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Abstract

Pairwise learning has received much attention recently as it is
more capable of modeling the relative relationship between
pairs of samples. Many machine learning tasks can be cat-
egorized as pairwise learning, such as AUC maximization
and metric learning. Existing techniques for pairwise learning
all fail to take into consideration a critical issue in their de-
sign, i.e., the protection of sensitive information in the train-
ing set. Models learned by such algorithms can implicitly
memorize the details of sensitive information, which offers
opportunity for malicious parties to infer it from the learned
models. To address this challenging issue, in this paper, we
propose several differentially private pairwise learning algo-
rithms for both online and offline settings. Specifically, for the
online setting, we first introduce a differentially private algo-
rithm (called OnPairStrC) for strongly convex loss functions.
Then, we extend this algorithm to general convex loss func-
tions and give another differentially private algorithm (called
OnPairC). For the offline setting, we also present two differ-
entially private algorithms (called OffPairStrC and OffPairC)
for strongly and general convex loss functions, respectively.
These proposed algorithms can not only learn the model ef-
fectively from the data but also provide strong privacy pro-
tection guarantee for sensitive information in the training set.
Extensive experiments on real-world datasets are conducted
to evaluate the proposed algorithms and the experimental re-
sults support our theoretical analysis.

Introduction
As an important family of learning problems, pairwise
learning has drawn much attention recently. Since pairwise
learning involves a loss function depending on pairs of sam-
ples, it shows great advantage in modeling the relative re-
lationship between pairs of samples over traditional point-
wise learning (e.g., classification), in which the loss func-
tion only takes individual samples as the input. In practice,
many learning tasks can be categorized as pairwise learning
problmes. For instance, metric learning (Huai et al. 2019;
Jin, Wang, and Zhou 2009; Huai et al. 2018a; Sun et al.
2012; Huai et al. 2018b; Suo et al. 2018) aims to learn
a distance metric from a given collection of pair of sim-
ilar/dissimilar samples that preserves the distance relation
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among the data, which can be formulated as a pairwise learn-
ing problem. Apart from metric learning, many other learn-
ing tasks, such as AUC maximization (Zhao et al. 2011;
Natole, Ying, and Lyu 2018) and ranking (Tang and Wang
2018), can also be categorized as pairwise learning.

Existing pairwise learning algorithms can be roughly di-
vided into two categories: online and offline. The online pair-
wise learning algorithms process the input data records in a
sequential manner and iteratively update the model upon the
arrival of each sample (Zhao et al. 2011; Kar et al. 2013).
In contrast, the offline pairwise learning algorithms require
the entire training dataset ready before the learning process
starts and take it as whole to update the model (Cao, Guo,
and Ying 2016; Jin, Wang, and Zhou 2009).

Although the importance of pairwise learning has been
recognized in many real-world applications, existing pair-
wise learning algorithms fail to take into consideration an
important issue in their designs, that is, the protection of sen-
sitive information in the training set. The training datasets
for pairwise learning are often collected from individual
users and thus may contain private personal information.
The models learned by such algorithms can implicitly mem-
orize some details of the sensitive information, which unde-
sirably offers opportunity for malicious parties to compro-
mise the users’ privacy. Taking the patient similarity learn-
ing task as example, a hospital may want to train a univer-
sal patient similarity learning model from patients (crossing
many hospitals) so as to obtain a better understanding of the
diseases and diagnoses. Due to trust to the hospital, patients
may be willing to provide necessary information for such a
learning process. However, without a proper mechanism, the
patients’ privacy may be breached when the trained model
by the hospital is provided to other parties (such as medi-
cal research institutes or drug makers). This is because these
parties can infer patients’ private information using various
attack techniques, such as model inversion attack (Fredrik-
son, Jha, and Ristenpart ) and membership attack (Shokri
et al. 2017). Thus, without a convincing privacy-preserving
mechanism, the patients may not be willing to participate in
such a learning task. Hence, a big challenge facing pairwise
learning is how to learn a model privately such that sensitive
information cannot be inferred from the learned model.

To the best of our knowledge, no existing work has ad-
dressed the above challenge. This motivates us to design,



in this paper, privacy-preserving pairwise learning methods
which can not only keep the sensitive information private
but also guarantee good generalization performance. Among
existing privacy-preserving strategies, differential privacy
(DP) (Dwork et al. 2006), as a rigorous notion for data pri-
vacy, can provide very rigid privacy and utility guarantee.
Although various DP methods exist for (online) pointwise
learning, such as objective perturbation or DP-SGD (Chaud-
huri and Monteleoni 2009; Bassily, Smith, and Thakurta
2014; Jain, Kothari, and Thakurta 2012; Wang, Chen, and
Xu 2019), they cannot be applied to pairwise learning al-
gorithms directly. This is mainly because the training sam-
ple pairs in pairwise learning algorithms are not i.i.d. and
the loss function depends on more than one data records. In
the light of the above challenges, in this paper, we propose
efficient differentially private algorithms for the aforemen-
tioned two types of pairwise learning problems. The contri-
butions of this paper can be summarized as follows:

• Firstly, we consider the pairwise learning problem in the
online setting, and propose an (ε, δ)-DP algorithm called
online pairwise private GIGA-Strongly convex method
(OnPairStrC). This algorithm achieves a regret upper
bound of Õ(

√
d
√
n

ε ) when the losses are strongly convex,
where d is the feature dimension and n is the data size.
We then extend this algorithm to general convex losses
by proposing an algorithm called online pairwise private
GIGA-convex method (OnPairC), which has a regret up-

per bound of Õ(
√
dn

3
4

ε ).

• Secondly, we study the pairwise learning problem in the
offline setting. We show that it is possible to achieve gen-
eralization errors of Õ(

√
d√
nε

) and Õ(
√
d

4
√
nε

) for strongly and
general convex loss functions respectively by adopting
the results in the online settings. We then improve these
bounds by proposing an offline pairwise private GIGA-
Strongly convex algorithm (OffPairStrC) and an offline
pairwise private GIGA-convex algorithm (OffPairC) for
the two types of loss functions. Particularly, in the case
of general convex loss functions, our improved algorithm
can achieve a generalization error of Õ(

√
d√
nε

).

Related Work
As mentioned earlier, there is no existing result on pairwise
learning under the differential privacy model. Thus, we only
compare ours with those private pointwise learning meth-
ods. There is a long list of papers on differentially private
pointwise learning in the last decade which attack the prob-
lem from different perspectives. For DP pointwise learning
with convex loss functions, there are a lot of works on it,
such as (Chaudhuri and Monteleoni 2009; Chaudhuri, Mon-
teleoni, and Sarwate ; Bassily, Smith, and Thakurta 2014;
Wang, Ye, and Xu 2017; Wang, Chen, and Xu 2019). How-
ever, all of the above results focus only on pointwise loss
functions and cannot be extended to pairwise loss functions.

Differentially private pointwise learning in the online set-
ting has also been studied previously (Jain, Kothari, and
Thakurta 2012; Thakurta and Smith 2013). The works that

are most related to ours are probably (Jain, Kothari, and
Thakurta 2012) and (Thakurta and Smith 2013), where the
authors gave a general framework for online convex opti-
mization under differential privacy. However, there are some
significant differences from ours. Firstly, (Jain, Kothari, and
Thakurta 2012) and (Thakurta and Smith 2013) consider
only pointwise loss functions while we study pairwise loss
functions. Thus, their methods cannot be directly extended
to pairwise loss functions, making them incomparable with
ours; secondly, due to the differences in the structure of two
problems and the definitions of the regret, the analyses of
the upper bounds and the DP guarantees are quite different
(see Remark 1 for more details).

Preliminaries
We say that two datasets D,D′ are neighbors if they differ
by only one entry, which is denoted as D ∼ D′.
Definition 1 (Differential Privacy (Dwork et al. 2006)). A
randomized algorithmA is (ε, δ)-differentially private (DP)
if for all neighboring datasets D,D′ and for all events S in
the output space of A, the following holds

Pr(A(D) ∈ S) ≤ eεPr(A(D′) ∈ S) + δ.

When δ = 0, A is ε-differentially private.
In this paper we focus on (ε, δ)-DP and use Gaussian

mechanism (Dwork et al. 2006) to guarantee (ε, δ)-DP.
Definition 2 (Gaussian Mechanism). Given any function
q : Xn → Rd, the Gaussian mechanism is defined as
MG(D, q, ε) = q(D) +Y, where Y is drawn from Gaussian

Distribution N (0, σ2Id) with σ ≥
√

2 ln(1.25/δ)∆2(q)

ε . Here
∆2(q) is the `2-sensitivity of the function q, i.e., ∆2(q) =
supD∼D′ ||q(D)−q(D′)||2.Gaussian mechanism preserves
(ε, δ)-differential privacy.

Additionally, we also use zero Concentrated Differential
Privacy (zCDP) (Bun and Steinke 2016) and its composition
property to guarantee (ε, δ)-DP. Compared to directly using
the composition property of DP, it has many advantages (see
(Lee and Kifer 2018; Wang and Xu 2019) for more details).
Definition 3. A randomized mechanism A is ρ-zCDP if, for
all neighboring dataset D,D′ and all α ∈ (1,∞),

Dα(A(D)||A(D′)) ≤ ρα,

where Dα(·||·) is the α-Rényi Divergence 1.
Lemma 1 ((Bun and Steinke 2016)). Suppose that two
mechanisms satisfy ρ1-zCDP and ρ2-zCDP, respectively.
Then, their composition is (ρ1 + ρ2)-zCDP.
Lemma 2 ((Bun and Steinke 2016)). For a Gaussian mech-
anism q(D) + Y with Y ∼ N (0, σ2Id), it satisfies (

∆2
2(q)

2σ2 )-
zCDP.
Lemma 3 ((Bun and Steinke 2016)). If a mechanism is ρ-

zCDP, then it is (ρ+ 2
√
ρ log 1

δ , δ)-DP for any δ > 0.
1For two distributions P and Q on Ω and α ∈ (1,∞), the

α-Rényi Divergence between P,Q is defined as Dα(P ||Q) =
1

α−1
log

∫
Ω
P (x)αQ(x)1−αdx.



Private Pairwise Learning
Different from the pointwise loss function ` : C ×D 7→ R, a
pairwise loss function is a function on pairs of data records,
i.e., ` : C×D×D 7→ R, whereD is the data universe. Given
a dataset D = {z1, z2, · · · , zn} ⊆ Dn and a loss function
`(·; ·, ·), its empirical risk can be defined as:

L(w;D) =
1

n(n− 1)

n∑
i=1

∑
j 6=i

`(w; zi, zj). (1)

When the inputs are drawn i.i.d from an unknown underly-
ing distribution P on D, the population risk is

LP(w) = Ezi,zj∼P [`(w; zi, zj)]. (2)

Similar to the definition of private pointwise learning (Bass-
ily, Smith, and Thakurta 2014), we can define private pair-
wise learning as follows.
Definition 4 (Private pairwise learning). Let C ⊆ Rd be a
convex, closed and bounded constraint set, D be a data uni-
verse, and ` : C × D × D 7→ R be a pairwise loss function.
Also, let D = {z1 = (x1, y1), z2 = (x2, y2), · · · , zn =
(xn, yn)} ⊆ Dn be a dataset with data records {xi}ni=1 ⊂
Rd and labels (responses) {yi}ni=1 ⊂ [−1, 1]n. Private pair-
wise learning is to find a private estimator wpriv ∈ C so
that the algorithm is (ε, δ) or ε differential privacy and
the error is minimized, where the error for an estimator w
can be measured by either the optimality gap ErrD(w) =
L(w;D) − minw∈C L(w;D) or the generalization error
ErrP(w) = LP(w)−minw∈C LP(w).

In this paper, we will focus on a special class of pairwise
loss functions 2 which contains the loss functions of metric
learning, AUC maximization and bipartite ranking.
Assumption 1. For the loss function, we assume that it
has the form of `(w; z, z′) = φ(Y (y, y′)h(w;x, x′)), and
` is a G-Lipschitz and L-smooth convex function over w,
where Y (y, y′) = y − y′ or Y (y, y′) = yy′. In the ex-
perimental part, we will let φ be the logistic function, i.e.,
φ(x) = log(1 + e−x).
Example 1: Metric Learning (Cao, Guo, and Ying
2016) The goal here is to learn a Mahalanobios metric
M2
W (x, x′) = (x − x′)TW (w − x′) using loss func-

tion `(W ; z, z′) = φ(yy′(1 − M2
W (x, x′)), where y, y′ ∈

{−1,+1}. The constraint set C is C = {W : W ∈
Sd, ‖W‖F ≤ 1}.
Example 2: AUC Maximization (Zhao et al. 2011), Bi-
partite Ranking (Clémençon et al. 2008) The goal here
is to maximize the area under the ROC curve for a linear
classification problem with the constraint of ‖w‖2 ≤ 1.
Here h(w;x, x′) = wT (x − x′) and `(w; z, z′) = φ((y −
y′)h(w;x, x′)), where y, y′ ∈ {−1,+1}.

Online Private Pairwise Learning
Here we follow online pairwise learning in (Kar et al. 2013).
An online learning algorithmA is given sequential access to

2We note that all the (ε, δ)-DP algorithms in this paper can
be extended to general pairwise loss functions, although the upper
bounds of the generalization errors may differ.

a stream of elements z1, z2, z3, · · · , zn. At each time step
t = 2, 3, · · · , n, the algorithm selects a parameter wt−1 ∈ C
upon which the data record zt is revealed, and the algorithm
incurs the following penalty

L̂t(wt−1, Dt) =
1

t− 1

t−1∑
i=1

`(wt−1; zt, zi), (3)

where Dt = {z1, · · · , zt}. Thus, the online algorithm A
maps a data sequence {z1, · · · , zn} to a sequence of param-
eters {w1, · · · , wn−1}. In the non-private case, the goal is to
select {w1, · · · , wn−1} so as to minimize the regret, i.e.,

RA(n,D) =

n∑
t=2

L̂t(wt−1, Dt)−min
w∈C

n∑
t=2

L̂t(w,Dt).

(4)

Moreover, if all data are chosen i.i.d from the distribution P ,
we also want to minimize the generalized regret, i.e.,

RP,A(n) =

n∑
t=2

LP(wt−1)− (n− 1) min
w∈C

LP(w). (5)

If ` is convex, then from (5) we have parameter w̄ =
w1+···+wn−1

n−1 satisfies the following generalization error:

LP(w̄)−min
w∈C

LP(w) ≤ RP,A(n)

n− 1
. (6)

However, under the differential privacy model, we need to
guarantee that the output sequence {w1, · · · , wn−1} is DP.
Thus, private pairwise learning in the online setting can be
defined as follows:
Definition 5 (Online private pairwise learning). Let Z =
{z1, z2, · · · , zn} be any sequence of data records in the data
universe D. Let the sequence of outputs by algorithm A be
A(Z) = {w1, · · · , wn−1}. Then, A is (ε, δ)-differentially
private if given any other data sequence Z ′ which differs
in at most one entry with Z, for all events S, we have
Pr[A(Z) ∈ S] ≤ eεPr[A(Z ′) ∈ S] + δ. The goal of on-
line private pairwise learning is to select private outputs
{w1, · · · , wn−1} that minimizes the (generalized) regret.

From above discussions on (5) and (6), we know that if
the generalized regret is low, the algorithm will have a good
performance on generalization theoretically. From this view,
the online setting is more general. Thus, in the paper, we
will first consider the online private pairwise learning and
provide regrets for both strongly and general convex losses.
After that, we will study the problem in the offline setting.

Online Private Pairwise Learning
We first consider the case that the loss function is strongly
convex. After that, we will use the regularization perturba-
tion strategy in (Thakurta and Smith 2013) to extend the re-
sulting algorithm to general convex loss functions.

Our algorithm is inspired by the stability of General-
ized Infinitesimal Gradient Ascent (GIGA) (Zinkevich 2003;
Jain, Kothari, and Thakurta 2012), which is a well-known
online convex algorithm (see Remark 1 for discussions on



Algorithm 1 Online Pairwise Private GIGA-Strongly Con-
vex (OnPairStrC)

1: Input: Privacy parameters ε and δ, sequence of data
record {z1, z2, · · · , zn}, constrained convex set C ⊂
Rd, and pairwise loss function `(·; ·, ·).

2: Parameters: ` isG-Lipschitz,L-smooth andα-strongly
convex over w. Step time T1 = max{d 16L2

α2 e, 7}.
3: Compute ρ which satisfies ρ+ 2

√
ρ log( 1

δ ) = ε.

4: for t = 1, · · · , T1 do
5: Receive the data record zt (incurs penalty
L̂t(wt−1, Dt) when t ≥ 2).

6: Randomly choose a parameter wt ∈ C.
7: end for
8: for t = T1 + 1, · · · , n do
9: Receive the data record zt (incurs penalty
L̂t(wt−1, Dt)).

10: Set step size ηt = t−1
t−2

2
αt

11: wt = ΠC [wt−1 − ηt∇L̂t(wt−1, Dt)], where ΠC is
the projection onto the set C.

12: Set σ2
t = 32G2(n−T1)

α2t2ρ . Let w̃t = wt + nt, where
nt ∼ N (0, σ2

t Id).
13: Output wt = arg minw∈C ‖w − w̃t‖22.
14: end for

the difference of our algorithm with the previous ones). The
main steps are given in Algorithm 1.

We call the above algorithm excluding the portion of ran-
dom perturbation (i.e., steps 12 and 13) Pairwise GIGA.
The following lemma gives an upper bound on the `2-norm
sensitivity of the output in the t-th iteration of Pairwise
GIGA, which is to ensure (ε, δ)-DP of Algorithm 1.

Lemma 4. Let At(Dt) denote the output of Pairwise GIGA
in the t-th iteration. Then, under the assumption of Algo-
rithm 1, for any t ≥ 1 and Dt ∼ D′t,

‖At(Dt)−At(D′t)‖2 ≤
8G

αt
.

In Algorithm 1, steps 4 to 7 seem weird due to the ran-
dom sampling of wt−1. However, as we see from the proof
of Lemma 4, this condition is necessary for the stability anal-
ysis. Moreover, the similar steps have also been adopted in
some algorithms on DP online learning, such as (Thakurta
and Smith 2013; Jain, Kothari, and Thakurta 2012).

Theorem 1. Under Assumption 1 and the assumption that
the loss function ` is α-strongly convex, for any 0 < ε, δ ≤ 1,
Algorithm 1 is (ε, δ)-differentially private.

Note that to guarantee DP, we first transfer (ε, δ)-DP to
ρ-zCDP by Lemma 3, and then use composition theorem
to make Algorithm 1 be ρ-zCDP (i.e., we make each iter-
ation T1 + 1 ≤ t ≤ n be ρ

n−T1
-zCDP). It is easy to see

that in this case the variance of the noise satisfies σ2
t =

32G2(n−T1)

α2t2(
√

log(1/δ)+ε−
√

log(1/δ))2
. When ε

log(1/δ) � 1 (this case

will always holds since in practice we select ε = 0.1 ∼ 5

and δ = 1
n ), by Taylor expansion of

√
1 + x, we have

(
√

log(1/δ) + ε −
√

log(1/δ))2 ' ε2

4 log(1/δ) . Thus in to-

tal, we have σ2
t '

128G2(n−T1) log(1/δ)
α2t2ε2 .

The following theorem shows an upper bound on the re-
gret of Algorithm 1, which can be transformed to general-
ized error (we will show it in the following section).

Theorem 2. Under the assumptions in Theorem 1 and the
additional condition of ε

log 1
δ

� 1, Algorithm 1 has the fol-
lowing upper bound on the regret of its outputs

RA(n,D) ≤ O(
G2
√
d log1.5 n

ζ

√
n
√

log 1
δ

αε

+
GL2

α2
‖C‖2 +

G2 log n

α
) (7)

with probability at least 1 − ζ. where ‖C‖2 =
maxw,w′∈C ‖w − w′‖2 is the diameter of the set C3.

Remark 1. We note that (Jain, Kothari, and Thakurta 2012)
used the differentially private version of GIGA and IGD
(Kulis and Bartlett ) in their DP pointwise learning. But their
Private GIGA or IGD algorithm is quite different from our
method of OnPairStrC (Algorithm 1). Firstly, (Jain, Kothari,
and Thakurta 2012) needs to assume that each loss function
L̂t is independent (see the proofs of Lemma 4 and Lemma
5 in (Jain, Kothari, and Thakurta 2012)), which means that
it is only applicable to pointwise loss functions. However,
in our problem, the penalty function (3) depends on previ-
ous data records, which means that it is much more compli-
cated than the case in (Jain, Kothari, and Thakurta 2012).
Thus, we need a much finer and more different analysis on
the stability of Pairwise GIGA. Also, the parameters of the
step size ηt and time step T1 are quite different from those
in (Jain, Kothari, and Thakurta 2012) (see the supplemen-
tary material for details). Additionally, in order to show the
power of our method, we also consider the case with addi-
tional finite buffer constraint, which has not been studied in
(Jain, Kothari, and Thakurta 2012) (see the supplementary
material for details). Thus, our method is more general.

Secondly, the upper bound (7) on the regret of our algo-
rithm is less than that in (Jain, Kothari, and Thakurta 2012)
with a factor of log n

δ . This is due to the fact that we use the
composition property of zCDP instead of advanced compo-
sition theorem of DP (Dwork, Rothblum, and Vadhan 2010).

Thirdly, since the definition of regret in our paper is dif-
ferent from that in pointwise learning (Jain, Kothari, and
Thakurta 2012), the same upper bound (i.e., Õ(

√
dn
ε )) on the

regret for strongly convex losses are actually incomparable.

We now use the perturbation strategy in (Thakurta and
Smith 2013) to obtain result for general convex losses.

Theorem 3. Let ` be a pairwise loss function satisfying As-
sumption 1. Then, for any 0 < ε, δ ≤ 1, Algorithm 2 is (ε, δ)-
DP. Moreover, if ε

log 1
δ

� 1 and take α = O( 1
4
√
n

), then with

3If C = Rd, then we can take C = {w : ‖w‖2 ≤ ‖w∗‖2}.



Algorithm 2 Online Pairwise Private GIGA-Convex (On-
PairC)

1: Input: Privacy parameters ε and δ, sequence of data
record {z1, z2, · · · , zn}, constrained convex set C, pair-
wise loss `(·; ·, ·), and a parameter α to be defined later.

2: Parameters: ` is G-Lipschitz, L-smooth and convex
over w.

3: Randomly select a point w0 ∈ C. Let ˜̀(w; z, z′) =
`(w; z, z′) + α

2 ‖w − w0‖22.
4: Run Algorithm 1 with loss ˜̀, which is G̃ = G+α‖C‖2-

Lipschitz, L̃ = L+ α-smooth and α-strongly convex.

probability at least 1 − ζ, the following upper bound on re-
gret for the outputs holds:

RA(n,D) ≤ O(
L2G2‖C‖22

√
d log1.5 n

ζ n
3
4

√
log 1

δ

ε
). (8)

Comparing (8) with (7), we can see that for strongly con-
vex pairwise loss functions, the average regret, i.e., RA(n)

n−1 , is

upper bounded by Õ(
√
d√
nε

), while for general convex ones,

it is Õ(
√
d

4
√
nε

). This is the same as in the case of pointwise
loss functions (Thakurta and Smith 2013).

Offline Private Pairwise Learning
Generalization Error Induced by Generalized
Regret
We first observe that Algorithm 1 and 2 preserve (ε, δ)-
DP in the offline settings. Also, as discussed in (5)
and (6), if we get the generalized regret for the output
{w1, w2, · · · , wn−1}, we can easily obtain a generaliza-
tion error by (6). By a theorem in (Kar et al. 2013), we
can have the following generalization bounds for w̄ =
w1+···+wn−1

n−1 of Algorithm 1 and 2. Before this, we first let
the Rademacher averages of the pairwise loss functions class
` ◦ C := {(z, z′) 7→ `(w; z, z′), w ∈ C} be denoted by the
following (Kar et al. 2013):

Rn(` ◦ C) = E[sup
w∈C

1

n

n∑
i=1

εi`(w; z, zi)], (9)

where {εi}ni=1 are the Rademacher variables, and the expec-
tation is over {εi}ni=1, z, {zi}ni=1.
Theorem 4. Under Assumption 1, the parameter w̄ =
w1+···+wn−1

n−1 satisfies the following generalization error for
loss function ` with probability at least 1− 2ζ if ε

log 1
δ

� 1,
where w1, w2, · · · , wn−1 are the outputs of Algorithm 2 (Al-
gorithm 1 for strongly convex loss functions),

ErrP(w̄) ≤ O
(∑n

t=2Rt−1(` ◦ C)
n− 1

+

L2G2‖C‖22
√
d log1.5 n

ζ

√
log 1

δ

ε 4
√
n

)
. (10)

Moreover, if the loss is α-strongly convex, then we have:

ErrP(w̄) ≤O
( 1

n− 1

n∑
t=2

Rt−1(` ◦ C)+

G2L2‖C‖2
√
d log1.5 n

ζ

√
log 1

δ

α2ε
√
n

)
. (11)

Remark 2. Note that there are many problems whose
Rademacher average is Rn(` ◦ C) = O(

√
d√
n

), e.g. Exam-
ple 1 and 2 (Kar et al. 2013). Thus for Example 1, the
generalization error is Õ( d

ε 4
√
n

) for logistic loss while it is

Õ( d
ε
√
n

) if adding an additional Frobenious regularization
to the losses. Similar result holds for Example 2, where the
generalization error is Õ(

√
d

ε 4
√
n

) while it is Õ(
√
d

ε
√
n

) in the
case of with additional `2-norm regularization.

Improved Upper Bounds by Offline Differentially
Private Algorithms
Inspired by the sensitivity of Pairwise GIGA in Lemma 4
and Theorem 4, we propose an offline DP algorithm which
has better upper bounds compared to (10) and (11). The ba-
sic idea is to use output perturbation. Specifically, we first
run Pairwise GIGA in the offline settings and then add some
Gaussian noises to w̃ = w1+···+wn

n to keep the algorithm
(ε, δ)-DP, since the sensitivity of w̃ is based on each wi,
which can be obtained by Lemma 4. For general convex loss
functions, we can still use the perturbation idea, which is the
same as in Algorithm 2. See Algorithm 3 and 4 for details.

The reason that we can improve the generalization error is
due to the following fact. From Algorithms 1 and 2, we can
see that the output sequences {w1, w2, · · · , wn−1} satisfy
the conditions of (ε, δ)-DP in each iteration. However, in the
offline setting, we only need to ensure that the final output is
DP. Thus, instead of adding noise in each iteration, we can
add noises only once to the final output, meaning that we can
add a smaller scale of noises compared to the online ones.

Theorem 5. For any 0 < ε, δ ≤ 1, Algorithm 3 is (ε, δ)-DP
for any α-strongly convex loss functions satisfying Assump-
tion 1. Moreover, if ε

log 1
δ

� 1, then with probability at least
1− 2ζ, the output ŵ satisfies:

ErrP(ŵ) ≤ O(

√
dG2‖C‖2 log n

ζ

√
log 1

δ

αnε
+

1

n

n∑
t=1

Rt(`◦C)).

(12)
Algorithm 4 is (ε, δ)-DP for any convex loss functions sat-

isfying Assumption 1 if α = O( 1√
n

). Moreover, if ε
log 1

δ

� 1,
then with probability at least 1− 2ζ, the output ŵ satisfies:

ErrP(ŵ) ≤ O
(√dG2‖C‖22 log n

ζ

√
log 1

δ log n
√
nε

+
1

n

n∑
t=1

Rt(` ◦ C)
)
. (13)



From Theorem 5, we can see that for strongly and gen-
eral convex loss functions, the bounds in (13) and (12) are
respectively lower than those in (10) and (11). Specifically,
for general convex loss functions, we can improve the upper
bound from Õ(

√
d

ε 4
√
n

) to Õ(
√
d

ε
√
n

) ifRn(` ◦ C) = O(
√
d√
n

).

Algorithm 3 Offline Pairwise Private GIGA-Strongly Con-
vex (OffPairStrC)

1: Input: Privacy parameters ε and δ, sequence of data
{z1, z2, · · · , zn}, constrained convex set C, pairwise
loss `(·; ·, ·), and step number T1 = max{d 16L2

α2 e, 7}.
2: Parameters: ` isG-Lipschitz,L-smooth andα-strongly

convex over w.
3: Randomly sample w1, · · · , wT1 ∈ C.
4: for t = T1 + 1, · · · , n do
5: Set step size ηt = t−1

t−2
2
αt .

6: Update

wt = arg min
w∈C
‖w − (wt−1 − ηt∇L̂t(wt−1, Dt))‖22.

7: end for
8: Let w̃ = w1+···+wn

n .
9: Denote w̄ = w̃ + σ, where σ ∼
N (0, 128G2 log2 n log(1.25/δ)

α2n2ε2 Id).
10: Return ŵ = arg minw∈C ‖w − w̄‖22.

Algorithm 4 Pairwise Private GIGA-Convex (OffPairC)

1: Input: Privacy parameters ε and δ, sequence of data
{z1, · · · , zn}, constrained convex set C, pairwise loss
function `(·; ·, ·), and a parameter α to be defined later.

2: Parameters: ` is G-Lipschitz, L-smooth and convex
over w.

3: Let ˜̀(w; z, z′) = `(w; z, z′) + α
2 ‖w − w0‖22, w0 is any

point in C.
4: Run Algorithm 3 with loss ˜̀, which is G̃ = G+α‖C‖2-

Lipschitz, L̃ = L+ α-smooth and α-strongly convex.

Experiments
In this section, we empirically evaluate the performance of
the proposed differentially private algorithms on real-world
datasets. we take two popular pairwise learning tasks, i.e.,
AUC maximization and metric learning, as examples. All of
the experiments in this paper are conducted over 20 runs of
different random permutations for each adopted dataset, and
we report the averaged results.

Experimental Setup
Datasets. We use four real-world datasets that are widely
adopted in pairwise learning tasks. These datasets are the Di-
abetes dataset, the Diabetic Retinopathy dataset, the Hep-
atitis dataset and the Cancer dataset (Dua and Graff 2017).
Performance measures. To evaluate the performance of the
proposed algorithms, we use the following measures:

1. AUC: For AUC maximization task, we report the AUC
measurement (Zhao et al. 2011) for each of the proposed
algorithms over every adopted dataset. A larger AUC
value means that the corresponding AUC maximization
algorithm can generate more accurate results.

2. Classification Accuracy: For metric learning task, we cal-
culate the classification accuracy that is defined as the per-
centage of the correctly classified samples in the test set.
The less the classification accuracy, the worse the perfor-
mance of the proposed algorithm. In this paper, the KNN
classifier is adopted to assign labels to the test samples.
For the KNN classifier, we set K to be 3.

3. Objective function value: For both metric learning task
and AUC maximization task, we also report the objective
function value of the proposed differentially private algo-
rithms. A smaller objective function value means that the
original pairwise learning model is less perturbed.

Baselines. Since there is no existing work that addresses the
privacy issue in pairwise learning, in experiments, we take
the original pairwise learning algorithms that do not take any
actions to protect the private information as the baselines.
We denote the baseline methods as NonPrivate, which is
the GIGA for pairwise loss functions (Kar et al. 2013).

Experiments for AUC maximization
We first evaluate the performance of the proposed differen-
tially private pairwise learning algorithms (i.e., OnPairStrC,
OnPairC, OffPairStrC and OffPairC) for AUC maximization
task (see Example 2 for the problem formulation). We add
additional `2 regularization λ

2 ‖w‖
2
2 with λ = 10−3 to loss

function for the strongly convex case.
We study the effect of the training size n and the privacy

parameter ε on the performance of the proposed OnPairStrC,
OnPairC, OffPairStrC and OffPairC algorithms. Here we fix
δ = 1

n and consider three cases where the value of parameter
ε is set to be 0.5, 1.5 and 2.5, respectively. For OnPairStrC
and OffPairStrC, we vary the training size from 40 to 90 and
conduct the experiment on the Hepatitis and Cancer datasets.
For OnPairC and OffPairC, the experiment is conducted on
the Diabetes and Diabetic Retinopathy datasets and we vary
the training size from 50 to 350. In Figure 1 and Figure 2,
we respectively report the objective values of OnPairStrC
and OnPairC. The experimental results show that the larger
the value of the training size n, the smaller the objective
value. Additionally, when n is fixed, the smaller the value of
ε, the larger the objective value is. The performance of the
proposed algorithms are comparable with that of the base-
line, which can be observed from Figure 2. The results for
OffPairStrC and OffPairC are shown in Figure 3 and Figure
4, respectively. Figure 3 shows the objective value of Off-
PairStrC when the training size varies and Figure 4 reports
the AUC measurement of OffPairC. The results in the two
figures also show that the larger the training size is or pri-
vacy parameter ε is, the higher the AUC measurement value
is, which means that the proposed algorithm is less perturbed
and more accurate. These experimental results verify that the
proposed online differential private algorithms can achieve



good utility while guarantee strong privacy protection when
they are applied to the AUC maximization task.

=0.5 =1.5 =2.5
0.68

0.70

0.72

0.74

0.76

O
b

je
ct

iv
e 

v
a
lu

e

(a) Hepatitis
=0.5 =1.5 =2.5

0.63

0.73

0.83

0.93

O
b

je
ct

iv
e 

v
a
lu

e

(b) Cancer

Figure 1: The objective value of OnPairStrC for AUC max-
imization.
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Figure 2: The objective value of OnPairC for AUC maxi-
mization.
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Figure 3: The objective value of OffPairStrC for AUC max-
imization.

Experiments for Metric Learning
Next, we evaluate the performance of the proposed differ-
entially private pairwise learning algorithms for the metric
learning task (see Example 1 for the problem formulation).
We add additional Frobenius norm λ

2 ‖W‖
2
F to the loss func-

tion for the strongly convex case, where λ = 10−3. Similar
to the experiments for AUC maximization, we evaluate the
effect of the privacy parameter ε and the training size n. Due
to the space limit, in this section, we only report the exper-
imental results for general convex pairwise learning algo-
rithms, i.e., OnPairC and OffPairC.

In these experiments, the value of δ is fixed as 1
n , and

we consider three cases where the parameter ε is set to be
0.5, 1.5 and 2.5, respectively. We first calculate the objective
value of OnPairC when the training size varies from 50 to
350, and the results on the Diabetes and Diabetic Retinopa-
thy datasets are shown in Figure 5. As for the offline al-
gorithm OffPairC, we report the classification accuracy in
Figure 6. As we can see, the derived experimental results
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Figure 4: The AUC measurement of OffPairC.
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Figure 5: The objective value of OnPairC for metric learning
task under different training sizes.
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Figure 6: The classification accuracy of OffPairC for metric
learning task under different training sizes.

are similar to that for AUC maximization. The proposed al-
gorithms perform competitively with the baseline when we
vary the values of n and ε.

Conclusion
In this paper, we consider the pairwise learning problems in
both online and offline settings. For the online setting, we
first propose an (ε, δ)-DP algorithm (called OnPairStrC) for
the strongly convex loss functions, and then extend this al-
gorithm to general convex loss functions by proposing an-
other differentially private algorithm (called OnPairC). For
the offline setting, we also propose two differentially private
algorithms (called OffPairStrC and OffPairC) for strongly
convex loss functions and general convex loss functions, re-
spectively, and then give their regret upper bounds. The ex-
perimental results on real-world datasets not only confirm
our theoretical analysis but also demonstrate the effective-
ness of the proposed algorithms in real-world applications.
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