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Abstract

In this paper we study the problem of estimating stochastic lin-
ear combination of non-linear regressions, which has a close
connection with many machine learning and statistical models
such as non-linear regressions, the Single Index, Multi-index,
Varying Coefficient Index Models and Two-layer Neural Net-
works. Specifically, we first show that with some mild assump-
tions, if the variate vector x is multivariate Gaussian, then
there is an algorithm whose output vectors have `2-norm es-
timation errors of O(

√
p
n
) with high probability, where p is

the dimension of x and n is the number of samples. Then we
extend our result to the case where x is sub-Gaussian using the
zero-bias transformation, which could be seen as a generaliza-
tion of the classic Stein’s lemma. We also show that with some
additional assumptions there is an algorithm whose output vec-
tors have `∞-norm estimation errors of O( 1√

p
+

√
p
n
) with

high probability. Finally, for both Gaussian and sub-Gaussian
cases we propose a faster sub-sampling based algorithm and
show that when the sub-sample sizes are large enough then
the estimation errors will not be sacrificed by too much. Ex-
periments for both cases support our theoretical results. To
the best of our knowledge, this is the first work that studies
and provides theoretical guarantees for the stochastic linear
combination of non-linear regressions model.

Introduction
We study the problem of estimating stochastic linear combi-
nation of non-linear regressions. The model can be formally
defined as follows.
Definition 1 (Stochastic Linear Combination of Non-linear
Regressions). Given variates x ∈ Rp and z1, · · · , zk ∈ R
such that E[x] = 0 and zi’s for all i ∈ [k] are i.i.d random
variables independent of x with E[zi] = 0 and Var(zi) = 1,
the response y is given by

y =

k∑
i=1

zifi(〈β∗i , x〉) + ε, (1)

where β∗1 , β
∗
2 , · · · , β∗k ∈ Rp are unknown parameters, fi’s

for all i ∈ [k] are known (but could be non-convex) link
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functions, and ε is some random noise (from an unknown
distribution) satisfying E[ε] = 0 and is independent of x and
zi’s.

The goal is to estimate the parameters β∗j for
all j ∈ [k] from n observations (x1, y1, {z1,i}ki=1),
(x2, y2, {z2,i}ki=1), · · · , (xn, yn, {zn,i}ki=1).

This model has a close connection with many models in
Statistics, Machine Learning, Signal Processing and Informa-
tion Theory: (1) when k = 1, the model is reduced to the non-
linear regression estimation problem which has been studied
in (Zhang, Yang, and Wang 2018; Beck and Eldar 2013;
Yang et al. 2016; Cook and Lee 1999) and is related to com-
pressed sensing and image recovery as well; (2) when k = 1
but the link function f1 is unknown, it becomes the Single In-
dex Model, which is one of the most fundamental models in
statistics and has been studied for many years (Ichimura 1993;
Horowitz 2009; Kakade et al. 2011; Yang, Balasubrama-
nian, and Liu 2017; Radchenko 2015); (3) when k ≥ 1,
zi’s are deterministic but fi’s are unknown, this model will
be a special case of the Multi-index Model which has
been studied in (Li 1991; 1992; Li, Duan, and others 1989;
Yang et al. 2017); (4) when k ≥ 1, zi’s are stochastic but
fi’s are unknown, it will be the Varying Coefficient Index
Model which was introduced by (Ma and Song 2015) and has
wide applications in economics and medical science (Fan and
Zhang 2008); (5) when all fi’s are the same, the model can
be viewed as a Two-layer Neural Network with k hidden
nodes and random hidden-output layer weights.

To estimate the parameters in Model (1), the main chal-
lenge is that without the assumption that fi’s are convex
or similarities between them, it is hard to establish an ob-
jective function that can be efficiently optimized using op-
timization methods such as (Stochastic) Gradient Descent.
Recently, some works including (Yang, Balasubramanian,
and Liu 2017; Na et al. 2018; Yang et al. 2017) studied and
proposed efficient algorithms for the Single Index, Multi-
index and Varying Coefficient Index models using Stein’s
Lemma. Their theoretical guarantees are measured in terms
of ‖βj − cβ∗j ‖2, j ∈ [k], where βj is the estimator for β∗j and
c is a constant depending on many parameters in the mod-
els (such as fi’s, β∗j ’s and the distribution for x). However
there is a common issue related to the constant c in these



results: They did not provide a method to compute or even
estimate c. To address this issue, we measure the error in
terms of βj − β∗j for all j ∈ [k]; that is, we do not introduce
the constant c. The key question the paper tries to answer is:

Is there an efficient method whose output vec-
tors β1, β2, · · · , βk have small errors compared to
β∗1 , β

∗
2 , · · · , β∗k?

In this paper, we answer the question in the affirmative
under some mild assumptions on the model. Specifically, our
contributions can be summarized as follows.

1. We first consider the case where x multivariate Gaussian.
In this case, we show that there is a special structure for
each β∗j , j ∈ [k]: β∗j = cjβ

ols
j , where cj is a constant

depending on the link function fj and x, and βolsj is the
Ordinary Lest Square estimator w.r.t yzj and x, i.e., βolsj =

(E[xxT ])−1E[zjyx]. Based on this key observation, we
propose an algorithm which estimates cj’s and βolsj ’s, and
outputs {βj}kj=1 satisfying ‖βj−β∗j ‖2 ≤ O(

√
p
n ) for each

j ∈ [k] with high probability. Moreover, in order to make
our algorithm faster, instead of using linear regression
estimator to approximate βolsj , we use the sub-sampling
covariance linear regression estimator (Dhillon et al. 2013).
We show that if the sub-sample size is large enough, the
error bound is almost the same as in the previous ones.

2. We then extend our result to the case when x is (bounded)
sub-Gaussian. The challenge is that the result for the Gaus-
sian case depends on some properties of Gaussian distri-
bution which are not satisfied in the sub-Gaussian case.
To overcome this, we use the zero-bias transformation
(Goldstein, Reinert, and others 1997), which could be
seen as a generalization of the Stein’s lemma (Brillinger
1982). Particularly, we show that instead of the equal-
ity β∗j = cjβ

ols
j , we have the `∞ norm estimation error

‖β∗j − cjβolsj ‖∞ ≤ O( 1√
p ) with some additional mild as-

sumptions. Based on this and the same idea from the Gaus-
sian case, we show that there exists an algorithm whose out-
put vectors {βj}kj=1 satisfy ‖βj −β∗j ‖∞ ≤ O( 1√

p +
√

p
n )

with high probability. Similarly, we also propose a sub-
sampled version of our algorithm as in the Gaussian case.

3. At the end, we show the experimental results on both
Gaussian and sub-Gaussian cases with single/mixed type
of link functions, and these results support our theoretical
results above.

To the best of our knowledge, this is the first paper studying
and providing the estimation error bound for Model (1) in
both Gaussian and sub-Gaussian cases.

Due to the space limit, omitted proofs and the background
are included in the full version of the paper. The source code
of experiments can be found at github.com/anonymizepaper/
SLSE.

Related Work
As we mentioned above, there is no previous work on Model
(1) with guarantees on the `2 or `∞ norm of the errors βj−β∗j .
Hence, below we compare with the results which are close to
ours.

When the link functions fj’s are unknown, Model (1) is
just the Varying Coefficient Index Model. (Na et al. 2018)
provided the first efficient algorithm for this model. Al-
though they considered the high dimensional sparse case,
their method requires the underlying distribution of x to
be known, an unrealistic assumption for most applications.
Moreover, their estimation errors are measured by the differ-
ences between βj’s and cβ∗j ’s for an unknown c, while in our
results we have fixed c = 1.

When the link functions fj’s are all the same, then our
model can be reduced to the two-layer neural network with
random hidden-output layer weights. Previous work on the
convergence results all focused on the gradient descent type
of methods such as those in (Zhang et al. 2019; Zou et al.
2018; Nitanda and Suzuki 2019). However, our method is
based on Stein’s lemma and its generalization. Compared
with the gradient descent type methods, our algorithm is non-
interactive (that is, we do not need to update estimators in
each iteration) and parameter-free (that is, we don not need
to tune the step-size). Moreover, our method can be extended
to the case where the link functions fj’s are different.

Our method is motivated by Stein’s lemma (Brillinger
1982) and its generalization, the zero-bias transformation.
Several previous studies have used Stein’s Lemma in var-
ious machine learning problems. For example, (Erdogdu,
Dicker, and Bayati 2016; Erdogdu 2016) used it to accel-
erate some optimization procedures, (Liu and Wang 2016)
applied it to Bayesian inference and (Yang, Balasubrama-
nian, and Liu 2017; Yang et al. 2016; Na et al. 2018;
Wei, Yang, and Wang 2019) used it and its generalizations
in the Single Index, Multi-index, Varying Coefficient Index
and Generative models, respectively. The zero-bias transfor-
mation has also been used in (Erdogdu, Bayati, and Dicker
2019) for estimating the Generalized Linear Model. However,
due to the difference between the models, these algorithms
cannot be applied to our problem.

Preliminaries
In this section, we review some necessary definitions and
lemmas.

Definition 2 (Sub-Gaussian). For a given constant κ, a ran-
dom variable x ∈ R is said to be sub-Gaussian if it satisfies
supm≥1

1√
m
E[|x|m]

1
m ≤ κ. The smallest such κ is the sub-

Gaussian norm of x and it is denoted by ‖x‖ψ2 .
Similarly, a random vector x ∈ Rp is called a sub-

Gaussian vector if there exists a constant κ such that
supv∈Sp−1 ‖〈x, v〉‖ψ2

≤ κ, where Sp−1 is the set of all p-
dimensional unit vector.

In order to extend our results to the sub-Gaussian case, we
will use the zero-bias transformation which is proposed by
(Goldstein, Reinert, and others 1997). It is a generalization
of the classic Stein’s lemma in (Brillinger 1982).

Definition 3. Let z be a random variable with mean 0 and
variance σ2. Then there exists a random variable z∗ such
that for all differentiable functions f we have E[zf(z)] =
σ2E[f ′(z∗)]. The distribution of z∗ is said to be the z-zero-
bias distribution.



The standard Gaussian distribution is the unique distribu-
tion whose zero-bias distribution is itself. This is just the
basic Stein’s lemma.
Lemma 1. (Dhillon et al. 2013) Assume that E[x] =

0,E[xix
T
i ] = Σ ∈ Rp×p, and Σ−

1
2x and y are sub-Gaussian

with norms κx and γ respectively. If n ≥ Ω(γκxp), then with
probability at least 1− 3 exp(−p) we have

‖Σ 1
2 (β̃ols − βols)‖2 ≤ C1κxγ

√
p

n
, (2)

where βols = Σ−1E[yx] is the OLS estimator w.r.t y and x,
β̃ols = (XTX)−1XTY is the empirical one, and C1 > 0 is
some universal constant.
Lemma 2. (Erdogdu, Bayati, and Dicker 2019) Let Bδ(β̃)

denote the ball centered around β̃ with radius δ. For i =
1, 2, · · · , n, let xi ∈ Rp be i.i.d random vectors with a covari-
ance matrix Σ. Given a function g that is uniformly bounded
by L and G-Lipschitz, with probability at least 1− exp(−p)
we have

sup
β∈Bδ(β̃)

∣∣∣∣∣ 1n
n∑
i=1

g(〈xi, β〉)− E[g(〈x, β〉)]
∣∣∣∣∣ ≤

2(G(‖β̃‖2 + δ)‖Σ‖2 + L)

√
p

n
.

Assumption 1. We assume that for each j ∈ [k], the random
variable yzj is sub-Gaussian with its sub-Gaussian norm
‖yzj‖ψ2

= γ.
Note that this assumption holds if y is bounded and zj is

sub-Gaussian or zj is bounded and y is sub-Gaussian.
Assumption 2. We assume that there exist constants G,L >
0 such that for each j ∈ [k], f ′j is G-Lipschitz and bounded
by L. Also for j ∈ [k], we let E[f ′j(〈x, β∗j 〉)] 6= 0.

Notations For a positive semi-definite matrix M ∈ Rp×p,
we define the M -norm for a vector w as ‖w‖2M = wTMw.
Also we will denote BδM (β̃) as the ball around β̃ with radius
δ under M -norm, i.e., BδM (β̃) = {β : ‖M 1

2 (β − β̃)‖2 ≤ δ}.
λmin(M) is the minimal singular value of the matrix M . For
a semi positive definite matrix M ∈ Rp×p, let its SVD be
M = UTΣU , where Σ = diag(λ1, · · · , λp), then M

1
2 is de-

fined as M
1
2 = UTΣ

1
2U with Σ

1
2 = diag(

√
λ1, · · · ,

√
λp).

Gaussian Case
In this section we consider the case where x is sampled from
some multivariate Gaussian distribution, then we will extend
our idea to the sub-Gaussian distribution case in next section.

Our algorithm is based on the following key observation
using some properties of the multivariate Gaussian distribu-
tion.
Theorem 1. Consider Model (1) in Definition 1 under As-
sumptions 1 and 2. Moreover, assume that the observa-
tions {xi}ni=1 are i.i.d sampled from N (0,Σ). Then each
β∗j , j ∈ [k] can be written as

β∗j = cj × βolsj , (3)

where βolsj = Σ−1E[zjyx] and cj is the root of the function
lj(c)− 1 where

lj(c) = cE[f ′j(〈x, βolsj 〉c)]. (4)

From Theorem 1 we can see that, in order to estimate
β∗j , it is sufficient to estimate the terms βolsj = Σ−1E[zjyx]
and cj . If we denote zjy as the response and x as the vari-
ate, then the term βolsj is just the Ordinary Least Square

(OLS) estimator. Thus we can use its empirical form β̃j
ols

=
(
∑n
i=1 x

T
i xi)

−1∑n
i=1 zi,jyixi = (XTX)−1XTYj as an es-

timator, where X = [xT1 ;xT2 ; · · · ;xTn ] ∈ Rn×d is the data
matrix and Yj = [z1,jy1, · · · , zn,jyn]T is the corresponding
response vector.

After getting the estimator of βolsj , denoted by β̃olsj , we
use it to approximate cj . That is we find the root ĉj of the
empirical version of lj(c)− 1, i.e., l̂j(c)− 1, where

l̂j(c) =
c

n

n∑
i=1

[f ′j(〈xi, β̃olsj 〉c)].

Note that there are numerous methods available to find a
root of a function, such as Newton’s root-finding method
with quadratic convergence and Halley’s method with cubic
convergence. We also note that this step only cost O(n) per-
iteration. After that, we could estimate each β∗j by β̂nlrj =

ĉj β̃
ols
j . In total, we have Algorithm 1.

Algorithm 1 SLS: Scaled Least Squared Estimators
Input: Data {(xi, yi, {zi,j}kj=1)}ni=1, link functions
{fj}j∈[k].

1: Option 1: Let X = [x1, x2, · · · , xn]T ∈ Rn×p and
compute the Σ̂−1 = (XTX)−1.

2: Option 2: Construct a sub-sampling based OLS estima-
tor, that is let S ⊂ [n] be a random subset and take
Σ̂−1S = |S|

n (XT
SXS)−1, where XS ∈ R|S|×p is the data

matrix constrained on indices of S.
3: for j = 1, 2 · · · , k do
4: Let Yi = [z1,jy1, · · · , zn,jyn]T ∈ Rn. For Option

1, Compute the ordinary least squares estimator β̃olsj =

(Σ)−1XTYj . For Option 2, take β̃olsj = (Σ̂S)−1XTYj .
5: Denote ỹj = Xβ̃olsj . Then use the Newton’s root-

finding method to the function c
n

∑n
i=1[f ′j(ỹj,ic)] − 1,

denote the root as ĉj :
6: for t = 1, 2, · · · until convergence do
7: c = c− c 1

n

∑n
i=1 f

′
j(cỹj,i)−1

1
n

∑n
i=1{f ′j(cỹj,i)+cỹj,if

(2)
j (cỹj,i)}

.

8: β̂nlrj = ĉj · β̃olsj .
9: return

(
β̂nlrj

)
j∈[k]

The following theorem shows that the converge rate of
the estimation error for each ‖β̂nlrj − β∗j ‖2 is O(

√
p
n ) under

some additional mild assumptions on link functions {fj}kj=1.



Theorem 2. Consider Option 1 in Algorithm 1. Under the
Assumptions 1, 2 and the assumptions in Theorem 1, for each
j ∈ [k] we define the function `j(c, β) = cE[f ′j(〈x, β〉c)]
and its empirical counter part as

ˆ̀
j(c, β) =

c

n

n∑
i=1

f ′j(〈xi, β〉c).

Assume that there exist some constants η, c̄j such that
`j(c̄j , β

ols
j ) > 1 + η. Then there exists cj > 0 satisfying

the equation 1 = `j(cj , β
ols
j ) for each j ∈ [k].

Further, assume that n is sufficiently large:

n ≥ Ω(p‖Σ‖2‖β∗j ‖22)

Then, with probability at least 1 − k exp(−p) there exist
constants ĉj ∈ (0, c̄j) satisfying the equations

1 =
ĉj
n

n∑
i=1

f ′j(〈xi, β̃olsj 〉ĉj).

Moreover, if for all j ∈ [k] the derivative of z 7→ `j(z, β
ols
j )

is bounded below in absolute value (does not change sign) by
M > 0 in the interval z ∈ [0, cj ]. Then with probability at
least 1− 4k exp(−p) the outputs {β̂nlrj }kj=1 satisfy for each
j ∈ [k]

‖β̂nlrj − β∗j ‖2 ≤ O(max{1, ‖β∗j ‖2}λ
− 1

2

min(Σ)

√
p

n
), (5)

where G,L, γ,M, cj , η are assumed to be Θ(1) and thus
omitted in the Big-O and Ω notations (see Appendix for the
explicit forms).

Note that in Theorem 2 the link functions fj are not re-
quired to be convex. Hence this is quite useful in non-convex
learning models.

Time Complexity Analysis Under Option 1 of Algorithm
1, we can see that the first step takes O(np2 + p3) time,
calculating β̃olsj for all j ∈ [k] takes O(k(np+p2)) time and
each iteration of finding ĉj takes O(n) time. Thus, if k ,the
number of link functions fj , is a constant, then the total time
complexity is O(np2 + p3 + nT ), where T is the number of
iterations for finding cj .

However, the term np2 is prohibitive in the large scale
setting where n, p are huge (see (Wang and Xu 2018) for
details). To further reduce the time complexity, we propose
another estimator based on sub-sampling.

Note that the term O(np2) comes from calculating the
empirical covariance matrix XTX . Thus, to reduce the
time complexity, instead of calculating the covariance via
the whole dataset, we here use the sub-sampled covari-
ance matrix. More precisely, we first randomly sample
a set of indices S ⊂ [n] whose size |S| will be spec-
ified later. Then we calculate |S|n (XT

SXS)−1 to estimate
(XTX)−1, where XS ∈ R|S|×p is the data matrix con-
strained on indices of S. We can see that the time com-
plexity in this case will only be O(|S|p2 + p3). The fol-
lowing lemma, which is given by (Dhillon et al. 2013;

Erdogdu, Dicker, and Bayati 2016) shows the convergence
rate of the OLS estimator based on the sub-sampled covari-
ance matrix. This is a generalization of Lemma 1.

Lemma 3. Under the same assumptions as in Lemma
1, if |S| ≥ Ω(γκxp), then with probability at least
1 − 3 exp(−p) the sub-sampled covariance OLS estimator
β̃ols = |S|

n (XT
SXS)−1XTY satisfies

‖β̃ols − βols‖2 ≤ C2κxγ

√
p

|S| .

We have the following approximation error based the sub-
sampled covariance OLS estimator:

Theorem 3. Under the same assumptions as in Theorem 2,
in Algorithm 1 if we use Option 2 with |S| ≥ Ω(γκxp)
, then with probability at least 1 − 4k exp(−p) the out-
puts {β̂nlrj }kj=1 satisfy for each j ∈ [k], ‖β̂nlrj − β∗j ‖2 ≤
O(max{1, ‖β∗j ‖2}λ

− 1
2

min(Σ)
√

p
|S| ).

Moreover, it is also possible to accelerate the algorithm
using the sub-sampling method in the step 5 (finding the root)
and we can see the estimation error will be the same as in
Theorem 3 (by the proof of Theorem 3). Due to the space
limit, we omit it here.

Extension to Sub-Gaussian Case
Note that Theorem 2 is only suitable for the case when x is
Gaussian. This is due to the requirements on some properties
of the Gaussian distribution in the proof of Theorem 1. In this
section we will first extend Theorem 1 to the sub-Gaussian
case.

Remember that the proof of Theorem 1 is based on the
classic Stein’s lemma. Thus, in order to generalize to sub-
Gaussian case, we will use the zero-bias transformation in
Definition 3 since it is a generalization of the Stein’s lemma.
With some additional assumptions, we can get the following
theorem.

Theorem 4. Let x1, · · · , xn ∈ Rp be i.i.d realizations of
a random vector x which is sub-Gaussian with zero mean,
whose covariance matrix Σ has Σ

1
2 being diagonally dom-

inant 1, and whose distribution is supported on a `2-norm
ball of radius r. Let v = Σ−

1
2x be the whitened random

vector of x with sub-Gaussian norm ‖v‖ψ2 = κx. If for all
j ∈ [k], each v has constant first and second conditional mo-
ments (i.e., ∀s ∈ [p] and β̃j = Σ

1
2 β∗j , E[vs|

∑
t6=s β̃jvt] and

E[v2s |
∑
t 6=s β̃jvt] are deterministic) and the link functions

f ′j satisfy Assumption 2. Then for cj = 1
E[f ′j(〈x,β∗j 〉)]

, the

following holds for the model in (1) for all j ∈ [k]

‖ 1

cj
· β∗j − βolsj ‖∞ ≤ 16Grκ3x

√
ρ2ρ∞

‖β∗j ‖2∞√
p

, (6)

1A square matrix is said to be diagonally dominant if, for every
row of the matrix, the magnitude of the diagonal entry in a row is
larger than or equal to the sum of the magnitudes of all the other
(non-diagonal) entries in that row.



where ρq for q = {2,∞} is the conditional number of Σ in
`q norm and βolsj = Σ−1E[xyzj ] is the OLS vector w.r.t yzj
and x.
Remark 1. Note that compared with the equality relation-
ship between β∗j and cjβols in Theorem 1, in Theorem 4
we only has the `∞ norm of their difference. Also, here we
need more assumptions on the distribution of x, and these
assumptions ensure that the estimation error decays in the
rate of O( 1√

p ).

Theorem 4 indicates that we can use the same idea as in
the Gaussian case to estimate each β∗j . Note that the forms
of cj in Theorem 1 and 4 are different. In Theorem 1 each
cj is based on βolsj , while in Theorem 4 it is based on β∗j .
However, due to the closeness of β∗j and βolsj in (6), we can
still use 1

E[f ′j(〈xi,βolsj 〉c̃j)]
to approximate cj , where c̃j is the

root of cE[f ′j(〈xi, βolsj 〉c)]−1. Because of this similarity, we
can still use Algorithm 1 for the sub-Gaussian case under
the assumptions in Theorem 4, and we can get the following
estimation error:
Theorem 5. Consider Option 1 in Algorithm 1. Under As-
sumptions 1, 2 and the assumptions in Theorem 4, for each
j ∈ [k], if we define the function `j(c, β) = cE[f ′j(〈x, β〉c)]
and its empirical counter part as

ˆ̀
j(c, β) =

c

n

n∑
i=1

f ′j(〈xi, β〉c).

Assume that there exist some constants η, c̄j such that
`j(c̄j , β

ols
j ) > 1 + η. Then there exists c̃j > 0 satisfying

the equation 1 = `j(c̃j , β
ols
j ) for each j ∈ [k].

Further, assume that n is sufficiently large:

n ≥ Ω(‖Σ‖2p2ρ2ρ2∞‖β∗j ‖2∞max{1, ‖β∗j ‖2∞}).
Then, with probability at least 1 − k exp(−p) there exist
constants ĉj ∈ (0, c̄j) satisfying the equations

1 =
ĉj
n

n∑
i=1

f ′j(〈xi, β̃olsj 〉ĉj).

Moreover, if for all j ∈ [k], the derivative of z 7→ `j(z, β
ols
j )

is bounded below in absolute value (does not change sign)
by M > 0 in the interval z ∈ [0,max{c̄j , cj}]. Then with
probability at least 1 − 4k exp(−p) the outputs {β̂nlrj }kj=1

satisfy for each j ∈ [k]

‖β̂nlrj − β∗j ‖∞ ≤ O
(√
ρ2ρ∞λ

− 1
2

min(Σ)

√
p

n
‖β∗j ‖∞

×max{1, ‖β∗j ‖∞}+ ρ2ρ
2
∞

max{‖β∗j ‖2∞, 1}‖β∗j ‖2∞√
p

)
,

where η,G, L, γ,M, c̄j , r, κx, cj are assumed to be Θ(1) and
thus omitted in the Big-O and Ω notations (see Appendix for
the explicit forms).

Draft Proof . We first prove the following lemma (see Ap-
pendix for the proof):

Lemma 4. Under the assumptions in Theorem 5, with prob-
ability at least 1− k exp(−p) for all j ∈ [k]

|ĉj − c̃j | ≤ O(M−1GLc̄2jκ
2
xγ‖Σ‖1/22 ‖βolsj ‖2

√
p

n
).

For convenience we will assume G, L, γ, M , c̄j , r, κx,
cj = Θ(1).

We have for each β̂nlrj ,

‖β̂nlrj − β∗j ‖∞ ≤ ‖ĉj β̃olsj − c̃jβolsj ‖∞ + ‖c̃jβolsj − β∗j ‖∞
≤ ‖ĉj β̃olsj − c̃jβolsj ‖∞ + ‖c̃jβolsj − cjβolsj ‖∞
+ ‖cjβolsj − β∗j ‖∞. (7)

To bound the terms in (7) we first bound |c̃j − cj |.
By definition we have cjE[f ′j(〈x, β∗j 〉)] = 1 and
c̃jE[f ′j(〈x, βolsj 〉c̃j)] = 1, then we get

|`j(c̃j , βolsj )− `j(cj , βolsj )| = |1− `j(cj , βolsj )|
= |cjE[f ′j(〈x, β∗j 〉)]− cjE[f ′j(〈x, βolsj 〉cj)]|
≤ G|cj |E[〈x, β∗j − cjβolsj 〉]
≤ Gcj‖β∗j − cjβolsj ‖∞E‖x‖1
≤ Gcjκx‖β∗j − cjβolsj ‖∞,

where the last inequality is by the definition of the sub-
Gaussian norm (see Definition 1). Thus, by the assumption of
the bounded deviation of `(c, βolsj ) on max{c̄j , cj} we have

M |c̃j − cj | ≤ |`j(c̃j , βolsj )− `j(cj , βolsj )|
≤ Gcjκx‖β∗j − cjβolsj ‖∞,

and further by Theorem 4 we have

|c̃j − cj | ≤ O(
√
ρ2ρ∞

‖β∗j ‖2∞√
p

). (8)

For the second term in (7), by (8) we have

‖c̃jβolsj − cjβolsj ‖∞ ≤ O(
√
ρ2ρ∞

‖βolsj ‖∞‖β∗j ‖2∞√
p

), (9)

where the last inequality is due to Lemma 4, Lemma 1 and
the assumption of n.

For the first term in (7) we have

‖ĉj β̃olsj − c̃jβolsj ‖∞
≤ ĉj‖β̃olsj − βolsj ‖∞ + |ĉj − c̃j |‖βolsj ‖∞

≤ O
(
(c̃j + ‖Σ‖1/22 ‖βolsj ‖2

√
p

n
)× λmin(Σ)−

1
2

√
p

n

+ ‖Σ‖1/22 ‖βolsj ‖2
√
p

n
‖βolsj ‖∞

)
(10)

= O
(
λ
− 1

2

min(Σ)

√
p

n
max{1, ‖βolsj ‖∞}

)
. (11)

By Theorem 4, we see that the third term of (7) is bounded
as the following

‖cjβolsj − β∗j ‖∞ ≤ O(
√
ρ2ρ∞

‖β∗j ‖2∞√
p

). (12)



(9), (11) and (12) together give

‖β̂nlrj − β∗j ‖∞ ≤ O
(√
ρ2ρ∞

‖βolsj ‖∞‖β∗j ‖2∞√
p

+ λ
− 1

2

min(Σ)

√
p

n
max{1, ‖βolsj ‖∞}+

√
ρ2ρ∞

‖β∗j ‖2∞√
p

)
.

(13)

By Theorem 4, we have

‖βolsj ‖∞ ≤ O(‖β∗j ‖∞ +
√
ρ2ρ∞

‖β∗j ‖2∞√
p

).

Plugging it into (13) completes the proof.

Remark 2. Compared with the converge rate in the `2-norm
of O(

√
p
n ) in Theorem 2, Theorem 5 shows that for the

sub-Gaussian case, the converge rate of the estimation error
is O( 1√

p +
√

p
n ) in the `∞-norm (if we omit other terms).

This is due to the estimation error in Theorem 4. Moreover,
compared with the assumptions of link functions in Theorem
2, there are additional assumptions in Theorem 5.

In order to reduce the time complexity and make the al-
gorithm faster, we can also use the sub-sampled covariance
OLS estimator. This is the same as that in the Gaussian case.

Theorem 6. Under the same assumptions as in Theorem 5,if
we use Option 2 in Algorithm 1, then with probability at
least 1− 4k exp(−p), the outputs {β̂nlrj }kj=1 satisfy for each
j ∈ [k]

‖β̂nlrj − β∗j ‖∞ ≤ O
(√
ρ2ρ∞λ

− 1
2

min(Σ)

√
p

|S| ‖β
∗
j ‖∞

×max{1, ‖β∗j ‖∞}+ ρ2ρ
2
∞

max{‖β∗j ‖2∞, 1}‖β∗j ‖2∞√
p

)
.

Experiments
We conduct experiments on three types of link functions:
polynomial, sigmoid, and logistic function, as well as an
arbitrary mix of them. Formally, the polynomial link func-
tions include f(x) = x, x3, x5; the sigmoid link function
is defined as f(x) = (1 + e−x)−1; the logistic link func-
tion refers to f(x) = log(1 + e−x). Due to the statistical
setting we focused on in the paper, we will perform our algo-
rithm on the synthetic data, and the same experimental setting
has been used in the previous work such as (Na et al. 2018;
Yang et al. 2017; Erdogdu, Dicker, and Bayati 2016).
Experimental setting. We sample all coefficient zi,j and
noise ε i.i.d. from standard Gaussian distribution N(0, 1)
across each experiment. Each β∗j is generated by sampling
from N(1, 16Id). We consider two distributions for gener-
ating x: Gaussian and Uniform distribution (corresponds to
thr sub-Gaussian case). To satisfy the requirement of Theo-
rem 6, in both cases the standard variance is scaled by 1/p
and this is also used in (Erdogdu, Dicker, and Bayati 2016),
where p is the data dimension. Thus, in the Gaussian case,
x ∼ N(0, 1p Ip), while in the sub-Gaussian case x is sampled

from a uniform distribution, i.e., x ∼ U([−1/p, 1/p])p. Fi-
nally, given the list F = [f1, . . . , fk] of link functions, the
response y is computed via (1). It is notable that the experi-
mental results with different number of link functions k are
incomparable since when k is changed Model (1) will also
be changed.

These experiments are divided into two parts, examining
how the sample size n and the size of the sub-sample set S
affect the algorithm performance. In the first part we vary
n from 100 000 to 500 000 with fixed p = 20 and |S| = n,
while in the second part we vary |S| from 0.01n to n, with
fixed n = 500 000 and p = 20. In each part we test the
algorithm against various data distribution/link function com-
binations. For each experiment, in order to support our the-
oretical analysis, we will use the (maximal) relative error
as the measurement, that is when x is Gaussian we use
maxi∈[k]

‖βi−β∗i ‖2
‖β∗i ‖2

and when x is sub-Gaussian we will use

maxi∈[k]
‖βi−β∗i ‖∞
‖β∗i ‖∞

. For each experiment we repeat 20 times
and take the average as the final output.
Experiment results. Each of Figure 1-3 illustrates the result
for a single type of link function. We can see that the relative
error decreases steadily as the sample size n grows which is
due to the O( 1√

n
) converge rate as our theorem states. Also,

we can see that the size of S doesn’t affect the final relative
error much if |S| is large enough, i.e., in all cases, choosing
large enough |S| ≥ 0.2n is sufficient to achieve a relative
error roughly the same as when |S| = n, which also has been
mentioned in our theorems theoretically.

We further investigate the case when F contains different
types of link functions. In Figure 4a, we let F contain polyno-
mials with different degrees (x, x3, x5), and there are roughly
k
3 functions for each degree. Similarly, in Figure 4b we also
mix polynomial links with the other two types of links, i.e.,
logistic link and log-exponential link, and there are roughly
k
3 functions for each type of link function. Our algorithm
achieves similar performance as in the previous settings.

Conclusion
We studied a new model called stochastic linear combination
of non-linear regressions and provided the first estimation
error bounds for both Gaussian and bounded sub-Gaussian
cases. Our algorithm is based on Stein’s lemma and its gen-
eralization, the zero-bias transformation. Moreover, we used
the sub-sampling of the covariance matrix to accelerate our
algorithm. Finally, we conducted experiments whose results
support our theoretical analysis.
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Figure 1: Single type of link function f(x) = x3
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Figure 2: Single type of link function f(x) = (1 + e−x)−1
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Figure 3: Single type of link function f(x) = log(1 + e−x)
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Figure 4: Mixed different type of link functions
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