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Abstract

Recently, there are increasingly more attentions paid to an im-
portant family of learning problems called pairwise learning,
in which the associated loss functions depend on pairs of in-
stances. Despite the tremendous success of pairwise learning
in many real-world applications, the lack of transparency be-
hind the learned pairwise models makes it difficult for users to
understand how particular decisions are made by these mod-
els, which further impedes users from trusting the predicted
results. To tackle this problem, in this paper, we study fea-
ture importance scoring as a specific approach to the problem
of interpreting the predictions of black-box pairwise mod-
els. Specifically, we first propose a novel adaptive Shapley-
value-based interpretation method, based on which a vector
of importance scores associated with the underlying features
of a testing instance pair can be adaptively calculated with the
consideration of feature correlations, and these scores can be
used to indicate which features make key contributions to the
final prediction. Considering that Shapley-value-based meth-
ods are usually computationally challenging, we further pro-
pose a novel robust approximation interpretation method for
pairwise models. This method is not only much more efficient
but also robust to data noise. To the best of our knowledge, we
are the first to investigate how to enable interpretation in pair-
wise learning. Theoretical analysis and extensive experiments
demonstrate the effectiveness of the proposed methods.

Introduction
In recent years, there has been increasing interest in an im-
portant family of learning problems that is categorized as
pairwise learning (Boissier et al. 2016). Different from the
traditional pointwise learning (e.g., regression and classifi-
cation) (Yao et al. 2018; Suo et al. 2017) where the loss
function takes only individual instances as its input, pairwise
learning involves pairs of instances as the input of its loss
function. Comparing to pointwise learning, pairwise learn-
ing is more capable of modeling the relative relationship
between pairs of instances, which has been demonstrated
in many real-world applications. For example, in patient
similarity learning, the learner (e.g., a doctor/hospital) can
learn a clinically meaningful similarity metric to measure
the proximity between a pair of patients through formulat-
ing the learning task as a pairwise learning problem (Huai
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et al. 2018a). Additionally, many other learning tasks can
also be classified as pairwise learning, such as AUC maxi-
mization (Ying, Wen, and Lyu 2016; Natole, Ying, and Lyu
2018), metric learning (Huai et al. 2019; Suo et al. 2018;
Huai et al. 2018b), bipartite ranking (Tang and Wang 2018).

Despite its tremendous success in many real-world appli-
cations, pairwise learning still faces one challenging prob-
lem, i.e., the lack of transparency behind its behaviors,
which makes it difficult for users to understand how par-
ticular decisions are made by the learned pairwise model.
For instance, in the patient similarity learning task, the sim-
ilarity metric is usually learned from a large amount of high
dimensional and complex patient data. The learner can ob-
tain the proximity between a pair of patients based on the
learned metric, but he/she has no idea why the metric re-
ports such proximity. The “black box” nature of the learned
pairwise models may impede users from trusting the pre-
dicted results, especially when the model is used for making
critical decisions (e.g., medical diagnosis), because the con-
sequences may be catastrophic if the predictions are acted
upon blind faith. The lack of transparency behind pairwise
learning models has hampered their further applications in
real world. Thus, it is essential to investigate how to enable
interpretaion in pairwise learning.

In this paper, we aim to study feature importance scor-
ing as a specific approach to the problem of interpreting
the predictions of black-box pairwise models. Specifically,
given a learned pairwise model and a testing instance pair,
we hope to design an interpretation method that can gener-
ate a vector of importance scores associated with the un-
derlying features of the testing instance pair, and enable
these importance scores to indicate which features make
key contributions to the final predicted result. There is now
many interpretation methods that can score the importance
of the input features for traditional pointwise learning mod-
els (e.g., classification models). Among them, the Shapley-
value-based methods (Ribeiro, Singh, and Guestrin 2016;
Datta, Sen, and Zick 2016; Shrikumar, Greenside, and Kun-
daje 2017; Štrumbelj and Kononenko 2014; Lundberg and
Lee 2017; Chen et al. 2018; Ancona, Öztireli, and Gross
2019; Kononenko and others 2010) have drawn significant
attention as they are the only methods that can provide theo-
retical guarantee. However, these methods cannot be directly
used for pairwise models. First of all, to score the impor-



tance of a subset of input features, these methods usually
need to pre-define a reference vector to mask the rest fea-
tures. An implicit assumption in these methods is that all
the testing instances use the same reference vector, which
is unreasonable for pairwise models. When interpreting the
predictions made by pairwise models, if both instances in
the testing pair use the same reference vector, the relation-
ship between them will be largely affected (e.g., may make
them more similar) and wrong prediction may be generated.
Additionally, existing interpretation methods for pointwise
learning usually assume that the input features are nearly
independent. However, in practice, the features may be cor-
related with each other and the correlation can also affect the
predictions made by the models (Xie et al. 2018).

To address the above challenges, in this paper, we first
propose a novel adaptive Shapley-value-based interpretation
method for pairwise models (ASIPair), which not only
takes into account feature correlations but also can adap-
tively calculate the importance scores of the underlying
features for each testing instance pair. We also provide
theoretical analysis to show that the proposed adaptive
method is the unique solution with the desired properties.
Considering that Shapley-value-based methods are usually
computationally challenging, we further propose a robust
approximation interpretation method for pairwise models
(RAIPair), which is motivated by the fact that not all fea-
tures are important and only a subset of features contain
the discriminative information for the final predicted result.
The proposed approximated interpretation method does not
make any assumptions on the underlying feature structure
and is also robust to data noise. To the best of our knowledge,
we are the first to investigate how to enable interpretation
in pairwise learning. Both theoretical analysis and extensive
experiments demonstrate the effectiveness of the proposed
interpretation methods for pairwise learning.

Problem Definition
Let zi = (xi, yi) be a random instance drawn from an un-
known distribution P on Z = X × Y , where xi ∈ X ⊂
RD represents the D-dimensional feature vector and yi ∈
Y ⊂ R represents the class label. Pairwise learning refers
to the learning tasks where the associated loss function in-
volves a pair of instances. Specifically, for any two instances
zi = (xi, yi) and zj = (xj , yj), the loss function for pair-
wise learning usually takes the form V (ζ, (xi, yi), (xj , yj))
for a hypothesis function ζ : RD × RD → R. Many learn-
ing tasks, such as metric learning, AUC maximization and
ranking, can be cast into the framework of pairwise learn-
ing. For example, the Mahalanobis-based metric learning
aims to learn a Mahalanobis distance function ζ(xi,xj) =
(xi − xj)′W (xi − xj) encoded by a semi-positive matrix
W ∈ SD×D to bring instances with similar labels together
while keeping instances with different labels apart. With the
learned function ζ, we can calculate the similarity degree of
a test instance pair (xi,xj). A choice of the loss function in
metric learning is the logistic loss (Huai et al. 2018a), i.e.,
V (ζ, (xi, yi), (xj , yj)) = log(1 + exp(−yiyj(ζ(xi,xj) −
1)). Then the distance function ζ can be learned through

minimizing the below expected risk

R(ζ) = (1)∫ ∫
Z×Z

V (ζ, (xi, yi), (xj , yj))dP(xi, yi)dP(xj , yj).

Note that V (·) can also be other loss functions, such as the
exponential loss and hinge loss.

Our goal in this paper is to develop a general interpre-
tation method that can provide explanations for the results
predicted by pairwise models. Specifically, given a testing
instance pair (xi,xj) and a learned pairwise model, the pair-
wise model will make a prediction (e.g., similar degree in
metric learning task) for (xi,xj). We aim to illustrate why
such a prediction is made through identifying a set of impor-
tant features in xi and xj that make key contributions to the
predicted result.

Methodology
In this section, we describe the proposed interpretation
methods for pairwise models. Specifically, we first pro-
pose an adaptive Shapley-value-based interpretation method
(called ASIPair) with the consideration of feature corre-
lations. Considering that Shapley-value-based methods are
usually computationally challenging, we then propose a ro-
bust approximation interpretation method (called RAIPair).

Adaptive Interpretation Method for Pairwise
Models
The importance of each feature in xi and xj can be reflected
by its contribution to the final predicted result. For any given
subset T ⊂ [D] = {1, 2, ..., D}, we use xTi = {xi,t, t ∈ T}
to denote the associated sub-vector of features, where xi,t
denotes the t-th element in xi. Let E[ζ(xi,xj)|xTi ,xTj ] be
the induced expected conditional prediction for the testing
instance pair (xi,xj) when it is restricted to using only
the sub-vectors xTi and xTj . Then, for a given subset T ⊂
[D] \ {d}, the marginal contribution of the d-th feature to T
(joining the subset T ) can be calculated as follows

∆d(xi,xj , T, ζ) =E[ζ(xi,xj)|xT∪{d}i ,x
T∪{d}
j ] (2)

− E[ζ(xi,xj)|xTi ,xTj ].

To obtain ∆d(xi,xj , T, ζ), we need to calculate
the two expected pairwise conditional functions
E[ζ(xi,xj)|xT∪{d}i ,x

T∪{d}
j ] and E[ζ(xi,xj)|xTi ,xTj ].

As described in the introduction section, existing in-
terpretation methods developed for traditional pointwise
learning models cannot be directly used here to calculate
∆d(xi,xj , T, ζ) for pairwise learning. There is an implicit
assumption in these methods that all the testing instances use
the same pre-defined reference vector that is used for replac-
ing xi,t (t ∈ [D]\T ) when measuring the contribution of xTi
to the prediction, which is unreasonable for pairwise mod-
els. For pairwise models, if xi and xj use the same reference
vector, we cannot obtain reasonable ∆d(xi,xj , T, ζ), be-
cause the relationship between xi and xj will be largely af-
fected and wrong prediction may be generated. Furthermore,



these methods assume that the input features are nearly inde-
pendent. However, in practice, the features are usually corre-
lated with each other and the correlations can also affect the
predicted result. To address the above challenges, we pro-
pose the following calculation method for ∆d(xi,xj , T, ζ).

Since the calculation procedures for
E[ζ(xi,xj)|xT∪{d}i ,x

T∪{d}
j ] and E[ζ(xi,xj)|xTi ,xTj ]

are similar, here we take E[ζ(xi,xj)|xTi ,xTj ] as an exam-
ple to describe the calculation procedure. We first rewrite the
expected conditional pairwise function E[ζ(xi,xj)|xTi ,xTj ]
as follows

E[ζ(xi,xj)|xTi ,xTj ] = (3)∫ ∫
ζ([xT̄i ,x

T
i ], [xT̄j ,x

T
j ])P (xT̄i |xTi )P (xT̄j |xTj )dxT̄i dx

T̄
j ,

where T̄ = [D] \ T and P (xT̄i |xTi ) denotes the conditional
distribution of xT̄i given xTi . [xT̄i ,x

T
i ] denotes the concate-

nation of xT̄i and xTi , i.e., xi = [xT̄i ,x
T
i ]. To take the fea-

ture correlation into account, we propose to incorporate the
covariance matrix that contains features’ correlation infor-
mation into the calculation process of the expected condi-
tional pairwise function. Suppose the training set is denoted
as {xk}Kk=1, where K is the size of the training set. xTi and
xTj can be transformed as

x̃Ti = Ω
−1/2
T (xTi − µT ), x̃Tj = Ω

−1/2
T (xTj − µT ), (4)

where µT and ΩT denote the mean vector and covari-
ance matrix of the set of sub-vectors {xTk }Kk=1 for train-
ing instances, respectively. The t-th element in µT repre-
sents the mean value of the t-th feature over {xTk }Kk=1. Con-
sidering the fact that the training instance xk = [xT̄k ,x

T
k ]

with xTk close to xTi is more informative when calculating
P (xT̄i |xTi ), we then propose to use the training instances
{xk}Kk=1 to empirically calculate the pairwise conditional
expectation E[ζ(xi,xj)|xTi ,xTj ]. Specifically, we first cal-
culate the distance between xi and each instance xk in the
training set {xk}Kk=1 as

QTi (xi,xk) = (5)

(x̃Ti −Ω
−1/2
T (xTk − µT ))′(x̃Ti −Ω

−1/2
T (xTk − µT ))/|T |.

The distance between the testing instance xj and the train-
ing instance xk can be calculated in a similar way. Then,
for each pair (xi,xk) where k ∈ [K], we calculate a
weight wT (xi,xk) = exp(−QTi (xi,xk)/2σ2), where σ is
a smoothing parameter (the value is set as 0.2 in our experi-
ment). After deriving all the weights {wT (xi,xk)}Kk=1, we
sort these weights in an increasing order, and we use xk′ to
denote the training instance corresponding to the k′-th ele-
ment in the ordered weight set. Similarly, we can derive the
weights {wT (xj ,xk)}Kk=1 for xj and order them in an in-
creasing order. Let xk′′ be the training instance correspond-
ing to the k′′-th element in the ordered weight set for xj .

Then, we can estimate E[ζ(xi,xj)|xTi ,xTj ] as

E[ζ(xi,xj)|xTi ,xTj )] =

1∑K1

k′=1 wT (xi,xk′)
∑K1

k′′=1 wT (xj ,
{
K1∑
k′=1

wT (xi,

xk′) · [
K1∑
k′′=1

wT (xj ,xk′′)ζ([xT̄k′ ,x
T
i ], [xT̄k′′ ,x

T
j ])]} (6)

where K1 denotes the number of the selected training in-
stances, and it can be decided as

K1 = (7)

arg min
L∈[K]

{
∑L
k′=1 wT (xi,xk′)

∑L
k′′=1 wT (xj ,xk′′)∑K

k′=1 wT (xi,xk′)
∑K
k′′=1 wT (xj ,xk′′)

≥ η}.

Here η is a pre-defined constant.
After calculating E[ζ(xi,xj)|xT∪{d}i ,x

T∪{d}
j ] and

E[ζ(xi,xj)|xTi ,xTj ], we can then derive ∆d(xi, xj , T, ζ).
Finally, taking all possible subset T ⊂ [D] \ {d} into
account, the contribution (i.e., importance score) of the d-th
feature to the prediction of ζ on (xi,xj) is given as

φd(xi,xj , ζ) =∑
T⊂[D]\{d}

|T |!(D − |T | − 1)!

D!
∆d(xi,xj , T, ζ). (8)

This equation captures the average marginal contribution of
the d-th feature by averaging ∆d(xi,xj , T, ζ) over all the
possible subset T . The value of φd(xi,xj , ζ) reflects the im-
portance of the d-th feature to the final pairwise prediction.
Based on this fact, we can identify which features in xi and
xj make key contributions to the final predicted result.

An alternative way to calculate the contribution. Be-
sides Eq.(8), we also have another way to calculate the con-
tribution of the d-th feature to the prediction of ζ on (xi,xj).
Let π(D) be the set of all possible ordered permutations
of the feature indices {1, 2, ..., D}. Let O be any permuta-
tion of the feature index {1, 2, ..., D}. For the permutation
O ∈ π(D), we denote the set of features that precede d in
O as P dO. From Eq. (8), we know that φd(xi,xj , ζ) is the
average marginal contribution of d to any coalition of D as-
suming that all orderings are equal. Another way to calculate
φi(xi,xj , ζ) is averaging the marginal contributions of the
d-th feature to the set of its predecessors, where the average
value is taken over all permutations equally. Thus, we have

φd(xi,xj , ζ) =
1

D!

∑
O∈π(D)

(E[ζ(xi,xj)|x
Pd

O∪{d}
i ,x

Pd
O∪{d}
j ]

− E[ζ(xi,xj)|x
Pd

O
i ,x

Pd
O
j ]). (9)

Next, we provide the theoretical analysis to show that
the proposed ASIPair is the unique pairwise interpreta-
tion method with the desired theoretical properties, which
strongly motivates the use of ASIPair for reliable pairwise
interpretations.



Theorem 1. The proposed ASIPair is the unique solution
that satisfies the following properties:

(1) Efficiency. The sum of the marginal contributions of
all input features is equal to the pairwise function value, i.e.∑D
d=1 φd(xi,xj , ζ) = ζ(xi,xj).
(2) Fairness. For all T ⊂ {1, 2, · · · , D} \

{d1, d2}, if E[ζ(xi,xj)|xT∪{d1}i ,x
T∪{d1}
j ] =

E[ζ(xi,xj)|xT∪{d2}i ,x
T∪{d2}
j ], then we have

φd1(xi,xj , ζ) = φd2(xi,xj , ζ).
(3) Dummy. For all T ⊂ {1, 2, · · · , D} \ {d}, if

E[ζ(xi,xj)|xT∪{d}i ,x
T∪{d}
j ] = E[ζ(xi,xj)|xTi ,xTj ], then

we have φd(xi,xj , ζ) = 0.
(4) Additivity. For any two pairwise decision functions ζ1

and ζ2, we have that for each d ∈ [D], φd(xi,xj , ζ1 +ζ2) =
φd(xi,xj , ζ1) + φd(xi,xj , ζ2), where (ζ1 + ζ2) is defined
by (ζ1 + ζ2)(xi,xj) = ζ1(xi,xj) + ζ2(xi,xj).

Note that all the four properties are reasonable in the con-
text of pairwise learning. The efficiency property states that
the total pairwise value ζ(xi,xj) is divided among all of
the features. This property makes it easier to compare fea-
tures’ contributions. The fairness property means that if two
features always add the same marginal value to any subset
to which they are added, they will be assigned equal contri-
butions on the total pairwise value ζ(xi,xj). The dummy
property states that if a feature never adds any marginal
value, the contribution value of this feature will be assigned
with zero. The additivity property shows that the solution
to the sum of two pairwise models (ζ1 and ζ2) must be
the sum of what it assigns to each of the two pairwise
models. Although the proposed ASIPair method can effec-
tively score the importance of the input features on the pre-
dicted result and provide theoretical guarantee, the Shapley
value approach makes it computationally challenging. The
computation complexity of ASIPair (in terms of the pair-
wise model evaluations) on all features’ contributions (i.e.,
{φd(xi,xj , ζ)}Dd=1) is O(D ∗ 2D log2D). To address this
problem, we further propose a more efficient interpretation
method for pairwise models in the next section.

Robust Approximation Interpretation Method for
Pairwise Models
In this section, we propose a robust approximation interpre-
tation method for pairwise models (RAIPair), which is moti-
vated by that not all features are important and only a subset
of features contain the discriminative information for the fi-
nal predicted result. RAIPair is not only much more efficient
than ASIPair but also robust to data noise.

Let φ = (φ1(xi,xj , ζ), · · · , φD(xi,xj , ζ)) ∈ RD
be the feature importance score vector for the testing in-
stance pair (xi,xj). Based on Theorem 1, we know that∑D
d=1 φd(xi,xj , ζ) = ζ(xi,xj). Then, we can calculate

the average feature importance score over all the features as
φ̄ = ζ(xi,xj)/D. Suppose φ̃∗ ∈ RD denotes the deviation
vector, in which the d-th element φ̃∗d is calculated as φ̃∗d =

φd(xi,xj , ζ) − φ̄. Obviously, we can get φ = φ̄ID + φ̃∗,
where ID is a D dimensional vector with all entries being

one. For the non-discriminative features, their importance
scores are close to the average value φ̄, and the deviation
values of them are close to zero. In contrast, for the discrim-
inative features, their importance scores deviate from the av-
erage value φ̄ far away.

Since the average value φ̄ can be easily calculated, to re-
duce the computational complexity, our goal here is to first
optimize the deviation vector φ̃∗, and then derive the fea-
ture importance score vector based on φ = φ̄ID + φ̃∗.
Considering that only a subset of features contain the dis-
criminative information, we assume that φ̃∗ is s-sparse, and
φ̃∗ is called s-sparse if ‖φ̃∗‖L0

≤ s, where ‖φ̃∗‖L0
=

limp→0

∑D
d=1 |φ̃∗d|p =

∑D
d=1 I(φ̃∗d 6= 0). Specifically, the

quantity ‖φ̃∗‖L0
computes the number of nonzero elements

in the feature importance score vector φ̃∗. To calculate the
sparse vector φ̃∗, we propose to solve the following opti-
mization problem

φ̃∗ = (10)

argmin φ̃∈RD{‖φ̃‖L0
: s.t. ‖b−A(φ̄ID + φ̃)‖L2

= 0},

where b ∈ RM is an observed measurement vector, andA ∈
RM×D is a random Bernoulli measurement matrix for which
the number of rows is far less than that of columns (i.e.,
M � D). The entries of A take the value 1√

M
or − 1√

M
with equal probability. In Eq.(10), we aim to use much fewer
measurements to calculate φ̃∗ and further derive the feature
importance score vector φ.

However, the above L0-norm minimization formulation is
NP-hard because it involves enumerative search and is com-
putationally intractable for practical applications. Besides
scalability, another important requirement for real-world ap-
plications is the robustness to noise, namely, the observation
vector b may be corrupted by data noise. Without loss of
generality, we assume that the measurement vector b is cor-
rupted by noise of magnitude up to ε. To address the compu-
tationally intractable problem, we propose to use the convex
relaxation by replacing the L0-norm with the L1-norm. To
take the noise into account, we propose to relax the equality
constraint as ‖b−A(φ̄ID+φ̃)‖L2

≤ ε. Then, we can derive
the following optimization problem

φ̂∗ = (11)

argminφ̂∈RD{‖φ̂‖L1
: s.t. ‖b−A(φ̄ID + φ̂)‖L2

≤ ε},

where ε > 0 is a pre-defined noise level. Finally, φ̃∗ ∈ RD
can be well approximated by φ̂∗ based on Eq. (11). Note
that the above problem is an underdetermined linear prob-
lem since M � D, and the L1-norm minimization solu-
tion is also the sparsest possible solution (Donoho 2006;
Bruckstein, Donoho, and Elad 2009; Candes and others
2006). The problem can be recast as a linear program and
can be solved by conventional methods such as interior-
point methods. However, these methods suffer from poor
scalability for real-world problems with large-scale data.
To address this challenge, we propose to use the fast iter-
ative shrinkage-threshold method (Beck and Teboulle 2009)



to solve the above optimization problem, and the proposed
RAIPair is summarized in Algorithm 1. In this algorithm, we
first estimate the measurement vector b from a set of random
permutations (i.e., {Oh}Hh=1) (Step 1-12), and then derive
the approximated importance score vectot φ̃ by solving the
L1 minimization problem (Step 13-14). In Theorem 2, we
also present the approximation error bound for the proposed
RAIPair. The computational complexity of RAIPair on all
features’ contributions isH∗D = O(log(logD)∗D), which
is much lower than that of ASIPair.

Algorithm 1 The robust approximation interpretation
method for pairwise models
Input: Pairwise model ζ, the testing instance pair (xi,xj),
the number of measurements M , the number of ran-
dom permutations H , and the random Bernoulli matrix
A.

1: for h← 1 to H do
2: Randomly select the permutation Oh ∈ π(D);
3: for d← 1 to D do
4: ∆h

d(xi,xj , P
d
Oh
, ζ) =

E[ζ(xi,xj)|x
Pd

Oh
∪{d}

i ,x
Pd

Oh
∪{d}

j )] −

E[ζ(xi,xj)|x
Pd

Oh
i ,x

Pd
Oh
j )];

5: end for
6: for m← 1 to M do
7: Ym,h ←

∑D
d=1Am,d∆

h
d(xi,xj , P

d
Oh
, ζ);

8: end for
9: end for

10: for m← 1 to M do
11: bm = 1

H

∑H
h=1 Ym,h; // bm is the m-th element in b

12: end for
13: φ̂∗ = argminφ̂∈RD{‖φ̂‖L1

: s.t. ‖b − A(φ̄ID +

φ̂)‖L2
≤ ε};

14: return the approximated feature importance score vec-
tor φ̃ = φ̄ID + φ̂∗.

Theorem 2. Assume that the range of the predictions made
by the pairwise model ζ(xi,xj) is [−r,+r], and the re-
stricted isometry constant δ2s of the matrix A ∈ RM×D
satisfies δ2s < 3

4+
√

6
≈ 0.465. Let σs(φ)L1

:= inf{‖φ −
Ψ‖L1

,Ψ is s-sparse}, ε > 0, 0 < δ < 1, and C be a univer-
sal constant. Then, if M ≥ C(0.465)−2(2s log(D/(2s)) +

log(2/δ)) and 2r2

ε2 log 4M
δ ≤ H , we then can derive

‖φ̃− φ‖L2
= ‖φ̂∗ − φ̂‖L2

≤ Φ1ε+ Φ2
σs(φ)L1√

s
, (12)

where ε denotes the noise amount, Φ1 ∈ R and Φ2 ∈ R
are two constants that only depend on δ2s. Note that H de-
notes the number of random permutations used to estimate
the measurement vector b.

Based on Theorem 2, we can bound the error between
the proposed ASIPair and its approximated version (i.e.,
RAIPair). In fact, both ASIPair and RAIPair use the same
strategy to calculate the marginal function ∆d, which can be

seen in Eq.(2) and Step 4 of Algorithm 1. The difference be-
tween ASIPair and RAIPair is that RAIPair uses very few
operations to average ∆d to approximate ASIPair.

Experiments
We conduct experiments on both real-world and synthetic
datasets to evaluate the performance of the proposed inter-
pretation methods. Without loss of generality, in the experi-
ments, we consider two types of pairwise learning tasks, i.e.,
metric learning and AUC maximization. All the experiments
are conducted 10 times and we report the average results.

Datasets. For real-world datasets, we adopt four UCI
datasets (i.e., Heart, Diabetes, Parkinson and Ionosphere),
and the MNIST 1V9 dataset (LeCun et al. 1998) that is a
subset of the 784-dimensional MNIST set. The statistical
information of these real-word datasets is described in Ta-
ble 1. For the synthetic dataset, we use the following method
to generate the data: We first generate N instances {xi}Ni=1,
where xi is a D-dimensional feature vector in which each
element is randomly generated in range (−1, 1). Then we
build a linear classifier with the weight vector w in which
each element wi ∼ U(−0.5, 0.5). Finally, we use the lin-
ear classifier to generate the label of each instance. For each
dataset, we randomly select 80% of the instances as the
training set to train the pairwise model, and take the rest
instances as the test set.

Table 1: The statistics of the datasets

Dataset Size Dimension
Heart 303 23

Diabetes 768 9
Parkinson 195 22
Ionosphere 351 34

MNIST 2,134 784

Performance measure. We evaluate the performance of
the proposed interpretation methods through observing the
change of the predicted results after masking a proportion
of the top features ranked by the learned feature importance
scores. Specifically, given a trained pairwise model and a
test instance pair, both the proposed ASIPair and RAIPair
can generate a vector of importance scores that reflects all
features’ contributions to the pairwise prediction on this test
pair. When evaluating the performance of each proposed
method, we first rank the importance scores and mask a pro-
portion of the top ranked features. Then, we measure the
change of the result predicted by the pairwise model before
and after masking the features. The larger the predicted re-
sult changes, the more important the masked features are. In
addition, considering that there is no existing interpretation
method designed for pairwise learning, we adopt the random
masking method as the baseline, in which we randomly se-
lect a proportion of features and then mask them.

Interpretation for AUC maximization. Next, we study
the performance of the proposed interpretation methods on
a widely used AUC maximization model, i.e., OPAUC (Gao
et al. 2013), which aims to maximize the AUC metric by go-
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Figure 1: The AUC metric w.r.t the percentage of masked features.

ing through the training data only once without storing the
entire training dataset. Here we evaluate the performance of
the proposed methods through observing the change of AUC
metric before and after masking the top features ranked by
the calculated importance scores. The AUC metric of a pair-
wise model is equal to the probability that the model ranks
a randomly chosen positive instance higher than a randomly
chosen negative instance (Khalid, Ray, and Chitsaz 2016).
The lower the AUC metric, the larger the change of the pre-
dicted results, the better the proposed interpretation method.
In this experiment, we vary the percentage of masked fea-
tures over the total number of features from 0.001 to 0.25,
and the AUC metric on the four UCI datasets are shown in
Figure 1. The results are similar to that for metric learning
task, which further verifies the effectiveness of our proposed
interpretation methods on identifying important features that
make key contributions to the predicted results.
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Figure 2: Running time of ASIPair and RAIPair.

Efficiency. We also evaluate the efficiency of the pro-
posed interpretation methods. The pairwise model to be in-
terpreted here is LowRank. In this experiment, we generate
several synthetic datasets by varying the value of D from
2 to 9. The size of each synthetic dataset (i.e., N ) is set
as 1000. We then evaluate the running time of ASIPair and
RAIPair on each dataset, and the average result on all test-
ing instance pairs is shown in Figure 2. From this figure, we
can see that the running time of RAIPair is polynomial with
respect to the input feature dimension D while that of ASI-
Pair is approximately exponential with respect to D. When
the number of features increases, RAIPair shows great ad-
vantage in running time, which verifies our conclusion that
RAIPair is much more efficient than ASIPair.

Sparsity. In addition, we evaluate the performance of
the proposed RAIPair on sparse feature selection using the
MNIST dataset. The pairwise model to be interpreted is
OPAUC. We randomly select four testing instance pairs and
report the deviation score of each feature (i.e., φ̂∗d ∈ φ̂∗)

calculated by RAIPair in Figure 3. The results in this figure
show that RAIPair can effectively select a subset of features
that make key contributions to the predicted result. Take Fig-
ure 3a as an example. We can see the deviation scores of
most features are close to 0 and only a subset of features
have large deviation scores, which means the importance
scores of most features are around the average value (i.e.,
φ̄) and only a subset of features play an important role in
providing discriminative information for the final predicted
result. Based on Figure 3a, we can also know only a subset
of features contain discriminative information.

Visualization. Last but not least, we provide some visu-
alization results to further evaluate the effectiveness of the
proposed methods. In this experiment, we use RAIPair to
interpret the predictions made by the AUC maximization
model OPAUC on the MNIST 1V9 dataset. The results for
one testing instance pair (a picture for digital 9 and a picture
for digital 1) are shown in Figure 4. Figure 4a shows the cor-
rectly classified testing instance pair, which means that the
positive instance (the digit 9) ranks higher than the negative
instance (the digit 1). After applying RAIPair to this pair, we
can get the importance score vector associated with the un-
derlying features of this pair. We then rank these importance
scores and select the 8% of the top-ranked features, which
are highlighted with red color in Figure 4b. In Figure 4c, we
use blue rectangles to highlight the salient parts of the se-
lected features that make key contributions to the pairwise
prediction. As we can see, the proposed RAIPair can accu-
rately capture the salient parts of the input features for the
pairwise predicted result, and these parts agree well with the
empirical intuition of humans. Due to space limitation, we
provide more visualizations in the supplementary material.

Related Work
Although pairwise learning has been well studied in many
works (Ying, Wen, and Lyu 2016; Natole, Ying, and Lyu
2018), there is no existing work that considers how to in-
terpret the predictions made by the learned pairwise models.
Recently, a wide variety of interpretation methods have been
developed to provide explanations for the pointwise learning
models (e.g., classification model) through scoring the im-
portance of each input feature for a given instance (Ribeiro,
Singh, and Guestrin 2016; Datta, Sen, and Zick 2016;
Shrikumar, Greenside, and Kundaje 2017; Štrumbelj and
Kononenko 2014; Lundberg and Lee 2017; Chen et al. 2018;
Ancona, Öztireli, and Gross 2019; Kononenko and others
2010; Koh and Liang 2017). Among these pointwise inter-
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Figure 3: The calculated deviation scores for testing instance pairs on MNIST dataset. The results in (a)-(d) are for four different
instance pairs.

(a) (b) (c)

Figure 4: Visualization results generated by the proposed RAIPair on the MNIST dataset.

pretation methods, the Shapley-value-based methods have
drawn significant attention as they can provide strong the-
oretical foundations and better agree with the human intu-
ition (Štrumbelj and Kononenko 2014; Lundberg and Lee
2017; Chen et al. 2018; Ancona, Öztireli, and Gross 2019;
Kononenko and others 2010). However, these pointwise in-
terpretation methods do not take into account pairwise input
and can not be directly used in pairwise learning. To calcu-
late the importance scores of the input features, these meth-
ods usually need a pre-defined reference vector and require
all the instances use the same reference vector, which is un-
reasonable for pairwise models. Furthermore, these methods
usually assume that the input features do not correlate with
each other. However, in practice, the features of an instance
may correlated with each other and the correlations can also
affect the predicted results. Thus, we take into account fea-
ture correlations when we design the interpretation methods
for pairwise models.

Considering that Shapley value approach is usually com-
putationally challenging, existing works also take measures
to reduce the computational cost. Specifically, the authors
in (Kononenko and others 2010; Lundberg and Lee 2017;
Štrumbelj and Kononenko 2014) propose various sampling-
based approximation methods. However, these sampling-
based methods may suffer from high variance when the
number of instances to be collected is limited. The authors
in (Chen et al. 2018) develop two approximation methods
based on the assumption that the input features have an
underlying graph structure. By assuming that the hidden
layer is distributed with an isotropic Gaussian, the authors in
(Ancona, Öztireli, and Gross 2019) propose an approxima-
tion method for deep neural networks. Different from these
methods, our proposed approximation method RAIPair is
more general and does not make any assumptions on the in-
put data structure.

In addition, this work is significantly different from ex-

isting pairwise feature selection methods (Gao et al. 2014;
Ying, Huang, and Campbell 2009) for pairwise learning.
Existing pairwise feature selection methods aim to alter the
training phase to learn a subset of features that are relevant
to the targeted model. Also, even for these selected features,
they cannot distinguish their relative relevance scores. How-
ever, our proposed interpretation methods only involve the
testing stage, and aim to interpret each individual pairwise
prediction that is made by the trained pairwise model on
each test instance pair.

Conclusions

In this paper, we investigate how to enable interpretation
in pairwise learning. Specifically, we first propose a novel
adaptive interpretation method for pairwise learning (i.e.,
ASIPair), based on which a vector of importance scores as-
sociated with the underlying features of a testing instance
pair can be adaptively calculated, and these scores can be
used to indicate which features make key contributions to the
final prediction. Considering that the proposed ASIPair is
computationally challenging, we further propose a novel ro-
bust approximation interpretation method for pairwise mod-
els (i.e., RAIPair). This method is not only much more effi-
cient but also robust to data noise. Theoretical analysis and
extensive experiments demonstrate the effectiveness of the
proposed interpretation methods for pairwise learning.
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