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Abstract

In this paper we study the (sparse) General-
ized Eigenvalue Problem (GEP), which arises in
a number of modern statistical learning mod-
els, such as principal component analysis (PCA),
canonical correlation analysis (CCA), Fisher’s
discriminant analysis (FDA) and sliced inverse
regression (SIR). We provide the first study on
GEP in the differential privacy (DP) model un-
der both deterministic and stochastic settings.
In the low dimensional case, we provide a ρ-
Concentrated DP (CDP) method namely DP-
Rayleigh Flow and show if the initial vector is
close enough to the optimal vector, its output has
an `2-norm estimation error of Õ( dn + d

n2ρ ) (un-
der some mild assumptions), where d is the di-
mension and n is the sample size. Next, we dis-
cuss how to find such an initial parameter pri-
vately. In the high dimensional sparse case where
d � n, we propose the DP-Truncated Rayleigh
Flow method whose output could achieve an er-
ror of Õ( s log d

n + s log d
n2ρ ) for various statistical

models, where s is the sparsity of the underly-
ing parameter. Moreover, we show that these er-
rors in the stochastic setting are optimal up to
a factor of Poly(log n) by providing the lower
bounds of PCA and SIR under the statistical set-
ting and in the CDP model. Finally, to give a
separation between ε-DP and ρ-CDP for GEP,
we also provide the lower bound Ω( dn + d2

n2ε2 )

and Ω( s log d
n + s2 log2 d

n2ε2 ) of private minimax risk
for PCA, under the statistical setting and ε-DP
model, in low and high dimensional sparse case
respectively. 1
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1 INTRODUCTION

(Sparse) generalized eigenvalue problem (GEP) has re-
ceived much attention recently as it arises in a num-
ber of standard and modern statistical learning models,
including (sparse) principal component analysis (PCA),
(sparse) Fisher’s discriminant analysis (FDA), and (sparse)
canonical correlation analysis (CCA), which have enor-
mous applications in biomedicine [Liu and Altman, 2015],
biomedical imaging [Strickert et al., 2009] and genomics
[Parkhomenko et al., 2009].

The wide applications of GEP also present some new chal-
lenges to this problem. Particularly, due to the existence
of sensitive data (such as biomedical images) and their
distributed nature in many applications like biomedicine
and genomics, it is often challenging to preserve the pri-
vacy of such data as they are extremely difficult to aggre-
gate and learn from. One promising direction is to use
some differentially private mechanisms to conduct the ag-
gregation and learning tasks. Differential Privacy (DP)
[Dwork et al., 2006] is a commonly-accepted criterion that
provides provable protection against identification and is
resilient to arbitrary auxiliary information that might be
available to attackers. To design DP algorithms, previous
work always focus on specific statistical models, such as
(sparse) PCA, CCA. However, there is no general frame-
work which can solve them all together. As the above prob-
lems all can be formulated as a GEP problem, a DP algo-
rithm for (sparse) GEP could simultaneously solve PCA,
CCA, FDA etc. However, to our best knowledge, there is
no work on the designing DP algorithms for (sparse) GEP
and the theoretical behaviors of GEP in DP model is still
unknown.

To address the above issues, in this paper, we provide a first
study of GEP under the DP constraint, i.e., DP-GEP, under
both low dimension and high dimensional sparse settings.
Specifically, our contributions can be summarized as fol-
lowing.

• We first consider DP-GEP in the low dimensional
case. Specifically, we propose a ρ-Concentrated DP
(CDP) method, namely DP-Rayleigh Flow, and show
that if the initial vector is close enough the optimal
one, then the output of algorithm could achieve an
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`2-norm estimation error of Õ( d
n2ρ ) and Õ( dn + d

n2ρ )
in the deterministic and statistical setting respectively
(under some mild assumptions), where n is the sam-
ple size and d is the dimension of the space. More-
over, we also show that if n is sufficiently large, then
we can efficiently find such an initial parameter with
ρ-CDP guarantee by reformulating the original GEP
problem as a convex programming problem with a
LASSO penalty.

• We then consider the problem in the high dimensional
case with d� n, where we assume the underlying pa-
rameter is s-sparse. Particularly, we present a method
namely DP-Truncated Rayleigh Flow which could
achieve an error of Õ( s log d

n2ρ ) and Õ( s log d
n + s log d

n2ρ ) in
deterministic and statistical setting respectively, with
some initial parameter. As corollaries, we also provide
the first theoretical result for CCA, FDA and Sliced
Inverse Regression (SIR) in the CDP model.

• We also study the lower bounds of DP-GEP under var-
ious settings. We first show that the previous upper
bounds in the stochastic setting are optimal up to a
factor of Poly(log n) by showing the optimal rates of
private minimax risk for PCA and SIR in the CDP
model. Then we study the ε-DP model and show
that the private minimax risk for ε-DP-PCA is lower
bounded by Ω( dn + d2

n2ε2 ) and Ω( s log d
n + s2 log2 d

n2ε2 ) in
low dimensional and high dimensional setting respec-
tively. Compared with our upper bounds, we can see
a separation of the problem in ε-DP and CDP. To the
best of our knowledge, these are first lower bounds of
DP sparse PCA and DP-SIR under statistical setting,
which may could used to other problems. Finally, ex-
tensive experiments on both synthetic and real-world
data support our previous theoretical analysis.

Due to space limit, the full version of some theorems, all
proofs and experiments are included in Appendix.

2 RELATED WORK

As we mentioned earlier, there is no previous result
on DP-GEP, and there is even no result on DP-FDA
and DP-SIR. For DP-CCA, [Imtiaz and Sarwate, 2017]
first studies the problem, which is later extended by
[Imtiaz and Sarwate, 2019, Shen, 2020] to other settings.
However, their algorithms cannot be extended to the high
dimensional sparse case and there is no theoretical guaran-
tees for their methods. Below we will focus on the previous
results on DP-PCA.

There is a vast number of papers studying PCA un-
der differential privacy, starting from the SULQ
framework [Blum et al., 2005, Dwork et al., 2014,
Chaudhuri et al., 2013, Gonem and Gilad-Bachrach, 2018,

Ge et al., 2018, Balcan et al., 2016]. For DP-PCA in (ε, δ)-
DP model, [Hardt and Roth, 2013, Balcan et al., 2016,
Hardt and Price, 2014] study noisy versions of the power
method. [Dwork et al., 2014] considers the deterministic
setting and provides the optimal rate of the problem
for general K-PCA. However, all these methods cannot
be extended to the high dimensional sparse case. For
high dimensional sparse PCA, [Ge et al., 2018] studies
the problem in the distributed setting and proposed a
noisy iterative hard thresholding power method, and
[Wang and Xu, 2020] focuses on the problem in the local
DP model by showing its upper bound and lower bound.
However, these methods are only for PCA and cannot
be extended to GEP where here we have an additional
constraint which also depends on the dataset. Moreover,
the proof of lower bound is also different since it only
focuses on the local DP model while in this paper we study
the central one.

There are also several papers provide the lower bounds of
PCA in central ε-DP model. However, all of them are
different with ours. Specifically, [Chaudhuri et al., 2012]
studies the deterministic setting and shows the lower bound
of Ω( d2

n2ε2 ) for the estimation error, which is later extended
by [Kapralov and Talwar, 2013] to general K-PCA case.
Compared with their results, we consider the stochastic set-
ting instead and show the lower bound of Ω( dn + d2

n2ε2 ).
Due to different settings, their proof techniques cannot be
used to ours and we use a different technique of proof.
[Liu et al., 2022] recently also studies the lower bound of ε-
DP-PCA under statistical setting. However, their assump-
tions on the underlying distribution of data are totally dif-
ferent with ours, which indicates that our results are incom-
parable with theirs. Moreover, they only consider the low
dimensional case while we consider both low dimension
and high dimensional sparse cases. For PCA in the cen-
tral (ε, δ)-DP model, [Dwork et al., 2014] provides a lower
bound of Ω(

d log 1
δ

n2ε2 ) for the problem in the deterministic
setting by using the fingerprinting codes while in this pa-
per we provide the lower bound of Ω( dn + d

n2ρ ) under the
stochastic setting and in the CDP model. We also consider
the high dimensional sparse case.

3 PRELIMINARIES

Notations: We denote λi(Z), λmax(Z), λmin(Z) as the i-
th, maximal and minimal eigenvalue of matrix Z respec-
tively. And denote the condition number of a positive def-
inite matrix Z ∈ Rd×d as κ(Z) = λmax(Z)

λmin(Z) . Moreover,

let λj and λ̂j be the j-th generalized eigenvalue of the ma-
trix pairs (A,B) and (Â, B̂) respectively. Given an index
set F ⊆ [d], let ZF ∈ R|F |×|F | be the submatrix of Z
where the rows and columns are restricted to the set F .
We also denote ρ(Z, s) = sup‖u‖2=1,‖u‖0≤s |u

TZu| and
ρ(Z) = ‖Z‖2 = ρ(Z, d). For a pair of symmetric ma-
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trix (A,B) we denote its Crawford number as cr(A,B) =
minv:||v||2=1

√
(vTAv)2 + (vTBv)2 ≥ 0.

In this section, we recall some definitions related to Differ-
netial Privacy and Generalized Eigenvalue Problem.

Definition 1 (Differential Privacy [Dwork et al., 2006]).
Given a data universe X , we say that two datasets D,D′ ⊆
X are neighbors if they differ by only one data sample,
which is denoted as D ∼ D′. A randomized algorithm
A is (ε, δ)-differentially private (DP) if for all neighboring
datasets D,D′ and for all events S in the output space of
A, we have Pr(A(D) ∈ S) ≤ eεPr(A(D′) ∈ S)+δ.When
δ = 0 we call the algorithm is ε-DP.

Definition 2 (Concentrated DP [Bun and Steinke, 2016]).
A randomized algorithm A is ρ-Concentrated DP (CDP) if
for all neighboring datasets D,D′ and for all α > 1 we
have Dα(A(D)‖A(D′)) ≤ αρ, where Dα(A(D)‖A(D′))
is the α-Rényi divergence between A(D) and A(D′).

Actually, CDP lives between ε-DP and (ε, δ)-DP:

Lemma 1 ([Bun and Steinke, 2016]). For every ε > 0, if
algorithm A is ε-DP then it will be ε2

2 -CDP. If A is ρ-CDP,

then it will be (ε, δ)-DP with ε = ρ+ 2
√
ρ log 1

δ .

By the previous lemma, we can see to achieve a given
(ε, δ)-DP guarantee, it is sufficient to show the algorithm is
ρ = (

√
ε+ log 1/δ −

√
log 1/δ)2 ≈ ε2

4 log 1/δ -CDP. Thus,
all ρ-CDP algorithms with their utility in this paper can
be transformed to the (ε, δ)-DP version with log 1/δ � ε

by simply replacing ρ by ε2

4 log 1/δ .

In this paper, we will mainly use the Gaussian mechanism
and the Composition Theorem to guarantee CDP.

Definition 3 (Gaussian Mechanism). Given any function
q : Xn → Rd, the Gaussian mechanism is defined as
q(D) + ξ where ξ ∼ N (0,

∆2
2

2ρ Id), where where ∆2(q)

is the `2-sensitivity of the function q, i.e., ∆2(q) =
supD∼d′ ||q(D)−q(D′)||2.Gaussian mechanism preserves
ρ-CDP.

Lemma 2 (Composition Theorem). If A is an adaptive
composition of CDP algorithms A1, · · · ,AT where Ai is
ρi-CDP. Then A will be ρ-CDP with ρ =

∑T
i=1 ρi.

Definition 4 (GEP [Golub and Van Loan, 1996]). The
generalized eigenvalues of the symmetric-definite pair
(A,B) are denote by λ(A,B) = {λ|det(A − λB) = 0}.
If λ ∈ λ(A,B) and v is a non-zero vector satisfies Av =
λBv, then v is a generalized eigenvector.

Given an n-size data set D = {x1, · · · , xn}, matrices
Â and B̂. The (largest) generalized eigenvalue problem
(GEP) of (Â, B̂) is characterized as

ṽ = arg max
v∈Rd

vT Âv, s.t. vT B̂v = 1, (1)

where Â = Â(D) ∈ Rd×d and B̂ = B̂(D) ∈ Rd×d
are matrices that (may) dependent on the dataset D. Be-
sides the deterministic setting, for some statistical mod-
els we also want to study the stochastic setting where we
assume each record is sampled from some underlying un-
known distribution P . And our goal is to solve the follow-
ing problem based on the data D, where A = E[Â] and
B = E[B̂].

v∗ = arg max
v∈Rd

vTAv, s.t. vTBv = 1. (2)

In the high dimensional setting, we assume d� n and the
underlying parameter v∗ in (2) or ṽ in (1) has an additional
sparsity structure, i.e., we assume ‖v∗‖0 ≤ s or ‖ṽ‖0 ≤ s
for some s� d. Now the sparse GEP becomes to

ṽs = arg max
v∈Rd

vT Âv, s.t. vT B̂v = 1, ‖v‖0 ≤ s. (3)

v∗s = arg max
v∈Rd

vTAv, s.t. vTBv = 1, ‖v‖0 ≤ s. (4)

In the following, we will provide some statistical models
that are special cases of (sparse) GEP.

Principal Component Analysis (PCA): Given dataset
D = {x1, · · · , x2} with each xi ∈ Rd, (sparse) PCA can
be formulated as (sparse) GEP with B̂ = Id and Â = Σ̂
where Σ̂ is the covariance matrix Σ̂ = 1

n

∑n
i=1(xi −

µ)(xi − µ)T with µ =
∑n
i=1 xi
n . In the stochastic setting A

is the polulation version of Â, i.e.,A = E[(x−µ)(x−µ)T ]
with µ = E[x].

Canonical Component Analysis (CCA): Given dataset
D = {(x1, y1), · · · , (xn, yn)} with each xi ∈ Rd1 and
yi ∈ Rd2 , (sparse) CCA can be formulated as (sparse) GEP
with

Â =

(
0 Σ̂xy

Σ̂xy 0

)
, B̂ =

(
Σ̂x 0

0 Σ̂y

)
,

where Σ̂x = 1
n

∑n
i=1(xi − µx)(xi − µx)T , Σ̂y =

1
n

∑n
i=1(yi − µy)(yi − µy)T and Σ̂xy = 1

n

∑n
i=1(xi −

µx)(yi − µy)T with µx =
∑n
i=1 xi
n and µy =

∑n
i=1 yi
n . In

the stochastic setting, A and B are the population version
of Â and B̂ respectively.

Fisher’s Discriminant Analysis (FDA): Given n samples
with K different classes, Fisher’s discriminant analysis
seeks a low dimensional projection of the samples such that
the between-class variance is large relative to the with-class
variance. Specifically, it could be formulated as GEP with

Â =
1

n

K∑
k=1

∑
i∈Ck

(xi − ûk)(xi − ûk)T ,

B̂ =
1

n

K∑
k=1

nkûkû
T
k , ûk =

∑
i∈Ck

xi
nk
, (5)
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where Ck is the index set for the k-th class, i.e., if i ∈ Ck
then xi is in the k-th class, and nk = |Ck|.

Sliced Inverse Regression (SIR): In SIR we have the sta-
tistical model Y = f(vT1 X, · · · , vTkX, ζ), where ζ is some
random noise and is independent on X , f(·) is some un-
known link function. It has been shown that under some
mild assumptions, the space that is spanned by v1, · · · , vk
can be identified [Li, 1991]. Particularly, the first leading
eigenvector of the subspace that is spanned by v1, · · · , vk
can be identified by solving the GEP with A be the covari-
ance matrix of the conditional expectation E(X|Y ) and B
as the covariance matrix of X . That is:

Â = Σ̂E(X|Y ), B̂ = Σ̂x, Σ̂E(X|Y ) = Σ̂x − E[Σ̂(x|y)]

Σ̂x =
1

n

n∑
i=1

(xi − µx)(xi − µx)T ,

µx =
1

n

n∑
i=1

xi, uk =
∑
i∈Ck

xi
nk

E[Σ̂(x|y)] =
1

n

K∑
k=1

∑
x∈Ck

nk
(xi − µk)(xi − µk)T

nk

(6)

In the following we present the definition of DP-GEP.

Definition 5 (DP-GEP). Given a dataset D =
{x1, · · · , xn} and its corresponding (sparse) GEP,
the goal of Differentially Private GEP (GEP) is finding
a private estimator vpriv based on some DP algorithm.
Moreover, we want our private estimator close enough to
the optimal parameter. Specifically, in this paper, we will
mainly use the similarity 1 − 〈vpriv,v

∗〉
‖vpriv‖2‖v∗‖2 to the measure

the closeness. Based on different settings, v∗ could be the
optimal vector of the problem (1), (2), (3) or (4).

If we denote EA = A− Â and EB = B− B̂. Then we
can see that the deterministic setting is a special case of the
stochastic setting with EA = EB = 0. Thus, in this paper
we mainly focus on the stochastic setting. Next we propose
several assumptions that will be used throughout the paper.
Assumption 1 requires that the Frobenius norm sensitivity
of Â and B̂ are bounded by O( 1

n ).

Assumption 1. Given any neighboring datasets D and
D′. For Â(D) ∈ Rd×d and B̂(D) ∈ Rd×d in problem
(1) we assume ‖Â(D) − Â(D′)‖F ≤ C1

n and ‖B̂(D) −
B̂(D′)‖F ≤ C2

n for some constants C1, C2 ≥ 0.

The following assumption is to control the norm of the error
matrix EA and EB in the statistical setting.

Assumption 2. We assume that for any 0 < s ≤ dwe have

ρ(EA, s), ρ(EB , s) = O(
√

s log d
n ).

It is notable that Assumption 2 is only used in the utility
analysis throughout the paper and is only for simplicity,
i.e., the privacy guarantees will still hold even Assumption

2 does not hold. Moreover, all of our utility analysis could
be extended to general ρ(EA), ρ(EB), ρ(EA, s), ρ(EB , s),
see Appendix for details. In the following we show that
the above assumptions hold (with high probability) for all
the statistical models we mentioned previously if each data
sample ‖xi‖2 ≤ 1. Thus, we can see these two assumptions
are mild.

Theorem 1. If each ‖xi‖2 ≤ 1 for i ∈ [n], then PCA,
CCA, FDA and SIR all satisfy Assumption 1. Moreover,
PCA, CCA and SIR satisfy Assumption 2 (with high prob-
ability).

4 LOW DIMENSION CASE

In this section we consider the low dimension case, i.e.,
problem (1) and (2). To illustrate our idea, we first review
the classical method for GEP by using Rayleigh’s quotient
[Parlett, 1998]. Specifically, problem (1) can be rewritten
as

max
v∈Rd

J(v) =
vT Âv

vT B̂v
, (7)

where the objective function could be seen as the general-
ized Rayleigh quotient. To solve (7), one can use the Gra-
dient Ascent method, i.e., in the t-th iteration the vector vt
is updated as

vt = vt−1 + η∇vJ(vt−1),

where ∇vJv(vt−1) ∝ Âvt−1 −
vTt−1Âvt−1

vTt−1B̂vt−1
B̂vt−1 and

η is the stepsize. Thus, to design DP methods, one
natural approach is based on the idea of DP-SGD,
which is a commonly used method for DP Empiri-
cal Risk Minimization (ERM) and DP Deep Learn-
ing [Abadi et al., 2016, Wu et al., 2017, Wang et al., 2018,
Bassily et al., 2014]. The idea of DP-SGD is injecting
some Gaussian noise into the (stochastic) gradient in each
iteration. That is

vt = vt−1 + η(∇vJ(vt−1) + ζt−1),

where ζt−1 is a Gaussian vector where the variance of each
coordinate is proportional to the sensitivity of ∇vJ(vt−1).
However, the main challenge is that, unlike the objective
functions in ERM or Deep Learning where the sensitiv-
ity of gradient is O( 1

n ), our objective function (Rayleigh
quotient) cannot be decomposed into a sum of loss func-
tions, which means the sensitivity of ∇vJ(vt−1) is larger
and even could be unbounded. Thus, we cannot use DP-
SGD based methods and need new approaches.

Based on the specific structure of ∇vJv(vt−1), here we
propose a new method namely DP-Rayleigh Flow. Specif-
ically, instead of injecting noise to the gradient, we add
noises to matrices Â and B̂ in each iteration, see Algo-
rithm 1 for details. However, compared with the origi-
nal Rayleigh Flow method as mentioned above, we need
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some modifications. First, instead of using some fixed step-
size η, in each iteration of Algorithm 1 we rescale it by
ρt = vTt−1Ã

tvt−1/v
T
t−1B̃

tvt−1, where Ãt and B̃t are per-
turbed matrices in the t-th iteration, i.e., we use η

ρt
as the

stepsize, which is convenient for our following theoretical
analysis. Secondly, after updating by using Gradient As-
cent i.e., calculating Ctvt−1, in step 5 of Algorithm 1 we
need to normalize the vector to ensure vt has unit `2-norm.
This step guarantees that the generalized Rayleigh quotient
for the updated vector is at least as large as that of the initial
vector. In the following we provide theoretical guarantees
for our algorithm.

Algorithm 1 DP-Rayleigh Flow

1: Input: Matrices Â and B̂, initial parameter v0 with
‖v0‖2 = 1, step size η (will be specified later), itera-
tion numbers m, privacy parameter ρ.

2: for t = 1, · · · ,m do.
3: Denote Ãt = Â+Zt1, B̃t = B̂+Zt2, where Zt1 and
Zt2 are symmetric matrix where the upper triangle (in-
cluding the diagonal) is i.i.d. samples from N (0, σ2

1)

with σ2
1 =

C2
1m
n2ρ andN (0, σ2

2) with σ2
2 =

C2
2m
n2ρ respec-

tively, and each lower triangle entry is copied from its
upper triangle counterpart.

4: Denote ρt =
vTt−1Ã

tvt−1

vTt−1B̃
tvt−1

and Ct = I + η
ρt

(Ãt −

ρtB̃
t)

5: Update vt = Ctvt−1

||Ctvt−1||2 .
6: end for
7: return vm.

Theorem 2. Under Assumption 1, for any ρ > 0 Algo-
rithm 1 is ρ-CDP.

Before showing the estimation error of the output in Algo-
rithm 1, we first introduce several notations and assump-
tions. The following theorem indicates that when n is suf-
ficiently large, the generalized eigenvalue of the perturbed
matrices is close to the generalized eigenvalue of the un-
derlying matrices.

Theorem 3. Let λ̃tk be the kth generalized eigenvalues of
(Ãt, B̃t), where (Ãt, B̃t) are the perturbed matrices in the
t-th iteration. Under Assumption 2, given any failure prob-
ability ζ > 0, let constants 0 ≤ b < minj∈[d]

λj
2λ2
j+1

, 0 ≤ c

and if n is sufficiently large such that, n ≥

Ω̃(max{ d
c2λ2

min(B)
, d
b2cr2(A,B) ,

√
dm log 1

ζ

b
√
ρ ,

√
dm log 1

ζ

cλmin(B)
√
ρ}).

Then with probability at least 1 − ζ, there exists constants
a such that for all t ∈ [m],

(1− a)λj ≤ λ̃tj ≤ (1 + a)λj ,

(1− c)λj(B) ≤ λj(B̃t) ≤ (1 + c)λj(B) (8)

Clowerκ(B) ≤ κ(B̃t) ≤ Cupperκ(B) (9)

where Clower = 1−c
1+c , Cupper = 1+c

1−c Furthermore, we have

λ̃t2 ≤ γλ̃t1, where γ = (1+a)λ2

(1−a)λ1
.

Theorem 4 (Informal). Under Theorem 3 and choose the
stepsize η such that ηλmax(B) < 1

1+c and

ν =

√
1− 1 + c

8
ηλmin(B)

1− γ
Cupperκ(B) + γ

<
1

2
.

Then if n is sufficient large, in Algorithm 3 we set m =
O(log n) and if the input vector v0 with ‖v0‖2 = 1 satisfy-
ing |〈v

∗,v0〉|
‖v∗‖2 ≥ 1− θ(A,B)

2 with

θ(A,B) = min{ 1

8Cupperκ(B)
,

1/γ − 1

3Cupperκ(B)
,

1− γ
30(1 + c)C2

upperηλmax(B)κ2(B){Cupperκ(B) + γ}
},

(10)

we have the following with probability at least 1− ζ,

1− 〈v
∗, vm〉
‖v∗‖2

≤ O(
θ(A,B)

(1− ν)2
×
( 1

λ2
gapcr2(A,B)

d log d

n

+
1

λ2
gapcr2(A,B)

d log n log d log 1
ζ

n2ρ

)
), (11)

where

λgap = min
j>1

λ1 − (1 + a)λj√
1 + λ2

1

√
1 + (1− a)2λ2

j

(12)

is the eigengap for the GEP.

Similarly, for the deterministic setting where Â = A, B̂ =
B, if n is sufficiently large and we set some appropriate
parameters in Algorithm 3, with probability at least 1− ζ

1− 〈ṽ, vm〉
‖ṽ‖2

≤ Õ(
θ(A,B)

(1− ν)2λ2
gapcr2(A,B)

d log d log 1
ζ

n2ρ
).

(13)

Remark 1. Since θ(A,B), λgap, cr(A,B) and v all only
depend on the underlying matrices A and B. Thus the out-
put could achieve an error of Õ( dn+ d

n2ρ ) and Õ( d
n2ρ ) under

the stochastic setting and deterministic setting respectively
(if we omit other terms). Note that in the non-private case,
the optimal rate is O( dn ) for many statistical models such
as PCA or CCA [Cai et al., 2013, Gao et al., 2015] if each
‖xi‖2 ≤ O(1). Thus, based on Theorem 1 we can see it
is possible to obtain privacy nearly for free when ρ > 1

n in
the statistical setting.

One major issue in Theorem 4 is we need to assume the
initial vector v0 is close enough to v∗ such that |〈v

∗,v0〉|
‖v∗‖2 ≥

1 − θ(A,B)
2 . In general, this condition is necessary since

in general GEP is non-concave and the Gradient Ascent
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method can only ensure the parameter converges to some
local maximum. However, with some additional assump-
tions and n is the sufficiently large, in the following we
show how to find such an initial vector privately and effi-
ciently.

Note that in the non-private case, originally finding the K
leading generalized eigenvectors for matrix pair (Â, B̂) is
equivalent to solve the following optimization problem:

min
U∈Rd×K

−tr(UT ÂU), s.t. UT B̂U = IK . (14)

Due to the non-convexity of the previous prob-
lem, motivated by [Tan et al., 2018, Vu et al., 2013a,
Wang and Xu, 2020] here we consider a convex relaxation
with a LASSO penalty, i.e.,

min
P∈Rd×d

−tr(ÂP ) + φ‖P‖1,1,

s.t. ‖B̂ 1
2PB̂

1
2 ‖nu ≤ K, ‖B̂

1
2PB̂

1
2 ‖2 ≤ 1, (15)

where for a matrix A, ‖A‖nu is defined as the sum of its
singular values, A

1
2 is the square root of A, and ‖A‖1,1 is

the `1-norm of the vector of row-wise `1 norm of A.

Our private estimator is based on (15). That is, instead of
using the empirical matrices Â and B̂, we use their per-
turbed version to ensure DP. Specifically, we will solve the
following optimization problem:

P̂ = arg min
P∈Rd×d

−tr(ÃP ) + φ‖P‖1,1,

s.t. ‖B̃ 1
2PB̃

1
2 ‖nu ≤ K, ‖B̃

1
2PB̃

1
2 ‖2 ≤ 1, (16)

where Ã = Â + Z1, B̃ = B̂ + Z2 and Z1 and Z2 are
symmetric Gaussian matrices to ensure DP.

Since the optimization problem (16) is convex, we can fol-
low the approach in [Wang and Xu, 2020] to solve it by us-
ing ADMM method (see Algorithm 2 for the details).

Informally we have the following result.

Theorem 5 (Informal). Under Assumption 1, the
solution of the optimization problem (16) is ρ-CDP.
Moreover, under Assumption 2 and assume that

‖EA‖∞,∞, ‖EB‖∞,∞ = O(
√

log d
n ), and n is suffi-

ciently large, take φ = Õ(λmax(B)λ1(
√
d√
n

+
√
d

n
√
ρ )),

K = 1 in (16). Then the largest eigenvalue of the matrix P̂
which is denoted as v0, satisfies 〈v0, v

∗〉 ≥ 1− θ(A,B)/2
with high probability. For a matrix A, ‖A‖∞,∞ is defined
as the maximal absolute value among the entries in A.

In the above theorem we need to assume that ‖EA‖∞,∞,

‖EB‖∞,∞ = O(
√

log d
n ), these assumptions hold in the

deterministic setting where EA = EB = 0. In the stochas-
tic setting, we can show these assumptions hold for PCA,
CCA and SIR if ‖xi‖2 ≤ 1 (see the Proof of Theorem 1).

Algorithm 2 Privately Finding an Initial Vector

1: Input: Matrices Â and B̂, privacy parameters ρ, tuning
parameter φ, ADMM parameter v, and convergence
criterion β.

2: Initialize matrices P0, H0 and Γ0. Set t = 0
3: Let Ã = Â + Z1, B̃ = B̂ + Z2 and Z1 and Z2

are symmetric matrix where the upper triangle (includ-
ing the diagonal) is i.i.d. samples from N (0, σ2

1) with
σ2

1 =
C2

1

2n2ρ andN (0, σ2
2) with σ2

2 =
C2

2

2n2ρ respectively,
and each lower triangle entry is copied from its upper
triangle counterpart.

4: Update P by solving the following lasso problem:

Pt+1 = arg min
v

2
‖B̃ 1

2PB̃
1
2 −Ht+Γt‖2F − tr(ÃP )

+ φ‖P‖1,1.

5: Let
∑d
i=1 wjaja

T
j be the singular value decomposition

of Γt + B̃
1
2Pt+1B̃

1
2 and let

γ∗ = arg min
γ>0

γ,

s.t.
d∑
j=1

min{1,max{wj − γ, 0}} ≤ K.

Update H by Ht+1 =
∑d
j=1 min{1,max{wj −

γ∗, 0}ajaTj .
6: Update Γ as Γt+1 = Γt + B̃

1
2Pt+1B̃

1
2 −Ht+1.

7: If ‖Pt+1 − Pt‖F > β, let t = t + 1 and repeat the
procedure 4-6.

8: return The leading eigenvector of Pt+1.

5 HIGH DIMENSIONAL SPARSE CASE

In the previous section, we showed the upper bounds of
the estimation error in stochastic and deterministic settings.
However, in the high dimensional case where d � n,
the previous two bounds will be quite large so that their
rates become trivial. To address the high dimensional-
ity issue, in this section we consider the sparse GEP in-
stead, i.e., problem (3) and (4). Specifically, we propose
a truncated version of Algorithm 1, namely DP-Truncated
Rayleigh Flow, see Algorithm 3 for details. Compared
with Algorithm 1, there is an additional truncation step.
That is, we select the indices with largest k magnitude
of the vector, keep the entries of vectors among these in-
dices and let the remain entries be zero. Intuitively, the
truncation step could project the vector onto a low dimen-
sional space (and thus the effective dimension now be-
comes to k instead of d), and it will diminish the noises
we added to Â and B̂. Note that the idea of truncating the
vector to enforce it be sparse has also been used in other
DP machine learning problems, such as [Cai et al., 2019,
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Algorithm 3 DP-Truncated Rayleigh Flow

1: Input: Matrices Â and B̂, sparsity k, initial parameter
v0 is a k-sparse vector with ‖v0‖2 = 1, step size η,
iteration number m, privacy parameter ρ.

2: for t = 1, · · · ,m do.
3: Denote Ãt = Â+Zt1, B̃t = B̂+Zt2, where Zt1 and
Zt2 are symmetric matrix where the upper triangle (in-
cluding the diagonal) is i.i.d. samples from N (0, σ2

1)

with σ2
1 =

C2
1m
n2ρ andN (0, σ2

2) with σ2
2 =

C2
2m
n2ρ respec-

tively, and each lower triangle entry is copied from its
upper triangle counterpart.

4: Denote ρt =
vTt−1Ã

tvt−1

vTt−1B̃
tvt−1

andCt = I+(η/ρt)(Ã
t−

ρtB̃
t).

5: Update v′t = Ctvt−1

||Ctvt−1||2 .
6: Let Ft = supp(v′t, k) be the set of indices of v′t

with the largest k absolute values.
7: Denote v̂t = truncate(v′t, Ft), i.e., v̂t is the trun-

cated vector of v′t by setting (v′t)i = 0 if i 6∈ Ft.
8: Update vt = v̂t

‖v̂t‖2 .
9: end for

10: return vm.

Wang et al., 2019, Wang and Gu, 2020, Hu et al., 2021] for
DP-ERM and [Ge et al., 2018] for DP-Sparse PCA. How-
ever, as we mentioned, unlike those objective functions, the
Rayleigh quotient cannot be decomposed as a sum of func-
tions, it is unknown whether truncation step is indeed help-
ful. We will provide an affirmative answer in this section.

Theorem 6. Under Assumption 1, for any 0 < ρ, Algo-
rithm 3 is ρ-CDP.

Before providing the estimation error of Algorithm 3 we
first provide the following notations.

Notations: For v∗s in (4) we denote V = supp(v∗s ) as
the index set corresponding to the non-zero elements of
v∗s . Let F ⊆ [d] be a superset of V with |F | = k′,
where k′ = 2k + s and k is in Algorithm 3. Let λj(F ),
λ̃tk(F ) and λ̂j(F ) be the j-th generalized eigenvalue of the
matrix pairs (AF , BF ), (ÃtF , B̃

t
F ) and (ÂF , B̂F ), respec-

tively. Denote cr(k′) = infF :|F |≤k′ cr(AF , BF ).

Similar to Theorem 3, we first show that when n is suffi-
ciently large, then the generalized eigenvalue (restricted to
the set F ) of the perturbed matrices is close to the general-
ized eigenvalue of the underlying matrices.

Theorem 7. Under Assumption 2, given any failure
probability ζ > 0, if n is sufficiently large such that

n ≥ Ω(max{ k′

b2cr2(k′) ,
k′

c2λ2
min(B)

,

√
k′m log 1

ζ

b
√
ρ ,

√
k′m log 1

ζ

cλmin(B)
√
ρ )

for some constants c ≥ 0 and 0 ≤ b < minj∈[d]
λj(F )

2λ2
j (F )+1

.
Then with probability at least 1 − ζ, there exists constants

a and c such that for all t ∈ [m],

(1− a)λj(F ) ≤ λ̃tj(F ) ≤ (1 + a)λj(F ), (17)

(1− c)λj(BF ) ≤ λj(B̃tF ) ≤ (1 + c)λj(BF ), (18)

Clowerκ(B) ≤ κ(B̃tF ) ≤ Cupperκ(B) (19)

where Clower = 1−c
1+c , Cupper = 1+c

1−c . Furthermore, we have

λ̃t2(F ) ≤ γλ̃t1(F ), (20)

where γ = (1+a)λ2(F )
(1−a)λ1(F ) .

In the following we provide the statistical error of our pri-
vate estimator if n is sufficiently large and the initial vector
is close the optimal solution with m = O(log n).

Theorem 8 (Informal). Under Theorem 7 with k′ = 2k+s
and choose k = Cs for sufficiently large C. In addition,
choose stepsize η such that ηλmax(B) < 1

1+c and

ν =

√
1 + 2

√
s

k
+ 2

s

k
×√

1− 1 + c

8
ηλmin(B)

1− γ
Cupperκ(B) + γ

<
1

2
.

Then if n is sufficiently large, we set m = O(log n) in Al-
gorithm 3. We have the following with probability at least
1 − ζ if the input k-sparse vector v0 with ‖v0‖2 satisfying
|〈v∗s ,v0〉|
‖v∗s‖2

≥ 1− θ(A,B)
2 with θ(A,B) given in (10).

1− 〈v
∗
s , vm〉
‖v∗s‖2

≤ O(
θ(A,B)

(1− ν)2

( 1

λ2
gapcr2(k′)

s log d

n

+
1

λ2
gapcr2(k′)

s log n log d log 1
ζ

n2ρ

)
). (21)

Similarly, for the deterministic setting where EA = EB =
0 and Â = A, B̂ = B, if n is sufficiently large and with
some additional mild assumptions. If we set some appro-
priate parameters in Algorithm 3, with probability at least
1− ζ

1− 〈ṽs, vt〉
‖ṽs‖2

≤ Õ(
θ(A,B)

(1− ν)2λ2
gapcr2(k′)

s log d log 1
ζ

n2ρ
).

(22)

From Theorem 8 we can find that, the error in the determin-
istic setting is Õ( s log d

n2ρ ), while the statistical error of Algo-

rithm 3 will be Õ( s log d
n + s log d

n2ρ ) (if we omit other terms).
These two bounds only depend on logarithmic of d instead
of polynomial in the low dimensional case. Moreover, the
same as in the low dimensional case, we can obtain privacy
for free in the statistical setting.

Corollary 1. If we transform the above upper bounds in
CDP to (ε, δ)-DP via Lemma 1, we can see for PCA un-
der deterministic setting, the output of Algorithm 1 could
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achieve an error of Õ(

√
d log 1

δ

nε ), which is near optimal
[Dwork et al., 2014]. For sparse PCA under the stochas-
tic setting where A is the covariance matrix and B = I ,
if we further assume that ‖x‖2 ≤ 1. Then the out-
put of Algorithm 3 could achieve a statistical error of
Õ( s log d

n +
s log d log 1

δ

n2ε2 ). [Wang et al., 2019] provides the
first result on the problem in the local DP model, instead of
the central model. Specifically, it shows that the near op-
timal statistical rate is Õ(

s log d log 1
δ

nε2 ) under stochastic set-
ting. Compared with our results, we can see a gap between
the central and the local model for sparse PCA.

Corollary 2. For the problem of sparse CCA under the
stochastic setting and ‖x2‖2 ≤ 1. The output of Algo-
rithm 3 could achieve an error of Õ( s log d

n + s log d
n2ρ ), where

d = d1 + d2. Under deterministic setting, the output of
Algorithm 3 could achieve an error of Õ( s log d

n2ρ ). In the
low dimension setting, the error will be Õ( dn + d

n2ρ ) and
Õ( d

n2ρ ), respectively. Moreover, we have similar results
for SIR if ‖x‖2 ≤ 1. Note that these are the first results on
the estimation error for CCA and SIR in the DP model.

Corollary 3. For FDA, the output of Algorithm 1 and 3
could achieve an error of Õ( d

n2ρ ) and Õ( s log d
n2ρ ) in the low

dimension and high dimensional sparse case respectively if
‖x‖2 ≤ 1. To our best knowledge, this is the first theoreti-
cal result for FDA in the DP model.

Similar to the low dimension case, here we still need a good
initialization v0. However, unlike the low dimension case,
here we cannot use Algorithm 2 to find such a initialization
due to the assumption of d � n. Thus, we leave it as
an open problem for privately finding such a initialization.
Fortunately, in experiments we find randomly sample an
initial vector can already achieve good performance.

Experimental studies: In Appendix, we provide empirical
studies on the behaviors of our methods for (sparse) PCA,
CCA and FDA on several real-world and synthetic data.

6 LOWER BOUNDS OF DP-GEP

In previous sections, we showed that for GEP in the CDP
model under Assumption 1 and 2, it is possible to achieve
an error of Õ( dn + d

n2ρ ) and Õ( s log d
n + s log d

n2ρ ) in low and
high dimension sparse case under the statistical setting re-
spectively. However, there are several questions left. First,
can we further improve the error, i.e., what is the lower
bound of error for GEP in the CDP model? Secondly, since
all of our previous results are for the CDP or (ε, δ)-DP
model. Thus, our question is, can we achieve similar re-
sults in the ε-DP model? In this section, we first show that
the previous methods are near optimal for (sparse) PCA
and (sparse) SIR in the CDP model. For the second one,
we provide negative results by showing lower bounds of
(sparse) PCA under the stochastic setting in ε-DP. Specifi-

cally, we show the following results.

Theorem 9 (Lower Bounds for Low Dimensional PCA).
For 0 < ε ≤ 1, if n ≥ Ω(dε ), then for any ε-DP algo-
rithm with output vpriv , there exists a distribution P with
Ex∼P [x] = 0 and if xi ∼ P then it satisfies Assumption 1
and 2 (with high probability), such that

ED∼Pn,A[1−
〈vpriv, v

∗〉
‖vpriv‖2

] ≥ Ω(
d

n
+

d2

n2ε2
). (23)

Moreover, for any ρ > 1, if n ≥ Ω(max{d,
√
d√
ρ}), then

for any ρ-CDP algorithm with output vpriv , there exists a
distribution P with Ex∼P [x] = 0 and if xi ∼ P then it
satisfies Assumption 1 and 2 (with high probability), and

ED∼Pn,A[1−
〈vpriv, v

∗〉
‖vpriv‖2

] ≥ Ω(
d

n
+

d

n2ρ
). (24)

Here v∗ is the leading eigenvector of A = Ex∼P [xxT ]].

Theorem 10 (Lower Bounds for High Dimensional Sparse
PCA). For 0 < ε ≤ 1, if n ≥ Ω( s log d

ε ), then for any ε-DP
algorithm with output vpriv , there exists a distribution P
with Ex∼P [x] = 0, if xi ∼ P then it satisfies Assumption
1 and 2 (with high probability), and its largest eigenvector
v∗ of the covariance matrix A = Ex∼P [xxT ] is s-sparse,
such that

ED∼Pn,A[1−
〈vpriv, v

∗〉
‖vpriv‖2

] ≥ Ω(
s log d

n
+

(s log d)2

n2ε2
). (25)

Moreover, for any ρ > 0, if n is sufficiently large such that
n ≥ Ω(max{s log d,

√
s log d√
ρ }), then for any ρ-DP algo-

rithm with output vpriv , there exists a distribution P with
Ex∼P [x] = 0, if xi ∼ P then it satisfies Assumption 1 and
2 (with high probability), and its largest eigenvector v∗ of
the covariance matrix A = Ex∼P [xxT ] is s-sparse, and

ED∼Pn,A[1−
〈vpriv, v

∗〉
‖vpriv‖2

] ≥ Ω(
s log d

n
+
s log d

n2ρ
). (26)

Next we consider the lower bounds of SIR in the CDP
model, for simplicity we only consider the case where
k = 2. That is we have two classes Y = 1 and Y = 2.

Theorem 11. For any ρ > 0, if n ≥ Ω(max{d,
√
d√
ρ}), then

for any ρ-CDP algorithm with output vpriv , there exists an
instanceP with Ex∼P [x] = 0 and if xi ∼ P then it satisfies
Assumption 1 and 2 (with high probability), such that

ED∼Pn,A[1−
〈vpriv, v

∗〉
‖vpriv‖2

] ≥ Ω(
d

n
+

d

n2ρ
). (27)

Here ‖v∗‖2 = 1 is the leading generalized eigenvector of
the corresponding SIR.

Theorem 12. For any ρ > 0, if n is sufficiently large such
that n ≥ Ω(max{s log d,

√
s log d√
ρ }), then for any ρ-CDP
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algorithm with output vpriv, there exists an instance P with
Ex∼P [x] = 0 and if xi ∼ P then it satisfies Assumption 1
and 2 (with high probability), such that

ED∼Pn,A[1−
〈vpriv, v

∗〉
‖vpriv‖2

] ≥ Ω(
s log d

n
+
s log d

n2ρ
). (28)

Here ‖v∗‖2 = 1 is the leading generalized eigenvector of
the corresponding sparse SIR with ‖v∗‖0 ≤ s.

7 CONCLUSIONS

In this paper we provided the first study on the theoretical
behaviors of the (sparse) Generalized Eigenvalue Problem
(GEP) in the Differential Privacy (DP) model. Specifically,
we considered both stochastic setting and deterministic set-
ting in the low dimensional and high dimensional sparse
cases. With some additional assumptions, we showed that
our algorithms could achieve near optimal rates of error
under the stochastic setting in both low dimensional and
high dimensional sparse cases. Moreover, we provided the
lower bound of (sparse) GEP in the ε-DP model to show a
gap of the problem in the (ε, δ)-DP model.

However, there are still several unsolved problems left.
First, from lower bounds and upper bounds of the error
we can see that there is still a gap of Poly(log n) factor.
Thus, can we further improve the upper bounds of error?
Secondly, in the low dimension case, we discussed how to
find an appropriate initial vector privately and efficiently.
However, our approach cannot be extended to the high di-
mensional sparse case since we need to assume the sam-
ple size is large enough such that n � d, which violates
the high dimension assumption. Thus, how do we find
the initial vector privately in this case? Thirdly, for the
lower bounds we proposed, we only considered the case
for (sparse) PCA with sub-Gaussian distribution, where

ρ(EA, k), ρ(EB , k) = O(
√

k log d
n ) and ‖EA‖2, ‖EB‖2 =

O(
√

d
n ). Thus, our question is, can we provide more

general lower bounds which involve general ρ(EA, k) and
ρ(EB , k)? Finally, in the lower bound part we mainly fo-
cused on the stochastic setting. In the deterministic setting,
[Dwork et al., 2014] provided the lower bound of PCA in
the low dimension case. However, the lower bound of
sparse PCA is still unknown. We will leave these open
problems as future work.
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Privacy-preserving Sparse Generalized Eigenvalue Problem:
Supplementary Materials

1 Experiments

In this section, we will investigate the practical performance of our previous methods to (sparse) PCA, (sparse) CCA and
(sparse) FDA over both synthetic data and real-world datasets.

Datasets: We conduct our algorithms on four datasets from the UCI Machine Learning Repository [Dua and Graff, 2017]
that have been studied before such as [Yuan et al., 2019]: 1) Covertype, a 7-label classification dataset which contains
581,012 data samples, each sample is a 54 dimension vector; 2) Dota2, a binary classification dataset which contains
92,650 data samples, and each sample is a 116 dimension vector; 3) Optical, a 7-label classification dataset which contains
325,834 data samples, each sample is a 174 dimension vector; 4) Synthetic dataset. Each data point in this dataset is a
vector and each entry is sampled from the standard normal distribution. For this dataset, the data size and dimension are
manually set and are subject to specific experiment settings. For the real world datasets, we stick to the original labels, for
the synthetic dataset, we randomly assign 0 or 1 (for binary classification in FDA) to each data point. To ensure each data
sample satisfies ‖xi‖2 ≤ 1 in this paper, we normalize each data sample by the maximal `2 norm of all data samples within
the dataset.

Experiment setup: For each statistical model (PCA, CCA, FDA) we conduct three experiments on each dataset to show
how the error varies with respect to different factors: 1) In both low dimension (LD) and and high dimensional sparse
(HDS) cases, we consider the estimation error with different size of training data. Note that in the HDS case, we also
fix the underlying sparsity s to be 30; 2) Moreover, in the HDS case, we also study different sparsity of the underlying
parameter. In the LD case, the number of dimension we use is d = 20 for PCA, d = 30 for CCA and d = 10 for FDA,
which correspond to the first d features in the original data. To see how the size of the data n (which corresponds the
selected first n data samples in the original dataset) impacts the error, we set various data sizes for each dataset. See Table
1 for details.

Covertype Dota2 Optical Synthetic
CCA 1.5k, 2.9k, 4.3k, 5.7k 3k, 5k, 7k, 9k 9k, 17k, 26k, 32k 1k, 1.5k, 2k, 3k
PCA 150k, 290k, 430k, 570k 30k, 50k, 70k, 90k 90k, 170k, 260k, 320k 30k, 90k, 270k, 810k
FDA 150k, 290k, 430k, 570k 30k, 50k, 70k, 90k 90k, 170k, 260k, 320k 30k, 90k, 270k, 810k

Table 1: Different data size setup for each dataset in LD case and HDS case with fixed sparsity 30.

To be consistent with the previous empirical studies on DP-PCA or DP-CCA such as [Wang et al., 2019]. We will consider
(ε, δ)-DP model. That is for given (ε, δ), we run our algorithm with ρ = (

√
ε+ log 1/δ−

√
log 1/δ)2. For all experiments,

we test different privacy levels: ε = {2−3, 2−2, 2−1, 20, 21, 22} with δ = 1
n1.1 . For baseline methods, as we mentioned

earlier, there is no previous results on DP-GEP. Thus, we only implement and compare our algorithms. For the initial
vector, although theoretically we need assume it is close to the optimal solution. However, as we found in the experiments,
random sampling an initial vector could already achieve good performance even without using Algorithm 2. Thus, we
random sample an initial vector for convenience.

Hyperparameters: For each experiment, we set the number of iterations T as 15 for convenience. Note that this is
reasonable since its has the same scale with log n. We also set the step size η = 0.1 for CCA, and η = 1 for PCA and
FDA. For CCA, in each experiment, we set d1 = d2 = D̂/2 which means that xi, yi ∈ RD̂/2 where D̂ is the dimension of
the data sample, xi and yi is the first and second half part of that data sample respectively. For FDA, we only consider the
binary classification task.



Lijie Hu, Zihang Xiang, Jiabin Liu, Di Wang

Error metric: For all experiments we compute the error as follows. First we run the best known method in
[Tan et al., 2018] for (sparse) GEP in the non-private case to get the optimal solution, which is denoted as v∗. Then
we run our previous algorithms to get private estimator vpriv. Finally we compute the similarity of vpriv and v∗ according to
Definition 5.

Experimental Results Figure 1 to Figure 3 are the results for PCA, CCA and FDA respectively. We can see that

• For all the models, the error will decrease when the data size becomes larger. However, there are still some exceptions
such as the Covertype, synthetic data and Dota2 for CCA in the case where ε is large. Fortunately, since the error is
in the scale of 10−4, these deviations are acceptable due to other errors.

• From the last row of these Figures we can see that when the underlying sparsity is smaller, the error will decrease
with fixed data size and small privacy level ε. This is due to that the estimation error depends on

√
s, which has been

showed theoretically in the previous section. However, we can also find that with different underlying sparsity, the
error does not change too much, which is due to that the size of the dataset is far greater than the sparsity and the error
bound depends on O( s

n2ε2 ) theoretically.

• From all experiments we can also find that when ε becomes larger (which implies ρ is larger) the error tend to decrease
(although there are some exceptions, as we mentioned earlier they are still acceptable due to the scale of the error).
Moreover, we can also see that in CCA, the error tends to be stable when ε is larger. We conjecture this is due to
that the error of O( dn ) and O( s log d

n ) in Theorem 4 and Theorem 8 dominates the error caused by privacy. Also these
errors only depend on the underlying distribution of the data and our datasets.

In total, all the previous experimental results support our previous theoretical analysis.
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Figure 1: PCA application
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Figure 2: CCA application
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Figure 3: FDA application
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2 Technical Lemmas

Definition 6 (ε-Net). Let (T, d) be a metric space. Consider a subset K ⊂ T and let ε > 0. A subset S ⊆ K is called an
ε-net of K if every point in K is within a distance ε of some points of S, i.e.,

∀x ∈ k,∃x0 ∈ N : d(x, x0) ≤ ε.

The smallest possible cardinality of an ε-net of K is called the covering number of K and is denoted by N (K, d, ε).
Equivalently, covering number is the smallest number of closed balls with centers in K and radii ε whose union covers K.

Lemma 3 ([Vershynin, 2009]). Consider S = {u : ‖u‖2 ≤ 1, ‖u‖0 ≤ s} be the set of all s-sparse unit vectors and let Sε
be the ε-net of S then its covering number satisfies N (S, τ) ≤ es · cdsε with a universal constant c.

3 Proof of Theorem 1

Proof of Theorem 1. For the sensitivity of PCA, it has already been proven in some previous work on DP-PCA, see
[Dwork et al., 2014] for details. We then consider FDA.

Assume that the samples can be divided in K classes. The D and D′ are only different by deleting one data record (xj , yj)
in the first class. For convenience, we denote D = {xi, yi}ni=1 and D′ = {x′i, y′i}ni=1,i6=j , note that {(x′i, y′i) = (xi, yi)}.
Then, the data sensitivity of Â and B̂ are as follows.

||B̂(D)− B̂(D′)||F

= || 1
n

K∑
k=1

nkµ̂kµ̂k
T − 1

n− 1

K∑
k=1

n′kµ̂k
′µ̂k

′T ||F

= || 1
n
n1µ̂1µ̂1
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Thus we can see the sensitivity of B̂(D) is upper bounded by 4
n .

||Â(D)− Â(D′)||F
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In total, for FDA, it satisfies Assumption 1 with C1 = 4 and C2 = 7.

Next, we will consider CCA. In CCA, there are two sets of variables {xi}ni=1 ∈ Rd1 , and {yi}ni=1 ∈ Rd2 . The D
and D′ are only different by deleting one data record (xj , yj). For convenience, we denote D = {xi, yi}ni=1 and D′ =

{x′i, y′i}ni=1,i6=j , note that {(x′i, y′i) = (xi, yi)}. Let B̂1 = Σ̂x, B̂2 = Σ̂y . For the matrix Â(D), recall by the definition we
have ||Â(D)− Â(D′)||F = 2‖Σ̂xy − Σ̂′xy‖F . Thus,
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n∑
i=1

xiy
T
i − nµxµTy )− 1

n− 1
(

n−1∑
i=1

x′iy
′T
i − (n− 1)µ′xµ

′T
y )||F

≤ || 1
n

(
∑
i 6=j

xiy
T
i + xjy

T
j )− 1

n− 1

∑
i 6=j

xiy
T
i ||F

+ || 1

n2
(
∑
i6=j

xi + xj)(
∑
i 6=j

yi + yj)
T − 1

(n− 1)2
(
∑
i6=j

xi)(
∑
i 6=j

yi)
T ||F

≤ || 1
n

(
∑
i 6=j

xiy
T
i + xjy

T
j )− 1

n− 1

∑
i 6=j

xiy
T
i ||F + || 1

n2
(
∑
i 6=j

xi)(
∑
i 6=j

yi)
T − 1

(n− 1)2
(
∑
i6=j

xi)(
∑
i 6=j

yi)
T ||F

+ || 1

n2
(
∑
i6=j

xi)y
T
j ||F + || 1

n2
xj(
∑
i 6=j

yi)
T ||F + || 1

n2
xjy

T
j ||F

≤ 1

n(n− 1)
(n− 1) +

2n− 1

n2(n− 1)2
(n− 1)2 +

1

n
+

2

n2
(n− 1) +

1

n2
≤ 6

n
.

(30)

For matrix B̂, by the definition we have

‖B̂(D)− B̂(D′)‖F ≤ ‖Σ̂x − Σ̂′x‖F + ‖Σ̂y − Σ̂′y‖F .

‖Σ̂x − Σ̂′x‖F

= || 1
n

n∑
i=1

(xi − µx)(xi − µx)T − 1

n− 1

n−1∑
i=1

(x′i − µ′x)(x′i − µ′x)T ||F

= || 1
n

n∑
i=1

(xix
T
i − xiµTx − µxxTi + µxµ

T
x )− 1

n− 1

n−1∑
i=1

(x′ix
′T
i − x′iµ

′T
x − µ′xx

′T
i + µ′xµ

′T
x )||F

= || 1
n

(

n∑
i=1

xix
T
i − nµxµTx )− 1

n− 1
(

n−1∑
i=1

x′ix
′T
i − (n− 1)µ′xµ

′T
x )||F

≤ || 1
n

(
∑
i 6=j

xix
T
i + xjx

T
j )− 1

n− 1

∑
i 6=j

xix
T
i ||F

+ || 1

n2
(
∑
i 6=j

xi + xj)(
∑
i 6=j

xi + xj)
T − 1

(n− 1)2
(
∑
i 6=j

xi)(
∑
i 6=j

xi)
T ||F

≤ || 1
n

(
∑
i 6=j

xix
T
i + xjx

T
j )− 1

n− 1

∑
i 6=j

xix
T
i ||F + || 1

n2
(
∑
i 6=j

xi)(
∑
i 6=j

xi)
T − 1

(n− 1)2
(
∑
i6=j

xi)(
∑
i 6=j

xi)
T ||F

+ || 1

n2
(
∑
i 6=j

xi)x
T
j ||F + || 1

n2
xj(
∑
i 6=j

xi)
T ||F + || 1

n2
xjx

T
j ||F

≤ 1

n(n− 1)
(n− 1) +

2n− 1

n2(n− 1)2
(n− 1)2 +

1

n
+

2

n2
(n− 1) +

1

n2
≤ 6

n

(31)
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‖Σ̂y − Σ̂′y‖F

= || 1
n

n∑
i=1

(yi − µy)(yi − µy)T − 1

n− 1

n−1∑
i=1

(y′i − µ′y)(y′i − µ′y)T ||F

= || 1
n

n∑
i=1

(yiy
T
i − yiµTy − µyyTi + µyµ

T
y )− 1

n− 1

n−1∑
i=1

(y′iy
′T
i − y′iµ

′T
y − µ′yy

′T
i + µ′yµ

′T
y )||F

= || 1
n

(

n∑
i=1

yiy
T
i − nµyµTy )− 1

n− 1
(

n−1∑
i=1

y′iy
′T
i − (n− 1)µ′yµ

′T
y )||F

≤ || 1
n

(
∑
i 6=j

yiy
T
i + yjy

T
j )− 1

n− 1

∑
i 6=j

yiy
T
i ||F

+ || 1

n2
(
∑
i6=j

yi + yj)(
∑
i 6=j

yi + yj)
T − 1

(n− 1)2
(
∑
i6=j

yi)(
∑
i6=j

yi)
T ||F

≤ || 1
n

(
∑
i 6=j

yiy
T
i + yjy

T
j )− 1

n− 1

∑
i 6=j

yiy
T
i ||F

+ || 1

n2
(
∑
i6=j

yi)(
∑
i6=j

yi)
T − 1

(n− 1)2
(
∑
i 6=j

yi)(
∑
i 6=j

yi)
T ||F

+ || 1

n2
(
∑
i6=j

yi)y
T
j ||F + || 1

n2
yj(
∑
i6=j

yi)
T ||F + || 1

n2
yjy

T
j ||F

≤ 1

n(n− 1)
(n− 1) +

2n− 1

n2(n− 1)2
(n− 1)2 +

1

n
+

2

n2
(n− 1) +

1

n2

≤ 6

n

(32)

In total, for FDA, it satisfies Assumption 1 with C1 = 12 and C2 = 12.

In sliced inverse regression, we seek K vector {v1, v2, · · · , vK} to represent the X . The D and D′ are only different by
deleting one data record (xj , yj) in the first class. For convenience, we denote D = {xi, yi}ni=1 and D′ = {x′i, y′i}ni=1,i6=j ,
note that {(x′i, y′i) = (xi, yi)}. Then, the data sensitivity of Â and B̂ are as follows.

||Â− Â′||F

= ||[ 1

n

n∑
i=1

(xi − µx)(xi − µx)T − 1

n− 1

n−1∑
i=1

(x′i − µ′x)(x′i − µ′x)T ]

− [
1

n

K∑
k=1

∑
i∈Ck

(xi − ûk)(xi − ûk)T − 1

n− 1

K∑
k=1

∑
i∈Ck

(x′i − ûk
′)(x′i − ûk

′)T ]||F

≤ || 1
n

n∑
i=1

(xi − µx)(xi − µx)T − 1

n− 1

n−1∑
i=1

(x′i − µ′x)(x′i − µ′x)T ||F︸ ︷︷ ︸
||Σ̂x−Σ̂′x||F

+ || 1
n

K∑
k=1

∑
i∈Ck

(xi − ûk)(xi − ûk)T − 1

n− 1

K∑
k=1

∑
i∈Ck

(x′i − ûk
′)(x′i − ûk

′)T ||F

≤ 6

n
+

7

n

≤ 13

n
.

(33)
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||B̂ − B̂′||F

= || 1
n

n∑
i=1

(xi − µx)(xi − µx)T − 1

n− 1

n−1∑
i=1

(x′i − µ′x)(x′i − µ′x)T ||F

= || 1
n

n∑
i=1

(xix
T
i − xiµTx − µxxTi + µxµ

T
x )− 1

n− 1

n−1∑
i=1

(x′ix
′T
i − x′iµ

′T
x − µ′xx

′T
i + µ′xµ

′T
x )||F

= || 1
n

(

n∑
i=1

xix
T
i − nµxµTx )− 1

n− 1
(

n−1∑
i=1

x′ix
′T
i − (n− 1)µ′xµ

′T
x )||F

≤ || 1
n

(
∑
i 6=j

xix
T
i + xjx

T
j )− 1

n− 1

∑
i 6=j

xix
T
i ||F

+ || 1

n2
(
∑
i 6=j

xi + xj)(
∑
i 6=j

xi + xj)
T − 1

(n− 1)2
(
∑
i 6=j

xi)(
∑
i 6=j

xi)
T ||F

≤ || 1
n

(
∑
i 6=j

xix
T
i + xjx

T
j )− 1

n− 1

∑
i 6=j

xix
T
i ||F + || 1

n2
(
∑
i 6=j

xi)(
∑
i 6=j

xi)
T − 1

(n− 1)2
(
∑
i6=j

xi)(
∑
i 6=j

xi)
T ||F

+ || 1

n2
(
∑
i 6=j

xi)x
T
j ||F + || 1

n2
xj(
∑
i 6=j

xi)
T ||F + || 1

n2
xjx

T
j ||F

≤ 1

n(n− 1)
(n− 1) +

2n− 1

n2(n− 1)2
(n− 1)2 +

1

n
+

2

n2
(n− 1) +

1

n2
≤ 6

n
.

(34)

Thus, SIR satisfies Assumption 1 with C1 = 13 and C2 = 6.

In the following we will show that these models satisfy Assumption 2 when ‖x‖2 ≤ 1. Before that we first recall the
following lemma for bounded random variable.

Lemma 4 (Bernstein Inequality [Vershynin, 2018]). Let X1, ..., XN be independent random variables with ‖Xi‖2 ≤ 1,
then for any t > 0 and for some absolute constant D1 we have

P

(∣∣ N∑
k=1

(Xk −EXk)
∣∣ ≥ t) ≤ 2 exp

(
−D1 min

{ t2
N
, t
})
. (35)

Thus, for PCA, by using Lemma 4 we have

‖Â−A‖2 ≤ ‖Â−
1

n

n∑
i=1

(xi − µ)(xi − µ)T ‖2 + ‖ 1

n

n∑
i=1

(xi − µ)(xi − µ)T − Σ‖2.

For the second term, by Lemma 4 we have with probability at least 1− ζ

‖ 1

n

n∑
i=1

(xi − µ)(xi − µ)T − Σ‖∞,∞ ≤ O(

√
log d

ζ√
n

+
log d/ζ

n
).

Thus we have

‖ 1

n

n∑
i=1

(xi − µ)(xi − µ)T − Σ‖2 ≤
√
d‖ 1

n

n∑
i=1

(xi − µ)(xi − µ)T − Σ‖∞,∞ ≤ O(

√
d log d

ζ√
n

+

√
d log d/ζ

n
) (36)

For the first term we have

‖Â− 1

n

n∑
i=1

(xi − µ)(xi − µ)T ‖2 ≤ ‖µ̂µ̂T − µµT ‖2 + 2‖µ̂− µ‖2 ≤ O(

√
log d/ζ√
n

).

This is due to that by corollary 7 in [Jin et al., 2019] and ‖xi‖2 ≤ 1 we have with probability at least 1 − ζ, ‖µ̂ − µ‖2 ≤
O(

√
log d/ζ√
n

). In total we have ‖Â−A‖2 ≤ O(

√
log d/ζ√
n

) with probability at least 1− ζ.
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Next we will focus on CCA. For term A we have

‖Â−A‖2 ≤ O(‖Σ̂xy − Σxy‖2).

By using a similar proof as in PCA case we have ‖Â − A‖2 ≤ O(

√
d log d/ζ√

n
) with probability at least 1 − ζ. The similar

to term B. We omit here for simplicity.

For SIR, since the term B is just the covariance matrix, we have already show it in the PCA case. For term Â = Σ̂x −
E[Σ̂(x|y)]. Thus

‖Â−A‖2 ≤ ‖Σ̂x − Σx‖2 + ‖E[Σ̂(x|y)]− E[Σ(x|y)]‖2.

The first term is the same as the PCA case. So ‖Σ̂x − Σx‖2 ≤
√
d log d/ζ√

n
. For the second term by the form of E[Σ̂(x|y)]

and the previous results we can see that

‖E[Σ̂(x|y)]− E[Σ(x|y)]‖2 ≤ O(

K∑
k=1

√
dnk log d/ζ

n
) ≤ O(

K∑
k=1

K
√
d log d/ζ√
n

). (37)

Thus we finish the proof.

For the term ρ(EA, k) and ρ(EB , k). Note that since x is O(1)-subGaussian. Thus, by Lemma 12 in [Gao et al., 2015] we
can show the statements for PCA and CCA. For SIR, as we mentioned previously, it is just a combination of the in-class
covariance matrix estimation. Since it is true for PCA, thus we can also see it is true for SIR.

4 Proof of CDP

For both Algorithm 1, 2 and 3 we can see that by Assumption 1 and Gaussian mechanism in each iteration calculating Ãt

and B̃t is ρ
m -CDP. Thus by the Composition Theorem we can see the whole algorithm is ρ-CDP.

Note that since the high dimensional sparse case is more general. Thus, we first show the proofs of the Theorems for the
high dimensional sparse case.

5 Proof of Theorem 7

Instead of proof Theorem 7, we propose the following assumption and show the following result.

Assumption 3. For sufficient large n, there are constants c ≥ 0 and 0 ≤ b < minj∈[d]
λj(F )

2λ2
j (F )+1

such that ι̃(k′)
cr(k′) ≤

b
2 and

ρ(EB , k
′) ≤ c

2λmin(B), where ι̃(k′), cr(k′) are defined as

cr(k′) = inf
F :|F |≤k′

cr(AF , BF ),

ι̃(k′) = ρ(EA, k
′) + ρ(EB , k

′).
(38)

Theorem 13. Under Assumption 3, given any failure probability ζ > 0, if n is sufficiently large such that, n ≥
Ω(max{

√
k′m log d log m

ζ

b
√
ρ ,

√
k′m log d log m

ζ

cλmin(B)
√
ρ ).

Then with probability at least 1− ζ, there exists constants a and c such that for all t ∈ [m],

(1− a)λj(F ) ≤ λ̃tj(F ) ≤ (1 + a)λj(F ), (39)

(1− c)λj(BF ) ≤ λj(B̃tF ) ≤ (1 + c)λj(BF ), (40)

Clowerκ(B) ≤ κ(B̃tF ) ≤ Cupperκ(B) (41)

where Clower = 1−c
1+c , Cupper = 1+c

1−c , c is the constant as in Assumption 3. Furthermore, we have

λ̃t2(F ) ≤ γλ̃t1(F ), (42)

where γ = (1+a)λ2(F )
(1−a)λ1(F ) .
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Based on Assumption 2 we can show that when n ≥ Ω(max{ k′

b2cr2(k′) ,
k′

c2λ2
min(B)

}) then it satisfies Assumption 3. Then
by Theorem 13 we can proof Theorem 7.

5.1 Proof of Theorem 13

Before showing the proof of Theorem 13, we first prove the following key result.

Theorem 14. Under Assumption 3, given any iteration t and failure probability ζ, if n is sufficiently large such that,

n ≥ Ω̃(max{
√
k′m log 1

ζ

b
√
ρ ,

√
k′m log 1

ζ

cλmin(B)
√
ρ}). Then with probability at least 1− ζ, there are constants b, c > 0 such that

ι(k′)

cr(k′)
≤ b (43)

ρ(EB + Zt2, k
′) ≤ cλmin(B), (44)

where ι(k′) is defined as following

ι(k′) =
√
ρ(EA + Zt1, k

′)2 + ρ(EB + Zt2, k
′)2.

Next, we recall the following two lemmas.

Lemma 5. [[Stewart, 1979]] Let J and J + EJ be d× d symmetric matrices. Then, for all k ∈ {1, · · · , d}, we have

λk(J) + λmin(EJ) ≤ λk(J + EJ) ≤ λk(J) + λmax(EJ).

Lemma 6. [[Stewart, 1979]] Let (J,K) be a symmetric definite matrix pair with generalized eigenvalues λ1(J,K) ≥
λ2(J,K) ≥ · · · ≥ λd(J,K). Let (J + EJ ,K + EK) be the perturbed matrix pair. If EJ and EK satisfy

ε =
√
||EJ ||22 + ‖EK‖22 ≤ cr(J,K),

where cr is defined by Assumption 2. Then, we have λ1(J + EJ ,K + EK) ≥ · · · ≥ λd(J + EJ ,K + EK). And, the
following inequality holds,

λk(J,K)cr(J,K)− ε
cr(J,K) + ελk(J,K)

≤ λk(J + EJ ,K + EK) ≤ λk(J,K)cr(J,K) + ε

cr(J,K)− ελk(J,K)
.

Proof of Theorem 13. By Theorem 14 we can see that when n is sufficiently large, Theorem 14 holds for all t ∈ [m] with
probability at least 1− ζ.

We fix an iteration t and for convenience we omit the superscript t. Then, in Lemma 6 we take J = AF , K = BF ,
EJ = EA + Z1 and EK = EB + Z2. Following ε(k′)

cr(k′) ≤ b in Theorem 14 and Lemma 6 we have

λk(F )− b
1 + bλk(F )

≤ λk(F̃ ) ≤ λk(F ) + b

1− bλk(F )
.

Define a constant a satisfying

1 > a ≥ b/λk(F ) + bλk(F )

1− bλk(F )
,

then we have (1−a)λk(F ) ≤ λ̃k(F ) ≤ (1 +a)λk(F ). Note that since b < λk(F )
2λ2
k(F )+1

, there always exists such an a. Thus,
we derive the inequality (39).

We can get (40) via Lemma 5 with J = B and EJ = EB + Z2.

By (40) we have
(1− c)λmax(BF ) ≤ λmax(B̃F ) ≤ (1 + c)λmax(BF ),

and
(1− c)λmin(BF ) ≤ λmin(B̃F ) ≤ (1 + c)λmin(BF ),
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also λmin(BF ) ≤ λmax(BF ). Thus, we have

(
1− c
1 + c

)
λmax(BF )

λmin(BF )
≤ λmax(B̃F )

λmin(B̃F )
≤ (

1 + c

1− c
)
λmax(BF )

λmin(BF )
.

Also by the definition we know that λmax(BF ) ≤ λmax(B) and λmin(BF ) ≥ λmin(B). Thus, the inequality (41) holds.
Also, following the inequality (39), we have

(
1− a
1 + a

)
λ1(F )

λ2(F )
≤ λ̃1(F )

λ̃2(F )
.

Thus, the inequality (42) holds.

Proof of Theorem 14. By the definition and Assumption 3 it is easy to see that it is sufficient to show that

ρ(Zt1, k
′) + ρ(Zt2, k

′) ≤ cr(k′)
b

2
, (45)

ρ(Zt2, k
′) ≤ cλmin(B)

2
. (46)

To show these, we will use the following lemma.

Lemma 7. Let A ∈ Rd×d be a symmetric Gaussian random matrix where each entry is sampled from N (0, σ2). Then we
have with probability at least 1− ζ,

sup
‖u‖2=1,‖u‖0≤s

|uTAu| ≤ O(σ

√
s log

d

ζ
). (47)

By Lemma 7 we have that when n ≥ Ω(

√
k′m log d log 1

ζ

cr(k′)b
√
ρ ) and n ≥ Ω(

√
k′m log d log 1

ζ

cλmin(B)
√
ρ ), then with probability at least 1− ζ,

(45) and (46) hold.

Proof of Lemma 7. Let Sε be an ε-net of S. By Lemma 3 we have N (S, ε) ≤ eK · cdsε .

For a fixed u ∈ S, there is a u0 ∈ Sε such that ‖u− u0‖2 ≤ ε. Thus, we have with probability at least 1− ζ
2 ,

|uTAu| = |uTA(u− u0) + uTAu0|
= |uTA(u− u0) + (u− u0)TAu0 + uT0 Au0|
≤ uT0 Au0 + 2ε‖A‖2

≤ |uT0 Au0|+ 2εC1

√
d

√
log

1

ζ
σ,

where C1 is a universal constant and the last inequality is due to Theorem 4.4.5 in [Vershynin, 2018]. Thus we have

sup
‖u‖2=1,‖u‖0≤s

|uTAu| ≤ sup
u0∈Sε

|uT0 Au0|+ 2ε‖A‖2

Next we will bound the term supu0∈Sε |u
T
0 Au0|. For a fixed u0 ∈ Sε,

uT0 Au0 =

d∑
i=1,j=1,i≥j

Aiju0iu0j +

d∑
i=1.j=1,i<j

Aiju0iu0j .
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∑d
i=1,j=1,i≥j Aiju0iu0j and

∑d
i=1.j=1,i<j Aiju0iu0j are all sums of independent Gaussian random variables. Thus, by

the tails bound of Gaussian distribution we have

P(|
d∑

i=1,j=1,i≥j

Aiju0iu0j ≥ t|) ≤ 2 exp(− t2

2σ2
).

Thus, we have

P( sup
u0∈Sε

|uT0 Au0| ≥ t) ≤
∑
u0∈Sε

P(|uT0 Au0| ≥ t) ≤ 2es
cd

sε
exp(− t2

2σ2
).

That is with probability at least 1− ζ
2 , supu0∈Sε |u

T
0 Au0| ≤ C2σ

√
s log d

sεζ .

For the operator norm of a symmetric Gaussian matrix we have the following lemma:

Lemma 8 ([Biswas et al., 2020]). Let A ∈ Rd×d be a symmetric Gaussian noise with each entry Aij ∼ N (0, σ2). Then

with probability at least 1− β, ‖A‖2 ≤ O(σ
√
d log 1

β ).

In total, we have with probability at least 1− ζ,

|uTAu| ≤ O(εσ

√
d log

1

ζ
+ σ

√
s log

d

sεζ
).

Take ε =
√
s√
d

we can get the result.

6 Proof of Theorem 8

Theorem 15 (Full version of Theorem 8). Under Theorem 7 with k′ = 2k + s and choose k = Cs for sufficiently large
C > 0. In addition, choose the stepsize η such that ηλmax(B) < 1

1+c and

ν =

√
1 + 2

√
s

k
+ 2

s

k

√
1− 1 + c

8
ηλmin(B)

1− γ
Cupperκ(B) + γ

<
1

2
.

Assume that n is sufficiently large such that

n ≥ Ω̃(max{ k′

cr(k′)2λ2
gap

,
k′

(max{θ(A,B),
√
θ(A,B)}λgapcr(k′))2

√
s log 1

ζ

b
√
ρ

,√
s log 1

ζ

cλmin(B)
√
ρ
,

√
s log 1

ζ

cr(k′)λgap
√
ρ
,

√
s log 1

ζ

λgapcr(k′)θ(A,B)
√
ρ
})

with λgap in (12) for any given failure probability ζ > 0. Then in Algorithm 3, if we set m = O(log n) and if the input
k-sparse vector v0 with ‖v0‖2 satisfying |〈v

∗
s ,v0〉|
‖v∗s‖2

≥ 1 − θ(A,B)
2 with θ(A,B) given in (10). We have the following with

probability at least 1− ζ,

1− 〈v
∗
s , vm〉
‖v∗s‖2

≤ O(
θ(A,B)

(1− ν)2

( ι̃2(k′)

λ2
gapcr2(k′)

+
1

λ2
gapcr2(k′)

s log n log d log 1
ζ

n2ρ

)
). (48)

Similarly, for the deterministic setting where EA = EB = 0 and Â = A, B̂ = B, if n is sufficiently large and with some
additional mild assumptions. If we set some appropriate parameters in Algorithm 3, with probability at least 1− ζ

1− 〈ṽs, vt〉
‖ṽs‖2

≤ Õ(
θ(A,B)

(1− ν)2λ2
gapcr2(k′)

s log d log 1
ζ

n2ρ
). (49)
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In stead of proof Theorem 15 we proof the following theorem. Note that by Theorem 16 and Assumption 2 we can get
Theorem 15 .

Theorem 16. Under Theorem 7 with k′ = 2k + s and choose k = Cs for sufficiently large C > 0. In addition, choose
the stepsize η such that ηλmax(B) < 1

1+c and

ν =

√
1 + 2

√
s

k
+ 2

s

k

√
1− 1 + c

8
ηλmin(B)

1− γ
Cupperκ(B) + γ

<
1

2
.

. Assume that λgap >
˜ι(k′)

cr(k′) , ι̃(k′) ≤ O(max{θ(A,B),
√
θ(A,B)}λgapcr(k′)) with λgap in (12) and n is sufficiently large

such that

n ≥ Ω̃(max{

√
s log 1

ζ

b
√
ρ

,

√
s log 1

ζ

cλmin(B)
√
ρ
,

√
s log 1

ζ

cr(k′)λgap
√
ρ
,

√
s log log 1

ζ

λgapcr(k′)θ(A,B)
√
ρ
})

for any given failure probability ζ > 0. Then in Algorithm 3, if we set T = O(log n) and if the input k-sparse vector v0

with ‖v0‖2 satisfying |〈v
∗
s ,v0〉|
‖v∗s‖2

≥ 1 − θ(A,B)
2 with θ(A,B) given in (10). We have the following with probability at least

1− ζ,

1− 〈v
∗
s , vm〉
‖v∗s‖2

≤ O(
θ(A,B)

(1− ν)2

( ι̃2(k′)

λ2
gapcr2(k′)

+
1

λ2
gapcr2(k′)

s log n log d log 1
ζ

n2ρ

)
). (50)

Similarly, for the deterministic setting where EA = EB = 0 and Â = A, B̂ = B, if n is sufficiently large and with some
additional mild assumptions. If we set some appropriate parameters in Algorithm 3, with probability at least 1− ζ

1− 〈ṽs, vt〉
‖ṽs‖2

≤ Õ(
θ(A,B)

(1− ν)2λ2
gapcr2(k′)

s log d log 1
ζ

n2ρ
). (51)

Proof of Theorem 16. We mainly focus on the stochastic setting. The result for the deterministic setting is just a special
case where ι̃(k′) = 0 since EA = EB = 0.

In each iteration t we denote the vector vt(F ) as the solution of the following GEP restricted to a superset of V .

vt(F ) = arg max
v∈Rd

vT Ãtv, s.t. vT B̃tv = 1, supp(v) ⊆ F. (52)

We also denote y∗ =
v∗s
‖v∗s‖2

and yt(F ) = vt(F )
‖vt(F )‖2 . The following theorem shows the error of the vector in each iteration.

Theorem 17. Under Theorem 13 with k′ = 2k + s and choose k = Cs for sufficiently large C > 0. In addition, choose
the stepsize η such that ηλmax(B) < 1

1+c and

ν =

√
1 + 2

√
s

k
+ 2

s

k

√
1− 1 + c

8
ηλmin(B)

1− γ
Cupperκ(B) + γ

<
1

2
.

Suppose in the t-th iteration, vt−1 satisfies 〈yt(F ), vt−1〉 ≥ 1− θ(A,B), where θ(A,B) is in (10). Then we have√
1− |〈y∗, vt〉| ≤ ν

√
1− |〈y∗, vt−1〉|+

√
20
√

1− |〈yt(F ), y∗〉|. (53)

To proof Theorem 16 we will show the following lemmas:

Lemma 9. Under Theorem 17, if ι̃(k′) ≤ O(max{θ(A,B),
√
θ(A,B)}λgapcr(k′)) and n ≥

Ω( 1
λgapcr(k′)

√
sm log d log m

ζ

min{θ(A,B),
√
θ(A,B)}√ρ

), then for all t ∈ [m], if |〈v∗, vt−1〉|/‖v∗‖2 ≥ 1− θ(A,B)
2 , then

〈yt(F ), vt−1〉 ≥ 1− θ(A,B). (54)
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Lemma 10. Under Theorem 17 and Lemma 9, for all t ∈ [m], if 〈yt(F ), vt−1〉 ≥ 1− θ(A,B), then

√
1− |〈y∗, vt〉| ≤ ν

√
1− |〈y∗, vt−1〉|+O(

ι̃(k′)

λgapcr(k′)
+

1

λgapcr(k′)

√
sm log d log m

ζ

n
√
ρ

) (55)

and
|〈v∗s , vt〉|
‖v∗s‖2

≥ 1− θ(A,B)

2
. (56)

Combining these two lemmas we have under the assumptions, for each t ∈ [m],√
1− |〈v

∗
s , vm〉|
‖v∗s‖2

≤ νm
√
θ(A,B) +O(

1

1− ν
( ι̃(k′)

λgapcr(k′)
+

1

λgapcr(k′)

√
sm log d log m

ζ

n
√
ρ

)
). (57)

Take m = O(log n) we finish the proof.

Proof of Lemma 9. Since

〈yt(F ), vt−1〉 ≥
|〈v∗, vt−1〉|
‖v∗‖2

− ‖ vt(F )

‖vt(F )‖2
− v∗s
‖v∗s‖2

‖2,

it is sufficiently to show that ‖ vt(F )
‖vt(F )‖2 −

v∗s
‖v∗s‖2

‖2 ≤ θ(A,B)
2 .

To show this, we will provide a stronger statement.

Lemma 11. Under Theorem 13, for each t ∈ [m] if n ≥ Ω(

√
sm log d log m

ζ

cr(k′)
√
ρ ),

‖ vt(F )

‖vt(F )‖2
− v∗s
‖v∗s‖2

‖2 ≤ O(
ι̃(k′)

λgapcr(k′)
+

1

λgapcr(k′)

√
sm log d log m

ζ

n
√
ρ

).

Proof of Lemma 11. By Theorem 4.3 in [Stewart, 1979] we have

‖vt(F )− v∗s‖2
‖v∗s‖2

≤ ι(k′)

∆λ̃tcr(ÃtF , B̃
t
F )
,

where ∆λ̃t = mink>1 χ{λ1(F ), λ̃tk(F )} > 0 and

χ{λ1(F ), λ̃tk(F )} =
|λ1(F )− λ̃tk(F )|√

1 + λ1(F )2

√
1 + λ̃tk(F )2

.

Thus, we have

‖ vt(F )

‖vt(F )‖2
− v∗s
‖v∗s‖2

‖2 =
1

‖vt(F )‖2‖v∗s‖2
‖vt(F )‖v∗s‖2 − v∗s‖v(F )‖2‖2

≤ 2

‖v∗s‖2
‖vt(F )− v∗s‖2

≤ 2

‖v∗s‖2
‖vt(F )− v∗s‖2 ≤ 2

ι(k′)

∆λ̃tcr(ÃtF , B̃
t
F )
.

By Theorem 13 we can see that ∆λ̃ ≥ λgap, and by Theorem 2.4 in [Stewart, 1979] we have cr(ÃtF , B̃
t
F ) ≥ cr(k′)− ι(k′).

Thus we have

‖ vt(F )

‖vt(F )‖2
− v∗s
‖v∗s‖2

‖2 ≤ O(
ι(k′)

λgap(cr(k′)− ι(k′))
).

By the definition of ι(k′) we have ι(k′) ≤ ι̃(k′) + O(

√
sm log d log m

ζ

n
√
ρ ). Since ι̃(k′)

cr(k′) ≤ O(1) and n ≥ Ω(

√
sm log d log m

ζ

cr(k′)
√
ρ ),

we have

‖ vt(F )

‖vt(F )‖2
− v∗s
‖v∗s‖2

‖2 ≤ O(
ι̃(k′)

λgapcr(k′)
+

1

λgapcr(k′)

√
sm log d log m

ζ

n
√
ρ

).
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Thus, we can see that when ι̃(k′) ≤ O(θ(A,B)λgapcr(k′)) and n ≥ Ω( 1
λgapcr(k′)

√
sm log d log m

δ log m
ζ

θ(A,B)ε ) then ‖ vt(F )
‖vt(F )‖2 −

v∗s
‖v∗s‖2

‖2 ≤ θ(A,B)
2 .

Proof of Lemma 10 . By Theorem 17 and Lemma 11 we have√
1− |〈y∗, vt〉| ≤ ν

√
1− |〈y∗, vt−1〉|+

√
20
√

1− |〈yt(F ), y∗〉|

≤ ν
√

1− |〈y∗, vt−1〉|+O(
ι̃(k′)

λgapcr(k′)
+

1

λgapcr(k′)

√
sm log d log m

ζ

n
√
ρ

)

≤ ν
√
θ(A,B) +O(

ι̃(k′)

λgapcr(k′)
+

1

λgapcr(k′)

√
sm log d log m

ζ

n
√
ρ

)

≤
√
θ(A,B)√

2
,

where the last inequality is due to that ν < 1
2 , ι̃(k

′) ≤ O(max{θ(A,B),
√
θ(A,B)}λgapcr(k′)) and n ≥

Ω̃( 1
λgapcr(k′)

√
sm log m

ζ

min{θ(A,B),
√
θ(A,B)}√ρ

).

6.1 Proof of Theorem 17

Before providing the proof we first show the following lemma.

Lemma 12. Assume that Theorem 13 holds, consider in the t-th iteration, let F ⊂ {1, 2, · · · , d} , and V ⊂ F , |F | = k′.

Given any ṽ, such that ||ṽ||2 = 1 and 〈ṽ, y(F )〉 > 0. Let ρ = ṽT Ãtṽ
ṽT B̃tṽ

=
ṽT ÃtF ṽ

ṽT B̃tF ṽ
, and let v′ = Ctṽ

||Ctṽ||2 =
CtF ṽ
||CtF ṽ||2

, where

Ct = I +
η

ρ
(Ãt − ρB̃t),

and η > 0 is a positive constant. Define η such that

ηλmax(B) <
1

1 + c
.

Denote δ = 1− 〈yt(F ), ṽ〉, and 1− δ ≥ 1− θ(A,B), where

θ(A,B) = min{ 1

8Cupperκ(B)
,

1/γ − 1

3Cupperκ(B)
,

1− γ
30(1 + c)C2

upperηλmax(B)κ2(B){Cupperκ(B) + γ}
}.

Then, under the conditions in Theorem 13 we have

〈v′, yt(F )〉 ≥ 〈ṽ, yt(F )〉+
1 + c

8
ηλmin(B){1− 〈ṽ, yt(F )〉} 1− γ

Cupperκ+ γ
. (58)

We also need the following lemma.

Lemma 13 ([Tan et al., 2018]). Consider y′ with F ′ = supp(y′) and |F ′| = k̄. Consider y and let F = supp(y, k) be the
indices of y with the largest k absolute values with |F | = k. If ||y′||2 = ||y||2 = 1, then

|truncate(y, F )T y′| ≥ |yT y′| −
√
k̄

k
min{

√
1− (yT y′)2, [1 +

√
k̄

k
][1− (yT y′)2]}

Proof of Theorem 17. Recall that, in Algorithm 3, we truncate the v′t and define it to v̂t. Also, we defined that vt = v̂t
||v̂t||2 ,

and ||v′t||2 = 1. Since the v̂t is the truncated version of v′t, we have ||v̂t||2 ≤ 1, and thus |〈y∗, vt〉| ≥ |〈y∗, v̂t〉|. We then
evaluate the Algorithm 3 in each iteration t.
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Assume that k > s, where s is the cardinality of the support of y∗ =
v∗s
||v∗s ||22

, k is the truncation parameter in Algorithm 3.
Let k′ = 2k + s. Let Ft−1 = supp(vt−1), and Ft = supp(vt). And let F = Ft−1 ∪ Ft ∪ V . Recall that y∗ = v∗

||v∗||2 . We
have |F | ≤ k′ = 2k + s, since |Ft| = |Ft−1| = k. Let

v′t =
CtF vt−1

||CtF vt−1||2
,

where the CtF is the submatrix of CtF indexed by F , and then the v′t is equivalent to the value of that in Algorithm 3. Now,
we prove the conclusion.

Since we assume Theorem 13 holds, following the Lemma 12 with F , ṽ = vt−1, and v′ = v′t, we obtain that

〈yt(F ), v′t〉 ≥ 〈yt(F ), vt−1〉+
1 + c

8
ηλmin(B){1− 〈yt(F ), vt−1〉}

1− γ
Cupperκ+ γ

.

Thus, we have

1− 〈yt(F ), v′t〉 ≤ {1− 〈yt(F ), vt−1〉}{1−
1 + c

8
ηλmin(B)

1− γ
Cupperκ+ γ

}.

By subtracting that ||y(F )||2 = 1 and ||v′t||2 = 1, we have

||yt(F )− v′t||2 ≤ ||yt(F )− vt−1||2

√
1− 1 + c

8
ηλmin(B)

1− γ
Cupperκ+ γ

.

Then, we calculate the difference to the optimal solution, we have

||y∗ − v′t||2 ≤ ||yt(F )− v′t||2 + ||yt(F )− y∗||2

≤ ||yt(F )− vt−1||2

√
1− 1 + c

8
ηλmin(B)

1− γ
Cupperκ+ γ

+ ||yt(F )− y∗||2

≤ ||y∗ − vt−1||2

√
1− 1 + c

8
ηλmin(B)

1− γ
Cupperκ+ γ

+ 2||yt(F )− y∗||2.

Thus, we have

√
1− |〈y∗, v′t〉| ≤

√
1− |〈y∗, vt−1〉|

√
1− 1 + c

8
ηλmin(B)

1− γ
Cupperκ+ γ

+ 2
√

1− |〈yt(F ), y∗〉|.

We define

ν =

√
1 + 2[

√
s

k
+
s

k
]

√
1− 1 + c

8
ηλmin(B)

1− γ
Cupperκ+ γ

.

By using Lemma 13 and assume k > s, we have

√
1− |〈y∗, v̂t〉| ≤

√
1− |〈y∗, v′t〉|+ [

√
s

k
+
s

k
](1− |〈y∗, v′t〉|)2

≤
√

1− |〈y∗, v′t〉|

√
1 + [

√
s

k
+
s

k
](1 + |〈y∗, v′t〉|)

≤
√

1− |〈y∗, v′t〉|

√
1 + 2[

√
s

k
+
s

k
]

≤ ν
√

1− |〈y∗, vt−1〉|+
√

20
√

1− |〈yt(F ), y∗〉|.

Thus, we can get √
1− |〈y∗, vt〉| ≤

√
1− |〈y∗, v̂t〉|

≤ ν
√

1− |〈y∗, vt−1〉|+
√

20
√

1− |〈yt(F ), y∗〉|.
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Proof of Lemma 12. For convenience we omit the superscript t in the proof.

The proof follow [Tan et al., 2018]. We intend to derive the lower bound of y(F )T v′. Follow the definition, we have

〈y(F ), v′〉 = y(F )TCF ṽ︸ ︷︷ ︸
M

· ||CF ṽ||−1
2︸ ︷︷ ︸

N

. (59)

We first clarify some important conclusions to prove the bound conveniently. Recall that F ⊆ {1, · · · , d} is some set with
cardinality |F | = k′, y(F ) is proportional to the largest generalized eigenvector of (ÃF , B̃F ). In this proof, we denote κ̃
to represent κ(B̃F ). Besides, we use ||v||2

B̃F
to indicate vT B̃F v.

We define a basis vector of the space spanned by B̃F called ξ1, ξ2, · · · , ξk′ . Let ξj be the jth generalized eigenvector of
(ÃF , B̃F ) corresponding to λ̃j(F ) such that (note that such {ξ}i exists [Golub and Van Loan, 1996])

ξTj B̃F ξk =

{
1 if j = k,

0 if j 6= k.

Assume that ṽ =
∑k′

j=1 αjξj and we have y(F ) = ξ1

||ξ1||2 . By assumption, we have y(F )T ṽ = 1 − δ. This implies that
||y(F )− ṽ||22 = 2δ. Also, note that

||ṽ − y(F )||2
B̃F

= ||ṽ − α1ξ1 − {y(F )− α1ξ1}||2B̃F
= ||ṽ − α1ξ1||2B̃F + ||y(F )− α1ξ1||2B̃F − 2(y(F )− α1ξ1)T B̃F (ṽ − α1ξ1).

(60)

Since y(F )− α1ξ1 is orthogonal to ṽ − α1ξ1 under the normalization of B̃F (by the definition of y(F ) and ṽ), we have

k′∑
j=2

α2
j = ||ṽ − α1ξ1||2B̃F ≤ ||ṽ − y(F )||2

B̃F
≤ 2λmax(B̃F )δ, (61)

verified by the fact that ||y(F )− ṽ||22 = 2δ. Similarly, we have

k′∑
j=1

α2
j = ||ṽ||2

B̃F
≥ λmin(B̃F ) = λmax(B̃F )/κ̃,

α2
1 ≥ λmax/κ̃−

k′∑
j=1

α2
j ≥ 2λmax(B̃F )/(3κ̃),

(62)

where the last inequality is obtained by (41) and the assumption that δ ≤ 1/(8Cupperκ(B)).

We then derive a lower bound of ||y(F )||B̃F . By the triangle inequality, we have

||y(F )||B̃F ≥ ||ṽ||B̃F − ||ṽ − y(F )||B̃F ≥

√√√√ k′∑
j=1

α2
j −

√
λmax(B̃F )||ṽ − y(F )||2

≥ 1

2

√√√√ k′∑
j=1

α2
j +

1

2

√
λmax(B̃F )

κ̃
−
√

2λmax(B̃F )δ ≥ 1

2
α1,

where the last inequality is due to (62).
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We first get the first term y(F )TCF ṽ in (59),

y(F )TCF ṽ = y(F )T ṽ +
η

ρ
y(F )T (ÃF − ρB̃F )ṽ

= 1− δ +
η

ρ
{λ̃1(F )− ρ}y(F )T B̃F ṽ

= 1− δ +
η

ρ
{λ̃1(F )− ρ}α1

ξT1 B̃F ξ1

||ξ1||2

= 1− δ + ηα1
{λ̃1(F )− ρ}

ρ
||y(F )||B̃F

≥ 1− δ +
1

2
ηα2

1

(1− γ)λmax(B̃F )δ

α2
1κ̃+ γλmax(B̃F )δ

≥ 1− δ +
1

2
η
α2

1(1− γ)δ

κ̃+ γ

≥ 1− δ +
1

3
ηλmax(B̃F )

(1− γ)δ

κ̃+ γ
,

(63)

where the lower bound of λ̃1(F )−ρ
ρ in (63) is derived by

λ̃1(F )− ρ
ρ

=

∑k′

j=1{λ̃1(F )− λ̃j(F )}α2
j∑k′

j=1 λ̃j(F )α2
j

≥
{λ̃1(F )− λ̃2(F )}

∑k′

j=2 α
2
j

λ̃1(F )α2
1 + λ̃2(F )

∑k′

j=2 α
2
j

=
{λ̃1(F )− λ̃2(F )}||ṽ − α1ξ1||2B̃F
λ̃1(F )α2

1 + λ̃2(F )||ṽ − α1ξ1||2B̃F
≥ (1− γ){λmax(B̃F )/κ̃}||ṽ − α1ξ1||22
α2

1 + γ{λmax(B̃F )/κ̃}||ṽ − α1ξ1||22

≥ (1− γ)λmax(B̃F )δ

α2
1κ̃+ γλmax(B̃F )δ

,

the last inequality is derived by the fact that

δ ≤ 2δ − δ2 = (1− δ)2 + 1− 2(1− δ)y(F )T ṽ = ||ṽ − (1− δ)y(F )||22 ≤ ||ṽ − α1ξ1||22.

Then, we calculate the lower bound of the second term ||CF ṽ||−1
2 in (59).

||CF ṽ||22 = ||{I +
η

ρ
(ÃF − ρB̃F )}ṽ||22 = 1 + ||η

ρ

k′∑
j=1

αjÃF ξj − ρ
k′∑
j=1

αjB̃F ξj ||22

= 1 + ||
k′∑
j=1

αj
η

ρ
{λ̃j(F )− ρ}B̃F ξj ||22,

(64)

followed by the fact ṽT ÃF ṽ− ρṽT B̃F ṽ = 0 and ÃF ξj = λ̃j(F )B̃F ξj . Also, we can get the upper bound of the λ̃1(F )−ρ
ρ ,

λ̃1(F )− ρ
ρ

=

∑k′

j=1{λ̃1(F )− λ̃j(F )}α2
j∑k′

j=1 λ̃j(F )α2
j

≤
λ̃1(F )

∑k′

j=1 α
2
j

λ̃1(F )α2
1

≤ 2λmax(B̃F )δ

α2
1

≤ 3δκ̃. (65)

By the assumption that δ ≤ 1/γ−1
3Cupperκ(B) and (65), we have

λ̃2(F ) ≤ ρ ≤ λ̃2(F ).
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From the definition ||ṽ||22 = 1, we can get α2
1 ≤ λmax(B̃F ). Thus, we have

||
k′∑
j=1

αj
η

ρ
{λ̃j(F )− ρ}B̃F ξj ||22

≤ α2
1{λ̃j(F )− ρ}2λmax(B̃F )(

η

ρ
)2 + λmax(B̃F )

k′∑
j=2

α2
j (
η

ρ
)2{λ̃j(F )− ρ}2

≤ λ2
max(B̃F )η2(3δκ̃)2 + λmax(B̃F )η2{ λ̃1(F )

ρ
− 1}2

k′∑
j=2

α2
j

≤ λ2
max(B̃F )η2(3δκ̃)2 + 2λ2

max(B̃F )η2δ(3δκ̃)2

= 9λ2
max(B̃F )η2δ2κ̃2 + 18λ2

max(B̃F )η2δ3κ̃2

(66)

Substituting results (66) to results (64), we have

||CF ṽ||22 ≤ 1 + 9λ2
max(B̃F )η2δ2κ̃2 + 18λ2

max(B̃F )η2δ3κ̃2

≤ 1 + 12λ2
max(B̃F )η2δ2κ̃2.

(67)

The last inequality holds because the assumption δ ≤ 1
8Cupperκ

and ηCupperλmax(B) < 1, thus, 2δ ≤ 1
4 . Besides, from the

fact that 1√
1+y
≥ 1− y

2 for |y| < 1, we have

||CF ṽ||−1
2 ≥ 1− 6λ2

max(B̃F )η2δ2κ̃2 (68)

Now, combining the result of y(F )TCF ṽ and ||CF ṽ||−1
2 , we have

y(F )T v′ = y(F )TCF ṽ · ||CF ṽ||−1
2

≥ {1− δ +
1

3
ηλmax(B̃F )

(1− γ)δ

κ̃+ γ
}{1− 6λ2

max(B̃F )η2δ2κ̃2}

≥ 1− δ +
1

3
ηλmax(B̃F )

(1− γ)δ

κ̃+ γ
− 6λ2

max(B̃F )η2δ2κ̃2 − 2κ̃2η3λmax(B̃F )δ2 (1− γ)δ

κ̃+ γ

≥ 1− δ +
1

3
ηλmin(B̃F )

(1− γ)δ

κ̃+ γ
− 6.25λmax(B̃F )η2δ2κ̃2

≥ 1− δ +
1

8
ηλmin(B̃F )

(1− γ)δ

κ̃+ γ
,

(69)

in which the last two inequality holds by the assumption that ηλmax(B̃F ) < 1 and the condition that

(1− γ)

κ̃+ γ
≥ 30ηλmax(B̃)δκ̃2,

which implied by the following inequality based on the assumption 1:

δ ≤ 1− γ
30(1 + c)C2

upperηλmax(B)κ2(Cupperκ+ γ)
.

Finally, we get the lower bound of y(F )T v′,

〈y(F ), v′〉 ≥ 1− δ +
1 + c

8
ηλmin(B){1− y(F )T ṽ} 1− γ

Cupperκ+ γ
.
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7 Proof of Theorem 4

Theorem 18 (Fell version of Theorem 4). Under Theorem 3 and choose the stepsize η such that ηλmax(B) < 1
1+c and

ν =

√
1− 1 + c

8
ηλmin(B)

1− γ
Cupperκ(B) + γ

<
1

2
,

and we further denote

λgap = min
j>1

λ1 − (1 + a)λj√
1 + λ2

1

√
1 + (1− a)2λ2

j

(70)

as the eigengap for the GEP. Assume n is sufficiently large such that,

n ≥Ω̃(max{ d

λ2
gapcr2(A,B)

,
d

(max{θ(A,B),
√
θ(A,B)}λgapcr(A,B))2

,

√
d log 1

ζ

b
√
ρ

,√
d log 1

ζ

cλmin(B)
√
ρ
,

√
d log 1

ζ

cr(A,B)λgap
√
ρ
,

1

λgapcr(A,B)

√
d log 1

ζ

θ(A,B)
√
ρ
})

for given failure probability ζ > 0. Then in Algorithm 3, if we set m = O(log n) and if the input vector v0 with ‖v0‖2 = 1

satisfying |〈v
∗,v0〉|
‖v∗‖2 ≥ 1− θ(A,B)

2 with θ(A,B) in (10). We have the following with probability at least 1− ζ,

1− 〈v
∗, vm〉
‖v∗‖2

≤ O(
θ(A,B)

(1− ν)2
×
(ρ2(EA) + ρ2(EB)

λ2
gapcr2(A,B)

+
1

λ2
gapcr2(A,B)

d log n log d log 1
ζ

n2ρ

)
).

Similarly, for the deterministic setting where EA = EB = 0 and Â = A, B̂ = B, if n is sufficiently large and we set some
appropriate parameters in Algorithm 3, with probability at least 1− ζ

1− 〈ṽ, vm〉
‖ṽ‖2

≤ Õ(
θ(A,B)

(1− ν)2λ2
gapcr2(A,B)

d log 1
ζ

n2ρ
). (71)

Proof. We mainly focus on the stochastic setting. The result for the deterministic setting is just a special case where
ι̃(k′) = 0 since EA = EB = 0.

In each iteration t we denote the vector V t as the solution of the following GEP.

V t = arg max
v∈Rd

vT Ãtv, s.t. vT B̃tv = 1. (72)

We also denote y∗ = v∗

‖v∗‖2 and yt = V t

‖V t‖2 . The following theorem shows the error of the parameter for each iteration.

Theorem 19. Under Theorem 3 and choose the stepsize η such that ηλmax(B) < 1
1+c and

ν =

√
1− 1 + c

8
ηλmin(B)

1− γ
Cupperκ(B) + γ

<
1

2
.

Suppose in the t-th iteration, vt−1 satisfies 〈yt, vt−1〉 ≥ 1− θ(A,B), where

with γ in Theorem 3. Then we have√
1− |〈y∗, vt〉| ≤ ν

√
1− |〈y∗, vt−1〉|+ 2

√
1− |〈yt, y∗〉|. (73)

To proof Theorem 4 we will show the following three lemmas:

Lemma 14. Under Theorem 19, if ρ(EA) + ρ(EB) ≤ O(max{θ(A,B),
√
θ(A,B)}λgapcr(A,B)) and n ≥

Ω( 1
λgapcr(A,B)

√
dm log d log m

ζ

min{θ(A,B),
√
θ(A,B)}√ρ

), then for all t ∈ [m], if |〈v∗, vt−1〉|/‖v∗‖2 ≥ 1− θ(A,B)
2 , then

〈yt, vt−1〉 ≥ 1− θ(A,B). (74)
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Proof of Lemma 14. Since

〈yt, vt−1〉 ≥
|〈v∗, vt−1〉|
‖v∗‖2

− ‖ vt

‖vt‖2
− v∗

‖v∗‖2
‖2,

it is sufficiently to show that ‖ vt

‖vt‖2 −
v∗

‖v∗‖2 ‖2 ≤
θ(A,B)

2 .

To show this, we will provide a stronger statement.

Lemma 15. Under Theorem 3, for each t ∈ [m] if n ≥ Ω(

√
d log d log m

ζ

cr(A,B)
√
ρ ),

‖ vt

‖vt‖2
− v∗

‖v∗‖2
‖2 ≤ O(

ρ(EA) + ρ(EB)

λgapcr(A,B)
+

1

λgapcr(A,B)

√
dm log d log m

ζ

n
√
ρ

).

Proof. By Theorem 4.3 in [Stewart, 1979] we have

‖vt − v∗‖2
‖v∗‖2

≤ ι

∆λ̃tcr(Ãt, B̃t)
,

where ι =
√
ρ(EA + Zt1)2 + ρ(EB + Zt2)2 and ∆λ̃t = mink>1 χ{λ1, λ̃

t
k} > 0 with

χ{λ1, λ̃
t
k} =

|λ1 − λ̃tk|√
1 + λ2

1

√
1 + λ̃t2k

.

Thus, we have

‖ vt

‖vt‖2
− v∗

‖v∗‖2
‖2 =

1

‖vt‖2‖v∗‖2
‖vt‖v∗‖2 − v∗‖v‖2‖2

≤ 2

‖v∗‖2
‖vt − v∗‖2

≤ 2

‖v∗‖2
‖vt − v∗‖2 ≤ 2

ι

∆λ̃tcr(Ãt, B̃t)
.

By Theorem 3 we can see that ∆λ̃ ≥ λgap, and by Theorem 2.4 in [Stewart, 1979] we have cr(Ãt, B̃t) ≥ cr(A,B) − ι.
Thus we have

‖ vt

‖vt‖2
− v∗

‖v∗‖2
‖2 ≤ O(

ι

λgap(cr(A,B)− ι)
).

By the definition of ι we have ι ≤ ρ(EA) + ρ(EB) + O(

√
dT log d log 1

ζ

n
√
ρ ). Since ρ(EA)+ρ(EB)

cr(k′) ≤ O(1) and n ≥

Ω(

√
dm log d log m

ζ

cr(k′)
√
ρ ), we have

‖ vt

‖vt‖2
− v∗

‖v∗‖2
‖2 ≤ O(

ρ(EA) + ρ(EB)

λgapcr(A,B)
+

1

λgapcr(A,B)

√
dm log d log m

ζ

n
√
ρ

).

Thus, we can see that when ρ(EA) + ρ(EB) ≤ O(θ(A,B)λgapcr(A,B)) and n ≥ Ω( 1
λgapcr(A,B)

√
dm log d log m

ζ

θ(A,B)
√
ρ ) then

‖ vt(F )
‖vt(F )‖2 −

v∗

‖v∗‖2 ‖2 ≤
θ(A,B)

2 .

Lemma 16. Under Theorem 3 and Lemma 16, for all t ∈ [m], if 〈yt, vt−1〉 ≥ 1− θ(A,B), then

√
1− |〈y∗, vt〉| ≤ ν

√
1− |〈y∗, vt−1〉|+O(

ρ(EA) + ρ(EB)

λgapcr(A,B)
+

1

λgapcr(A,B)

√
dm log d log m

ζ

n
√
ρ

) (75)

and
|〈v∗, vt〉|
‖v∗‖2

≥ 1− θ(A,B)

2
. (76)
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Combining these two lemmas we have under the assumptions, for each t ∈ [m],√
1− |〈v

∗, vm〉|
‖v∗‖2

≤ νm
√
θ(A,B) +O(

1

1− ν
(ρ(EA) + ρ(EB)

λgapcr(A,B)
+

1

λgapcr(A,B)

√
dm log d log m

ζ

n
√
ρ

)
). (77)

Take m = O(log n) we have the proof.

Proof of Lemma 16 . By Theorem 19 and Lemma 11 we have√
1− |〈y∗, vt〉| ≤ ν

√
1− |〈y∗, vt−1〉|+ 2

√
1− |〈yt, y∗〉|

≤ ν
√

1− |〈y∗, vt−1〉|+O(
ρ(EA) + ρ(EB)

λgapcr(A,B)
+

1

λgapcr(A,B)

√
dm log d log m

ζ

n
√
ρ

)

≤ ν
√
θ(A,B) +O(

ρ(EA) + ρ(EB)

λgapcr(A,B)
+

1

λgapcr(A,B)

√
dm log d log m

ζ

n
√
ρ

)

≤
√
θ(A,B)√

2
,

where the last inequality is due to that ν < 1
2 , ρ(EA) + ρ(EB) ≤ O(max{θ(A,B),

√
θ(A,B)}λgapcr(A,B)) and n ≥

Ω( 1
λgapcr(A,B)

√
dm log d log m

ζ

min{θ(A,B),
√
θ(A,B)}√ρ

).

7.1 Proof of Theorem 19

The proof of Theorem 3 is almost the same as the proof of Theorem 13, we omit it here.

The same as Lemma 12, we have the following lemma. In each iteration t we denote the vector vt as the solution of the
following GEP.

vt = arg max
v∈Rd

vT Ãtv, s.t. vT B̃tv = 1. (78)

Lemma 17. Assume that Theorem 3 holds, consider in the t-th iteration, let yt = vt

||vt||2 , and y∗ = v∗

||v∗||2 . Given any ṽ,

such that ||ṽ||2 = 1 and ṽT y > 0. Let ρ = ṽT Ãtṽ
ṽT B̃tṽ

, and let v′ = Ctṽ
||Ctṽ||2 , where

Ct = I +
η

ρ
(Ãt − ρB̃t),

and η > 0 is a positive constant. Define η such that

ηλmax(B) <
1

1 + c
.

Denote δ = 1− 〈yt, ṽ〉, and 1− δ ≥ 1− θ(A,B), where

θ(A,B) = min{ 1

8Cupperκ(B)
,

1/γ − 1

3Cupperκ(B)
,

1− γ
30(1 + c)C2

upperηλmax(B)κ2(B){Cupperκ(B) + γ}
}.

Then, under the conditions in Theorem 13 we have

v′T yt ≥ ṽT yt +
1 + c

8
ηλmin(B){1− ṽT yt} 1− γ

Cupperκ+ γ
. (79)

The proof is the same as Lemma 12, where F = {1, 2, · · · , d}.
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Proof of Theorem 19. By Lemma 17, take ṽ = vt−1 with v′ = vt. Since by the assumption of in the t-th iteration, vt−1

satisfies 〈yt, vt−1〉 ≥ 1− θ(A,B) we have

〈vt, yt〉 ≥ 〈vt−1, y
t〉+

1 + c

8
ηλmin(B){1− 〈vt−1, y

t〉} 1− γ
Cupperκ+ γ

. (80)

Thus, we have

1− 〈vt, yt〉 ≤ (1− 〈vt−1, y
t〉){1− 1 + c

8
ηλmin(B)

1− γ
Cupperκ+ γ

}. (81)

That is

‖vt − yt‖2 ≤ ‖vt−1 − yt‖2

√
1− 1 + c

8
ηλmin(B)

1− γ
Cupperκ+ γ

.

||y∗ − vt||2 ≤ ||yt − vt||2 + ||yt − y∗||2

≤ ||yt − vt−1||2

√
1− 1 + c

8
ηλmin(B)

1− γ
Cupperκ+ γ

+ ||yt − y∗||2

≤ ||y∗ − vt−1||2

√
1− 1 + c

8
ηλmin(B)

1− γ
Cupperκ+ γ

+ 2||yt(F )− y∗||2.

Thus, we have

√
1− |〈y∗, vt〉| ≤

√
1− |〈y∗, vt−1〉|

√
1− 1 + c

8
ηλmin(B)

1− γ
Cupperκ+ γ

+ 2
√

1− |〈yt, y∗〉|.

8 Proof of Theorem 5

Theorem 20 (Full version of Theorem 5). The optimization problem (16) is (ε, δ)-DP under Assumption 1 for 0 < ε, δ < 1.

Moreover, under Assumption 2 and assume that ‖EA‖∞,∞, ‖EB‖∞,∞ = O(
√

log d
n ), if n is sufficiently large such that

n ≥ Ω(max{λ
2
max(B)λ2

1d
3 log 1

ζ log d

ρθ(A,B)∆2
gap

,

√
d log 1

ζ

cλmin(B)
√
ρ}). Then set φ = Õ(λmax(B)λ1(

√
d√
n

+
√
d

n
√
ρ )) and K = 1 in (16) we have

with probability at least 1− ζ
〈v0, v

∗〉 ≥ 1− θ(A,B)/2,

where for a matrixA, ‖A‖∞,∞ is defined as the maximal absolute value of all the entries inA, v0 is the leading eigenvector
of P̂ and v∗ is the leading general eigenvector of (A,B).

We proof the following theorem instead. Note that the proof of Theorem 20 is just based on Theorem 21 with the bound
‖Ã− Ā‖∞,∞ = Õ(λmax(B)λ1(

√
d√
n

+
√
d

n
√
ρ )).

Theorem 21. The optimization problem (16) is (ε, δ)-DP under Assumption 1 for 0 < ε, δ < 1. Moreover, un-

der Assumption 2 and assume that ‖EA‖∞,∞, ‖EB‖∞,∞ = O(
√

log d
n ), if n is sufficiently large such that n ≥

Ω(max{λ
2
max(B)λ2

1d
3 log 1

ζ log d

ρθ(A,B)∆2
gap

,

√
d log 1

ζ

cλmin(B)
√
ρ}). Then set φ > 2‖Ã− Ā‖∞,∞ and K = 1 in (16) we have with probability at

least 1− ζ
〈v0, v

∗〉 ≥ 1− θ(A,B)/2,

where for a matrixA, ‖A‖∞,∞ is defined as the maximal absolute value of all the entries inA, v0 is the leading eigenvector
of P̂ and v∗ is the leading general eigenvector of (A,B).

Proof of Theorem 21. The proof of (ε, δ)-DP is just followed by the Gaussian mechanism and Assumption 1. Next we
focus on the utility.
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Before that we define some additional notations. Let V ∗ ∈ Rd×d be d generalized eigenvectors and let Λ∗ be a diagonal
matrix of generalized eigenvalues of the matrix pair (A,B). The matrix A can be rewritten in terms of its generalized eigen-
vectors and generalized eigenvalues up to sign jointly A = BV ∗Λ∗(V ∗)TB [Gao et al., 2015]. Let Ā = B̃V ∗Λ∗(V ∗)T B̃
and P = V ∗·,K(V ∗·,K)T , where V ∗·,K are the first K generalized eigenvectors of (A,B). Then we have the the following
theorem whose proof follows the proof of the Proposition 1 in [Tan et al., 2018]. We omit it here for simplicity.

Theorem 22. Assume n is sufficiently large such as ρ(EB) ≤ cλmin(B), where c is the same constant in Theorem 3. Let
∆gap = λK − cκ(B)λK+1/(1 − c) > 0. Then we have the following if φ > 2‖Ã − Ā‖∞,∞, then the solution P̂ in (16)
satisfies

‖P̂ − P ∗‖F ≤ C(
d

∆gap
‖Ã− Ā‖∞,∞ +K‖B̃ −B‖2), (82)

where C > 0 is a constant.

We will use Theorem 22 to proof our main result.

For ‖B̃ −B‖2 by the definition we have the following with probability at least 1− ζ

‖B̃ −B‖2 ≤ ‖Z2‖2 + ρ(EB) ≤ O(

√
d log 1

ζ

n
√
ρ

+ ρ(EB)).

For ‖Ã− Ā‖∞,∞ we have with probability as least 1− 3ζ

‖Ã− Ā‖∞,∞ ≤ ‖Z1‖∞,∞ + ‖Â− Ā‖∞,∞
≤ ‖Z1‖∞,∞ + ‖Â−A‖∞,∞ + ‖A− Ā‖∞,∞
= ‖Z1‖∞,∞ + ‖EA‖∞,∞ + ‖BV ∗Λ∗(V ∗)TB − B̃V ∗Λ∗(V ∗)TB‖∞,∞
+ ‖B̃V ∗Λ∗(V ∗)TB − B̃V ∗Λ∗(V ∗)T B̃‖∞,∞
≤ ‖Z1‖∞,∞ + ‖EA‖∞,∞ + ‖(Z2 + EB)V ∗Λ∗(V ∗)TB‖∞,∞
+ ‖B̃V ∗Λ∗(V ∗)T (Z2 + EB)‖∞,∞
≤ ‖Z1‖∞,∞ + ‖EA‖∞,∞ + (2 + c)

√
dλmax(B)λ1(‖Z2‖∞,∞ + ‖EB‖∞,∞)

≤ O(‖EA‖∞,∞ + cλmax(B)λ1

√
d‖EB‖∞,∞ + cλmax(B)λ1

√
d log d log 1

ζ

n
√
ρ

),

where the third inequality is due to the following result, whose proof is almost the same as the proof of Theorem 3.

Theorem 23. Under Assumption 2, given any failure probability ζ > 0, if n is sufficiently large such that, n ≥

Ω(

√
d log d log 1

δ log 1
ζ

cλmin(B)ε ). Then with probability at least 1− ζ,

(1− c)λj(B) ≤ λj(B̃) ≤ (1 + c)λj(B) (83)

where c is the constant as in Theorem 3.

Thus, in total we have with probability at least 1− ζ

‖P̂ − P ∗‖F ≤ O(
d

∆gap
(‖EA‖∞,∞ +

√
dλmax(B)λ1‖EB‖∞,∞

+ λmax(B)λ1

√
d log d log 1

ζ

n
√
ρ

) +K(

√
d log 1

ζ

n
√
ρ

+ ρ(EB))). (84)

Thus, take K = 1 we have

〈v0, v
∗〉 ≥ 1−O(

d

∆gap
(‖EA‖∞,∞ +

√
dλmax(B)λ1‖EB‖∞,∞ + λmax(B)λ1

√
d log d log 1

ζ

n
√
ρ

) + ρ(EB))2. (85)
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Thus, when ‖EA‖∞,∞, ‖EB‖∞,∞ = O(
√

log d
n ) and ρ(EB) =

√
d
n and n ≥ Ω(

λ2
max(B)λ2

1d
3 log d log 1/ζ

ρθ(A,B)∆2
gap

) then 〈v0, v
∗〉 ≥

1− θ(A,B)/2 with probability at least 1− ζ.

9 Proof of Theorem 9 and 10

In the following we will focus on the lower bound. Since our lower bound will be in the form of private minimax risk,
we first introduce the classical statistical minimax risk before discussing its private version. More details can be found in
[Barber and Duchi, 2014].

Let P be a class of distributions over a data universe X . For each distribution p ∈ P , there is a deterministic function
θ(p) ∈ Θ, where Θ is the parameter space. Let φ : Θ × Θ : 7→ R+ be a semi-metric function on the space Θ and
Φ : R+ 7→ R+ be a non-decreasing function with Φ(0) = 0 (in this paper, we assume that φ(x, y) = ‖x − y‖2 and
Φ(x) = x2 unless specified otherwise). We further assume that D = {Xi}ni=1 are n i.i.d observations drawn according to
some distribution p ∈ P , and θ̂ : Xn 7→ Θ be some estimator. Then the minimax risk in metric Φ ◦ φ is defined by the
following saddle point problem:

Mn(θ(P),Φ ◦ φ) := inf
θ̂

sup
p∈P

Ep[Φ(φ(θ̂(D), θ(p))],

where the supremum is taken over distributions p ∈ P and the infimum over all estimators θ̂.

In the ε-DP or CDP model, the estimator θ̂ is obtained via some ε-DP or ρ-CDP mechanism Q. Thus, we can also define
the ε-DP (ρ-CDP)-private minimax risk:

Mn(θ(P), Q,Φ ◦ φ, ε) := inf
Q∈Q

inf
θ̂

sup
p∈P

Ep,Q[Φ(φ(θ̂(D), θ(p))],

where Q is the set of all ε-DP mechanisms. Similarly, for ρ-CDP we can define

Mn(θ(P), Q,Φ ◦ φ, ρ) := inf
Q∈Q

inf
θ̂

sup
p∈P

Ep,Q[Φ(φ(θ̂(D), θ(p))],

Next, we recall two private Fano’s Lemmas given in [Acharya et al., 2021, Kamath et al., 2021].

Lemma 18 (Theorem 2 in [Acharya et al., 2021]). Consider a set of distributions V = {p1, p2, · · · , pM} ⊆ P such that
for all i 6= j,

• Φ(φ(θ(pi), θ(pj)) ≥ α,

• DKL(pi, pj) ≤ β, where DKL is the KL-divergence,

• DTV (pi, pj) ≤ γ,

then we have

Mn(θ(P), Q,Φ ◦ φ, ε) ≥ 1

M

∑
i∈[M ]

EX∼pni ,Q[Φ(φ(Q(X), θ(pi))] ≥ max{α
2

(1− nβ + log 2

logM
), 0.4αmin{1, M

e10εnγ
}}.

(86)

Lemma 19. [Theorem 1.4 in [Kamath et al., 2021]] Consider a set of distributions V = {p1, p2, · · · , pM} ⊆ P such that
for all i 6= j,

• Φ(φ(θ(pi), θ(pj)) ≥ α,

• DKL(pi, pj) ≤ β, where DKL is the KL-divergence,

• DTV (pi, pj) ≤ γ,
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then we have

Mn(θ(P), Q,Φ ◦ φ, ε, δ) ≥ 1

M

∑
i∈[M ]

EX∼pni ,Q[Φ(φ(Q(X), θ(pi))]

≥ α

2
max{1− nβ + log 2

logM
, 1− ρ(n2γ2 + nγ(1− γ)) + log 2

logM
}.

Thus, based on Lemma 18 and 19 it is sufficient for us to 1) find the appropriate metric Φ ◦ φ. 2) Find a set of distributions
{p1, · · · , pM}. We first consider the metric. Here we use the subspace distance between two unit vectors in Rd as ρ and
the squared function as Φ(·).

Subspace distance For two unit vectors v, w ∈ Rd, each of them defines a 1-dimensional subspace S and S ′. Then the
distance between S and S ′ is defined as

sin Θ(S,S ′) = ‖vvT − wwT ‖F ,

where ‖ · ‖F is the Frobenious norm. For simplicity, we will overload notation and write sin Θ(S,S ′) = sin Θ(v, w).

Proof of Theorem 9. For the packing set V , we have the following lemma:

Lemma 20. [[Cai et al., 2013]] Let (Θ, φ) be a totally bounded metric space. For any subset E ⊂ Θ, denote by N (E, ε)
the ε-covering number of E, that is, the minimal number of balls of radius ε whose union contained in E. Also denote by
M(E, ε) the ε-packing number of E, that is, the maximal number of points in E whose pairwise distance is at least ε. If
there exist 0 ≤ c0 ≤ c1 <∞ and d > 0 such that:

(
c0
ε

)d ≤ N (Θ, ε) ≤ (
c1
ε

)d

for all 0 < ε ≤ c0, then for any 1 ≥ α > 0, there exists a packing set V = {v1, · · · , vm} with m ≥ ( c0
αc1

)d such that
αε ≤ φ(vi, vj) ≤ 2ε for each i 6= j.

Now, for the set of all 1-dimensional subspaces Gd,1 we have the following lemma regarding the metric entropy (due to
[Szarek, 1982]).

Lemma 21. For any 1-dimensional subspaces S,S ′ ∈ Gd,1, denoting its projection matrix vvT and wwT with ‖v‖2 =
‖w‖2 = 1, and define the metric on Gd,1 by the subspace distance between S and S ′. Then for any ε ∈ (0,

√
2),

(
c0
ε

)d−1 ≤ N (Gd,1, ε) ≤ (
c1
ε

)d−1,

where c0, c1 are absolute constants.

By Lemmas 20 and 21, we know that there exists a packing set V with log |V| ≥ (d−1) log c0
αc1

with 2ε1 ≥ φ(S,S ′) ≥ αε1,
where S,S ′ ∈ Gd,1 and α and ε1 will be specified later. Since each subspace S corresponds to a projection matrix vvT

with ‖v‖2 = 1. Thus we can rewrite V = {v1, · · · , vm}.

Now we construct the collection of distributions; for each v ∈ V , we define

Σv =
λ

5d(λ+ 1)
vvT +

1

5d(λ+ 1)
Id. (87)

That is, λ1 = 1
5d and λ2 = · · · = λd = 1

5d(λ+1) . Then we let pvi denote the distribution N (0,Σvi).

Now, we first show that the distribution Σv satisfies Assumption 1 with high probability. For x ∼ N (0,Σv), we know that
there exists an orthogonal matrix M ∈ Rd×d which satisfies Mx ∼ N (0,Diag(Σv)), where

Diag(ΣV ) =


1
5d

1
5d(λ+1)

. . .
1

5d(λ+1)

 .
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Thus, we have ‖x‖22 = ‖Mx‖22 ∼ 1
5dχ

2
k + 1

5d(λ+1)χ
2
d−1. For the χ2-distribution, we have the following concentration

bound:

Lemma 22 ([Laurent and Massart, 2000]). If z ∼ χ2
n, then

P[z − n ≥ 2
√
nx+ 2x] ≤ exp(−x).

By Lemma 12, we have the following with probability at least 1−exp(−1)−exp(−(p−1)), ‖x‖22 ≤ 1
5d5+ 1

5d(λ+1)5(d−
1) ≤ 1. Thus, ‖x‖2 ≤ 1 with high probability.

The following lemma shows that the Total Variation distance between PV and PV ′ can be bounded by the subspace distance
between V and V ′.

Lemma 23. For any pair of v, v′ ∈ V , by the KL-distance DKL(·||·) of two Gaussian distributions, we have that

DKL(pv||pv′) ≤
λ2

2(1 + λ)
‖ sin Θ(v, v′)‖2F .

Thus, by Pinsker’s inequality that is ‖pv − pv′‖2TV ≤ λ2

1+λ‖ sin Θ(v, v′)‖2F .

Proof of Lemma 23.

D(PV ||PV ′) = D(N (0,ΣV )||N (0,ΣV ′))

=
1

2
trace(Σ−1

V ′ (ΣV − ΣV ′)).

Now
Σ−1
V ′ = 5p(λ+ 1)[(1 + λ)−1V ′V ′T + (Ip − V ′V ′T )]

and

ΣV − ΣV ′ =
λ

5p(λ+ 1)
(V V T − V ′V ′T ).

we can get

trace(Σ−1
V ′ (ΣV − ΣV ′)) =

λ2

1 + λ
‖ sin Θ(V, V ′)‖2F .

Thus, by Lemma 18 we have

Mn(θ(P), Q,Φ ◦ φ, ε) ≥ 1

M

∑
i∈[M ]

EX∼pni ,Q[Φ(φ(Q(X), θ(pi))]

≥ Ω(max{(αε1)2(1−
n

4ε21λ
2

2(1+λ) + log 2

(d− 1) log c0
αε1

), (αε1)2 min{1,
( c0
αε1

)d−1

e
20εnε1

√
λ2

2(1+λ)

}}). (88)

Take ε1 = Õ(min{
√

1+λ
λ2

√
d
n ,
√

1+λ
λ2

d
nε} and α = O(1), we have

Mn(θ(P), Q,Φ ◦ φ, ε) ≥ 1

M

∑
i∈[M ]

EX∼pni ,Q[Φ(φ(Q(X), θ(pi))] ≥

Ω(
1 + λ

λ2

d

n
+

1 + λ

λ2

d2

n2ε2
).

Thus, we can see that for any ε-DP Algorithm, there must exists a distribution p ∈ {p1, · · · , pm} such that

ED∼pn,A[‖
vprivv

T
priv

‖vpriv‖22
− v∗(v∗)T ‖2F ] ≥ Ω(

1 + λ

λ2

d

n
+

1 + λ

λ2

d2

n2ε2
),
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where v∗ is the leading eigenvector of the covariance matrix of p. Note that ‖ vprivv
T
priv

‖vpriv‖22
−v∗(v∗)T ‖2F = 2−2〈 vpriv

‖vpriv‖2 , v
∗〉2.

Thus,

ED∼pn,A[‖
vprivv

T
priv

‖vpriv‖22
− v∗(v∗)T ‖2F ] ≥ Ω(

1 + λ

λ2

d

n
+

1 + λ

λ2

d2

n2ε2
)

⇐⇒ ED∼pn,A[2− 2〈 vpriv
‖vpriv‖2

, v∗〉2] ≥ Ω(
1 + λ

λ2

d

n
+

1 + λ

λ2

d2

n2ε2
)

⇐⇒ ED∼pn,A[〈 vpriv
‖vpriv‖2

, v∗〉2] ≤ 1− Ω(
1 + λ

λ2

d

n
+

1 + λ

λ2

d2

n2ε2
)

⇐⇒ ED∼pn,A[〈 vpriv
‖vpriv‖2

, v∗〉] ≤
√

1− Ω(
1 + λ

λ2

d

n
+

1 + λ

λ2

d2

n2ε2
) ≤ 1− Ω(

1 + λ

λ2

d

n
+

1 + λ

λ2

d2

n2ε2
)

⇐⇒ ED∼pn,A[1− 〈 vpriv
‖vpriv‖2

, v∗〉] ≥ Ω(
1 + λ

λ2

d

n
+

1 + λ

λ2

d2

n2ε2
).

Take λ = O(1) we complete the proof.

For ρ-CDP, by Lemma 19 we have

Mn(θ(P), Q,Φ ◦ φ, ε) ≥ 1

M

∑
i∈[M ]

EX∼pni ,Q[Φ(φ(Q(X), θ(pi))]

≥ Ω

(αε1)2) max{1−
n

4ε21λ
2

2(1+λ) + log 2

(d− 1) log c0
αε1

, 1−
ρ(n2 4ε21λ

2

2(1+λ) + n2ε1

√
λ2

1+λ (1− 2ε1

√
λ2

1+λ )) + log 2

(d− 1) log c0
αε1

}

 .

Take ε1 = Õ(min{
√

1+λ
λ2

√
d
n ,
√

1+λ
λ2

√
d

n
√
ρ} and α = O(1), we have

Mn(θ(P), Q,Φ ◦ φ, ε) ≥ 1

M

∑
i∈[M ]

EX∼pni ,Q[Φ(φ(Q(X), θ(pi))] ≥≥ Ω(
1 + λ

λ2

d

n
+

1 + λ

λ2

d

n2ρ
).

Thus, the same as the previous ε-DP case we have

ED∼pn,A[1− 〈 vpriv
‖vpriv‖2

, v∗〉] ≥ Ω(
1 + λ

λ2

d

n
+

1 + λ

λ2

d

n2ρ
).

Proof of Theorem 10. The construction of the class of distributions follows the idea presented in [Vu et al., 2013b]. For
self-completeness, we rephrase below some important lemmas. See [Vu et al., 2013b] for the proofs.

Similar to the proof of Theorem 9, we consider the same class of distribution as in (87). Thus, the key step is to find a
packing set V in Gd,1. We denote Sm,1 = {v : ‖v‖2 = 1, v ∈ Rm}. Thus we can see there is a one-to-one map between
Gm,1 and Sm,1. The next lemma provides a general method for constructing such local packing sets.

Lemma 24 (Local Stiefel Embedding). Let the function Aα : Sd−1,1 7→ Sd,1 be defined in block form as

Aα(v) =

[
(1− α2)

1
2

αv

]
(89)

for 0 ≤ α ≤ 1. If v1, v2 ∈ Sd−1,1, then

α2(1− α2)‖v1 − v2‖22 ≤ ‖ sin Θ(Aα(v1), Aα(v2))‖2F ≤ α2‖v1 − v2‖22.

We then need the following lemma:

Lemma 25 (Hypercube construction [Massart, 2007]). Let e ≤ d − 1 and s − 1 ∈ [0, d − 2]. There exists a subset
{v1, · · · , vM} ⊂ Vd−1,1 satisfying the following properties:
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1. ‖vi‖0 ≤ s− 1, ∀i ∈ [M ],

2. ‖vi − vj‖22 ≥ 1
4 ,

3. logM ≥ max{c(s− 1)[1 + log(d/(s− 1))], log d}, where c ≥ 1
30 is an absolute constant.

Now we construct the set of distributions. Consider {v1, · · · , vM} ⊂ Vd−1,1 in Lemma 25, for each vi we consider the
distribution pj = N (0,ΣAα(vi)) where

ΣAα(vi) =
λ

5d(λ+ 1)
Aα(v)(Aα(v))T +

1

5d(λ+ 1)
Id.

We can see that the leading eigenvector Aα(v) is s-sparse and if x ∼ N (0,ΣAα(vi)) then ‖x‖2 ≤ 1 with high probability

by Lemma 22. Moreover, by Lemma 23 we have DKL(pv||pv′) ≤ λ2

(1+λ)α
2 and DTV (pv, pv′) ≤

√
λ2

(1+λ)α. Thus, by
Lemma 18 we have

Mn(θ(P), Q,Φ ◦ φ, ε) ≥ 1

M

∑
i∈[M ]

EX∼pni ,Q[Φ(φ(Q(X), θ(pi))]

≥ Ω(α2(1− α2) max{(1−
nα

2λ2

1+λ + log 2

c(s− 1) log d
s

),min{1,
( d
s−1 )c(s−1)

e
10εnα

√
λ2

(1+λ)

}}).

Thus, take α = O(min{
√

λ+1
λ2

√
s log d
n ,

√
1+λ
λ2

s log d
nε }) and since n ≥ Ω( s log d

ε ), we have

Mn(θ(P), Q,Φ ◦ φ, ε) ≥ 1

M

∑
i∈[M ]

EX∼pni ,Q[Φ(φ(Q(X), θ(pi))] ≥ Ω(
1 + λ

λ2

s log d

n
+

1 + λ

λ2

(s log d)2

n2ε2
).

Thus, the same as in the proof of Theorem 9 we have

ED∼pn,A[1− 〈 vpriv
‖vpriv‖2

, v∗〉] ≥ Ω(
1 + λ

λ2

s log d

n
+

1 + λ

λ2

(s log d)2

n2ε2
).

For ρ-CDP, by Lemma 19 we have

Mn(θ(P), Q,Φ ◦ φ, ε) ≥ 1

M

∑
i∈[M ]

EX∼pni ,Q[Φ(φ(Q(X), θ(pi))]

≥ Ω

α2(1− α2) max{1−
nα

2λ2

1+λ + log 2

c(s− 1) log d
s

), 1−
ρ(n2 α2λ2

1+λ + nα
√

λ2

1+λ (1− α
√

λ2

1+λ )) + log 2

c(s− 1) log d
s

}

 .

Take ε1 = O(min{
√

1+λ
λ2

√
s log d
n ,

√
1+λ
λ2

√
s log d
n
√
ρ }), we have

Mn(θ(P), Q,Φ ◦ φ, ε) ≥ 1

M

∑
i∈[M ]

EX∼pni ,Q[Φ(φ(Q(X), θ(pi))] ≥≥ Ω(
1 + λ

λ2

s log d

n
+

1 + λ

λ2

s log d

n2ρ
).

Thus

ED∼pn,A[1− 〈 vpriv
‖vpriv‖2

, v∗〉] ≥ Ω(
1 + λ

λ2

s log d

n
+

1 + λ

λ2

s log d

n2ρ
).

10 Lower Bounds for DP-SIR

In this section we study the lower bound of SIR in the DP model.
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Proof of Theorem 11. For any unit vector v ∈ Rd we consider a random variable x following a mixture of Gaussian
distribution Pv for x, i.e., Pv = αN ( 1−α

5d v,
1

25d2 Id −Mv) + (1 − α)N (− α
5dv,

1
25d2 Id −Mv), where Mv = α(1−α)

25d2 vvT

and α ∈ (0, 1). Equivalently, we have P(Y = 1) = α, P(Y = 2) = 1 − α, x|Y = 1 ∼ N ( 1−α
5d v,

1
25d2 Id −Mv) and

x|Y = 2 ∼ N (− α
5dv,

1
25d2 Id −Mv).

First we will show the instance satisfies Assumption 1 and 2 with high probability. Note that by the previous definition,
when Y = 1, then we have x − 1−α

5d v ∼ N (0, 1
5dId − M), thus the concentration property of Gaussian, we can see

‖x− 1−α
5d v‖2 ≤ 1 with high probability. Thus ‖x‖2 ≤ 2 with high probability. The same to the case when Y = 2. Based

on Theorem 1 we can see it satisfies Assumption 1 and 2 with high probability.

We can also easily see that

1. EPv [x] = 0;

2. A = cov[E[x|Y ]] =
∑2
i=1 P[Y = i]E[x|Y = i]E[x|Y = i]T −(

∑2
i=1 P[Y = i])(

∑2
i=1 P[Y = i])T = α(1−α)

25d2 vvT =
Mv

3. Σx = cov[E[x|Y ]] + 1
25d2 Id −Mv = 1

25d2 Id.

Thus, the generalized eigenvector will be v for Pv , i.e., θ(Pv) = v.

Next, for any pair of unit vectors v, v′ we now compute the KL-divergence between Pv and Pv′ .

Lemma 26. For for any pair of unit vectors v, v′ we have

DKL(Pv‖Pv′) ≤
3λ2

1− λ2
‖v − v′‖22, (90)

where λ = α(1− α)

Proof. By the convexity of KL divergence and since Pv and Pv′ are mixture distributions, we have

DKL(Pv‖Pv′) ≤ αDKL(N (
1− α

5d
v,

1

25d2
Id −Mv)‖N (

1− α
5d

v′),
1

25d2
Id −M ′v)

+ (1− α)DKL(N (− α

5d
v,

1

25d2
Id −Mv)‖N (− α

5d
v′,

1

25d2
Id −Mv′)).

We consider the first term first. By the KL-divergence formula for two multivariate Gaussian we have

DKL(N (
1− α

5d
v,

1

25d2
Id −Mv)‖N (

1− α
5d

v′),
1

25d2
Id −Mv′)

=
1

2
{Tr((

1

25d2
Id −Mv′)

−1(
1

25d2
Id −Mv))− p

+ log(
det( 1

25d2 Id −Mv′)

det( 1
25d2 Id −Mv)

+
(1− α)2

25d2
(v − v′)T (

1

25d2
−Mv′)

−1(v − v′)},

For the first term we have

Tr((
1

25d2
Id −Mv′)

−1(
1

25d2
Id −Mv))− p = Tr((

1

25d2
Id −Mv′)

−1(Mv′ −Mv))

= Tr(Id − λv′v′T )−1(λv′v′T − λvvT ))

Recall that

(Id − λv′v′T )−1 = (Id − v′v′T + (1− λ)v′v′T )−1

= Id − v′v′T +
1

1− λ
v′v′T = Id +

λ

1− λ
v′v′T .
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Thus we have

Tr((Id − λv′v′T )−1(λv′v′T − λvvT )) = Tr{(Id +
λ

1− λ
v′v′T )(λv′v′T − λvvT ))}

= λTr(
1

1− λ
v′v′T − vvT − λ

1− λ
v′v′T vvT )

= λTr{ λ

1− λ
(Id − v′v′T vvT )} ≤ 2λ2

1− λ
‖v − v′‖2F .

For the term log(
det( 1

25d2
Id−Mv′ )

det( 1
25d2

Id−Mv)
by the form of Mv and Mv′ we can see there eigenvalues are the same. Thus we have it

is zero. For the third term we have

(1− α)2

25d2
(v − v′)T (

1

25d2
−Mv′)

−1(v − v′) = (1− α)2(v − v′)T (Id − λv′v′T )−1(v − v′)

≤ (1− α)2

1− λ
Tr((v − v′)T (v − v′)) ≤ (1− α)2

1− λ
‖v − v′‖2F .

Thus in total we have

DKL(N (
1− α

5d
v,

1

25d2
Id −Mv)‖N (

1− α
5d

v′),
1

25d2
Id −Mv′) ≤

1

2

2λ2 + (1− α)2

1− λ
‖v − v′‖2F .

Similarly we have

DKL(N (− α

5d
v,

1

25d2
Id −Mv)‖N (− α

5d
v′,

1

25d2
Id −Mv′)) ≤

1

2

2λ2 + α2

1− λ
‖v − v′‖2F .

Thus we have

DKL(Pv‖Pv′) ≤
(
α

2λ2 + (1− α)2

1− λ
+ (1− α)

2λ2 + α2

1− λ

)
1

2
‖v − v′‖2F

=
2λ2 + α(1− α)

1− λ
1

2
‖v − v′‖2F

≤ 3λ2

1− λ2
‖v − v′‖2F .

Now we back to our proof since by Lemma 20 and 21, we know that there exists a packing set V with log |V| ≥ (d −
1) log c0

αc1
with 2ε1 ≥ ‖v − v′‖2 ≥ αε1 for any v, v′ ∈ V . Thus by Lemma 19 we have

Mn(θ(P), Q,Φ ◦ φ, ε) ≥ 1

M

∑
i∈[M ]

EX∼pni ,Q[Φ(φ(Q(X), θ(pi))]

≥ Ω((αε1)2) max{1−
n

3ε21λ
2

(1−λ2) + log 2

(d− 1) log c0
αε1

, 1−
ρ(n2 3ε21λ

2

(1−λ2) + 2nε1

√
3λ2

1−λ2 (1− 2ε1

√
3λ2

1−λ2 )) + log 2

(d− 1) log c0
αε1

}.

Take ε1 = O(min{
√

1−λ2

λ2

√
d
n ,
√

1−λ2

λ2

√
d

n
√
ρ}) and α = O(1) we have for any ρ-CDP Algorithm, there must exists a

distribution p such that

ED∼pn,A[‖ vpriv
‖vpriv‖22

− v∗‖22] ≥ Ω(
1− λ2

λ2

d

n
+

1− λ2

λ2

d

n2ρ
).

Thus, the same as the previous proof for PCA we have

ED∼pn,A[1− 〈 vpriv
‖vpriv‖2

, v∗〉] ≥ Ω(
1− λ2

λ2

d

n
+

1− λ2

λ2

d

n2ρ
).
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Proof of Theorem 12. We first construct the set of distributions. Consider {v1, · · · , vM} ⊂ Vd−1,1 in Lemma 25, for each
vi we consider the distribution Pvi = αN ( 1−α

5d Aγ(vi),
1

25d2 Id −Mvi) + (1 − α)N (− α
5dAγ(vi),

1
25d2 Id −Mvi), where

Mvi = α(1−α)
25d2 Aγ(vi)Aγ(vi)

T and α, γ ∈ (0, 1), Aγ(·) is defined in Lemma 24. Equivalently, we have P(Y = 1) = α,
P(Y = 2) = 1−α, x|Y = 1 ∼ N ( 1−α

5d Aγ(vi),
1

25d2 Id−Mvi) and x|Y = 2 ∼ N (− α
5dAγ(vi),

1
25d2 Id−Mvi). Similar to

the low dimensional case, we can see if x ∼ Pvi then it satisfies ‖x‖2 ≤ 1 with high probability thus it satisfies Assumption
1 and 2. We can also easily see that

1. EPv [x] = 0;

2. A = cov[E[x|Y ]] =
∑2
i=1 P[Y = i]E[x|Y = i]E[x|Y = i]T − (

∑2
i=1 P[Y = i])(

∑2
i=1 P[Y = i])T =

α(1−α)
25d2 Aγ(v)Aγ(v)T = Mv

3. Σx = cov[E[x|Y ]] + 1
25d2 Id −Mv = 1

25d2 Id.

Thus, we can seeAγ(vi) is the leading eigenvector for the instance Pvi which satisfies ‖Aγ(vi)‖2 = 1 and ‖Aγ(vi)‖0 ≤ s.
Moreover, by Lemma 26 we have for any vi, vj ∈ Vd−1,1 we have

Dkl(Pvi‖Pvj ) ≤
3λ2

1− λ2
‖Aγ(vi)−Aγ(vj)‖22 ≤

6λ2

(1− λ2)
γ2.

Thus we have DTV (Pvi‖Pvj ) ≤
√

6λ2

(1−λ2)γ. Thus by Lemma 19 and 24 we have

Mn(θ(P), Q,Φ ◦ φ, ε) ≥ 1

M

∑
i∈[M ]

EX∼pni ,Q[Φ(φ(Q(X), θ(pi))]

≥ Ω

γ2(1− γ2) max{1−
n γ

2λ2

1−λ2 + log 2

c(s− 1) log d
s

), 1−
ρ(n2 γ

2λ2

1−λ2 + nγ
√

λ2

1−λ2 (1− γ
√

λ2

1−λ2 )) + log 2

c(s− 1) log d
s

}

 .

Take γ = O(min{
√

1−λ2

λ2

√
s log d
n ,

√
1−λ2

λ2

√
s log d
n
√
ρ } we have the result.


