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Abstract

We study the facility location problem un-
der the constraints imposed by local differ-
ential privacy (LDP). Recently, Gupta et al.
(2010) and |[Esencayi et al| (2019) proposed
lower and upper bounds for the problem on
the central differential privacy (DP) model
where a trusted curator first collects all data
and processes it. In this paper, we focus on
the LDP model, where we protect a client’s
participation in the facility location instance.
Under the HST metric, we show that there is
a non-interactive e-LDP algorithm achieving
O(n'/*/e?)-approximation ratio, where n is
the size of the metric. On the negative side,
we show a lower bound of Q(n'/4/,/€) on the
approximation ratio for any non-interactive
e-LDP algorithm. Thus, our results are tight
up to a polynomial factor of e. Moreover, un-
like previous results, our results generalize to
non-uniform facility costs.

1 INTRODUCTION

The facility location problem is a classical problem in
combinatorial optimization and operations research,
aimed at identifying where and how many facilities
to open in order to satisfy requests from clients. This
problem has been intensively studied starting from the
1960’s (Kuehn and Hamburger, [1963; Manne| [1964;
Stollsteimer}, [1963|) and has found several applications
in Machine Learning, Data Mining and Bioinformatics
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(Arya et al.. |2004; |Jain and Vazirani, 2001} |Charikar
and Guha [1999).

Formally, the problem can be defined as following.

Definition 1 (Facility (FL) Location Problem). The
input to the Facility Location (FL) problem is a tu-
ple (V, d,f,l_;), where V,|V| = n is the set of poten-
tial clients, (V,d) is a metric, f = (fu)vev € RY,
is the facility cost for each location v € V, and
b = (by)ev € {0,1}Y, indicates if each v € V is
indeed a client. The goal is to find a set of facility
locations S C V which minimizes the following, where
d(v,S) = mingegs d(v, s):

costy(S;b) := Z fs+ Z byd(v, S). (1)

seS veV

The first term of is called the facility cost and the
second term is called the connection cost. We identify
the problem as uniform facility location if f, = f for
allve V.

Recently, several works have studied versions of this
problem under the constraints imposed by Differential
Privacy (DP) (Dwork et al.l [2006)) in order to provide
provable protection to the privacy of the individual
clients. |Gupta et al. (2010) first studied the wuniform
facility location problem and showed that any DP algo-
rithm that outputs the exact set of open facilities must
have a (multiplicative) approximation ratio of Q(y/n).
This shows that there is no hope to get any useful in-
formation for the problem under DP constraints if we
want the exact set of open facilities. For this reason,
Gupta et al.| and later [Esencayi et al.| (2019) consid-
ered the super-set output setting. Under this setting,
instead of the exact set of open facilities, the output
could be a super-set R of the set of open facilities —
every client connects to the closest facility in R, and a
facility is open if there is at least one client connected
to it. |Esencayi et al| showed that under the super-
set output setting and the hierarchically well-separated
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tree (HST) metrics, there is an e-DP algorithm that
achieves an O(1) (expected multiplicative) approxima-
tion ratio; this implies an O( 105") approximation ratio
for the general metric case. On the negative side, Es-
encayi et al.| showed that, under the super-set output
setting, the approximation ratio of any e-DP algorithm

is lower bounded by Q(ﬁ), even for instances on HST

metrics with uniform facility cost.

Our contribution All previous works on differen-
tially private facility location focused on the central
model of differential privacy, where individuals’ data
are first collected and then processed. An alternative
to the central model that has drawn much attention
recently is the local differential privacy (LDP) model,
where each individual manages his/her proper data
and discloses them to a server through some differ-
entially private mechanisms. The server collects the
(now private) data of each individual and combines
them into a resulting data analysis. A classical ap-
plication of this model is the one aiming at collecting
statistics from user devices like in the case of Google’s
Chrome browser (Erlingsson et al., 2014)) and Apple’s
IOS (Tang et al., |2017)).

Thus, a natural question is:

Problem 1: Can we design accurate algo-
rithms for facility location in the local model
of differential privacy? What are the theoret-
ical limitations for designing these algorithms
in this model?

Moreover, all the previous works focused on the uni-
form cost setting, and they cannot be directly applied
to the non-uniform setting. In particular, it is unclear
whether the non-uniformity of the problem requires an
additional price to pay in terms of privacy or accuracy.
Thus another natural question is:

Problem 2: Can we design a differentially pri-
vate algorithm for the non-uniform setting
with guarantees similar to the ones provided
in the uniform setting?

Thus, in this work we focus on the facility location
problem in the local differential privacy model with
non-uniform costs. To our knowledge, we present the
first result on the facility location problem in the LDP
model. In our setting, every user in the metric has
a private bit, which indicates if he/she participated
in the facility location instance or not. We present
an e-LDP non-interactive algorithm which achieves an

1

O(’é—f) approximation ratio under the HST metric,

where n is the size of the metric. To complement the
1

result, we show a lower bound of Q("—fg) on the approx-
imation ratio of any non-interactive e-LDP algorithm.

Finally, we remark that there is a flaw in |[Esencayi
et al| (2019), in their analysis of the e-DP O (1)-
approximation algorithm for the uniform cost facility
location problem in HST metrics. Therefore, both this

result and the O (lofn)—approximation result for gen-

eral metric are incorrect.

In this paper, we give an approximation ratio of
(0] (ﬁ) for HST metrics, for the non-uniform cost fa-

cility location under the central e-DP model and the
superset output setting. Therefore, not only we fixed
the issue in |Esencayi et al.| (2019)), but also our algo-
rithm works for the non-uniform facility cost case and
matches the lower bound in [Esencayi et al. (2019).
Therefore, we apply the tree embedding result and
obtain an approximation ratio of O(logn) for general
metric. The details of the results are given in the sup-
plementary material.

1.1 Related Work

Gupta et al.| (2010) is the first paper studying the dif-
ferentially private facility location problem. Under the
e-DP model, |Gupta et al.| showed that it is impossible
to achieve a useful multiplicative approximation ra-
tio of the facility location problem. Specifically, they
showed that any 1-DP algorithm for FL under general
metrics that outputs the set of open facilities must
have a (multiplicative) approximation ratio of Q(y/n),
which negatively shows that FL in DP model is use-
less. This motivates them to consider the superset
output setting. In the same paper the authors showed
that, under the setting, an O(M) approxima-
tion ratio is possible, where A = max, yev d(u,v) is
the diameter of the input metric.

Nissim et al.| (2012)) studied an abstract mechanism
design model where DP is used to design approxi-
mately optimal mechanism, and they used facility lo-
cation as one of their key examples. Besides the prob-
lem itself, the facility location problem has close con-
nection to k-median clustering and submodular opti-
mization, whose DP versions have been studied ex-
tensively. (Jones et al., 2020; Mitrovic et al., 2017;
Cardoso and Cummings|, 2019; |[Feldman et al.| |2009;
Gupta et al. [2010; [Balcan et all [2017} [Perez-Salazar
and Cummings, [2020)).

The super-set output setting is the same as the prob-
lem in the Joint Differential Privacy model, which was
introduced in Kearns et al.| (2014)). In the model, every
client gets its own output from the central curator and
the algorithm is e-joint differentially private (JDP) if
for every two datasets D, D’ with D’ = D W {j}, the
joint distribution of the outputs for all clients except j
under the data D is not much different from that under
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the dataset D’ (using a definition similar to that of the
e-Differential Privacy). In other words, j’s own output
should not be considered when we talk about the pri-
vacy for j. JDP has been studied for many other com-
binatorial optimization problems (Hsu et al.| |2016alb;
Huang and Zhul, 2018, [2019; |Gupta et al., |2010; |Jones
et al., 2020).

Due to the space limit, some omitted proofs are in-
cluded in the Supplementary Material.

2 PRELIMINARIES

2.1 Differentially Private Facility Location

Given a data range B and a dataset b= {b1, -+ ,bp} €
B™ where each record b; belongs to a party i. Let
A : B" — S be an algorithm on b that produces an
output in S. Let lli denote the vector b without entry
of the party i. Also denote by (v, l;_z) the dataset by
adding v} to b_;.

Definition 2 (Differential Privacy (Dwork et al.|
2006)). A randomized algorithm A is e-differentially
private (DP) if for any i € [n], any two possible
data entries b;,b, € B, any vector I_LZ- e B\ and
for all events 7 in the output space of A, we have

Pr[A(b;,b_;) € T] < e Pr[A(b},b_;) € T].

For the facility location problem in the central model,
we use b = (by)vey € {0,1}V as input, where b,
indicates if v wants to be connected or not. Then
e-DP requires that for any input vectors b and b/
with [b — &'|; = 1 and any event 7 C S, we have
Pr[A(b) € T] < e Pr[A(V') € T].

In the super-set output setting for the problem, the
output of an algorithm is a set R C V of potential open
facilities. Then, every client, or equivalently, every
v € V with b, = 1, will be connected to some facility
in R using some rule (see Definition [7)). Then the
actual set S of open facilities is the set of locations
in R with at least 1 connected client. Notice that the
facility cost of S might be much smaller than that of
R. This is why the super-set output setting may help
in getting good approximation ratios.

Definition 3 (Local Differential Privacy (Dwork
et al) [2006)). Consider n clients with each holding
a private entry b; € B, and a server coordinating the
protocol. An LDP protocol executes for some number
T of rounds. In each round, the server sends a mes-
sage, which is also called a query, to a subset of the
clients requesting them to run a particular algorithm.
Based on the query, each client ¢ in the subset selects
an algorithm, runs it on b;, and sends the output back
to the server.

A randomized algorithm A is e-local differentially pri-
vate (LDP) if for any client ¢ € [n], any two possible
data entries b;,b; € B and for all events T in the out-
put space of A, we have Pr[A(b;) € T] < e Pr[A(b)) €
T]. Moreover, if T' = 1, we say that the protocol is
non-interactive.

2.2 Hierarchical Well-Separated Tree
Metrics and Related Notations

The classic result of |[Fakcharoenphol et al| (2004)
shows that any metric on n points can be embedded
into a distribution of metrics induced by hierarchically
well-separated trees with distortion O(logn). As in
Gupta et al.| (2010) and [Esencayi et al|(2019), we re-
duce an arbitrary metric to a HST metric, with a loss
of O(logn) in the approximation factor.

Definition 4. For any real number \ > 1, an integer
L > 1, a A-Hierarchically Well-Separated tree (\-HST)
of depth L is an edge-weighted rooted tree T satisfying
the following properties:

1. Every root-to-leaf path in T has exactly L edges.

2. If we define the level of a vertex v in T to be L
minus the number of edges in the unique root-to-v
path in T, then an edge between two vertices of
level ¢ and £ + 1 has weight ‘.

Given a \-HST T, we shall always use Vi to denote its
vertex set. For a vertex v € Vr, we let £7(v) denote
the level of v. Thus, the root r of T has level ¢ (r) = L
and every leaf v € T has level ¢p(v) = 0. E| For every
u,v € Vi, define dr(u,v) be the total weight of edges
in the unique path from u to v in T. So (Vp,dr) is a
metric.

We say a metric (V, d) is a A-HST metric for some A >
1 if there exists a A-HST T with leaves being V' such
that (V,d) = (V.dr|v), where dr|y is the function
dr restricted to pairs in V. We guarantee that if a
metric is a A-HST metric, the correspondent \-HST T'
is given.

We introduce some more useful definitions and tools.
Let (V,d, f,b) be facility location instance such that
(V,d) is a A-HST metric. Let T be the correspondent
A-HST tree; so V' C Vr is the set of its leaves. Since
we are dealing with this fixed T in this section, we
shall use £(v) for ¢p(v). Given any u € Vp, we use
T,, to denote the sub-tree of T rooted at u. We define
a vector N over Vr: For every u € Vp, let N, =
EveTuﬂV b, be the number of clients in the tree T,.

!By scaling we assume the minimum non-zero distance
in the metric is 1.
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We can assume that facilities can be built at any loca-
tion v € Vr (instead of only at leaves V'): On one hand,
this assumption enriches the set of valid solutions and
thus only decreases the optimum cost. On the other
hand, for any u € Vp with an open facility, we can
move the facility to the cheapest leaf v in T;,. Then for
any leaf v/ € V, it is the case that d(v’,v) < 2d(v’, u).
Thus moving facilities from Vr \ V to V only incurs a
factor of 2 in the connection cost. So, we can define
fu for any internal u to be the minimum of f, over all
descendants v of w.

Claim 5. With a loss of O(1)-factor in the approxi-
mation ratio, we can assume every v € Vr is a facility.
Moreover, for every u,v € Vi such that v is a descen-
dant of u, we have f, < f,.

An important function that will be used throughout
the paper is the following set of minimal vertices:

Definition 6. For a set M C Vr of vertices in T, let

min-set(M) :={ue M :Yv e T, \ {u},v ¢ M}.

Throughout the paper, approximation ratio of an al-
gorithm A is the expected multiplicative approzimation
ratio, which is the expected cost of the solution given
by the algorithm, divided by the cost of the optimum
solution, where the expectation is over the randomness

of A.

3 BASE ALGORITHM FOR
FACILITY LOCATION ON HST
METRICS

In this section, we give a base algorithm without any
privacy guarantee as the starting point for the e-LDP
algorithm in the local model. The main idea behind
the algorithm is similar to that of Esencayi et al.
(2019). For every vertex v, we compare the cost of
opening v and that of connecting all clients in 7}, to v.
If the former is smaller, then we mark v. We can show
that the min-set of all marked facilities gives an O(1)-
approximation to the facility location problem. How-
ever, to allow an easy transition from the base algo-
rithm to the one with DP guarantee, we make it more
general and involved. The parameter A > 1 is a con-
stant. Its precise value is not important for our LDP
algorithm in Section For the O(ﬁ)—approximate
DP algorithm in Appendix [B] the only requirement is
that A < 2.

3.1 Description of Algorithm and Useful
Definitions

Before describing the algorithm, we need to make a
rule on how we connect clients to open facilities. In-

stead of connecting each client to its closest open fa-
cility using the tree metric, it is more convenient for
us to connect it to the genetically closest facility:

Definition 7. Given a non-empty set R C Vp of fa-
cilities, and a client v € V, we define the genetically
closest facility of v in R to be the facility u € R with
the lowest common ancestor (LCA) of u and v being
the lowest, breaking ties using a predefined total order
over facilities.

The genetically closest facility of v may not be the
same as its closest facility according to the metric if
A < 2. However, they are equivalent up to a factor of
2. Using genetically closest facilities turns out to be
more convenient for us.

Suppose we are given any non-empty set R C Vp of
facilities and we connect each client to its genetically
closest facility in R. In our super-set output setting,
we only open the facilities that have connected clients.
We use open(R) to denote this set.

Algorithm 1 FL-tree(p, p’,7) p,p/ > 1,7 € {%,1,2}
> This is also called the base algorithm.
LLet Mo {v e Vps MO > Lor N, ) >

70 fv}. > We call facilities in M marked and
other facilities unmarked
2: R < min-set(M)

3: return R but only open S := open(R)

The base algorithm FL-tree (Algorithm [1)) takes three
parameters p,p’ > 1 and 7 € {%,1,2}. Recall that
N, = Zveva b, is the number of clients in the tree
T. To get an O(1)-approximation, we can simply set
p = p =7 = 1. The parameters p and p’ are intro-
duced for easy comparisons with the DP algorithms.
In the analysis, we may compare a DP algorithm with
7 = 1 with the base algorithm with 7 = 1/2 or 7 = 2;
this is the reason we introduce the parameter.

Definition 8. Let p > 1 be fixed. We say a vertex v is
cheap if X)) > %. Otherwise, we say v is expensive.

We may assume the root of T is cheap, by extend-
ing the tree at the root: This operation adds a new
root and lets the old root be a child of the new one.
Whether a vertex is cheap or expensive only depends
on the metric and the facility costs. It does not de-
pend on the client set, i.e, the N, or b, values. The
definition depends on p, but we guarantee that p will
be clear from the context.

In Algorithm [I} we mark some vertices in Vp and let
M be those vertices. By definition [} all cheap vertices
will be marked. The vertices that are not marked are
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said to be unmarked. The algorithm returns the set
R := min-set(M) and opens the set S := open(R).

Notice that cheap and marked vertices satisfy the fol-
lowing monotonicity property: An ancestor of any
cheap (marked) vertex is also cheap (marked). This
holds since along a root-to-leaf path, the facility costs
are non-decreasing and N, values are non-increasing.
Due to the properties, we say

e a cheap vertex v is minimal-cheap if all of its chil-
dren are expensive,

e an expensive vertex v is maximal-expensive if its
parent is cheap,

e a marked vertex v € Vpr minimal-marked if all its
children are unmarked, and

e an unmarked vertex v € Vpr mazimal-unmarked if
its parent is marked.

By the definition of min-set, the R returned by Algo-
rithm [I] is exactly the set of minimal-marked vertices.

Definition 9. For any v € Vp, let B, = min{N, -
A f)

The B,’s will be used as budgets to pay the costs:

Claim 10. In any solution to the FL instance, the
cost of open facilities in T}, plus the connection cost of
clients in T, is at least B,,.

Proof. This holds since either some facility in T, is
open, which costs at least f,, or each client in T;, have
connection cost at least (V). O

Let opt be the cost of the optimum solution. Thus the
following corollary is immediate:

Corollary 11. For any Vi C Vp which does not
contain an ancestor-descendant pair, we have opt >

ZUGVl B“'

Analysis of facility cost
cost is straightforward.

The analysis of facility

Claim 12. For any maximal-unmarked vertex v € Vp,
the total connection cost for the clients in 7}, in the
base algorithm is no more than O(p’) - B,.

Proof. Recall that both A and 7 are constants. Since
v is maximal-unmarked, its parent u is marked. Then
all the clients in T, will be connected to some facility
in T,,. So, their total connection cost is at most N, -
O(1) - X+ < O(p') fo. As B, = min{f,, N, - X},
the cost is at most O(p’) - B,. O

Corollary 13. The connection cost of the solution
produced by Algorithm [1|is at most O(p’) - opt.

Proof. Let MU be the set of maximal-unmarked ver-
tices in V. Note that again there is no ancestor-
descendant pairs in MU and every v € V has exactly
one ancestor in the set MU. By Lemma [12] the con-
nection cost is at most

O(p)) > B, < O(p)opt. O
veMU

3.2 Analysis of facility cost

In this section, we analyze the facility cost of the base
algorithm, which is much more involved.

Definition 14. Let u* be the maximal-expensive ver-
tex such that N, > 1 with the largest ¢(u*). Let
0 = 0(u*).

Lemma 15. Let u be any maximal-expensive vertex
with £(u) > £*. Then any algorithm using the geneti-
cally closest vertex rule will open no facilities in 7.

Proof. Notice that N, = 0 by the definition u* and
£* and that £(u) > ¢*. Assuming some client v €
V' is connected to some facility inside T;, and v is
in T, for some maximal-expensive vertex u’. Then
L(u’) < £* < €(u). Since u and u' do not have ancestor-
descendant relation, the LCA of u and ' has level at
least £(u) + 1 > ¢(u’') + 2. However, the parent u”
of u’ is cheap and has level ¢(u) + 1. So, v must be
connected to a facility inside 5. O

Therefore, for any maximal expensive vertex u with
£(u) > £*, we have N,, = 0 and no facilities in T;, will
be open. Thus, for the purpose of analysis, we can
remove T, from T. (This may decrease n; but it can
only make the performance better.) So we have the
following claim:

Claim 16. Every expensive vertex u has £(u) < £*.
Corollary 17. opt > \¢".

Proof. We know that Ty~ contains at least one client.
So we have opt > B~ = min{ f,-, N,=A* } > X¢ since
Ny > 1and f,- > p-AY > A\ asu* is expensive. [

The following lemma and corollary are more general
than needed in this section, but they will be useful in
analyzing algorithms in Section [4] and Appendix [B]

Lemma 18. Let M be the set of marked vertices as in
the base algorithm, M’ C Vr be any subset containing
all cheap vertices. Let R’ = min-set(M’) and S’ =
open(R’). Then, we have

ueS'NM
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Proof. We will consider the expensive and cheap ver-
tices in S’ N M separately to bound the total facility
cost.

First assume that u is an expensive vertex. Notice
that u € 'NM = u € M = N, - \XW > 1o/ f, >
7 fu. This is true since p’ > 1. Then, we clearly have
fu <0OQ) - B,. S’ does not have ancestor-descendant
pairs, so the cost of expensive vertices in S’ N M can
be bounded by O(1) - opt by Corollary

Assume that u is a cheap vertex and N, > 0. Then,
A > % = fu < p~)\é(“) < p-Nu-)\é(“). Since p > 1,
we also know f, < p- fy. Then, f, < p- B,. So, the
cost of cheap vertices in v € 8’ N M with N, > 0 can
be bounded by O(p) - opt by Corollary

Finally, let us analyze the cost of cheap vertices u €
SN M with N, = 0. Focus on such a u. Since u € S/,
there must be some v which connects to v through its
parent edge. Let the least common ancestor of v and v
be u”, and let v’ be a child of v” such that v is in T;,.
Note that v and u” are cheap, v’ is maximal-expensive,
and ¢(u) < £(u/). Then By = min{f,, Ny @)} >
M) > 2\ > %. So fu < p- By. We charge
fu using B,.. As we are using a consistent way to
break ties when connecting clients, we will not use B,
for the same v’ to charge f, for many different u’s.
Also, all the u’’s are maximal-expensive and they do
not contain ancestor-descendant pairs. So, the cost of
cheap vertices u € S’NM with N, = 0 can be bounded
by O(p) - opt. O

Corollary 19. The set S of open facilities produced
by Algorithm [1| has facility cost at most O(p) - opt.

Proof. We apply Claim with M = M, R = R
and S’ = S C M. The facility cost for S is at most
O(p) - opt. O

4 «LDP O(%)-APPROXIMATION
ALGORITHM

In this section, we consider the facility location prob-
lem in the LDP model and propose the first algorithm.
In this local model we assume every vertex v € V is a
potential client and the location of v is public. How-
ever, each v has a private bit b, € {0,1} indicating if
she/he wants to be connected or not. In other words,
b, indicates if v is indeed a client or not in the facil-
ity location instance. Let n = |V|. We first provide
an algorithm and show the upper bound of the utility
of its output. Our algorithm is based on the random
response mechanism and our previous framework in
Section [3l

Theorem 20. Under the super-set output setting,
there exists an eLDP algorithm (Algorithm for

n potential clients in the HST metrics with the (ex-

1
pected) cost of O(Z—;‘) - opt, where opt is the optimal
cost.

Throughout this section, we fix p = p/ = ni. The
value of A does not matter much and so we fix it to 2;
but we keep A for notation consistency. For the privacy
part in our algorithm, each user just perturbs his/her
bit b, and get a private one b by using the random
response mechanism to ensure e-LDP. For the utility
part, we start from the base algorithm FL-tree(p =
p/ =ni, 7 =1)in Algorithm [1} and then add noises
to the N, variables. We use N, to denote the noisy
version of N,, and let M’, R’ and S’ correspond to
M, R and S, to avoid confusion. Then, vertices in M’
are called noisily-marked, and the others are called
notsily-unmarked.

Algorithm 2 LDP-FL-tree(e)

On the user’s side:
1: for every v € V do

Get a b, € {0,1} where b}, < b, with probabil-
ity S5 b, + 1 — b, with probability
end for
4: Each user v € V sends b/, to the server.

1
ec+1°

@

On the server’s side:

5: for every v € Vr do:
6: Ny SH WY (VNT,)| - 25V NT,|
7let M {o € Vs XO) > Lo N, ) >

ni : fv}
> Verticies in M’ are said to be noisily-marked,
and the other verticies are noisily-unmarked.
8: R’ + min-set(M’)
9: return R’ but only open S’ := open(R’)

In the algorithm, ¥'(VNT,) = >
b value over all leaves of T,.

wevar, by is the total

4.1 Analysis of Utility

We proceed to consider the utility of the algorithm. As
we are using N, to replace IV, in the base algorithm,
we need to make sure E[N,] = N, for every v € T.. The
following claim shows that N, is an unbiased estimator
for N, and its variance is not large. It’s proof directly

follows from the random response mechanism.

Claim 21. For every v € V, we have E[N,] = N, and

Var[N,] = Sy [T N V1.

To obtain the approximation ratio of Algorithm [2| we
will compare it with the base algorithm FL-tree (Al-
gorithm (1) with p = p/ = nl/4 1

and 7 = 5 or 7 = 2,
whose solution has a cost O(n'/4) - opt. We will an-
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alyze the facility and connection costs of Algorithm
separately.

Facility Cost of Algorithm We compare the ex-
tra facility cost incurred by Algorithm 2] to that of the
1

: ; _ o _1/4 _
base algorithm with p = p' = n!/* and 7 = 5-

We break S’ into two parts: SN M and S’ \ M. By
Lemma the cost of S’ N M is at most O(p) - opt.
Therefore, it suffices for us to bound the cost of 5"\
M C M’ \ M, i.e., the unmarked but noisily-marked
facilities.

Now we consider a vertex v ¢ M; that is, the ver-
tex v satisfies N0 < ffv and N, < Lf“. Us-

ing Chebyshev’s 1nequahty, we can get a bound of the
probability that v € M’, i.e., N,A®) > n4f :

1
n_ N nif,
Prlve M| =Pr [N, > )\e(v)]

L - | TNV

nif, Var[N,] Te—1)Z
SPI' NUZN’U—’_QAZ(”) é 1 5 = . 3

( 2 > < 2t >

2.\ (v) 2 N(V)

e | T, N VA 4ef|T, N VA
(e 1PV T (e — 1PN
where the second equality is due to Claim [2I] and the

last inequality is due to the fact used that A(*) < n{% .
Thus, in total we have

4ef|T, N VN
poenr) < CROET
Since we have that A(*) goes down exponentially along
a root-to-leaf path, and |7, NV] is the number of
leaves in the tree T,. Therefore, a simple argument
could show that the sum of the right side of (2]) over all
v ¢ M, is at most e 7 times the sum over all rnaxunal—
unmarked vertlces Notlce that an unmarked vertex is
expensive and by Claim [16]all expensive vertices have
level at most £*. Therefore, the sum of over all

. decn)t” - P o
v ¢ M is at most 1 m = O(%))\ .
Finally, we notice that from Corollary we can get

opt > X", Therefore, the expectation of facility cost
1
of S\ M C M'\ M is at most O(%)opt.

Connection Cost of Algorithm [2] For the analy-
sis of the extra connection cost, we will compare our
Algorithmwith the base algorithm with p = p’ = ni
and 7 = 2. Again, M, R and S are as in the base algo-
rithm, and M’, R’ and S’ are as in the LDP algorithm.

It is convenient to assume that in each of the two algo-
rithms, every client is connected to its lowest marked

(noisily-marked) ancestor. Notice that the actual con-
nection costs may be larger by a factor of 2, which
can be ignored. We know that connecting all clients
to their respective lowest marked ancestors has a cost
of O(ni) -opt. Now, in Algorithm [2| every client is
connected to its respective lowest noisily-marked an-
cestors.

To bound the extra connection cost, for every v €
M\ M’, we impose a cost of moving the connection of
all clients in T, from v to its parent. Notice that we
can assume v is expensive since otherwise v € M.

For a fixed expensive v € M, we first bound the prob-
ability of the event v ¢ M’. Notice that we have
M) < nf% and N, - X(®) > aNV/4 1, which imply

1
N, > 2N/, > 2N1Je — 9./n. Thus we have

A(v) = fv/n1/4
lf N
n_ \ _ v
Pr[v¢M]—Pr[N<v() P[N v 2}
Var[N,] 4e |T, N V|
< = . .
CORMICEDENE

Thus, in expectation, the cost of the reconnecting op-
eration for v will be at most

|T, NV

Prjv¢ M']-N,-0O(1) - X" <0 <€12> S AN
1\ TnV]
< —_— .

Notice that T, NV is the number of leaves in T, and
X)) decreases exponentially as the level goes down.
So, it is easy to see that the sum of (3] . over all expen-
sive marked vertices v is upper bounded by /\ 7 times
the sum over all maximal-expensive marked vertices.

For a maximal-expensive marked vertex v, we have

1 |T'u N V| £(v) 1 |T'u N V| fv

B O A < B I A AR

0 (62) Vn A =0 €2 Vn ni
1 o

n4a

Let v* be the maximal-expensive marked vertex with

the maximum cost f,+. Then, the sum of over

all expensive marked vertices v is at most O (E%) .
1

n- L = O(z;) < o

n4

min{fv*,Nv*/\e(”*)} = fu+, where the equality holds
when v* is expensive but marked. Thus the expecta-
tion of extra connection cost of Algorithm [2] compared

1
to the base algorithm is O (Z;‘) - opt.

Notice that opt > B, =
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5 Lower Bound of Non-interactive
e-LDP Algorithms

In this section, we give a lower bound of Q(nie~2) on
the utility of any non-interactive e-LDP algorithm. To
do so, we focus on the following standalone problem
in the bulk of the section. Suppose they are n parties
indexed by [n], each player ¢ € [n] having an input
X; € {0,1}. Let € € (0,1), these n parties need to run
an e-LDP algorithm. We are promised that we are in
one of the following two cases, where ¢ > 0 is a small
enough absolute constant:

e Case (a): X; = 0 for every party 1.
o Case (b): X; ~ Bern (W

i, where we use Bern(p) to denote the Bernoulli
distribution with mean p.

) for every party

The goal of the problem for the central server is to
decide which of the two cases we are at. We say an
algorithm succeeds if the central server outputs cor-
rectly the case number. We first prove the following
theorem:

Theorem 22. For a small enough constant ¢ > 0,
there is no non-interactive e-LDP algorithm that can
succeed with probability more than 0.6.

Before showing the proof, let us first see how Theorem
implies a lower bound of our problem. We consider
a facility location instance with two points w and v in
the metric, where the distance between u and v is ni.
All the n clients are collocated at u. Moreover, v has
a facility of cost 0 and u has a facility of cost nie .
Suppose we are in case (a) or case (b) as defined above.
A client ¢ participates in the facility location instance
if and only if x; = 1. To disallow the algorithm to
take the advantage of the super-set setting, we place
another client at u which is always present.

Thus, in case (a), the optimum solution does not open

u and its cost is ni, since if our algorithm opens u,
1

the cost will be ”—\2 In case (b), an optimum solu-

22 Since if our al-

)| vl

tion can open u and its cost is

gorithm does not open u, the (expected) cost will be
3
@(@ ni) = ©(~2*). By Theorem our algorithm
will make a mistake with constant probability in at
least one of the two cases. And for each case, its ap-
1

proximation ratio to the optimal cost is . Thus, for

<"

any € non-interactive LDP algorithm, its approxima-
1

tion ratio should be at least Q(”—fg)

5.1 Proof of Theorem 22

Before the prove, we first prove the theorem for a very
specific algorithm, where each player ¢ sends a noisy bit
X/ of X; to the central server. That is, we let X! = X;
with probability eeﬁ and X/ = 1—X; with probability
ﬁ. Then the central server has to output the case
number based on (X1, X%, -+, X/). We call such an

algorithm a canonical algorithm.

We set up some notations first. We define X =
(X1, Xo,++,Xp) and X' = (X{, X4,---,X,). Then,
in case (a), we have X! ~ Bern(a), where a := e—i_l
In case (b), we have X/ ~ Bern(b), where b :=
(1

€

c e 1 _"_ee—l

c 1 — .
T (ec=1)v/n ) eF1 + (ec—1)v/m e +1 — e+l | esf1l

m = e—il—s—m = a(l—i—ﬁ). We use
Pr,, Pr, denotes the probabilities under cases (a) and
(b) respectively. To prove that a canonical algorithm
can not succeed with probability more than 0.6, we
first prove that the statistical distance between the
distribution for X’ under case (a) and that under case
(b) is small, whose proof is given in Appendix:

. r
Lemma 23. Z lli’lr[X = 2] Pbr[X =2 <
z'€{0,1}"
0.4.

To show how Lemma implies that the previous
canonical algorithm can not succeed with probability
more than 0.6, we assume the adversary chooses case
(a) and case (b) with probability 1 for each. To suc-
ceed with the largest probability, the algorithm should
output ‘a’ if Pr,[X' = a'] > Prp[X’' = 2'] if it sees
X’ = 7/ and ‘b’ otherwise. Thus, the success proba-
bility of the algorithm is

> gmax{ il prle’

z’€{0,1}"
1 Pro[2'] + Pry[z’] | Pra[a’] — Pry[2']]|
T2 2 2 * 2 )
z’e{0,1}n
1

1
=5+1 Z ’P;r[z’} - Pbr[x'H < 0.6.
z'€{0,1}"
Above, we used Pry[z'] for Pr,[X’ = 2] and Pry[z/]
for Pry[ X' = 2].

[\

Now we proceed to consider any general non-
interactive algorithm A. Assume in A every player
1 sends a message Y; to the central server. Then the
algorithm has to output the case number based on the
messages (Y1,Ys, -+, Y},). We need to show that if the
algorithm is e-locally differentially private, then the al-
gorithm can not succeed with probability more than
0.6.

Indeed, we show that it suffices for each player i to
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send the bit X/ generated as in a canonical algorithm
to the central server for it to simulate the algorithm A.
To prove the statement, we fix a player i. Let Py(-) and
Py () be the probability measurement functions for Y;
conditioned on that X; = 0 and X; = 1 respectively.
That is, for every measurable set S, we have

PI‘[Y; S S|X, = 0] = Po(S),
PrlY; € S|X; = 1] = P(S).

Since the algorithm is e-LDP, we must have e™¢ <
Po(S)

PS) <ef.

For convenience, we define p = m; so X; ~
— _1 —

Bern(p) under case (b). Then a = =5 and b = a +

(ec=D)p
ec+1

. We have for every measurable set S,
Pi(Y; € 5] = R(S).
PrlYi € 5] = (1 = p)Io(5) +p- Pa(S)
= Py(S) +p- (P1(S) — Po(9)).

We prove the following lemma to establish the re-
duction from general non-interactive algorithms to a
canonical one:

Lemma 24. There are probability measurement func-
tions P} and Pj such that

Po(S) = (1 —a)Py(S) +aPy(5)
= Py(S) + a(P{(S) — Py(9)),
and Py(S) +p- (P1(S) — Po(9))
= (1= b)Py(S) +bP((S)
= Fy(S) + b(P{(S) — Fy(S)).

Now in the new algorithm A’, player ¢ will send X/
generated as in a canonical algorithm to the central
server. We use the two probability measurement func-
tions PJ(-) and P{(-) from the above lemma. If the
central server sees X! = 0, it produces Y; according
to Pj. If X! =1, it produces Y; according to P;. By
the lemma, the distribution for the Y; generated by the
central server in A’ will be the same as the distribution
for Y; in A.

Therefore, we can simulate A using the algorithm A'.
However, A’ is a canonical algorithm and thus can not
succeed with probability more than 0.6. This finishes
the proof of Theorem
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Supplementary Material:
On Facility Location Problem in the Local Differential Privacy
Model

A MISSING PROOFS

In this section, we provide the missing proofs which were not given in the main paper due to the page limit.
Claim 21. For every v € V, we have E[N,] = N, and Var[N,] = ﬁﬁv nviy.

Proof. We denote V,, =T, NV, for any fixed v € V we have

- e“+1
E[N,] = E[|D' NV, v,
L (Elav) - 6+1| )
es—i—l e
= NV, Ve Ve
(G5l + W\ DL - Al
e—|—1 e —1
— : DAV, =|DNV,| =N
-1 et1
- e +1 e +1
Var[N]Z(efl) Var[|D' NV,|] = ( ) ZVar weD’]
u€Vy,
e +1 e 1 ef
_<6€1) .65+1.e€+1.|vv|_(65—1)2|VU|' =
Lemma 23. Z ‘Pr[X’:x’]flzl’)r[X'::):’] <0.4.

2/€{0,1}n

Proof. Notice that Pr,[X’ = 2'] and Pr[X’ = 2/] only depend on |2'];. So, the left-hand side of the inequality
in the lemma is exactly

N
Z)Pr|X|1:g] Pr|X|1:j’ Z( >’aa1a)N i1 - BN,

j=0

Notice that wﬁig))f:f = (%)j (%_Z”) is a decreasing function of j. Then let j; € [0, N] be the real number

such that the ratio is exactly 1 when j = j;. Then, for j € [0, j1], we have a/ (1 —a)V=7 > b/ (1 — b))V, and for
every j € (ji, N], we have a/ (1 — a)N =7 < /(1 — b)N 4.

We can prove that j; € (Na, Nb). The following is a simple fact: Let g € (0,1) be fixed, and x be a variable in

[0,1], then 29(1 — )17 is maximized when x = ¢q. (Consider the natural logarithm of x9(1 — x)!~9, which is

glnz 4 (1 —¢)In(1 — x). The derivative of the function is £ — 129 " which is a decreasing function of = in the

11—z’
domain (0,1) and attains 0 value at x = ¢.) Therefore,

(E)Na 1—a N(1-a) _ aa(l_a)l—a N> ) (E)Nb 1—a N(1-b) B ab(l_a)l—b N -1
b 1-b — \be(1 —b)t-a ’ b 1-b o\ Bb(1 — D)t ’
So, we have the left hand side of the inequality in the lemma is

22( )(w 1-a) ‘j—bj(l—b)N_j). (4)

i<i
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Using the Chernoff bound, we have

4 8Na
Pr|| X'y < (1—) Na} <e Na =e 8,
x| VNa

This implies that the contribution of integers j in [0, o) to () is at most 2e=% < 0.01.

Let jo = Na — 4V Na. Then, we only need to bound the contribution of integers j in [jo,j1]. This is done by
proving that for every j € [jo, j1], we have

- > 0.9. (5)

If this holds, then
> (‘>(a3(1—a)N3 Ya-n¥)y <ol Y ( >a]1—a)N3<01

= J J

J€ljo,inl j€ljo.nl
So the contribution of integers j in [jo, j1] to is at most 0.2. This proves the lemma.
It remains to prove (). Let 6 = (j — Na)/v/N. Notice that 6§ may be positive or negative, but || < max{(j; —
Na)/V/N,(Na — jo)/v/N}. Notice that Jl\;g“ < N%“) = =% and N\“ﬁjo 4/a = \/%, When c is

< <3.

€

sufficiently small, the second upper bound is bigger, and thus |6| <

We bound the logarithm of the left side of :

j'1n<1+b;a>+(N—j)ln(1— If:f)

_ (Na+0\/ﬁ>.1n(1+\/cﬁ) +(N(1a)9\/ﬁ)1n<1\6/6%)
> o) (- 5(5) )+ (re-o-0m) (- (5))
:(1+66)9c—622“_(1_a)62662+:0/c; <e2€—;)_

Notice that |6] < 3. If we make ¢ to be small enough constant, then the above quantity is at least —0.1, implying
the left side of is at least e~ %1 > 0.9. O

Lemma 24. There are probability measurement functions P} and P] such that

Po(S) = (1 —a)Py(S) + aP;(S)
= Py(S) + a(P{(S) — Py(9)),
and Py(S) +p- (P1(S) — Po(9))
= (1=0b)P(S) + bP;(S)
= Fy(S) + b(P(S) — Fy(S))-

Proof. To guarantee the two equalities, we need
ap(P1(S) — Po(S)) (1—a)p
b—a ’ b—a

It is easy to see that for every measurable S and its complement S, we have P}(S)+P}(S) = 1 and P}(S)+P|(S) =
1. To show that Pj and P| are probability measurement functions, we only need to prove that they are non-
negative. Expressing a,b in terms of ¢, we have any measurable set .S,

p(Pi(S) — Po(S)) _ e - PRo(S) (5)

Fy(S) = Po(S) - P{(S) = Py(5) +

(P1(S) — Po(9)).

P(S) = Po(S) — >0,

(ec=1p -1 -1
P{(S) = Po(S) + eep(P(le(eszl)I;O(S)) - egéepj(f) B (—Si = .
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B O(\/ig)-DP Algorithm for HST in Central Model

In this section we give our O(ﬁ)—approximate e-DP algorithm for facility location under HST metrics, in the

super-set output setting. This fixes a bug to the upper bound in |Esencayi et al.| (2019). Secondly, unlike
Esencayi et al., our algorithm works for the case of non-uniform facility costs. The detail description is given in
Algorithm [3]

In the algorithm we use P, for every vertex v € V to denote the set of ancestors of v, including v itself. Let X

denote the union of expensive vertices and minimal-cheap vertices. We set p = p/ = ﬁ in the base algorithm.

We still have 7 € {3,1,2}. Let A =2 and n = V/\.

Recall that a vertex v is cheap if AX¢(¥) > Ve fu, otherwise expensive. We say a vertex v is minimal-cheap if its
children are all expensive.

Algorithm 3 DP-FL-tree(e)

1: for every v in X, define N, := N, + Lap SL , where ¢ = 15t
c-€ /4 ~772(U) n

2: let M’ « {v € Vp : X > \/ef, or N, - M) > f, /\ﬁ} > vertices in M’ will be called noisily-marked
vertices, and other vertices are said to be noisily-unmarked.

3: O+ {veM Yue ((P,\{v})NX),N, X > f,/./e)}

R’ + min-set(C)

5: return R’ but only open S’ := open(R’)

b

The main difference between the base algorithm with 7 = 1 and here (other than that between N,’s and
N,’s) is that we introduce a new filtering operation to obtain the set C in Step [3] and our R’ is open(C). It is
easy to see that any node v with \{(*) > f,\/e is in C.

By the way we define the noise for vertices, we can show that the algorithm is e-DP:

Lemma 25. Algorithm [3| satisfies e-DP.

Proof. Consider two neighboring data sets D and D’, and let v be the unique leaf vertex that the two data sets
differ. We will prove e-DP of set M’, and that would be sufficient since set R’ is completely decided by M’.

First of all, for all u € V7 which is not an ancestor of v, Nu|D and Nu|D’ have the same distribution. We also

do not need to worry for u such that A/(®) > V€fu, because they are always marked. So, we only need to look

into the case \(¥) < \/ef, and u is an ancestor of v.

ced/Ant(w)
Vi

. . . u . £(w)
Note that we are only interested in vertices u such that # < /€, or equivalently, Wff < et Let 0 = ((u)

Due to the property of Laplacian distribution, the sub-algorithm for such a w is -differentially private.

where ¢ is the maximum level u satisfying this condition. Now, let us figure out the privacy budget we are
using for all vertices of interest, starting from v’ going down towards v. For v/, the privacy budget we are

. . 3/4, £(u’) . . 3/4, £(u) 3/4, 0" —1
using is % < ce’/*e'/* = ce. For the next vertex u (child of u’), we're spending < \/;]T = <& \/%

ced/4 . 772/ < 663/461/4
no =

starting from v’ towards v. If we add them all for all such u vertices, we have

= % - €. Similarly, the privacy budgets we’re spending are at most ce, %e, 77%6’ and so on,

Vi

c c c
ce+—e+—et-+—e=ceY (=) <ee—r
noon ' ;77 5 on—1

The following two lemmas show that the extra facility and connection cost incurred by the noise is small in
expectation:

Lemma 26. The cost of facilities in S’ is O(ﬁ) - opt.
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Proof. We break S’ into two parts: S"NM and S'\ M. By Lemma the cost of S’N M is at most O( -) - opt.

Therefore, it suffices for us to bound the cost of S\ M C M’\ M, i.e, the unmarked but noisily-marked facﬂltles.
Focus on a vertex v ¢ M; that is, a vertex v satisfying \*(") < /ef, and N M) < Qf—\/g We bound the
probability that v € M’, i.e, N ) > %, using the following property of Laplace distribution:

Lemma 27. If Y ~ Laplace(b), then Pr[|Y| > tb] = exp(—t) for any t.

With the lemma, we can bound the probability:

Prlv e M'] = Pr{Nv_)\e({;}\[]
N7 fv _
SPI‘|:NUZNU+W =Pr N N —2)\61))\[

— ex / \/ﬁ = ex 661/4 fv
P 7o v)\[ ce3/Apf() L ICONE

Note that N, — N, is the Laplacian noise we are adding in the algorithm and we used Lemma Thus, we have

fv 1 v C
Prlve M- f, < fo- eXp( 7€ ) zﬁ./\f().yzexp(_i.y),

A{(v One can easily show that the function g(y) = y* - exp(—$ - y) is bounded by a constant

d= % -e~2. Now, we have

where y = €!/4.

Prjve M']- f, < — - X (6)

Sl

The vertices of S’ \ M are divided into two cases below.

1. The vertices v € 8"\ M with N, > 1. Let S} denote that set. Let Ty (v) := {u|u € T, \ M, N,, > 1}. The
expected open facility cost in T (v) is at most

Costy(T,) = Z Prlu € M'|u ¢ M]- f, < Z iﬁ MW =0(1) - -min{ N, £}

u€T (v) u€eTy (v)

%\H

The facility open cost of S7 is bounded by

Cost; < Z Cost1(T,) < O(1/Ve) Z B(v) = O(opt//e),

veVy veWV;

where Vi := {u ¢ M,(P, \ {u}) € M,N, > 1} is a set of maximal-expensive points each with positive
number of demand clients, and opt > ZvEVl B(v) based on Corollary since V7 does not have any
ancestor-descendant pair.

2. The vertices u with N, = 0 in S\ M. Let Sj, denote that set of vertices. For each v € X, let Ty(v) :=
{u:u €T, P(z) =v,N, =0} denote the union of nodes of subtrees each with parent be v and has zero
demand points, recall that P(u) denotes the parent of u. Let Z,/\/€ = N, - XX(®) if N, - M) > f, /. /e and
Z, = 0 otherwise, where v € X. Let us denote the expectation of Z, as E[Z,], which is

E[Z,) = e -\ [ N, + £eacp(—m)cla:
fay _N 2b b
At e T
o Ny, 1
< Ve X | an, +/ . %exp(_%)dx =0(1) - max{Ny, 1} ) (7)
€
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when b = (%) > 0 (the conclusion above is trivially true for the case b = 0) and exp(— |$|) is the

density function of Laplace(b). We use indefinite integral that [ &exp(—%)dz = —Lexp(—%)(b+ x) in the
= v-b where v > 0. We have [~ ;, A 2beacp(—%)dar: = Lexp(—y)(y+1)b.
YN

We have exp(—7) - vb = exp (—61/41 /,\{ZL)) 0\2({7’;@ = Oﬁl) based on formula before (6). Also we have

v v v v O
Bxp(—fy) . b = exp <—€1/4 )\{(v)> . (%) = exXp (—61/44 /)\{(U)> . (61/41 /)\{(U)> . i = il) .

Note that |To(v) NS’] > 1 could not happen based on genetically closest facility assignment rule. For
each v € X, we denote Cost(Ty(v)) as the total facility open cost of nodes in Ty(v), and its expectation
E[Cost(Ty(v))] is bounded by E[Z,], because we add the facility w € Tp(v) with facility cost fu, (fuw = fo)
to C only if N, - X(") > f,,/\/e. Define C, the as condition that S’ N (T, \ Ty(v)) = 0 where v € X. Note
that adding condition C, would not increase E[Z,].

computation above. Let (/\2({3 7 =

1). If condition C, does not hold on, then |Ty(v) N.S’| = 0 based on genetically closest facility assignment
rule. In that case we have the number of open facilities in Ty (v) is zero and Cost(Tp(v)) = 0.

2). If condition C, hold on, then sum connection cost of nodes in T, is at least N, - M@ That means
E[Cost(Ty(v))] can be charged to connection cost of T, by O(1/+/€) factor when N, > 1. Note that
for any ancestor-descendant pair (v, w) where C,, holds on, v is the ancestor of w and w ¢ Ty(v), then
we have that the number of open facilities in Ty(w) is zero.

Note that S C X as each of cheap vertex is in C. Also any point u € S} has at least one ancestor
v € X with N, > 1. The facility open cost of Sj is bounded by Costy < > i, Cost(Tp(v)) where
Vo :={N, >1,C, hold on ,v € X : Vu € ((P, \ {v}) N X),C, does not hold on } .

Hence E[Costs] can be charged to sum of connection cost (denote that sum as Cost.) within O(1/+/¢)
factor, namely O(ﬁ)Costc. Also the total connection cost in solution produced by Algorithm [3|is O(opt)

(It was shown in Lemma . The facility open cost of Sj, is bounded by O(ﬁopt).

This finishes the proof of Lemma O

Lemma 28. The expected increase of connection cost in Algorithm (3} is O(1) times that of Algorithm 1 (main
body of paper) with parameter p = p’ = ﬁ and 7 = 1.

Proof. For the convenience of our analysis, we will assume that every client is connected to its lowest noisily
marked ancestor. Notice that the actual costs may be larger by a factor of 2 and it can be ignored.

Focus on a vertex v € S, so some clients are connected to v in the base algorithm. An additional connection
cost in T, will only incur in the case that v is not open in Algorithm [3] and vertices formerly connected to v
will have to connect some ancestor of v. Let the ancestors of v(including itself) from the bottom to the top
be vg = v,v1, v, --. Due to the symmetric property of laplace noise, Prvg ¢ M’] < 1/2 and in that case the
connection cost increases by a factor of \. We only need to consider the case X*(") < \/ef,, otherwise ‘(") > \/ef,
and v; ¢ X. Hence we have either

\7 . U”L) f _ N7 . o o 7 f’U
Pr[N,, < fv/\[} <Pr|N,, < \[)\1)\“” :| Pr |:Nvi Ny, < —(1-1/A )\/E)\f(”)}
_ i \/aqum _ iy, 1/4 fo
=exp | —-(1-1/N)—"—— ] =exp <(11/)\ ' ce " )
- N

<exp (—(1=1/A)cn’)

or v; ¢ X. The probability that v;_; ¢ C (i > 0) assuming its ancestors are subset of C, is at most exp(—c'n?)
where ¢ = —(1—1/\)c. The general that v; ¢ C the connection cost increases by a factor of and the corresponding
increase of connection cost is by a factor of A\?. Therefore, the expected scaling factor for the connection cost
dues to the noise is at most

1/2+Z ) exp(—c'AV?) = 0(1). O
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Combining the Lemma [26| and Lemma [28] gives the result.
Theorem 29. Algorithm [3| gives O(ﬁ)—approximation.

Finally, our connection cost is only O(1) - opt. So, in the general metric, the e-DP algorithm gives an O(logn)-
approximation, assuming € is not too small.
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