x,wols〉z)] 6= 0) and
wols = Σ−1E[xy] is the OLS vector.

We can see that the result in Theorem 18 is similar to Lemma 5 where we replace the function
Φ(2)(·) by function f ′(·). Thus, based on the idea of Algorithm 1 we have Algorithm 3.

Algorithm 3 Non-interactive LDP for smooth non-linear regression with public data
(Gaussian)

1: Input: Private data {(xi, yi)}ni=1 ⊂ Rp×R with {xi}n+m
j=1 ∼ N (0,Σ) for some unknown

Σ and {xj}n+m
j=n+1 are public, link function f : R 7→ R, privacy parameters ε, δ, and

initial value c ∈ R.
2: for The server do
3: Calculate Σm = 1

m

∑n+m
j=n+1 xjx

T
j and send it to each user.

4: end for
5: for Each user i ∈ [n] do
6: Let x̄i = xi min{1, r

‖xi‖2 }, where r ≡
√

20p‖Σm‖2 log n.

7: Release x̂ixTi = x̄ix̄
T
i +E1,i, where E1,i ∈ Rp×p is a symmetric matrix and each entry

of the upper triangle matrix is sampled from N (0,
32r4 log 2.5

δ
ε2

).
8: x̂iyi = x̄iyi + E2,i, where the vector E2,i ∈ Rp is sampled from

N (0,
32r2(Lr+|f(0)|+C)2 log 2.5

δ
ε2

Ip).
9: end for

10: for The server do
11: Denote X̂TX =

∑n
i=1 x̂ix

T
i and X̂T y =

∑n
i=1 x̂iyi. Calculate ŵols = (X̂TX)−1X̂T y.

12: Calculate ỹj = xTj ŵ
ols for each j = n+ 1, · · · , n+m.

13: Find the root ĉf such that 1 =
ĉf
m

∑n+m
j=n+1 f

′(ĉf ỹj) using Newton’s root finding
method:

14: for t = 1, 2, · · · until convergence do

15: c = c− c 1
m

∑n+m
j=n+1 f

′(cỹj)−1
1
m

∑n+m
j=n+1{f ′(cỹj)+cỹjf (2)(cỹj)}

.

16: end for
17: end for
18: return ŵnlr = ĉf · ŵols.

Just as in the previous section, we need the following assumptions for function f(·).

Assumption 5 We assume

• |f ′(·)| ≤ L and f (2)(·) is G-Lipschitz.

• For some constant c̄ and τ > 0, the function `(c) = cE[f ′(〈x,wols〉c)] satisfies the
condition of `(c̄) ≥ 1 + τ , where wols is in Theorem 18.

• The derivative of ` in the interval [0, c̄] does not change the sign, i.e., its absolute
value is lower bounded by some constant M > 0.
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Theorem 19 For any 0 < ε, δ < 1, Algorithm 3 is (ε, δ) non-interactive LDP. Moreover,
let x1, · · · , xn ∈ Rp be i.i.d realizations of a random vector x ∼ N (0,Σ), under Assumption
5, for sufficiently large m,n such that

n ≥ Ω̃
(‖Σ‖32p3‖w∗‖22 log 1

δ log 1
ξ

ε2
)

(12)

m ≥ Ω
(
‖w∗‖22p). (13)

Then for any ζ ∈ (0, 1), with probability at least 1− exp(−Ω(p))− ξ we have

‖ŵnlr − w∗‖2 ≤ Õ
(p 3

2 ‖w∗‖22 log 1
ξ

√
log 1

δ log 1
ξ

ε
√
n

+ ‖w∗‖22

√
p

m

)
,

where Big-Õ and Big-Ω̃ notations omit the terms of C, ‖Σ‖2, cf , τ, G, L,M, c̄ and λmin(Σ),
and other logarithmic factors (see Appendix for the explicit form of m and n).

Remark 20 We can see the sample complexity of public and private data to achieve an
`2-norm estimation error of α is O(pα−2) and Õ(p3α−2ε−2) respectively (if we omit other
terms). Compared with Theorem 8, they are asymptotically the same as the bounds in GLMs
case. However, it is notable that non-linear regression models are quite different with GLMs
as their conditional density functions of the response y cannot be written as in exponential
forms. The main reason of this similarity is the similar conclusions in Theorem 18 and
Lemma 5. And this is due to that both of GLMs and non-linear regressions satisfy the
property of E[xy] = E[xg(〈x,w∗〉)] for some function g (where g(·) = f(·) in non-linear
regressions and g(·) = Φ′(·) in GLMs). Thus, Theorem 18 could be considered as the non-
linear regression version of the Stein’s lemma, which may could be used in other machine
learning and statistics problems.

5.2 Sub-Gaussian Case

We then consider estimating non-linear regressions in the case where x is sub-Gaussian.
We will first use the zero-bias transformation (Goldstein et al., 1997) and the techniques in
(Erdogdu et al., 2019) to get a lemma which is similar to Lemma 10 and could be though
as a generalization of Theorem 19 to the sub-Gaussian covariates.

Definition 21 (Zero-bias Transformation) Let z be a random variable with mean 0 and
variance σ2. Then, there exists a random variable z∗ that satisfies E[zf(z)] = σ2E[f ′(z∗)]
for all differentiable functions f . The distribution of z∗ is called the z-zero-bias distribution.

Note that when z is Gaussian, then z∗ = z, this is just the Stein’s lemma.

Theorem 22 Let x1, · · · , xn ∈ Rp be i.i.d realizations of a random vector x that is zero-
mean sub-Gaussian with covariance matrix Σ and satisfies Assumption 1. Let v = Σ−

1
2x be

the whitened random vector of x and denote ‖v‖ψ2 = κx. If each vi has constant first and
second conditional moments and function f ′ is Lipschitz continuous with constant G, then
for cf = 1

E[f ′(〈xi,w∗〉)] , the following holds, where wols is the OLS vector.

‖ 1

cf
· w∗ − wols‖∞ ≤ O(Grκ3

x

√
ρ2ρ∞

‖w∗‖2∞√
p

).
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Algorithm 4 Non-interactive LDP for smooth non-linear regression with public data (Gen-
eral)

1: Input: Private data {(xi, yi)}ni=1 ⊂ Rp × R with ‖xi‖1 ≤ r, public unlabeled data
{xj}n+m

j=n+1, link function f : R 7→ R, privacy parameters ε, δ, and initial value c ∈ R.
2: for Each user i ∈ [n] do

3: Release x̂ixTi = xix
T
i +E1,i, where E1,i ∈ Rp×p is a symmetric matrix and each entry

of the upper triangle matrix is sampled from N (0,
32r4 log 2.5

δ
ε2

).
4: Release x̂iyi = xiyi + E2,i, where the vector E2,i ∈ Rp is sampled from

N (0,
32r2(Lr+|f(0)|+C)2 log 2.5

δ
ε2

Ip).
5: end for
6: for The server do
7: Denote X̂TX =

∑n
i=1 x̂ix

T
i and X̂T y =

∑n
i=1 x̂iyi. Calculate ŵols = (X̂TX)−1X̂T y.

8: Calculate ỹj = xTj ŵ
ols for each j = n+ 1, · · · , n+m.

9: Find the root ĉf such that 1 =
ĉf
m

∑n+m
j=n+1 f

′(ĉf ỹj) using Newton’s root finding
method:

10: for t = 1, 2, · · · until convergence do

11: c = c− c 1
m

∑n+m
j=n+1 f

′(cỹj)−1
1
m

∑n+m
j=n+1{f ′(cỹj)+cỹjf (2)(cỹj)}

12: end for
13: end for
14: return ŵnlr = ĉf · ŵols.

From Theorem 22, we can see that it shares the same phenomenon as in Lemma 10 (i.e.,
the OLS vector with some constant could approximate w∗ well). Thus, a similar idea to
Algorithm 2 can be used to solve this problem, which gives us Algorithm 4 and the following
theorem. Similar to the previous section, we need the following assumptions for function
f(·).

Assumption 6 We assume the following conditions hold:

• |f ′(·)| ≤ L and f (2)(·) is G-Lipschitz.

• For some constant c̄ and τ > 0, the function `(c) = cE[f ′(〈x,wols〉c)] satisfies the
condition of `(c̄) ≥ 1 + τ , where wols is in Theorem 22.

• The derivative of ` in the interval [0,max{c̄, cf}] does not change the sign (i.e., its
absolute value is lower bounded by some constant M > 0), where cf is in Theorem 22.

Theorem 23 For any 0 < ε, δ < 1, Algorithm 4 is (ε, δ) non-interactive LDP. Under the
assumptions of Theorem 22, and if the link function f satisfies Assumption 6, then for
sufficiently large m,n such that

m ≥ Ω
(
‖w∗‖2∞max{1, ‖w∗‖2∞}p2

)
, (14)

n ≥ Ω̃
(p2‖w∗‖2∞max{1, ‖w∗‖2∞} log 1

δ log 1
ξ

ε2
)
. (15)
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Then for any ζ ∈ (0, 1), with probability at least 1−exp(−Ω(p))−ξ, the output of Algorithm
4 satisfies

‖ŵnlr − w∗‖∞ ≤ Õ
(‖w∗‖2∞max{1, ‖w∗‖2∞}p√

m
+

‖w∗‖2∞max{1, ‖w∗‖2∞}p
√

log 1
δ log 1

ξ

ε
√
n

+
‖w∗‖3∞max{1, ‖w∗‖∞}√

p

)
, (16)

where Big-Õ and Big-Ω̃ notations omit the terms of λmin(Σ), ‖Σ‖2, ρ2, ρ∞, G, L, τ , M ,
c̄, r, κx, C and cf , and other logarithmic factors (see Appendix for the explicit form of m
and n).

Remark 24 Similar to Theorem 15, we can see the the sample complexity of public and
private data for Algorithm 4 to achieve an `∞-norm estimation error of α is O(p2α−2) and
Õ(p2α−2ε−2) respectively, if α is not too small (i.e., α ≥ Ω( 1√

p)). Such similarity is due

to the similar conclusions in Theorem 22 and Lemma 10. In more details, consider the
simplest case where the covariate vector x has i.i.d. entries with mean 0, and variance 1.
Then by using the zero-bias transformation to the j-th coordinate of E[yx] we have

E[yxj ] = E[xjf(〈x, ŵ∗〉)] = w∗jE[f ′((x∗j − xj)w∗j + xjw
∗
j +

∑
i 6=j

xiw
∗
i )]. (17)

If w∗ is well spread, it turns out that taken together, with j = 1, · · · , p the right-hand side
in (17) behaves similar to the Gaussian case, where the proportionality relationship given
in Theorem 18 holds. As we mentioned in Remark 20, Theorem 18 is similar to Lemma 5.
Thus, Theorem 22 behaves similar to Lemma 10.

In the following we will provide an instance of f(·) and x that satisfies the assumptions
in Theorem 19.

Theorem 25 (Sigmoid Link Function) Consider the model (11) where the link function

f(z) = 1
1+e−z , x ∼ N (0, 1

pIp), ‖w
∗‖2 =

√
p

4 and ‖wols‖2 =
√
p

20 . Then when c̄ = 6 and

τ = 0.22, the function `(c) = cE[f ′(〈x,wols〉c)] > 1 + τ . Moreover, `′(z) is bounded by
constant M = 0.1 on [0, c̄] from below and cf ≤ c̄.

6. Experiments

In this section, we will evaluate the performance of our methods on both synthetic and real-
world datasets. The experiments demonstrate the previous utility results of our algorithms
and suggest that they are efficient. Moreover, we will show that our algorithms only need
small number of public unlabeled data to achieve outstanding performance.

6.1 Experimental Settings

Link functions: In this paper, we mainly study estimating GLMs and non-linear re-
gressions, and we will use variants of loss functions and link functions for each algorithm.
Specifically,
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• For Algorithm 1 we consider the binary logistic regression where we have Φ(〈x,w〉) =
ln (1 + exp (〈x,w〉)) in (1).

• For Algorithm 2 we consider the binary logistic regression and the exponential regres-
sion where Φ(〈x,w〉) = e〈x,w〉 in (1).

• For Algorithm 3 we consider the sigmoid link function, i.e., f(〈x,w〉) = 1
1+e〈x,w〉

in

(11).

• For Algorithm 4 we consider the cubic link function where f(〈x,w〉) = 1
3〈x,w〉

3 and

the logistic function where f(〈x,w〉) = log(1 + e−〈x,w〉) in (11).

Synthetic data generation: In this paper, we assume the distribution of data feature
vector is either Gaussian or sub-Gaussian with bounded `1-norm. Specifically, for each case
we consider the following procedure for feature vectors generation.

• For Gaussian distribution, we consider two cases for the covariance matrix: (1) the
covariance matrix is diagonal, i.e., Σ = σ2Ip where σ is sampled from the uniform
distribution in [0, 1]; (2) the covariance matrix is non-diagonal, and we assume Σ =
U + Ip, where U ∈ Rp×p is a random orthogonal matrix.

• In the sub-Gaussian case, each entry of each feature vector is generated independently

from a Bernoulli distribution Pr
(
xi,j = ±1

p

)
= 0.5.

After we get feature vectors, we generate the underlying parameter w∗, which is a random
unit vector. After that, we generate the responses {yi}ni=1 as follows.

• For GLMs, each response is generated according to its definition in (1). Specifically,

for the logistic regression we generate yi = e〈w,xi〉

1+e〈w,xi〉
. For exponential regression we

generate yi = e〈xi,w
∗〉. It it notable that here we only consider the exponential loss to

sub-Gaussian case where 〈x,w∗〉 ≤ 1. Thus, in both cases {yi}ni=1 are bounded.

• For non-linear regressions, each yi is generated according to the model (11) where σ is
bounded by C = 0.05. It is notable that for all link functions we considered, {yi}ni=1

are bounded.

Experimental settings for synthetic data: Motivated by the results in previous sec-
tions, for data with Gaussian features vectors, we will use the (squared) relative `2-norm

error
‖ŵ−w∗‖22
‖w∗‖22

to measure performance, otherwise we will use (squared) relative `∞-norm

error ‖ŵ−w
∗‖2∞

‖w∗‖2∞
. For privacy parameters, we will choose ε between 4 to 15 and set δ = 1

n1.1 .8

For the dimension p we choose from the set {5, 10, 15, 20, 25, 30, 40, 50, 60}. For different
experiments we will vary different private sample size n. However we will always set the
size of public unlabeled data m be much smaller than n. Specifically, we will always set
m = b n

p2 c. For each experiments above, we run 20 times and take the average of the errors.

8. Note that in the studies on LDP ERM, ε is always chosen as a large value such as (Bhowmick et al.,
2018). Moreover, we can use the shuffling technique in (Erlingsson et al., 2019) for privacy amplification.
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Experimental settings for real-world data: We conduct experiments on binary lo-
gistic regression for GLMs on the Covertype dataset (Dua and Graff, 2017), the SUSY
dataset (Baldi et al., 2014) and the Skin Segmentation dataset (Dua and Graff, 2017).

For the Covertype dataset, before running our algorithm, we first normalize the data
and remove some co-related features. After the pre-processing, the dataset contains 581,012
samples and 44 features. There are seven possible values for the label. Here we consider
a weaker test, which is to classify whether the label is Lodgepole Pine (type 2) or not.
We divide the data into a training data and a test data, where ntraining = 350, 000 and
ntesting = 200, 000 (other data will be used as public unlabeled data) and we randomly
choose the sample size n ∈ 104 ·{10, 15, 20, 25, 30, 35} from the training data and set the size
of public unlabeled data as m = 104. Regarding the privacy parameter, we take δ = 1

n1.1

and let ε take value from {4, 6, 10, 15}. We measure the performance by the prediction
accuracy. For each experiment, we repeated 20 times.

For the SUSY dataset, the task is to classify whether the class label is signal or
background. After pre-processing and sampling, the dataset contains 500, 000 samples
and 18 features. Then we divide the data into a training data and a test data, where
ntraining = 450, 000 and ntesting = 30, 000 (other data will be used as public unlabeled data)
and we randomly choose the sample size n ∈ 104 · {10, 15, · · · , 45} from the training data
and set the size of public unlabeled data as m = 104. Regarding the privacy parameter, we
take δ = 1

n1.1 and let ε takes value from {2, 3, 5, 10}. We measure the performance by the
prediction accuracy. For each experiment, we repeated 20 times.

For the Skin Segmentation dataset, the task is to classify where the class label is Skin or
Nonskin image. After pre-processing, the dataset contains 245, 057 samples and 3 features.
We divide the data into a training data and a test data, where ntraining = 180, 000 and
ntesting = 5, 000 (other data will be used as public unlabeled data) and we randomly choose
the sample size n ∈ 104 · {2, 4, · · · , 18} from the training data and set the size of public
unlabeled data as m = 5, 000. For the privacy parameter, we take δ = 1

n1.1 . As the
dimension of feature vector is only 3, here we consider the high privacy regime and let ε
take value from {0.2, 0.3, 0.5, 0.7}. We measure the performance by the prediction accuracy.
For each experiment, we repeated 20 times.

Baseline and other methods: Note that for synthetic data, there is no need to conduct
baseline methods as we know the underlying parameter w∗ and we use the relative error to
measure the utility. For real-world data, as we mentioned previously there is no previous
work which provides efficient methods. Thus, here we will only compare our methods with
the non-private method, which is the Logistic Regression classifier in the scikit-learn library
(Pedregosa et al., 2011).

Besides the non-private method, as we mentioned in Remark 9, we can adopt our idea to
design a 2-round LDP algorithm without using public unlabeled data (suppose we already
know ‖Σ‖2 for the Gaussian case). That is, in the first round we get ŵols by using half
privacy budget and the server sends it to all the users. In the second round, each user uses
another half privacy budget to compute ỹj = xTj ŵols, then performs the clipping step to ỹj
to project ỹj on the range of y and adds Gaussian noise to the clipped value. Finally, each
user sends the noisy version of ỹj to the server. Then the server uses these perturbed ỹj
to estimate the constant of cΦ. We provide the details of the algorithm for the Gaussian
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covariates case in GLMs as an example in Appendix E, the other algorithms are similar.
We call such algorithms as 2-round algorithms. We will compare our methods with these
2-round algorithms.

6.2 Experimental Results

We consider the following questions through experiments: (1) When the dimension p and
the privacy budget ε are fixed, for synthetic data, what is the trend of the relative `2-norm
or `∞-norm error with different private data size n? (2) For real-world data, what is the
trend of accuracy when n or ε increases? What is the difference between the accuracy of
our private estimator and the accuracy of the non-private method? (3) When the private
data size n and private parameter ε are fixed. How will the dimension p affect the utility?
(4) How will the number of public unlabeled data size m affect the (relative) error and the
accuracy? (5) While those 2-round algorithms are heuristic, do they have good performance?
Moreover, compared the 2-round algorithms, do our methods have better performance?

We conduct experiments for each of our methods to answer the above questions, see
Figure 1-17 for details. Specifically, in Figure 1-4 we consider the performance of Algorithm
1 for Gaussian data whose covariance matrix is either diagonal or non-diagonal. In Figure
5-8 we consider the performance of Algorithm 2 for Bernoulli data where the loss function
could be either the exponential loss or the logistic loss. The results for Algorithm 3 are
presented in Figure 9-10, where the link function is the sigmoid function and the covariance
matrix of Gaussian is diagonal. For Algorithm 4, its experimental results in the case where
the link function is either sigmoid or logistic are shown in Figure 11-14. Besides the synthetic
data, in Figure 15 and 16 we show Algorithm 2 for binary logistic regression on several real-
world datasets. Finally, in Figure 17 we compare our algorithms with their corresponding
2-round LDP algorithms.

From (a), (b) and (c) in Figure 1, 3, 5, 7, 9, 11 and 13, firstly we can see that with
different link functions, data distributions and covariance matrices, when the dimension p
is fixed, although there are some exceptions such as when n = 7 × 105 and ε = 4 in (b)
of Figure 1, in general the (squared) relative (`2-norm or `∞) error will decreases when n
becomes larger, which means the private estimator will be sufficiently closed to the under-
lying parameter. Moreover, when n gets more larger, the error will tends to be unchanged.
This is due to that besides the private data size n, in theory the error also depends on the
public data size m. Secondly, from the above results we also observe that the relative error
is proportional to 1

ε2
, which matches our theoretical results. However, we can also see that

when in the low privacy regime, i.e., when ε is large (e.g. ε = 10) the relative error only
decreases slightly and its curve becomes flat when n becomes larger. From our previous
theoretical results we can see this is due to that in this case the error will be dominated by
the term related to m instead of n and ε. Besides the relative error, in (a), (b) and (c) of
Figure 15 we compare the classification accuracy on test data. Here we can get similar con-
clusions as in the synthetic data case. Furthermore we can see that when the private data
size n and the privacy parameter ε is large enough, the accuracy of our private estimator
will be closed to the accuracy of the non-private method. For example, for Covertype data,
the accuracy of the non-private logistic regression is about 75% where our private estimator
could achieve about 72.5% accuracy when ε = 10 and n = 3× 105.
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In (a) of Figure 2, 4, 6, 8, 10, 12 and 14 we present the results of relative error w.r.t
different n and dimension p. From all the figures we can see that the relative error increases
as the dimension increases. However, it may seem a little weird that the relative error is not
linear in the dimension, which was shown in the previous sections theoretically. We note
that as in theory the error depends on lots of terms. Thus, when the dimension p changes,
some other parameters, for example, the l2 norm of the covariance matrix and ‖w∗‖∞ also
change, which bring other effects to the relative error. Moreover, we can see from some
results, such as p = 40 in Figure 14, even when n = 7× 105 the error is still unsatisfactory.
This is due to that in theory, the number of efficient sample size is

√
n since the dependency

on n is 1√
n

in the error bound, which means the efficient sample size in this case is only

about 836. However, as we mentioned in the Related Work section (Section 2), even in the
interactive LDP model, the dependency on n is also 1√

n
and this is optimal (Duchi et al.,

2013). Thus, large scale of data is essential for LDP model, not only for our algorithms.

Next, we consider the effect of public unlabeled data. As we mentioned earlier, in the
experiments on synthetic data, we always set m = b n

p2 c, which means m is far less than

n. Thus, from (a), (b) and (c) in Figure 1, 3, 5, 7, 9, 11 and 13 we can see even smaller
public data size m could already achieve outstanding performance, i.e., there is no need
to use as large amount of public data as our theoretical result requires to guarantee good
performance. Thus, we conjecture that theoretically we can further improve the bound on
m and we will leave it as future research. Moreover, we evaluate the performance of our
algorithms with different m, see (b) and (c) of Figure 2, 4, 6, 8, 10, 12, 14 and 16 for
details. Unlike the conclusions in the previous paragraphs, we can see with different size
of public data, the trend of error becomes complicated. Specifically, in the case when ε is
large (such as ε = 10), we can see we can use even more smaller size than b n

p2 c of public

data to achieve good performance. For example, in (b) and (c) of Figure 2 we can see that
when m = 200 the algorithm could achieve the similar performance as in the case when
m = 1800. However, such phenomenon does not always hold when m is sufficiently small.
For example, in (c) of Figure 4 and 6 we can see when m increases from 200 to 400 the error
decreases. When ε is small, we can see the trend of the relative error when m increases
becomes more unstable. In some cases, larger m may could decrease the relative error such
as ε = 4 in (c) of Figure 4 while in some cases larger m may could even increase the error.
However, no matter when larger m increases or decreases the error, we can see that the
effect of such change is limited, unless m is sufficiently small.

Finally, we compare our algorithms with the above 2-round LDP algorithms in Figure
17. From all of those four figures we can see that in most cases the relative error of the
2-round LDP algorithm is quite large compared with our methods and its curve is quite
unstable. In Figure 17(d) we can see the performance of the 2-round algorithm becomes
acceptable under the setting of Algorithm 4 for cubic link function with p = 30 for Bernoulli
data. However, our method still significantly outperforms the the 2-round algorithm in this
case.

7. Conclusion and Open Problems

In this paper, motivated by the Stein’s lemma and its variants, we proposed the first efficient
algorithm with polynomial sample complexity for Generalized Linear Models estimation
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in the Non-interactive Local Differential Privacy model with some public unlabeled data.
The main idea of our algorithm is to use the OLS (Ordinary Least Square) estimator to
approximate the underlying one. The key observation is that, after multiplying the OLS
vector by some constant, we can get a new estimator is sufficiently close to the underlying
estimator. Thus, in our approach, we use the private data to estimate the OLS vector and
the public unlabeled data to estimate the constant. Moreover, we adopted similar ideas
to the problem of estimating non-linear regressions and showed similar theoretical results.
Finally, we provided intensive experiments of our methods on both synthetic data and real-
world data. Most of results support our theoretical analysis and show the effectiveness of
our methods.

Besides the open problems we mentioned in the previous sections, there are still many
other open problems left. First, in this paper we mainly focused on the low dimensional
case, where n � p. How to generalize to the high dimensional sparse case, that is n � p
and ‖w∗‖0 ≤ k? In this case since the Stein’s lemma will not be hold, so we need new
techniques. Second, from the experimental results we can see that, even if the loss function
and the dataset do not satisfy our assumptions, they will still have good performance. Thus,
how to relax these assumptions and reduce the sample complexity of public unlabeled data
in our theoretical results? Finally, for the sub-Gaussian case in both GLMs and non-linear
regressions, our estimators are biased and the error is Ω( 1√

p), can we get unbiased and

consistent estimators?
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(a) p = 10 (b) p = 20 (c) p = 30

Figure 1: Algorithm 1 for logistic regression where the covariance matrix of Gaussian dis-
tribution is diagonal under different dimension p.
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(a) ε = 5 (b) n = 105 and p = 20 (c) n = 4× 105 and p = 20

Figure 2: Algorithm 1 for logistic regression where the covariance matrix of Gaussian distri-
bution is diagonal. The left plot shows the relative error with different dimension
p. The middle and the right plots show the relative error with different size of
public data m when n and p are fixed.

(a) p = 10 (b) p = 20 (c) p = 30

Figure 3: Algorithm 1 for logistic regression where the covariance matrix of Gaussian dis-
tribution is non-diagonal under different dimension p.
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(a) ε = 5 (b) n = 5× 104 and p = 20 (c) n = 4× 105 and p = 20

Figure 4: Algorithm 1 for logistic regression where the covariance matrix of Gaussian dis-
tribution is non-diagonal. The left plot shows the relative error with different
dimension p. The middle and the right plots show the relative error with differ-
ent size of public data m when n and p are fixed.

(a) p = 20 (b) p = 30 (c) p = 40

Figure 5: Algorithm 2 for exponential regression with Bernoulli data under different dimen-
sion p.

(a) ε = 5 (b) n = 105 and p = 20 (c) n = 4× 105 and p = 20

Figure 6: Algorithm 2 for exponential regression with Bernoulli data. The left plot shows
the relative error with different dimension p. The middle and the right plots show
the relative error with different size of public data m when n and p are fixed.
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(a) p = 20 (b) p = 30 (c) p = 40

Figure 7: Algorithm 2 for logistic regression with Bernoulli data under different dimension
p.

(a) ε = 5 (b) n = 105 and p = 20 (c) n = 4× 105 and p = 20

Figure 8: Algorithm 2 for logistic regression with Bernoulli data. The left plot shows the
relative error with different dimension p. The middle and the right plots show
the relative error with different size of public data m when n and p are fixed.

(a) p = 10 (b) p = 20 (c) p = 30

Figure 9: Algorithm 3 with sigmoid link function where the covariance matrix of Gaussian
distribution is diagonal under different dimension p.
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(a) ε = 5 (b) n = 2× 105 and p = 20 (c) n = 4× 105 and p = 20

Figure 10: Algorithm 3 with sigmoid link function where the covariance matrix of Gaussian
distribution is diagonal. The left plot shows the relative error with different
dimension p. The middle and the right plots show the relative error with different
size of public data m when n and p are fixed.

(a) p = 20 (b) p = 30 (c) p = 50

Figure 11: Algorithm 4 for cubic link function with Bernoulli data under different dimension
p.

(a) ε = 5 (b) n = 5× 104 and p = 30 (c) n = 105 and p = 40

Figure 12: Algorithm 4 for cubic link function with Bernoulli data. The left plot shows the
relative error with different dimension p. The middle and the right plots show
the relative error with different size of public data m when n and p are fixed.
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(a) p = 10 (b) p = 20 (c) p = 30

Figure 13: Algorithm 4 for logistic link function with Bernoulli data under different dimen-
sion p.

(a) ε = 7 (b) n = 5× 104 and p = 20 (c) n = 4× 105 and p = 40

Figure 14: Algorithm 4 for logistic link function with Bernoulli data. The left plot shows
the relative error with different dimension p. The middle and the right plots
show the relative error with different size of public data m when n and p are
fixed.

(a) Covertype (b) SUSY (c) Skin Segmentation

Figure 15: Algorithm 2 for logistic regression on different real data.
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(a) Covertype (b) SUSY (c) Skin Segmentation

Figure 16: Algorithm 2 for logistic regression on different real data with different size of
public data m.

(a) Algorithm 1 for logistic regression where
p = 30 and the Gaussian distribution has non-
diagonal covariance matrix.

(b) Algorithm 2 for logistic regression with p =
30 for Bernoulli data.

(c) Algorithm 3 for sigmoid link function where
p = 20 and the Gaussian distribution has non-
diagonal covariance matrix.

(d) Algorithm 4 for cubic link function with p =
30 for Bernoulli data.

Figure 17: Comparison of our methods with their corresponding 2-round LDP algorithms.
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Appendix A. Background and Auxiliary Lemmas

Notations For a positive semi-definite matrix M ∈ Rp×p, we define the M -norm for a
vector w as ‖w‖2M = wTMw. λmin(A) is the minimal singular value of the matrix A.
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Lemma 26 (Non-communicative Matrix Bernstein inequality (Vershynin, 2010))
Consider a finite sequence Xi of independent centered symmetric random p × p matrices.
Assume we have for some numbers K and σ that

‖Xi‖2 ≤ K, ‖
∑
i

E[X2
i ]‖2 ≤ σ2.

Then, for every t ≥ 0 we have

Pr(‖
∑
i

Xi‖2 ≥ t) ≤ 2p exp(− t2/2

σ2 +Kt/3
).

Lemma 27 (Hoeffding type inequality for norm-subGaussian (Jin et al., 2019))
If the random vectors Xi ∈ Rp satisfy

Pr(‖Xi − EX‖2 ≥ t) ≤ exp(− t2

2σ2
)

for i = 1, 2, · · ·n with some σ and any t > 0. Then there exists an absolute constant c such
that with probability at least 1− δ for any δ > 0:

‖
n∑
i=1

Xi‖2 ≤ c
√
nσ2 log

2d

δ
.

Lemma 28 (Weyl’s Inequality (Stewart, 1990)) Let X,Y ∈ Rp×p be two symmetric
matrices, and E = X − Y . Then, for all i = 1, · · · , p, we have

|σi(X)− σi(Y )| ≤ ‖E‖2,

where σi(M) is the i-th eigenvalue of the matrix M .

Lemma 29 Let w ∈ Rp be a fixed vector and E be a symmetric Gaussian random matrix
where the upper triangle entries are i.i.d Gaussian distribution N (0, σ2). Then, with prob-
ability at least 1− ξ, the following holds for a fixed positive semi-definite matrix M ∈ Rp×p

‖Ew‖2M ≤ σ2Tr(M)‖w‖2 log
2p2

ξ
.

Proof [Proof of Lemma 29] Let M = UTΣU denote the eigenvalue decomposition of M .
Then, we have

‖Ew‖2M = wTETUTΣUEw =

p∑
i=1

σi

p∑
j=1

[UE]2ijw
2
i .

Note that [UE]i,j =
∑p

k=1 Ui,kEj,k where Ei,j is Gaussian. Since U is orthogonal, we know
that [UE]i,j ∼ N (0, σ2). Using the Gaussian tail bound for all i, j ∈ [d]2, we have

P( max
i,j∈[p]2

|[UE]i,j | ≥

√
σ2 log

2p2

ξ
) ≤ ξ.
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Lemma 30 (Theorem 4.7.1 in (Vershynin, 2018) ) Let x be a random vector in Rp

that is sub-Gaussian with covariance matrix Σ and ‖Σ−
1
2x‖ψ2 ≤ κx. Then, with probability

at least 1− exp(−p), the empirical covariance matrix 1
nX

TX = 1
n

∑n
i=1 xix

T
i satisfies

‖ 1

n
XTX − Σ‖2 ≤ Cκ2

x

√
p

n
‖Σ‖2.

Lemma 31 (Corollary 2.3.6 in (Tao, 2011)) Let M ∈ Rp×p be a symmetric matrix
whose entries mij are independent for j > i, have mean zero, and are uniformly bounded in
magnitude by 1. Then, there exists absolute constants C2, c1 > 0 such that with probability
at least 1− exp(−C2c1p), the following inequality holds ‖M‖2 ≤ C

√
p.

Below we introduce some concentration lemmas given in (Erdogdu et al., 2019).

Lemma 32 Let Bδ(w̃) denote the ball centered at w̃ and with radius δ (i.e., Bδ(w̃) = {w :
‖w − w̃‖2 ≤ δ}). For i = 1, 2 · · · , n, let xi ∈ Rp be i.i.d isotropic sub-Gaussian random

vectors with ‖xi‖ψ2 ≤ kx, and µ̃ = E[‖x‖2]√
p . For any given function g : R 7→ R that is

Lipschitz continuous with G and satisfies supw∈Bδ(w̃) ‖g(〈x,w〉)‖ψ2 ≤ κg, with probability at

least 1− 2 exp(−p), the following holds for np > 51 max{χ, χ2}

sup
w∈Bδ(w̃)

| 1
m

m∑
i=1

g(〈xi, w〉)− E[g(〈x,w〉)]| ≤ c(κg +
κx
ũ

)

√
p logm

m
,

where χ =
(κg+κx

µ̃
)2

cδ2G2µ̃2 . c is some absolute constant.

Lemma 33 Let Bδ(w̃) be the ball centered at w̃ and with radius δ (i.e., Bδ(w̃) = {w :
‖w − w̃‖2 ≤ δ}). For i = 1, 2 · · · , n, let xi ∈ Rp be i.i.d sub-Gaussian random vectors with
covariance matrix Σ. For any given function g : R 7→ R that is uniformly bounded by L and
Lipschitz continuous with G, the following holds with probability at least 1− exp(−p)

sup
w∈Bδ(w̃)

| 1
m

m∑
i=1

g(〈xi, w〉)− E[g(〈x,w〉)]| ≤ 2{G(‖w̃‖2 + δ)‖Σ‖2 + L}
√
p

m
.

The following lemma shows that the private estimator ŵols is close to the unperturbed
one.

Lemma 34 Let X = [xT1 ;xT2 ; · · · ;xTn ] ∈ Rn×d be a matrix such that XTX is invertible, and
x1, · · · , xn are realizations of a sub-Gaussian random variable x whose `2 norm is bounded
by r. Moreover if x satisfies the condition of ‖Σ−

1
2x‖ψ2 ≤ κx = O(1) and Σ = E[xxT ] is

the the population covariance matrix. Let w̃ols = (XTX)−1XT y denote the empirical linear

regression estimator. Then, for sufficiently large n ≥ Ω(
κ4
x‖Σ‖22pr4 log 1

δ

ε2λ2
min(Σ)

), the following holds

with probability at least 1− exp(−Ω(p))− ξ,

‖ŵols − w̃ols‖22 = O
(pr2(1 + r2‖w̃ols‖22) log 1

δ log p2

ξ

ε2nλ2
min(Σ)

)
, (18)

where ‖xi‖2 ≤ r is sampled from some bounded distribution.
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Proof [Proof of Lemma 34] It is obvious that X̂TX = XTX+E1, where E1 is a symmetric

Gaussian matrix with each entry sampled from N (0, σ2
1) and σ2

1 = O(
nr4 log 1

δ
ε2

). X̂T y =

XT y + E2, where E2 is a Gaussian vector sampled from N (0, σ2
2Ip) and σ2

2 = O(
nr2 log 1

δ
ε2

).

We first show that X̂TX is invertible with high probability under our assumption.

It is sufficient to show that XTX +E1 � XTX
2 , i.e., ‖E1‖2 ≤ λmin(XTX)

2 . By Lemma 31,
we can see that with probability 1− exp(−Ω(p)),

‖E1‖2 ≤ O(
r2
√
pn log 1

δ

ε
).

Also, by Lemma 30 and Lemma 28 we know that with probability at least 1− exp(−Ω(p)),

λmin(XTX) ≥ nλmin(Σ)−O(κ2
x‖Σ‖2

√
pn).

Thus, it is sufficient to show that nλmin(Σ) ≥ O(
κ2
x‖Σ‖2r2

√
pn log 1

δ

ε ), which is true under the

assumption of n ≥ Ω(
κ4
x‖Σ‖22pr4 log 1

δ

ε2λ2
min(Σ)

). Thus, with probability at least 1 − exp(−Ω(p)), it is

invertible. In the following we will always assume that this event holds.
By direct calculation we have

‖ŵols − w̃ols‖2 = −(XTX + E1)−1E1w̃
ols + (XTX + E1)−1E2.

Thus, by Cauchy-Schwartz inequality we get

‖ŵols − w̃ols‖22 = O
(
‖E1w̃

ols‖2(XTX+E1)−2 + ‖E2‖2(XTX+E1)−2

)
.

Since we already assume that XTX+E1 � XTX
2 , by Lemma 29 we can obtain the following

with probability at least 1− ξ

‖E1w̃
ols‖2(XTX+E1)−2 ≤ O

(nr4 log 1
δ

ε2
‖w̃ols‖22Tr((XTX)−2) log

4p2

ξ

)
‖E2‖2(XTX+E1)−2 ≤ O

(nr2 log 1
δ

ε2
Tr((XTX)−2)

4p

ξ

)
.

Thus, we have

‖ŵols − w̃ols‖22 ≤ C1n ·
r2(1 + r2‖w̃ols‖22) log 1

δ log p2

ξ

ε2
Tr((XTX)−2).

For the term of Tr((XTX)−2), we get

Tr((XTX)−2) ≤ (Tr((XTX)−1))2 ≤ p‖(XTX)−2‖22 =
p

λ2
min(XTX)

≤ O(
p

n2λ2
min(Σ)

),

where the last inequality is due to the fact that λmin(XTX) ≥ nλmin(Σ)−O(κ2
x‖Σ‖2

√
pn) ≥

1
2nλmin(Σ) (by the assumption on n). This completes the proof.

Let wols = (E[xxT ])−1E[xy] denote the population linear regression estimator. The
following lemma bounds the estimation error between w̃ols and wols. The proof could be
found in (Erdogdu et al., 2019) or (Dhillon et al., 2013).
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Lemma 35 (Prop. 7 in (Erdogdu et al., 2019)) Assume that E[xi] = 0, E[xix
T
i ] = Σ,

and Σ−
1
2xi and yi are sub-Gaussian with norms κx and γ, respectively. If n ≥ Ω(κxγp), the

following holds

‖w̃ols − wols‖2 ≤ O
(
γκx

√
p

nλmin(Σ)

)
,

with probability at least 1− 3 exp(−p).

Appendix B. Proofs of LDP

The LDP proof of Algorithm 1 and 2 follows from the Gaussian mechanism (Lemma 4) and
the post-processing property of DP.

For Algorithm 4, it is (ε, δ)-LDP due to the `2-norm bound on ‖xiyi‖2 = ‖xi‖2‖f(〈x,w∗〉)+
σi‖2 ≤ ‖xi‖2(L‖x‖2 + |f(0)| + C), where the last inequality is due to the fact that f ′ is
L-bounded and ‖w∗‖2 ≤ 1. That is, |f(〈x,w∗〉) − f(0)| ≤ L|〈x,w∗〉 − 0| ≤ L‖x‖2‖w∗‖2.
The proof is similar to Algorithm 3.

Appendix C. Proofs in Section 4

Since Theorem 15 is the most complicated one, we will first prove it and then prove Theorem
12. Finally we will proof Theorem 8.

C.1 Proof of Theorem 15

In the following proof we denote µ̃ = E[‖x‖2]√
p .

Since r = O(1) (by assumption), combining this with Lemmas 34 and 35, we have that
with probability at least 1 − exp(−Ω(p)) − ξ and under the assumption on n, there is a
constant C3 > 0 such that

‖ŵols − wols‖2 ≤ C3

κx
√
pr2‖wols‖2

√
log 1

δ log p2

ξ

ε
√
nλ

1/2
min(Σ) min{λ1/2

min(Σ), 1}
. (19)

Lemma 36 Let Φ(2) be a function that is Lipschitz continuous with constant G, and f :
R×Rp 7→ R be another function such that f(c, w) = cE[Φ(2)(〈x,w〉c)] and its empirical one
is

f̂(c, w) =
c

m

m∑
j=1

Φ(2)(〈x,w〉c).

Let Bδ(w̄ols) = {w : ‖w − w̄ols‖2 ≤ δ}, where w̄ols = Σ
1
2wols. Under the assumptions in

Lemma 34 and Eq. (19), if further assume that ‖Σ−
1
2x‖ψ2 ≤ κx, supw∈Bδ(w̄ols) ‖Φ(2)(〈x,w〉)‖ψ2 ≤

κg, and there exist c̄ > 0 and τ > 0 such that f(c̄, wols) ≥ 1 + τ , then there is c̄Φ ∈ (0, c̄)
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such that 1 = f(c̄Φ, w
ols). Also, for sufficiently large n and m such that

m ≥ Ω
(
(κg +

κx
µ̃

)2 max{p logmτ−2,
1

G2µ̃2

ε2n

pr4‖wols‖22 log 1
δ log p2

ξ ‖Σ‖2
}
)
, (20)

n ≥ Ω(κ4
xG

2c̄4‖Σ‖2
pr4‖wols‖22 log 1

δ log p2

ξ

τ2ε2λmin(Σ) min{λmin(Σ), 1}
)
, (21)

with probability at least 1 − 2 exp(−p), there exists a ĉΦ ∈ [0, c̄] such that f̂(ĉΦ, ŵ
ols) = 1.

Furthermore, if the derivative of c 7→ f(c, wols) is bounded below in the absolute value (i.e.,
does not change sign) by M > 0 in the interval c ∈ [0, c̄], then the following holds

|ĉΦ − c̄Φ| ≤ O
(
M−1c̄(κg +

κx
µ̃

)

√
p logm

m
+M−1Gκ2

xc̄
2‖Σ‖

1
2
2

√
pr2‖wols‖2

√
log 1

δ log p2

ξ

ε
√
nλ

1/2
min(Σ) min{λ1/2

min(Σ), 1}

)
.

(22)

Proof [Proof of Lemma 36] We divide the proof into three parts.

Part 1: Existence of c̄Φ: From the definition, we know that f(0, wols) = 0 and f(c̄, wols) >
1. Since f is continuous, we known that there exists a constant c̄Φ ∈ (0, c̄) which satisfies
f(c̄Φ, w

ols) = 1.

Part 2: Existence of ĉΦ: For simplicity, we use the following notations.

δ = C3

κx
√
pr2‖wols‖2

√
log 1

δ log p2

ξ

ε
√
nmin{λ1/2

min(Σ), 1}
, δ′ =

‖Σ‖
1
2
2 δ

λ
1
2
min(Σ)

, (23)

where C3 is the one in (19). Thus, ‖Σ
1
2 ŵols − Σ

1
2wols‖2 ≤ δ′.

Now consider the term of |f̂(c, ŵols)− f(c, ŵols)| for c ∈ [0, c̄]. We have

sup
c∈[0,c̄]

|f̂(c, ŵols)− f(c, ŵols)| ≤ sup
c∈[0,c̄]

sup
w∈Bδ′Σ (wols)

|f̂(c, w)− f(c, w)|, (24)

where Bδ′Σ(wols) = {w : ‖Σ
1
2w − Σ

1
2wols‖2 ≤ δ′}.

Note that for any x, we have 〈x,w〉 = 〈v,Σ
1
2w〉, where v = Σ−

1
2x follows an isotropic

sub-Gaussian distribution. Also, by definition we know that w ∈ Bδ′Σ(wols) is equivalent to

Σ
1
2w ∈ Bδ′(w̄ols). Thus, we have

sup
c∈[0,c̄]

sup
w∈Bδ′Σ (wols)

|f̂(c, ŵols)− f(c, ŵols)|

≤ c̄ sup
c∈[0,c̄]

sup
w∈Bδ′Σ (wols)

| 1
m

m∑
j=1

Φ(2)(〈vi,Σ
1
2w〉c)− EΦ(2)(〈v,Σ

1
2w〉c)|

= c̄ sup
c∈[0,c̄]

sup

Σ
1
2w∈Bδ′ (w̄ols)

| 1
m

m∑
j=1

Φ(2)(〈vi,Σ
1
2w〉c)− EΦ(2)(〈v,Σ

1
2w〉c)|

= c̄ sup
w′∈Bc̄δ′ (w̄ols)

| 1
m

m∑
j=1

Φ(2)(〈vi, w′〉)− EΦ(2)(〈v, w′〉)|. (25)
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By Lemma 32, we know that when mp ≥ 51 max{χ, χ−1}, where

χ =
(κg + κx

µ̃ )2

cδ′2G2µ̃2
= Θ

((κg + κx
µ̃ )2

G2µ̃2

ε2nλmin(Σ) min{λmin(Σ), 1}
pr4‖wols‖22 log 1

δ log p2

ξ ‖Σ‖2

)
,

the following holds with probability at least 1− 2 exp(−p)

sup
w′∈Bc̄δ(w̄ols)

| 1
m

m∑
j=1

Φ(2)(〈vi, w′〉)− EΦ(2)(〈v, w′〉)| ≤ O((κg +
κx
µ̃

)

√
p logm

m
). (26)

By the Lipschitz property of Φ(2), we have that for any w1 and w2,

sup
c∈[0,c̄]

|f(c, w1)− f(c, w2)| ≤ Gc̄2E[〈v,Σ
1
2 (w1 − w2)〉]

≤ κxGc̄2‖Σ
1
2 (w1 − w2)‖2. (27)

Taking w1 = ŵols and w2 = wols, we have

sup
c∈[0,c̄]

|f(c, ŵols)− f(c, wols)| ≤ O
(
κxGc̄

2‖Σ‖
1
2
2

δ

λ
1
2
min(Σ)

)
.

Combining this with (25), (26), (27), and taking δ as in (23), we get

sup
c∈[0,c̄]

|f̂(c, ŵols)−f(c, wols)| ≤ O
(
c̄(κg+

κx
µ̃

)

√
p logm

m
+Gc̄2‖Σ‖

1
2
2

κ2
x
√
pr2‖wols‖2

√
log 1

δ log p2

ξ

ε
√
nλ

1/2
min min{λ1/2

min(Σ), 1}

)
.

(28)
Let B denote the RHS of (28). If c = c̄, we have f̂(c, ŵols) ≥ 1 + τ − B. Thus, if B ≤ τ ,
there must exist a ĉΦ ∈ [0, c̄] such that f̂(ĉΦ, ŵ

ols) = 1.

To ensure that B ≤ τ holds, it is sufficient to have

O(c̄(κg +
κx
µ̃

)

√
p logm

m
) ≤ τ

2

and

O(Gc̄2‖Σ‖
1
2
2

κ2
x
√
pr2‖wols‖2

√
log 1

δ log p2

ξ

ε
√
nλ

1/2
min(Σ) min{λ1/2

min(Σ), 1}
) ≤ τ

2
.

This means that

m ≥ Ω
(
c̄2(κg +

κx
µ̃

)2p logmτ−2
)
,

n ≥ Ω(κ4
xG

2c̄4‖Σ‖2
pr4‖wols‖22 log 1

δ log p2

ξ

τ2ε2λmin(Σ) min{λmin(Σ), 1}
)
,

which are assumed in the lemma.
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Part 3: Estimation Error: So far, we know that f̂(ĉΦ, ŵ
ols) = f(c̄Φ, w

ols) = 1 with
high probability. By (24), (25) and (26), we have

|1− f(ĉΦ, ŵ
ols)| = |f̂(ĉΦ, ŵ

ols)− f(ĉΦ, ŵ
ols)| ≤ O(c̄(κg +

κx
µ̃

)

√
p logm

m
).

By the same argument for (28), we have

|f(ĉΦ, ŵ
ols)− f(ĉΦ, w

ols)| ≤ Gκxc̄2‖Σ‖
1
2
2

δ

λ
1
2
min(Σ)

.

Thus, using Taylor expansion on f(c, wols) around cΦ and by the assumption of the bounded
derivative of f , we have

M |ĉΦ − c̄Φ| ≤ |f(ĉΦ, w
ols)− f(c̄Φ, w

ols)|
≤ |f(ĉΦ, w

ols)− f(ĉΦ, ŵ
ols)|+ |f(ĉΦ, ŵ

ols)− 1|

≤ O
(
c̄(κg +

κx
µ̃

)

√
p logm

m
+Gκ2

xc̄
2‖Σ‖

1
2
2

√
pr2‖wols‖2

√
log 1

δ log p2

ξ

ε
√
nλ

1/2
min(Σ) min{λ1/2

min(Σ), 1}

)
.

Next, we prove our main theorem.
Proof [Proof of Theorem 15] By definition, we have

‖ŵglm − w∗‖∞ ≤ ‖ĉΦŵ
ols − c̄Φw

ols‖∞ + ‖c̄Φw
ols − w∗‖∞

≤ ‖ĉΦŵ
ols − c̄Φw

ols‖∞ + ‖c̄Φw
ols − cΦw

ols‖∞ + ‖cΦw
ols − w∗‖∞. (29)

We first bound the term of |c̄Φ−cΦ|. Since c̄ΦE[Φ(2)(〈x,wols〉c̄Φ)] = 1 and cΦE[Φ(2)(〈x,w∗〉)] =
1 (by definition), we get

|f(c̄Φ, w
ols)− f(cΦ, w

ols)| = |cΦE[Φ(2)(〈x,w∗〉)]− f(cΦ, w
ols)|

≤ cΦ|E[Φ(2)(〈x,w∗〉)− Φ(2)(〈x,wols〉cΦ)]

≤ cΦG|E[〈x, (w∗ − cΦw
ols)〉]

≤ cΦG‖(w∗ − cΦw
ols)‖∞E‖x‖1

≤ cΦGr‖cΦw
ols − w∗‖∞,

where the last inequality is due to the assumption that ‖x‖1 ≤ r.
Thus, by the assumption of the bounded deviation of f(c, wols) on [0,max{c̄, cΦ}], we

have
M |c̄Φ − cΦ| ≤ |f(c̄Φ, w

ols)− f(cΦ, w
ols)| ≤ cΦGr‖cΦw

ols − w∗‖∞.

By Lemma 10, we have

|c̄Φ − cΦ| ≤ 16M−1cΦG
2r2κ3

x

√
ρ2ρ∞

‖w∗‖2∞√
p

. (30)
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Thus, the second term of (29) is bounded by

‖c̄Φw
ols − cΦw

ols‖∞ ≤ 16M−1cΦG
2r2κ3

x

√
ρ2ρ∞

‖w∗‖2∞√
p
‖wols‖∞

≤ 16M−1cΦG
2r2κ3

x

√
ρ2ρ∞

‖w∗‖3∞√
p

(
1

cΦ
+ 16Grκ3

x

√
ρ2ρ∞

‖w∗‖∞√
p

)

= O
(
M−1r3κ6

xG
3ρ2ρ

2
∞
‖w∗‖3∞max{1, ‖w∗‖∞}√

p
max{1, cΦ}

)
, (31)

where the last inequality is due to Lemma 10.

By Lemma 10, the third term of (29) is bounded by 16cΦGrκ
3
x
√
ρ2ρ∞

‖w∗‖2∞√
p .

For the first term of (29), by (19) and Lemma 36 we have

‖ĉΦŵ
ols − c̄Φw

ols‖∞ ≤ |ĉΦ| · ‖ŵols − wols‖∞ + |ĉΦ − c̄Φ| · ‖wols‖∞

≤ O
(
c̄
κx
√
pr2‖wols‖2

√
log 1

δ log p2

ξ

ε
√
nλ

1/2
min(Σ) min{λ1/2

min(Σ), 1}

+ ‖wols‖∞(M−1c̄(κg +
κx
µ̃

)

√
p logm

m
+M−1Gκ2

xc̄
2‖Σ‖

1
2
2

√
pr2‖wols‖2

√
log 1

δ log p2

ξ

ε
√
nλ

1/2
min(Σ) min{λ1/2

min(Σ), 1}
)
)
.

(32)

For the first term of (32), we have

c̄
κx
√
pr2‖wols‖2

√
log 1

δ log p2

ξ

ε
√
nλ

1/2
min(Σ) min{λ1/2

min(Σ), 1}
≤ c̄

κxpr
2‖wols‖∞

√
log 1

δ log p2

ξ

ε
√
nλ

1/2
min(Σ) min{λ1/2

min(Σ), 1}

≤ c̄
κxpr

2‖w∗‖∞
√

log 1
δ log p2

ξ

ε
√
nλ

1/2
min(Σ) min{λ1/2

min(Σ), 1}
(

1

cΦ
+ 16Grκ3

x

√
ρ2ρ∞

‖w∗‖∞√
p

)

= O
(
c̄
pκ4

x
√
ρ2ρ∞Gr

3‖w∗‖∞max{1, ‖w∗‖∞}
√

log 1
δ log p2

ξ

ε
√
nλ

1/2
min(Σ) min{λ1/2

min(Σ), 1}
max{1, 1

cΦ
}
)
. (33)

For the second term of (32), we have

‖wols‖∞M−1c̄(κg +
κx
µ̃

)

√
p logm

m

≤ c̄‖w∗‖∞(κg +
κx
µ̃

)

√
p logm

m
(

1

cΦ
+ 16Grκ3

x

√
ρ2ρ∞

‖w∗‖∞√
p

)

≤ O
(
Grκ3

x

√
ρ2ρ∞c̄‖w∗‖∞max{1, ‖w∗‖∞}(κg +

κx
µ̃

)

√
p logm

m
max{1, 1

cΦ
}
)
. (34)
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For the third term of (32), we have

‖wols‖∞M−1Gκ2
xc̄

2‖Σ‖
1
2
2

√
pr2‖wols‖2

√
log 1

δ log p2

ξ

ε
√
nλ

1/2
min(Σ) min{λ1/2

min(Σ), 1}
)

≤M−1Gκ2
xc̄

2‖Σ‖
1
2
2

pr2‖w∗‖2∞
√

log 1
δ log p2

ξ

ε
√
nλ

1/2
min(Σ) min{λ1/2

min(Σ), 1}
(

1

cΦ
+ 16Grκ3

x

√
ρ2ρ∞

‖w∗‖∞√
p

)2

≤ O
(
M−1G3κ8

xc̄
2ρ2ρ

2
∞‖Σ

1
2 ‖2

pr4‖w∗‖2∞max{1, ‖w∗‖2∞}
√

log 1
δ log p2

ξ

ε
√
nλ

1/2
min(Σ) min{λ1/2

min(Σ), 1}
max{1, 1

cΦ
}2
)
. (35)

Thus, the first term of (29) is bounded by (since m ≥ Ω(n))

‖ĉΦŵ
ols − c̄Φw

ols‖∞ ≤ O
(
c̄
pκ4

x
√
ρ2ρ∞Gr

3‖w∗‖2∞max{1, ‖w∗‖∞}
√

log 1
δ log p2

ξ

ε
√
nλ

1/2
min(Σ) min{λ1/2

min(Σ), 1}
max{1, 1

cΦ
}

+Grκ3
x

√
ρ2ρ∞c̄‖w∗‖∞max{1, ‖w∗‖∞}(κg +

κx
µ̃

)

√
p logm

m
max{1, 1

cΦ
}+

M−1G3κ8
xc̄

2ρ2ρ
2
∞‖Σ

1
2 ‖2

pr4‖w∗‖2∞max{1, ‖w∗‖2∞}
√

log 1
δ log p2

ξ

ε
√
nλ

1/2
min(Σ) min{λ1/2

min(Σ), 1}
max{1, 1

cΦ
}2

= O
(
M−1(κg +

κx
µ̃

)G3κ8
xc̄

2ρ2ρ
2
∞‖Σ

1
2 ‖2

×
pr4‖w∗‖∞max{1, ‖w∗‖3∞}

√
logm log 1

δ log p2

ξ

ε
√
nλ

1/2
min(Σ) min{λ1/2

min(Σ), 1}
max{1, 1

cΦ
}2
)
.

Putting all the bounds together, we have

‖ŵglm − w∗‖∞ ≤ Õ
(
M−1G3κ8

xc̄
2ρ2ρ

2
∞‖Σ

1
2 ‖2

×
pr4‖w∗‖∞max{1, ‖w∗‖3∞}

√
log 1

δ log p2

ξ

ε
√
nλ

1/2
min(Σ) min{λ1/2

min(Σ), 1}
max{1, 1

cΦ
}2

+M−1r3κ6
xcΦG

3ρ2ρ
2
∞
‖w∗‖2∞max{1, ‖w∗‖2∞}√

p
max{1, 1

cΦ
}+

Grκ3
x

√
ρ2ρ∞c̄‖w∗‖∞max{1, ‖w∗‖∞}(κg +

κx
µ̃

)

√
p logm

m
max{1, 1

cΦ
}
)
. (36)

Next, we bound the probability. We assume that Lemma 34, 35 and 36 hold with probability
at least 1− exp(−Ω(p))− ρ. They hold when

m ≥ Ω
(
(κg +

κx
µ̃

)2 max{p logmτ−2,
1

G2µ̃2

ε2n

pr4‖wols‖22 log 1
δ log p2

ξ

}
)
, (37)

n ≥ Ω(max{κ4
xG

2c̄4‖Σ‖2
pr4‖wols‖22 log 1

δ log p2

ξ

τ2ε2λmin(Σ) min{λmin(Σ), 1}
,
κ4
x‖Σ‖22pr4 log 1

δ

ε2λ2
min(Σ)

}
)
. (38)

43



Wang, Hu, Zhang, Gaboardi and Xu

Since ‖wols‖2 ≤
√
p‖w∗‖∞( 1

cΦ
+ 16Grκ3

x
√
ρ2ρ∞

‖w∗‖∞√
p ), it suffices for n

n ≥ Ω
(
G4c̄4‖Σ‖22

p2r6κ10
x ρ2ρ

2
∞‖w∗‖2∞max{1, ‖w∗‖2∞} log 1

δ log p2

ξ

τ2ε2λmin(Σ) min{λmin(Σ), 1}
max{1, 1

cΦ
}2
)
. (39)

C.2 Proof of Theorem 12

Lemma 37 Let c̄Φ, c̄, τ, f, f̂ be defined the same as in Lemma 36. If further assume that
|Φ(2)(·)| ≤ L for some constant L > 0 and is Lipschitz continuous with constant G, then,
under the assumptions in Lemma 34 and (19), with probability at least 1− 4 exp(−p) there
exists a constant ĉΦ ∈ [0, c̄] such that f̂(ĉΦ, ŵ

ols) = 1. Furthermore, if the derivative of
c 7→ f(c, wols) is bounded below in absolute value (i.e., does not change the sign) by M > 0
in the interval c ∈ [0, c̄], then with probability at least 1− 4 exp(−p), the following holds

|ĉΦ − c̄Φ| ≤ O
(M−1GLc̄2κ2

xr
2‖Σ‖

1
2
2
√
p‖wols‖2

√
log 1

δ log p
ξ2

ελ
1
2
min(Σ) min{λ

1
2
min(Σ), 1}

√
n

+M−1LG‖Σ‖
1
2
2 ‖w

ols‖2
√
p

m

)
(40)

for sufficiently large m,n such that

n ≥ Ω
(LG2τ−2c̄4‖Σ‖2κ4

xpr
4‖wols‖22 log 1

δ log p2

ξ

ε2λmin(Σ) min{λmin(Σ), 1}
)

(41)

m ≥ Ω
(
G2L2‖Σ‖2‖wols‖22pτ−2). (42)

Proof [Proof of Lemma 37 ] The main idea of this proof is almost the same as the one for
Lemma 36. The only difference is that instead of using Lemma 32 to get (26), we use here
Lemma 33 to obtain the following with probability at least 1− exp(−p)

sup
w′∈Bc̄δ′ (w̄ols)

| 1
m

m∑
j=1

Φ(2)(〈vi, w′〉)− EΦ(2)(〈v, w′〉)|

≤ O
(
(G(‖w̄ols‖2 + c̄δ′)‖I‖2 + L)

√
p

m

≤ O
(
(G‖Σ‖

1
2
2 (‖wols‖2 + c̄

δ

λ
1
2
min(Σ)

) + L)

√
p

m

)
. (43)

Thus, by (25), (27) and (43), we have

sup
c∈[0,c̄]

|f̂(c, ŵols)− f(c, wols)| ≤ O
(
G‖Σ‖

1
2
2 ‖w

ols‖2
√
p

m
+

Gκxc̄‖Σ‖
1
2
2 ‖wols‖2

√
pr2
√

log 1
δ log p2

ξ

ελ
1/2
min(Σ) min{λ1/2

min(Σ), 1}

√
p

mn
+ L

√
p

m

)
. (44)
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Let D denote the RHS of (44), we have

f̂(c̄, ŵols) ≥ 1 + τ −D.

It is sufficient to show that τ > D, which holds when

O(Gc̄2‖Σ‖
1
2
2

κ2
x
√
pr2‖wols‖2

√
log 1

δ log p2

ξ

ε
√
nλ

1/2
min(Σ) min{λ1/2

min(Σ), 1}
) ≤ τ

2

and

O(
Gκxc̄‖Σ‖

1
2
2 L‖wols‖2

√
pr2
√

log 1
δ log p2

ξ

ελ
1/2
min(Σ) min{λ1/2

min(Σ), 1}

√
p

mn
) ≤ τ

2
.

That is,

n ≥ Ω
(G2τ−2c̄4‖Σ‖2κ4

xpr
4‖wols‖22 log 1

δ log p2

ξ

ε2λmin(Σ) min{λmin(Σ), 1}
)

(45)

m ≥ Ω
(
G2L2‖Σ‖2‖wols‖22pτ−2). (46)

Then, there exists ĉΦ ∈ [0, c̄] such that f̂(ĉΦ, ŵ
ols) = 1. We can easily get

M |ĉΦ − c̄Φ| ≤ |f(ĉΦ, w
ols)− f(c̄Φ, w

ols)|

≤ O
(Gc̄2κ2

xr
2‖Σ‖

1
2
2
√
p‖wols‖2

√
log 1

δ log p
ξ2

ελ
1
2
min(Σ) min{λ

1
2
min(Σ), 1}

√
n

+
Gκxc̄‖Σ‖

1
2
2 ‖wols‖2

√
pr2
√

log 1
δ log p2

ξ

ελ
1/2
min(Σ) min{λ1/2

min(Σ), 1}

√
p

mn
+ LG‖Σ‖

1
2
2 ‖w

ols‖2
√
p

m

)
(47)

≤ O
(GLc̄2κ2

xr
2‖Σ‖

1
2
2
√
p‖wols‖2

√
log 1

δ log p
ξ2

ελ
1
2
min(Σ) min{λ

1
2
min(Σ), 1}

√
n

+ LG‖Σ‖
1
2
2 ‖w

ols‖2
√
p

m

)
. (48)

Proof [Proof of Theorem 12 ] The proof is almost the same as the one for Theorem 15.
By definition, we have

‖ŵglm − w∗‖∞ ≤ ‖ĉΦŵ
ols − c̄Φw

ols‖∞ + ‖c̄Φw
ols − w∗‖∞

≤ ‖ĉΦŵ
ols − c̄Φw

ols‖∞ + ‖c̄Φw
ols − cΦw

ols‖∞ + ‖cΦw
ols − w∗‖∞. (49)

The second term of (49) is bounded by

‖c̄Φw
ols − cΦw

ols‖∞ ≤ O
(
M−1r2κ7

xcΦG
3ρ2ρ

2
∞
‖w∗‖3∞max{1, ‖w∗‖∞}√

p
max{1, 1

cΦ
}
)
. (50)
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By Lemma 10, the third term of (49) is bounded by 16cΦGrκ
3
x
√
ρ2ρ∞

‖w∗‖∞√
p . The first term

is bounded by

‖ĉΦŵ
ols − c̄Φw

ols‖∞ ≤

O
(M−1G3Lc̄2κ8

xr
4ρ2ρ
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√
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1
2
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, 1}2
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xr
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2
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m
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)
. (51)

Thus, in total we have

‖ŵglm − w∗‖∞ ≤ O
(M−1G3Lc̄2κ6
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δ log p
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ελ
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1
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√
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3ρ2ρ
2
∞‖Σ

1
2 ‖∞
‖w∗‖3∞max{1, ‖w∗‖∞}√

p
max{1, 1

cΦ
}
)
. (52)

The probability of success is at least 1 − exp(−Ω(p)) − ξ. The sample complexity should
satisfy

m ≥ Ω
(
G2L2‖Σ‖2‖w∗‖2∞max{1, ‖w∗‖2∞}G2r2κ6

xρ2ρ
2
∞p

2τ−2 max{1, 1

cΦ
}2
)

(53)

n ≥ Ω
(ρ2ρ

2
∞G

4τ−2c̄4‖Σ‖22κ10
x p

2‖w∗‖2∞r6 max{1, ‖w∗‖2∞} log 1
δ log p3

ξ

ε2λmin(Σ) min{λmin(Σ), 1}
max{1, 1

cΦ
}2
)
. (54)

C.3 Proof of Theorem 8

Proof To prove the result, we first focus on the term of ‖ŵols − wols‖2 where wols =
Σ−1E(xy). First, note that by Lemma 30 we have with probability at least 1− exp(−p),

‖Σm‖2 ≥ ‖Σ‖2 −O(k2
x

√
p

m
‖Σ‖2).

Thus, when m ≥ Ω(k4
xp) we have 3‖Σ‖2

2 ≥ ‖Σm‖2 ≥ ‖Σ‖2
2 . In the following we will

always assume the inequality holds. We denote Σ̂ = E(x̄x̄T ) where x ∼ N (0,Σ) and
x̄ = xmin{1, r

‖x‖2 }. Next we show the lemma of bounding the term ‖Σ̂−Σ‖2 and ‖E(x̄y)−
E(xy)‖2:

Lemma 38 We have ‖Σ̂− Σ‖2 ≤ O(
‖Σ‖22
n ) and ‖E(x̄y)− E(xy)‖2 ≤ O(

√
p‖Σ logn

n ).
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Proof [ Proof of Lemma 38] By the definitions we have

‖Σ̂− Σ‖2 ≤ ‖E[(x̄x̄T − xxT )I‖x‖2≥r]‖2.

For any unit vector v ∈ Rp we have

vTE[(xxT − x̄x̄T )I‖x‖2≥r]v = E[((vTx)2 − (vT x̄)2)I‖x‖2≥r]

≤ E[(vTx)2I‖x‖2≥r] ≤
√

E[(vTx)4]Pr[‖x‖2 ≥ r] ≤ O(
‖Σ‖22
n

),

where the last inequality is due to that Pr[‖x‖2 ≥ r] ≤ Pr[‖x‖2 ≥
√

10p‖Σ‖2 log n] ≤ 1
n2 .

For ‖E(x̄y)− E(xy)‖2 we have

‖E(x̄y)− E(xy)‖2 = ‖E(x̄− x)yI‖x‖2≥r‖2

≤
√
E‖(x̄− x)y‖22Pr(‖x‖2 ≥ r) ≤ O(

r +
√
p‖Σ‖2
n

).

By Lemma 28 and 38 we have λmin(Σ̂) ≥ λmin(Σ)
2 when n ≥ ‖Σ‖22

λmin(Σ) .

In the following we will bound the term ‖ŵols−wols‖2. For simplicity we denote XXT =∑n
i=1 x̄ix̄

T
i and XT y =

∑n
i=1 x̄iyi. Then we have

‖ŵols − wols‖2 ≤ ‖ŵols − (XXT )−1XT y‖2 + ‖(XXT )−1XT y − Σ−1E(xy)‖2
≤ ‖ŵols − (XXT )−1XT y‖2 + ‖(XXT )−1XT y − Σ̂−1E(x̄y)‖2 + ‖Σ̂−1E(x̄y)− Σ−1E(xy)‖2.

(55)

We then bound each term in (55). We first bound the second term:

‖( 1

n
XXT )−1(

1

n
XT y)− Σ̂−1E(x̄y)‖2

≤ ‖( 1

n
XXT )−1 − Σ̂−1‖2‖

1

n
XT y‖2 + ‖Σ̂−1‖2‖

1

n
XT y − E(x̄y)‖2

≤ ‖Σ̂−1‖2‖(
1

n
XXT )−1‖2‖

1

n
XXT − Σ̂‖2‖

1

n
XT y‖2 + ‖Σ̂−1‖2‖

1

n
XT y − E(x̄y)‖2

Below we consider two lemmas:

Lemma 39 If n ≥ Ω̃(p‖Σ‖2), with probability at least 1− ζ

‖ 1

n
XXT − Σ̂‖2 ≤ O(

√
p‖Σ‖2 log n log p

ζ
√
n

).

Proof Note that ‖x̄x̄T − Σ̂‖2 ≤ ‖x̄x̄T ‖2 + ‖Σ̂‖2 ≤ 2r2. And for any unit vector v ∈ Rp we
have the following if we denote X̄ = x̄x̄T

E(vT X̄T X̄v) = E[‖x̄‖22(vT x̄)2] ≤ O(r4).
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Thus we have ‖E[X̄T X̄]‖2 ≤ O(r2). Since ‖E(X̄)TE(X̄)‖2 ≤ ‖E(X̄)‖22 ≤ r2, we have
‖E[X̄−EX̄]TE[X̄−EX̄]‖2 ≤ O(r2). Thus, by the Non-communicative Bernstein inequality
(Lemma 26) we have for some constant c > 0:

Pr(‖ 1

n
XXT − Σ̂‖2 > t) ≤ 2p exp(−cmin(

nt2

r2
,
nt

r2
)).

Thus we have with probability at least 1− ζ and the definition of r we have,

‖ 1

n
XXT − Σ̂‖2 ≤ O(

√
p‖Σ‖2 log n log p

ζ
√
n

).

Since each ‖x̄iyi − E[x̄iyi]‖ ≤ 2r, by Lemma 27 we have

Lemma 40 With probability at least 1− ζ, ‖ 1
nX

T y − E(x̄y)‖2 ≤ O(
r
√

log p
ζ√

n
).

Next we bound the term of ‖Σ̂−1‖2, ‖( 1
nXX

T )−1‖2. By Lemma 38 we can see we have

‖Σ̂−1‖2 = 1
λmin(Σ̂)

≤ 2
λmin(Σ) . By Lemma 39 we have if n ≥ Ω̃( p‖Σ‖2

λmin(Σ)) then we have

λmin( 1
nXX

T ) ≥ λmin(Σ̂)
2 ≥ λmin(Σ)

4 . Thus, in total we have

‖Σ̂−1‖2‖(
1

n
XXT )−1‖2‖

1

n
XXT − Σ̂‖2‖

1

n
XT y‖2 + ‖Σ̂−1‖2‖

1

n
XT y − E(x̄y)‖2

≤ O(
p‖Σ‖2 log n log p

ζ

λ2
min(Σ)

√
n

+

√
p‖Σ‖2 log n log p

ζ

λmin(Σ)
√
n

).

Next we consider the third term of (55)

‖Σ̂−1E(x̄y)− Σ−1E(xy)‖2
≤ ‖Σ̂− Σ‖2‖Σ̂−1‖2‖Σ−1‖2‖E(x̄y)‖2 + ‖Σ−1‖2‖E(x̄y)− E(xy)‖2

≤ O(

√
p‖Σ‖2 log n‖Σ‖22
λ2

min(Σ)n
+

√
p‖Σ‖2 log n

λmin(Σ)n
).

For the first term of (55), by using a similar proof as in Lemma 34 we have if n ≥
Ω(
‖Σ‖22pr4 log 1

δ

ε2λ2
min(Σ)

) then with probability at least 1 − exp(−Ω(p)) − ξ (if we denote w̄ols =

(XXT )−1XT y)

‖ŵols − w̄ols‖22 = O
(pr2(1 + r2‖w̄ols‖22) log 1

δ log p2

ξ

ε2nλ2
min(Σ)

)
. (56)

By the previous proof we can see that

‖w̄ols − wols‖2 ≤ O

p‖Σ‖2 log n log p
ζ

λ2
min(Σ)

√
n

+

√
p‖Σ‖2 log n log p

ζ

λmin(Σ)
√
n

+

√
p‖Σ‖2 log n‖Σ‖22
λ2

min(Σ)n
+

√
p‖Σ‖2 log n

λmin(Σ)n


= O(

p‖Σ‖2 log n log p
ζ√

nλmin(Σ) min{λmin(Σ), 1}
).
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In total when n ≥ Ω̃(p2‖Σ‖2/λ4
min(Σ)) we have

‖ŵols − w̄ols‖22 = O
(pr2(1 + r2‖wols‖22) log 1

δ log p2

ξ

ε2nλ2
min(Σ)

)
. (57)

Thus, combine all the previous results we have with probability at least 1− exp(−Ω(p))− ξ
we have

‖ŵols − wols‖2 ≤ O
(√pr2‖wols‖2 log

√
1
δ log p

ξ

ε
√
nλmin(Σ)

+
p‖Σ‖2 log n log p

ζ√
nλmin(Σ) min{λmin(Σ), 1}

)
Thus, there is a constant C3 > 0 such that

‖ŵols − wols‖2 ≤ C3

√
p3‖Σ‖2‖wols‖2 log n

√
log 1

δ log p
ξ

ε
√
nλmin(Σ) min{λmin(Σ), 1}

. (58)

The same Lemma 37, we have the following lemma.

Lemma 41 Let c̄Φ, c̄, τ, f, f̂ be defined the same as in Lemma 36. If further assume that
|Φ(2)(·)| ≤ L for some constant L > 0 and is Lipschitz continuous with constant G, then,
under the assumptions in Lemma 34 and (19), with probability at least 1− 4 exp(−p) there
exists a constant ĉΦ ∈ [0, c̄] such that f̂(ĉΦ, ŵ

ols) = 1. Furthermore, if the derivative of
c 7→ f(c, wols) is bounded below in absolute value (i.e., does not change the sign) by M > 0
in the interval c ∈ [0, c̄], then with probability at least 1 − 4 exp(−p), the following holds
(note that for the Gaussian case cΦ = c̄Φ)

|ĉΦ − cΦ| ≤ O
(M−1GLc̄2‖Σ‖

3
2
2 p

3
2 ‖wols‖2 log n

√
log 1

δ log p
ξ

ελmin(Σ) min{λmin(Σ), 1}
√
n

+M−1LG‖Σ‖
1
2
2 ‖w

ols‖2
√
p

m

)
(59)

for sufficiently large m,n such that

n ≥ Ω
(LG2τ−2c̄4‖Σ‖32p3‖wols‖22 log2 n log 1

δ log p
ξ

ε2λ2
min(Σ) min{λ2

min(Σ), 1}
)

(60)

m ≥ Ω
(
G2L2‖Σ‖2‖wols‖22pτ−2). (61)

Next we bound ‖ŵglm − w∗‖2 = ‖ĉΦŵ
ols − cΦw

ols‖2. We have

‖ĉΦŵ
ols − cΦw

ols‖2 ≤ |ĉΦ − cΦ|‖ŵols‖2 + cΦ‖ŵols − wols‖2. (62)

For the second term of (62), by (58) we have

cΦ‖ŵols − wols‖2 ≤ O(
c̄p

3
2 ‖Σ‖2‖wols‖2 log n

√
log 1

δ log p2

ξ

ε
√
nλmin(Σ) min{λmin(Σ), 1}

).

For the first term of (62), by Lemma 41 and (58) we have

|ĉΦ−cΦ|‖ŵols‖2 ≤ O
(M−1GLc̄2‖Σ‖

3
2
2 p

3
2 ‖wols‖22 log n

√
log 1

δ log p
ξ

ελmin(Σ) min{λmin(Σ), 1}
√
n

+M−1LG‖Σ‖
1
2
2 ‖w

ols‖22

√
p

m

)
Take wols = w∗

cΦ
we can get the proof.
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C.4 Proof of Theorem 16

Proof We can see that

Φ(2)(z) =
ez

(1 + ez)2
,Φ(3)(z) =

ez − e2z

(1 + ez)3
,Φ(4)(z) =

ez(1− 4ez + e2z)

(1 + ez)4

We can see |Φ(2)(·)| ≤ 1 and Φ(2)(·) is 1-Lipschtitz, and Φ(2) and Φ(4) are even functions.
Using the local convexity for z ≥ 0 around z = 2.5 we have

Φ(2)(z) ≥ a− bz,

where a = Φ(2)(2.5)− 2.5Φ(3)(2.5) ≈ 0.22 and b = −Φ(3)(2.5) ≈ 0.06. Denote W ∼ N (0, 1),
φ as the density function of W and ζ as the cumulative distribution function of W , we have

f(z) = zE[Φ(2)(〈x,wols〉z)] = zE[Φ(2)(
Wz

20
)]

= 2z

∫ ∞
0

Φ(2)(
wz

20
)φ(w)dw ≥ 2z

∫ 20a
bz

0
(a− bwz

20
)φ(w)dw

= 2z(aζ(
20a

bz
)− a

2
− bz

20
√

2π
(1− e

−200a2

b2z2 )).

Thus take c̄ = 6 we have f(c̄) > 1 + 0.22.
Next we will show cΦ ≤ c̄. Recall that cΦ = 1

E[Φ(2)(〈xi,w∗〉)]
, thus we need to proof

E[Φ(2)(〈xi, w∗〉)] >
1

6
.

This is because

E[Φ(2)(〈x,w∗〉)] = E[Φ(2)(
W

4
)]

= 2

∫ ∞
0

Φ(2)(
w

4
)φ(w)dw ≥ 2

∫ 4a
b

0
(a− bw

4
)φ(w)dw

= 2(aζ(
4a

b
)− a

2
− b

4
√

2π
(1− e

−8a2

b2 )) >
1

6
.

Finally, we will show that f ′(z) is bounded by constant M = 0.19 on [0, c̄] from below.
Since x follows the Gaussian distribution, by Stein’s lemma (Definition 21) we have

f ′(z) = E[Φ(2)(
Wz

20
)] +

z2

202
E[Φ(4)(

Wz

20
)].

Thus

f ′(z) ≥ E[Φ(2)(
Wz

20
)]− 9

100
|Φ(4)|

≥ 2(aζ(
20a

bz
)− a

2
− bz

20
√

2π
(1− e

−200a2

b2z2 ))− 9

800
> 0.1
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C.5 Proof of Theorem 17

Proof By simple calculation we can see that

Φ(2)(z) =
1

4
(1 +

z2

4
)−

3
2 ,Φ(3)(z) = − 3

16
z(1 +

z2

4
)−

5
2 ,Φ(4) =

3

64

5z2(1 + z2

4 )−2 − 4

(1 + z2

4 )
5
4

,

we can see that |Φ(2)(·)| ≤ 1
4 , |Φ(2)(·)| is 3

16 -Lipschitz and these two functions are even.
Using the local convexity for z ≥ 0 around z = 2 we have

Φ(2)(z) ≥ a− bz,

where a = Φ(2)(2)− 2Φ(3)(2) ≈ 0.22 and b = −Φ(3)(2) ≈ 0.066. Denote W ∼ N (0, 1), φ as
the density function of W and ζ as the cumulative distribution function of W , we have

f(z) = zE[Φ(2)(〈x,wols〉z)] = zE[Φ(2)(
Wz

20
)]

= 2z

∫ ∞
0

Φ(2)(
wz

20
)φ(w)dw ≥ 2z

∫ 20a
bz

0
(a− bwz

20
)φ(w)dw

= 2z(aζ(
20a

bz
)− a

2
− bz

20
√

2π
(1− e

−200a2

b2z2 )).

Thus take c̄ = 6 we have f(c̄) > 1 + 0.22.
Next we will show cΦ ≤ c̄. Recall that cΦ = 1

E[Φ(2)(〈xi,w∗〉)]
, thus we need to proof

E[Φ(2)(〈xi, w∗〉)] >
1

6
.

This is because

E[Φ(2)(〈x,w∗〉)] = E[Φ(2)(
W

4
)]

= 2

∫ ∞
0

Φ(2)(
w

4
)φ(w)dw ≥ 2

∫ 4a
b

0
(a− bw

4
)φ(w)dw

= 2(aζ(
4a

b
)− a

2
− b

4
√

2π
(1− e

−8a2

b2 )) >
1

6
.

Finally, we will show that f ′(z) is bounded by constant M = 0.1 on [0, c̄] from below. Since
x follows the Gaussian distribution, by Stein’s lemma we have

f ′(z) = E[Φ(2)(
Wz

20
)] +

z2

202
E[Φ(4)(

Wz

20
)].

Thus

f ′(z) ≥ E[Φ(2)(
Wz

20
)]− 9

100
|Φ(4)|

≥ 2(aζ(
20a

bz
)− a

2
− bz

20
√

2π
(1− e

−200a2

b2z2 ))− 27

1600
> 0.1
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Appendix D. Proofs in Section 5

D.1 Proof of Theorem 18

Proof [Proof of Theorem 18] Denote φ(·,Σ) as the multivariate normal density with

mean 0 and covariance matrix Σ, by simple calculation we have dφ(x,Σ)
dx = −Σ−1xφ(x,Σ).

By the setting of (11) we have.

E[xy] = E[xf(〈x,w∗〉)] =

∫
xf(〈x,w∗〉)φ(x,Σ)dx

= −Σ

∫
f(〈x,w∗〉)dφ(x,Σ)

dx
dx

= Σw∗E[f ′(〈x,w∗〉)],

where the last equation is deduced by integration by part. Thus

w∗ =
1

E[f ′(〈x,w∗〉)]
wols.

D.2 Proof of Theorem 22

The idea of the proof follows the one in (Erdogdu et al., 2019).

Proof [Proof of Theorem 22] By assumption, we have

E[xy] = E[xf(〈x,w∗〉)] = Σ
1
2E[vf(〈v, ŵ∗〉)],

where ŵ∗ = Σ
1
2w∗. Now, consider each coordinate j ∈ [p] for the term E[vf(〈v, ŵ∗〉)]. Let

v∗j denote the zero-bias transformation of vj conditioned on Vj = 〈v, ŵ∗〉 − vjŵ∗j . Then, we
have

E[vjf(〈v, ŵ∗〉)] = EE[vjf(vjŵ
∗
j + Vj)|Vj ]

= ŵ∗jEE[f ′(v∗j ŵ
∗
j + Vj)|Vj ]

= ŵ∗jEE[f ′((v∗j − vj)ŵ∗j + 〈v, ŵ∗〉)|Vj ]
= ŵ∗jE[f ′((v∗j − vj)ŵ∗j + 〈v, ŵ∗〉)].

Thus, we have wols = Σ−
1
2DΣ

1
2w∗, where D is a diagonal matrix whose i-th entry is

E[f ′((v∗j − vj)ŵ∗j + 〈v, ŵ∗〉)].
By the Lipschitz condition, we have

|E[f ′((v∗j − vj)ŵ∗j + 〈v, ŵ∗〉)]− E[f ′(〈v, ŵ∗〉)]| ≤ G|ŵ∗j |E|(v∗j − vj)|.

By the same argument given in (Erdogdu et al., 2019), we have

E|(v∗j − vj)| ≤ 1.5E[|vj |3].
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Using the bound of the third moment induced by the sub-Gaussian norm, we have

L|ŵ∗j |E|(v∗j − vj)| ≤ 8Gκ3
x max
j∈[p]
|ŵ∗j | ≤ 8Gκ3

x‖Σ
1
2w∗‖∞.

Thus, we get

max
j∈[d]
|Djj −

1

cf
| ≤ 8Gκ3

x‖Σ
1
2w∗‖∞.

This means that

‖wols − 1

cf
w∗‖∞ = ‖Σ−

1
2 (D − 1

cf
I)Σ

1
2w∗‖∞

≤ max
j∈[p]
|Djj −

1

cf
|‖Σ−

1
2 ‖∞‖Σ

1
2 ‖∞‖w∗‖∞

≤ 8Lκ3
xρ∞L‖Σ

1
2 ‖∞‖w∗‖2∞.

Due to the diagonal dominance property we have

‖Σ
1
2 ‖∞ = max

i

p∑
j=1

|Σ
1
2
ij | ≤ 2 max Σ

1
2
ii ≤ 2‖Σ‖

1
2
2 .

Since we have ‖x‖2 ≤ r, we write

r2 ≥ E[‖x‖22] = Trace(Σ) ≥ p‖Σ ≥ p‖Σ‖2
ρ2

.

Thus we have ‖Σ
1
2 ‖∞ ≤ 2r

√
ρ2

p .

D.3 Proof of Theorem 23

By the same argument in the proof of Theorem 8, we can show that if n ≥ Ω(
‖Σ‖22pr4 log 1

δ

ε2λ2
min(Σ) min{λ2

min(Σ),1})

then with probability at least 1− exp(−Ω(p))− ξ

‖ŵols − w̃ols‖22 = O
(pC2r2(L2r2 + C2 + r2‖w̃ols‖22) log 1

δ log p2

ξ

ε2nλ2
min(Σ)

)
. (63)

Thus, by Lemma 35 we have

‖ŵols − wols‖2 ≤ O
(CLκx√pr2‖wols‖2

√
log 1

δ log p2

ξ

ε
√
nλ

1/2
min(Σ) min{λ1/2

min(Σ), 1}

)
. (64)

In the following, we will always assume that (64) holds. By the same argument given in
Lemma 37, we have the following Lemma, which can be proved in the same way as Lemma
37.
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Lemma 42 Let f ′ be a function that is Lipschitz continuous with constant G and |f ′(·)| ≤
L, and g : R × Rp 7→ R be another function such that g(c, w) = cE[f ′(〈x,w〉c)] and its
empirical one is

ĝ(c, w) =
c

m

m∑
j=1

f ′(〈x,w〉c).

Let Bδ(w̄ols) = {w : ‖w − w̄ols‖2 ≤ δ}, where w̄ols = Σ
1
2wols. Then, under the assumptions

in Lemma 34 and Eq. (64), with probability at least 1 − 4 exp(−p), there exists a constant
ĉf ∈ [0, c̄] such that ĝ(ĉf , ŵ

ols) = 1. Furthermore, if the derivative of c 7→ g(c, wols) is
bounded below in absolute value (i.e., does not change the sign) by M > 0 in the interval of
c ∈ [0, c̄], then with probability at least 1− 4 exp(−p), the following holds

|ĉf − c̄f | ≤ O
(M−1CGLc̄2r2‖Σ‖

1
2
2
√
p‖wols‖2 log 1

δ log p
ξ2

ελ
1
2
min(Σ) min{λ

1
2
min(Σ), 1}

√
n

+M−1LG‖Σ‖
1
2
2 ‖w

ols‖2
√
p

m

)
(65)

for sufficiently large m,n such that

n ≥ Ω
(LG2τ−2c̄4‖Σ‖2κ4

xpr
4‖wols‖22 log 1

δ log p2

ξ

ε2λmin(Σ) min{λmin(Σ), 1}
)

(66)

m ≥ Ω
(
G2L2‖Σ‖2‖wols‖22pτ−2). (67)

where r = maxi∈[n] ‖xi‖2.

D.4 Proof of Theorem 19

The proof is almost the same as the proof of Theorem 8. We know that when n ≥
Ω(

‖Σ‖22pr4 log 1
δ

ε2λ2
min(Σ) min{λ2

min(Σ),1}), with probability at least 1− exp(−Ω(p))− ξ, there is a constant

C3 > 0 such that

‖ŵols − wols‖2 ≤ C3

√
p3‖Σ‖2‖wols‖2 log n

√
log 1

δ log p
ξ

ε
√
nλmin(Σ) min{λmin(Σ), 1}

. (68)

Similar to Lemma 41, we have the following lemma.

Lemma 43 Let f ′ be a function that is Lipschitz continuous with constant G and |f ′(·)| ≤
L, and g : R × Rp 7→ R be another function such that g(c, w) = cE[f ′(〈x,w〉c)] and its
empirical one is

ĝ(c, w) =
c

m

m∑
j=1

f ′(〈x,w〉c).

Let Bδ(w̄ols) = {w : ‖w − w̄ols‖2 ≤ δ}, where w̄ols = Σ
1
2wols. Then, under Eq. (68), with

probability at least 1−4 exp(−p), there exists a constant ĉf ∈ [0, c̄] such that ĝ(ĉf , ŵ
ols) = 1.

Furthermore, if the derivative of c 7→ g(c, wols) is bounded below in absolute value (i.e., does
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not change the sign) by M > 0 in the interval of c ∈ [0, c̄], then with probability at least
1− 4 exp(−p), the following holds

|ĉf − cf | ≤ O
(M−1GLc̄2‖Σ‖

3
2
2 p

3
2 ‖wols‖2 log n

√
log 1

δ log p
ξ

ελmin(Σ) min{λmin(Σ), 1}
√
n

+M−1LG‖Σ‖
1
2
2 ‖w

ols‖2
√
p

m

)
(69)

for sufficiently large m,n such that

n ≥ Ω
(LG2τ−2c̄4‖Σ‖32p3‖wols‖22 log n log 1

δ log p
ξ

ε2λ2
min(Σ) min{λ2

min(Σ), 1}
)

(70)

m ≥ Ω
(
G2L2‖Σ‖2‖wols‖22pτ−2). (71)

Next we bound ‖ŵnlr − w∗‖2 = ‖ĉf ŵols − cfwols‖2. We have

‖ĉf ŵols − cfwols‖2 ≤ |ĉf − cf |‖ŵols‖2 + cf‖ŵols − wols‖2. (72)

For the second term of (72), by (68) we have

cf‖ŵols − wols‖2 ≤ O(
c̄p

3
2 ‖Σ‖2‖wols‖2 log n

√
log 1

δ log p
ξ

ε
√
nλmin(Σ) min{λmin(Σ), 1}

).

For the first term of (72), by Lemma 43 and (68) we have

|ĉf−cf |‖ŵols‖2 ≤ O
(M−1GLc̄2‖Σ‖

3
2
2 p

3
2 ‖wols‖22 log n

√
log 1

δ log p
ξ

ελmin(Σ) min{λmin(Σ), 1}
√
n

+M−1LG‖Σ‖
1
2
2 ‖w

ols‖22

√
p

m

)
Take wols = w∗

cf
we can get the proof.

D.5 Proof of Theorem 25

Proof We can easily see that f ′(·) is just the function Φ(2)(·) in Theorem 16 for the logis-
tic loss function. Thus the function f ′ satisfies the assumptions in Theorem 23, which was
showed in the Theorem 16.

Appendix E. A 2-Round LDP Algorithm for Algorithm 1
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Algorithm 5 2-round LDP for smooth GLMs with public data (Gaussian)

1: Input: Private data {(xi, yi)}ni=1 ∈ (Rp× [0, 1])n, where |yi| ≤ 1, {xi}nj=1 ∼ N (0,Σ) for
some unknown Σ, loss function Φ : R 7→ R, privacy parameters ε, δ, ‖Σ‖2, and initial
value c ∈ R.

2: In the first round:
3: for Each user i ∈ [n] do
4: Let x̄i = xi min{1, r

‖xi‖2 }, where r ≡
√

10p‖Σ‖2 log n.

5: Release x̂ixTi = x̄ix̄
T
i +E1,i and x̂iyi = x̄iyi+E2,i, where E1,i ∈ Rp×p is a symmetric

matrix and each entry of the upper triangle matrix is sampled from N (0,
128r4 log 2.5

δ
ε2

)

and E2,i ∈ Rp is sampled from N (0,
128r2 log 2.5

δ
ε2

Ip).
6: end for
7: for The server do
8: Let X̂TX =

∑n
i=1 x̂ix

T
i and X̂T y =

∑n
i=1 x̂iyi. Calculate ŵols = (X̂TX)−1X̂T y.

9: Send ŵols to all users.
10: end for
11: In the second round:
12: for Each user i ∈ [n] do
13: Calculate ȳi = 〈xi, ŵols〉.
14: Project ȳi onto the interval [0, 1] and denote it as ŷi.

15: Send ỹi = ŷi +N (0,
8 log 2.5

δ
ε2

) to the server.
16: end for
17: for The server do
18: Find the root ĉΦ such that 1 = ĉΦ

n

∑n
j=1 Φ(2)(ĉΦỹj) by using Newton’s root-finding

method (or other methods):
19: for t = 1, 2, · · · until convergence do

20: c = c− c 1
n

∑n
j=1 Φ(2)(cỹj)−1

1
n

∑n
j=1{Φ(2)(cỹj)+cỹjΦ(3)(cỹj)}

.

21: end for
22: end for
23: return ŵglm = ĉΦ · ŵols.
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