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Abstract

In this paper, we study the Differentially Private Empirical
Risk Minimization (DP-ERM) problem with non-convex loss
functions and give several upper bounds for the utility in differ-
ent settings. We first consider the problem in low-dimensional
space. For DP-ERM with non-smooth regularizer, we general-
ize an existing work by measuring the utility using `2 norm
of the projected gradient. Also, we extend the error bound
measurement, for the first time, from empirical risk to popu-
lation risk by using the expected `2 norm of the gradient. We
then investigate the problem in high dimensional space, and
show that by measuring the utility with Frank-Wolfe gap, it
is possible to bound the utility by the Gaussian Width of the
constraint set, instead of the dimensionality p of the under-
lying space. We further demonstrate that the advantages of
this result can be achieved by the measure of `2 norm of the
projected gradient. A somewhat surprising discovery is that
although the two kinds of measurements are quite different,
their induced utility upper bounds are asymptotically the same
under some assumptions. We also show that the utility of some
special non-convex loss functions can be reduced to a level
(i.e., depending only on log p) similar to that of convex loss
functions. Finally, we test our proposed algorithms on both
synthetic and real world datasets and the experimental results
confirm our theoretical analysis.

Introduction
Learning from sensitive data is a frequently encountered
challenging task in many data analytic applications. It re-
quires the learning algorithm to not only learn effectively
from the data but also provide a certain level of guaran-
tee on privacy preserving. As a rigorous notion for sta-
tistical data privacy, differential privacy has received a
great deal of attentions in recent years (Dwork et al. 2006;
Dwork 2008). It works by injecting random noise into the
statistical results obtained from the sensitive data so that the
distribution of the perturbed results are incentive to any single
record change in the original dataset.

As one of the most commonly used supervised learning
models, Empirical Risk Minimization (ERM) has been exten-
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sively studied in recent years. Its Differentially Private (DP)
version (DP-ERM) can be formally defined as follows.
Definition 1 (DP-ERM (Wang, Gaboardi, and Xu 2018;
Wang, Smith, and Xu 2019)). Given a dataset D =
{z1, · · · , zn} from a data universe X and a closed convex
set C ⊆ Rp, DP-ERM is to find xpriv ∈ C so as to mini-
mize the empirical risk, i.e. F r(x,D) = 1

n

∑n
i=1 f(x, zi) +

r(x), with the guarantee of being differentially private,
where f is the loss function and r is some simple (non-
)smooth convex function called regularizer. When the
inputs are drawn i.i.d from an unknown underlying dis-
tribution P on X , we also consider the population risk
Ez∼P [f(x, z)]. If the loss function is convex, the utility of
the algorithm is measured by the expected excess empiri-
cal risk, i.e. EA[F r(xpriv, D)] − minx∈C F

r(x,D), or the
expected excess population risk (generalization error), i.e.
Ez∼P,A[f(xpriv, z)]−minx∈C Ez∼P [f(x, z)], where the ex-
pectation of A is taking over all the randomness of the algo-
rithm.

Previous research on DP-ERM has mainly focused on
convex loss functions, starting from the work in (Chaudhuri
and Monteleoni 2009). However, several empirical studies
have revealed that non-convex loss functions can achieve
better classification accuracy than convex loss functions
(Nguyen and Sanner 2013), and recent developments in
Deep Neural Networks (Goodfellow et al. 2016) have fur-
ther suggested that the loss functions are more likely to be
non-convex in real world applications. Thus, there is an ur-
gent need for the research community to shift its focus from
convex to non-convex loss functions. However, due to the
fact that finding the global minimum for non-convex func-
tions is NP-hard, which implies that measuring the utility
by the expected excess empirical risk may not always be a
good choice. So far, only a few papers (Zhang et al. 2017;
Wang, Ye, and Xu 2017) have considered the utility of DP-
ERM with non-convex loss functions, but all of them measure
the utility by `2 norm of the gradient, instead of the expected
excess empirical risk.

Despite the aforementioned progresses on this problem,
there are still quite a few remaining issues. 1) Previous work
has obtained the error bounds for the smooth loss functions
with smooth regularizer; it is not clear whether they can
be extended to non-smooth regularizer, such as `1 norm. 2)
Even though existing work has considered the error bound



Method Assumption Utility Upper Bd Non-smooth Regularizer Measurement

(Zhang et al. 2017) Smooth, `2-norm Lipschitz O(
4
√
p ln( 1

δ ) ln(nδ )√
nε

) No `2 norm of gradient

(Wang, Ye, and Xu 2017) Smooth, `2-norm Lipschitz O(
4
√
p ln( 1

δ )√
nε

) No `2 norm of gradient

Algorithm 1 Smooth, `2-norm Lipschitz O(
4
√
p ln( 1

δ )√
nε

) Yes `2 norm of projected gradient

Algorithm 2 Smooth, `2-norm Lipschitz, C bounded O(
4
√

(‖C‖22+G2
C) ln 1

δ√
nε

) No Frank-Wolfe gap

Algorithm 3 Smooth, `2-norm Lipschitz, C bounded O(
4
√

(‖C‖22+G2
C) ln 1

δ√
nε

) Yes `2 norm of projected gradient

Algorithm 4 Smooth, `1-norm Lipschitz, C is `1 norm ball (or polytope) O(
4
√

ln( 1
δ )
√

ln(np)√
nε

) No Frank-Wolfe gap

Table 1: Comparisons with previous (ε, δ)-DP algorithms for DP-ERM with non-convex loss function. We assume that the
Lipschitz and smooth parameters are 1, and ‖C‖2 ≤ 1.

measured by empirical risk, it is not clear what is the gener-
alization property of the problem. Particularly, it is unknown
what is the error bound measured by population risk for non-
convex loss functions and its difference with the convex ones
(Bassily, Smith, and Thakurta 2014). 3) Existing work mainly
focuses on the low dimensional case, where n� p. It is still
unknown what can be done for the high dimensional case. In
this paper, we will address the above issues. Our main results
are listed in Table 1. Below is a more detailed description of
our contributions.

1. For low dimensional space, we consider the general
case for DP-ERM with non-convex loss function and
non-smooth regularizer. For this case (see Algorithm
1), we generalize the approaches in (Zhang et al. 2017;
Wang, Ye, and Xu 2017), which consider only smooth
regularizer and unconstrained domain, i.e. C = Rp). Par-
ticularly, we use as the utility the `2 norm of the pro-
jected gradient, while (Zhang et al. 2017; Wang, Ye,
and Xu 2017) use the `2 norm of the gradient. Then,
we resolve some practical issues in (Zhang et al. 2017;
Wang, Ye, and Xu 2017) by using zero Concentrated Differ-
ential Privacy. Finally, we study the generalization property
of the private estimator. By using `2 norm of the gradient
in the empirical risk, we show an upper bound of the pop-
ulation risk with non-convex loss functions at the point
θpriv based on the expected `2-norm of the gradient, i.e.
EA‖Ez∼P [∇f(xpriv, z)]‖2.

2. For high dimensional space (i.e. p� n), we first show that
by using the differentially private version of Frank-Wolfe
method, it is possible to measure the utility by Frank-
Wolfe gap (see Algorithm 2), and the utility upper bound
depends only on the Gaussian Width of the constraint set
C (see Definition 8), instead of the dimensionality p of
the underlying space. Then, we improve the robustness of
the above approach for non-smooth regularizer, while still
maintain the same utility upper bound (see Algorithm 3)
for the case of ‖C‖2 ≤ 1 by using the `2 norm of the pro-
jected gradient. Finally, we consider a special case where
C is a polytope and the loss function is `1-Lipschitz, which
has been studied in (Talwar, Thakurta, and Zhang 2015)
for the convex case. For this case (see Algorithm 4), we
present a method which uses Frank-Wolfe gap to measure
the utility and achieves an upper bound depending only on

log p, instead of the Gaussian Width or the dimensionality
of the underlying space.

Due to the space limit, all the proofs and additional experi-
ments are left in the supplemental materials.

Related Work
There is a long list of works on differentially private ERM in
the last decade which attack the problem from different per-
spectives. Below we mainly discuss those which are related
to our problem and have theoretical guarantees on the utility.

Quite a number of approaches exist for DP-ERM with
convex loss function, which can be roughly classified into
three categories. The first type of approaches is to perturb the
output of a non-DP algorithm. (Chaudhuri and Monteleoni
2009) first proposed the output-perturbation approach, which
is later extended by (Zhang et al. 2017) and achieved the
optimal bound for smooth and strongly convex functions.
The second type of approaches is to perturb the objective
function(Chaudhuri and Monteleoni 2009), which is later ex-
tended by (Kifer, Smith, and Thakurta 2012) to more general
cases. Note that the above two approaches depend on the
convexity of the loss function which in general cannot be
used for the non-convex case.

The third type of approaches is to perturb the gradients in
gradient descent algorithms. (Bassily, Smith, and Thakurta
2014) proposed the gradient perturbation approach and gave
the lower bound of the utility for both general convex and
strongly convex loss functions. Recently (Wang, Ye, and Xu
2017) combined this idea with variance reduction method and
obtained faster algorithms. They also extended their approach
for strongly convexity to PL-condition. In this paper, we
mainly follow this type of approaches.

For DP-ERM with convex loss functions in high dimen-
sional space, (Talwar, Thakurta, and Zhang 2014) showed
that the lower bound given in (Bassily, Smith, and Thakurta
2014) can actually be broken by adding more restrictions
on the convex domain C of the problem. Their lower bound
depends on the the Gaussian Width and is independent of the
dimensionality p. Later, (Talwar, Thakurta, and Zhang 2015)
considered a special case where the loss function is Lipschitz
under `1 norm and the constraint set C is a polytope. They
demonstrated that the utility bound in this case still depends
only on log p.



Preliminaries
Definition 2 (Lipschitz Function over x). A loss function f :
C × X → R is G-Lipschitz under `2-norm over x, if for any
z ∈ X and x1, x2 ∈ C, |f(x1, z)−f(x2, z)| ≤ G||x1−x2||2
holds. Similarly, f is G-Lipschitz under `1-norm over θ, if
for any z ∈ X and x1, x2 ∈ C, |f(x1, z) − f(x2, z)| ≤
G||x1 − x2||1 holds.

We will consider the Lipschitz property under `2-norm
for the first three results, and under `1-norm for the fourth
result. A good example for the Lipschitz property under `1-
norm is linear regression F (θ, (X, y)) = 1

n‖Xθ − y‖
2; for

|xij |, |yj | = O(1), it is O(1)-Lipschitz under `1-norm.
Definition 3 (L-smooth Function over x). A loss function
f : C × X → R is L-smooth over x with respect to the norm
|| · || if for any z ∈ X and x1, x2 ∈ C, the following holds

||∇f(x1, z)−∇f(x2, z)||∗ ≤ L||x1 − x2||,

where || · ||∗ is the dual norm of || · ||. If f is differentiable,
this yields f(x1, z) ≤ f(x2, z) + 〈∇f(x2, z), x1 − x2〉 +
L
2 ||x1 − x2||2.

We say that two datasets D and D′ are neighbors to each
other if they differ only by one entry, denoted as D ∼ D′.
Definition 4 (Differentially Private). A randomized algo-
rithm A is (ε, δ)-differentially private if for all neighboring
datasets D,D′ ∈ Xn and for all events S in the output space
of A, the following holds Pr(A(D) ∈ S) ≤ eεPr(A(D′) ∈
S) + δ. when δ = 0, A is ε-differentially private.
Lemma 1. [Advanced Composition Theorem (Dwork, Roth-
blum, and Vadhan 2010)] Given target privacy parameters
0 < ε′ < 1 and δ > 0, to ensure (ε′, kδ + δ′) cumulative pri-
vacy loss over k mechanisms, it suffices that each mechanism
is (ε, δ)- differentially private, where ε = ε′√

8k ln( 1
δ′ )
.

Definition 5 (Gaussian Mechanism). Given a function
q : Xn → Rp, the Gaussian Mechanism is defined as:
MG(D, q, ε) = q(D) + Y, where Y is drawn from a Gaus-

sian Distribution N (0, σ2Ip) with σ ≥
√

2 ln(1.25/δ)∆2(q)

ε .
∆2(q) is the `2-sensitivity of the function q, i.e., ∆2(q) =
supD∼D′ ||q(D)− q(D′)||2. Gaussian Mechanism preserves
(ε, δ)-differentially private.

Moments Accountant (MA) is a method for accumulat-
ing the privacy cost to achieve a tighter bound on ε and δ.
Roughly speaking, when we use the Gaussian Mechanism
on the (stochastic) gradient descent, Moments Accountant
allows us to save a factor of

√
ln(T/δ) in the asymptotic

bound on the standard deviation of noise compared with
those achieved by using the Advanced Composition Theo-
rem.
Lemma 2. (Abadi et al. 2016) ForG-Lipschitz loss function,
there exist constants c1 and c2 so that given the sampling
probability q = l/n and the number of steps T, for any
ε < c1q

2T , a DP stochastic gradient algorithm with batch
size l that injects Gaussian Noise with standard deviation G

n σ
to the gradients (Algorithm 1 in (Abadi et al. 2016)), is (ε, δ)-

differentially private for any δ > 0 if σ ≥ c2
q
√
T ln(1/δ)

ε .

Definition 6 (Exponential Mechanism). The Exponential
Mechanism allows differentially private computation over
arbitrary domains and range R, parametrized by a score
function u(D, r) which maps a pair of input data set D
and candidate result r ∈ R to a real valued score. With
the score function u and privacy budget ε, the mechanism
yields an output with exponential bias in favor of high
scoring outputs. Let M(D,x,R) denote the exponential
mechanism, and ∆ be the sensitivity of u in the range
R, ∆ = maxr∈RmaxD∼D′ |u(D, r) − u(D′, r)|. Then
if M(D,x,R) selects and outputs an element r ∈ R
with probability proportional to exp( εu(D,r)

2∆u ), it preserves
ε-differential privacy.

Lemma 3. (Dwork, Roth, and others 2014) For the exponen-
tial mechanismM(D,u,R), we have

Pr{u(M(D,u,R)) ≤ OPTu(x)−2∆u

ε
(ln |R|+t)} ≤ e−t.

where OPTu(x) is the highest score in the range R, i.e.
maxr∈R u(D, r).

Low Dimension Case
Extending to Non-Smooth Regularizer
In this section, we consider DP-ERM with non-convex loss
function and non-smooth convex regularizer, i.e.,

min
x∈C

F r(x,D) =
1

n

n∑
i=1

f(x, zi) + r(x). (1)

For convenience, we let F (x) = 1
n

∑n
i=1 f(x, zi) and

F r(x) = F r(x,D).

Assumption 1. F (x) is assumed to be differentiable and L-
smooth over xwith respect to `2 norm. Also, the loss function
f(·, z) is assumed to be G-Lipschitz over x with respect to
`2-norm for all z ∈ X .

In order to measure the utility for (1), we define the gen-
eralized projected gradient as PC(x, g, γ) = 1

γ (x − x+),
where

x+ = arg min
u∈C
{〈g, u〉+

1

2γ
‖x− u‖22 + r(u)}. (2)

Note that this measurement has been widely used in the
optimization community for studying the convergence and
non-stationarity, such as (Ghadimi and Lan 2016; Ghadimi,
Lan, and Zhang 2016). Actually, if C = Rp and r(x) ≡ 0,
we have PC(x,∇F (x), γ) = ∇F (x) = ∇F r(x).

Based on the Projected Gradient Descent, we have the fol-
lowing algorithm for DP-ERM with non-convex loss function
and non-smooth convex regularizer.

Theorem 1. There exist constants c, c1, such that for any
0 < ε < c1T, 0 < δ < 1, DP-PGD (Algorithm 1) is (ε, δ)-
differentially private if

σ2 = c
G2T ln( 1

δ )

n2ε2
. (3)



Algorithm 1 DP-PGD(F, x1, T, σ, {γk}Tk=1)
Input: T is the maximum number of iterations, x1 is the
initial point, and {γk}Tk=1 is the step size. ε and δ are privacy
parameters.

1: for k = 1, · · · , T do
2: Compute xk+1 = arg minu∈C{〈∇F (xk) + εk, u〉+

1
2γk
‖u− xk‖22 + r(u)}, where εk ∼ N(0, σ2Ip), here σ

can be chosen by Theorem 1 or as the following:

3: Compute ρ which satisfies ρ + 2
√
ρ log( 1

δ ) = ε.

Then set σ2 = 2L2T
n2ρ2 .

4: end for
5: return xR ∈ {x1, · · · , xT } such that R is uniformly

sampled from {1, 2, · · · , T}.

Theorem 2. Under Assumption 1, if we take σ2 as in (3),
{γ}Tk=1 = 1

2L and T = O( nε√
p ln( 1

δ )
) in Algorithm 1, the

following inequality holds,

E‖gC,R‖2 ≤ O
( 4

√
p ln( 1

δ )
√
nε

)
, (4)

where gC,R = 1
γk

(xR − xR+1).

Remark 1. Note that if we remove the non-smoothness re-
striction on the regularizer and assume that C = Rp, the upper
bound in Theorem 2 becomes the same as in (Wang, Ye, and
Xu 2017). Thus Theorem 2 can be viewed as a generalization
of theirs.

Also it is worth noting that if we use the output in clas-
sical non-convex optimization algorithm directly, such as
the one on Page 26 in (Nesterov 2013), i.e. ‖gC,R‖2 =
min1≤k≤T ‖gC,k‖2, the algorithm will not be differentially
private. Thus, here we use another randomizer on R. This is
a main difference between our algorithm and those optimiza-
tion algorithms.

It is notable that the variance of noise (3) in Theorem 1,
which is based on Moment Accountant (Lemma 2), just states
the existence of such constant c without specifying it. The
constant also has not been mentioned in the previous work in
(Wang, Ye, and Xu 2017), while in (Zhang et al. 2017) the
noise added in each iteration is σ2

1 = 32 ln(1/δ) ln(T/δ)
n2ε2 . Since

differential privacy is a rigorous mathematical definition, it
is important to select the appropriate constant c (Fredrikson
et al. 2014) in practice. Actually we can follow the way
in (Abadi et al. 2016) which is based on grid search for
finding this hidden constant. However, this procedure is costy
and complex, here we propose a more practical approach by
transforming zero Concentrated Different Privacy (zCDP)
(Bun and Steinke 2016) to (ε, δ)-DP, which corresponds to
the step 3 in Algorithm 11.

1Recently, (Lee and Kifer 2018) also proposed a similar way of
reducing the noise in DP-GD based on zCDP. However, here we do
not compare with it since there is no theoretical guarantee in their
paper.

The idea is that we first make the algorithm to be ρ-zCDP
and then transfer to (ε, δ)-DP, i.e. we first compute the num-

ber ρ which satisfies ρ+ 2
√
ρ log( 1

δ ) = ε. Then we perform
Algorithm 1 for T iterations. We can easily get in this case the
variance satisfies σ2

2 = 2L2T

n2(
√

log(1/δ)+ε−
√

log(1/δ))2
. When

ε
log(1/δ) � 1 (this case will always holds since in practice
we select ε = 0.1− 0.5 and δ = 1

n ), by expanding Taylor se-
ries of

√
1 + x, we have (

√
log(1/δ) + ε−

√
log(1/δ))2 '

ε2

4 log(1/δ) , so σ2
1 '

8L2T log(1/δ)
n2ε2 . We can see that compared

with moment accountant method, our method is much more
practical and simpler, compared with advanced composition
theorem, it adds less noise in each iteration (see Experiment
section for details).

Extension to Population Risk

An important problem in machine learning is to use popula-
tion risk to measure the performance of an estimator. It indi-
cates how well the estimator performs on unseen examples
from the same distribution. Based on the idea of measuring
the utility of θpriv by the `2 norm of the gradient of the empir-
ical risk, in this section, we show an upper bound of θpriv on
the population risk based on the `2 norm of the gradient for
non-convex loss functions, i.e. EA‖Ez∼P [∇f(xpriv, z)]‖2,
where A is the randomized algorithm which outputs the pri-
vate estimator xpriv.

Due to the hardness of the problem even in non-private
settings, we need to make some assumptions. Below, we only
consider the non-regularizer case.

Assumption 2. The gradient of the loss function is τ -sub-
Gaussian. That is, for any λ ∈ Rp and x ∈ Rp, we have
E{exp(〈λ,∇f(x, z)− E[∇f(x, z)]〉)} ≤ exp( τ

2‖λ‖2
2 ).

Assumption 3. The Hessian of the population risk
is bounded. That is, there exists an H such that
‖∇2Ez∼P [f(x0, z)]‖2 ≤ H for all x0 ∈ Rp. Also, the Hes-
sian of the loss function is L-Lipschitz. That is, for every
z and x1, x2 ∈ Rp, we have ‖∇

2f(x1,z)−∇2f(x2,z)‖2
‖x1−x2‖2 ≤ L,

where the `2 norm of the Hessian is the operator norm. Fur-
thermore, we assume that the constant H,L cannot be too
large with respect to τ and p. This means that there exists a
constant c such that H ≤ τ2pc and L ≤ τ3pc.

Note that the first assumption is quite standard for analyz-
ing the population risk (Chen, Su, and Xu 2017). The second
assumption is very common in many non-convex loss func-
tions, such as robust regression and binary classification. The
examples can be found in (Mei, Bai, and Montanari 2016).
Based on recent results on non-convex learning, we now have
the following theorem.

Theorem 3. Under Assumption 1, 2 and 3, if n ≥
Ω(p log(p)), then for any 0 < ε, δ, β ≤ 1, there is an (ε, δ)-
differentially private algorithm A which outputs xR satisfy-



ing the following with probability at least 1− β,

EA‖Ez∼P [∇f(xR, z)]‖2 ≤ O(

√
τ2p log( τβ ) log n

n
+

4

√
p log( 1

δ )
√
nε

) = O(τ

√√√√p log( τβ ) log n
√

log 1
δ

nε
). (5)

Remark 2. As we can see from above theorem, compared
with the uniform convergence error, i.e. the first term in the
right side of (5), the error due to differential privacy, i.e. the
second term in the right side of (5), is less when we consider
ε, δ as constants. Thus, the effect of differential privacy on
the convergence error is just making the efficient sample
complexity n become nε. This is quite different from the
population risk in convex loss functions under differential
privacy, where the error caused by privacy plays a much
more important role, i.e. there is additional factor of

√
p in

the population risk under differential privacy compared with
non-private case. For details, please refer to Appendix F in
(Bassily, Smith, and Thakurta 2014). An open problem is that
whether this bound is tight, or whether we can deal with the
high dimensional case, we left these for future works.

High Dimension Case
Error Bounded by Frank-Wolfe Gap
The utility bound in (4) depends on the dimensionality p. In
high dimensional (i.e., p � n) space, such a dependence
may no longer be desirable. For convex loss functions, (Tal-
war, Thakurta, and Zhang 2014) showed that it is possible
to make the utility bound (using the expected excess empir-
ical risk as the measurement) depend only on the Gaussian
Width of the constrained set C, which could be considerably
smaller than O(

√
p) when C is a bounded closed centrally

symmetric convex set C ⊆ Rp (such as l1-norm ball). Thus,
a natural question is whether such an improvement can also
be achievable for non-convex loss functions. Below we give
an affirmative answer by showing that this is indeed possi-
ble for non-convex loss function (without considering the
non-smoothness constraint on the regularizer, i.e., r(x) ≡ 0).

We start our discussion with some definitions and lemmas
which will be used in this and next section.

Definition 7 (Minkowski Norm). The Minkowski norm
(denoted by || · ||C) with respect to a centrally symmetric
convex set C ⊆ Rp is defined as follows. For any vector
v ∈ Rp, || · ||C = min{r ∈ R+ : v ∈ rC}. The dual
norm of || · ||C is denoted as || · ||C∗ ; for any vector v ∈ Rp,
||v||C∗ = maxw∈C |〈w, v〉|.
Definition 8 (Gaussian Width). Let b ∼ N (0, Ip) be a Gaus-
sian random vector in Rp. The Gaussian width for a set C is
defined as GC = Eb[supw∈C〈b, w〉].

Compared with the dimensionality p, Gaussian Width
of a convex set C ⊆ Rp could be much smaller. For ex-
ample, when C is l1-norm unit ball, GC = O(

√
log p);

when C is the set of all unit s-sparse vectors on Rp, GC =

O(
√
s log(p/s)).

Lemma 4. (Talwar, Thakurta, and Zhang 2014) For W =
(maxw∈C〈w, v〉)2, where v ∼ N (0, Ip), we have Ev[W ] =
O(G2

C + ||C||22).
For simplicity, we let ‖ · ‖ denote ‖ · ‖C and ‖ · ‖∗ denote

‖ · ‖C∗ in this section.
Our algorithm is based on the Frank-Wolfe method, where

a differentially private version of Frank-Wolfe has been stud-
ied in (Talwar, Thakurta, and Zhang 2015) for LASSO. Frank-
Wolfe method can be viewed as a greedy algorithm which
moves towards the optimum solution in the first order approx-
imation. It reduces the problem to solving a minimization
problem of linear function, which exploits the geometric prop-
erty of the constrained set C. It also provides a new measure-
ment of the non-stationarity, called Frank-Wolfe gap, for the
utility, which has already been used in (Lacoste-Julien 2016;
Reddi et al. 2016). Formally, the Frank-Wolfe gap at a point
x of the function F is defined as: G(x) = maxv∈C〈v −
x,−∇F (x)〉, x ∈ C. Since the gap G(x) = 0 if and only if
x is a stationary point, it could provide of stationarity for a
point. Our following algorithm uses the Frank-Wolfe gap as
a measurement for DP-ERM with non-convex smooth loss
functions.

Algorithm 2 DP-FW-L2(F, x1, T, σ, {γt}Tt=1)
Input: T is the maximum of iterations, x1 is the initial point,
and {γt}Tt=1 is the step size.

for k = 1, · · · , T do
Compute vt = arg maxv∈C〈v,−(∇F (x) + εt)〉,

where εk ∼ N(0, σ2Ip).
xt+1 = xt + γt(vt − xt).

end for
return xR ∈ {x1, · · · , xT } such that R is uniformly sam-
pled from {1, · · · , T}.

Theorem 4. Let C be a bounded, closed, centrally symmetric
convex set. Then, there exist constants c, c1, under Assump-
tion 1 and for any 0 < ε < c1T, 0 < δ < 1, DP-FW-L2
(Algorithm 2) is (ε, δ)-differentially private if σ2 is chosen as

in (3). Moreover, if taking {γt}Tt=1 = O(
4
√

(‖C‖22+G2
C) ln 1

δ

‖C‖2
√
nε

)

and T = O( nε√
(‖C‖22+G2

C) ln 1
δ

), the following holds,

E[GR] ≤ O
(‖C‖2 4

√
(‖C‖22 +G2

C) ln 1
δ√

nε

)
, (6)

where Gt = maxv∈C〈−∇F (xt), v − xt〉.

Error Bounded by Norm of Gradient
So far we have presented two methods for the general non-
convex case and the high dimension case, respectively. Theo-
rem 4 enables us to bound the utility using Gaussian Width,
but has some robustness issue with non-smooth regularizer.
Contrarily, Theorem 2 can handle non-smooth regularizer,
but its utility depends on the dimensionality of the space.
Below we show in Algorithm 3 that it is actually possible
to combine the advantages of both methods by using Mirror
Descent.



Definition 9. A function w : C → R is said to be a dis-
tance generating function with modulus α > 0 (w.r.t. ‖ · ‖
norm), if w is continuously differentiable and strongly con-
vex satisfying the following inequality for any x, z ∈ C,
〈x − z,∇w(x) − ∇w(z)〉 ≥ α‖x − z‖2. The Bregman
Divergence associated with w is defined as V (x, z) =
w(x)− w(z)− 〈∇w(z), x− z〉.

Similar to (2), we define the generalized projected
gradient as PC(x, g, γ) = 1

γ (x − x+), where x+ =

arg minu∈C{〈g, u〉 + 1
γV (u, x) + r(u)}. Note that (2) is a

special case in which w(x) = 1
2‖x‖

2
2.

Algorithm 3 DP-PMD(F, x1, T, σ, {γk}Tk=1, w(·))
Input: T is the maximum number of iterations, x1 is the
initial point, w : C → R is a distance generating function
with modulus 1 (w.r.t. ‖ · ‖ norm) and V (·, ·) is its Bregman
Divergence, {γk}Tk=1 is the step size.

1: for k = 1, · · · , T do
2: Compute xk+1 = arg minu∈C{〈∇F (xk) + εk, u〉+

1
γk
V (u, x) + r(u)}, where εk ∼ N(0, σ2Ip).

3: end for
4: return xR ∈ {x1, · · · , xT } where R is uniformly sam-

pled from {1, · · · , T}.

Theorem 5. Let C be a bounded closed centrally symmet-
ric convex set. Then, under Assumption 1 and for any
0 < ε < c2T, δ > 0, DP-PMD (Algorithm 3) is (ε, δ)-
differentially private if σ2 is chosen as in (3). Moreover, if
taking {γ}Tk=1 = 1

2L‖C‖22
and T = O( nε‖C‖2√

(‖C‖22+G2
C) ln( 1

δ )
),

the following holds

E‖gC,R‖2 ≤ O(
‖C‖

3
2
2

4

√
(‖C‖22 +G2

C) ln(1
δ )

√
nε

), (7)

where gC,k = 1
γk

(xk − xk+1).

Remark 3. If ‖C‖2 ≤ 1, GC = o(
√
p), from Theorems 5

and 2, we can see that the utility bound of (7) is always less
than (4). One of the main reasons for us to have Theorem 5
is the fact that we can exploit the geometric structure of the
problem (by Remark 2 and the Mirror Descent). Moreover,
when we ignore the terms related to C, the upper bounds in
Theorem 5 and 4 actually achieve the same upper bound,
although the utilities are measured quite differently.

Further Reducing the Utility
Theorem 5 allows us to bound the utility quite well for the
general non-convex case. However, as shown in (Talwar,
Thakurta, and Zhang 2015; Kifer, Smith, and Thakurta 2012),
the utility can be further reduced for some convex loss func-
tions to a level depending only on log(p), rather than GC or
p. This inspires us to ask whether there is any special case
for non-convex loss functions to achieve the same. In this
section, we give an affirmative answer to this by showing (in
Algorithm 4) that there is indeed a case where the Frank-
Wolf gap depends only on log(p). We consider problem (1)
without the regularizer term.

Assumption 4. F (x) is assumed to be differentiable and
L-smooth over x w.r.t `2-norm, and f(·, z) is assumed to be
G-Lipschitz over x with respect to `1-norm for all z ∈ X .
C ⊆ Rp is assumed to be a closed convex set. Furthermore,
C is assumed to be the convex hull of some finite set A,
i.e., C = Conv(A) and bounded. (For example, C could be a
polytope.)

Algorithm 4 DP-FW-L1(F, x1, T, σ, {γt}Tt=1)
Input: T is the iteration number and x1 is the initial point.
{γt}Tt=1 is the step size. C ⊆ Rp be the convex hull of a
compact set A ⊆ Rp.

1: for t = 1, · · · , T do
2: Use exponential mechanism M(D,u,R), where
R = A, u(D, s) = −〈s,∇F (xt, D)〉, to ensure
( ε√

8T ln( 1
δ )
, 0)-differentially private. Denote the output

as x̃t.
3: Compute xt+1 = (1− γt)xt + γtx̃t.
4: end for
5: return xR ∈ {x1, · · · , xT } where R is uniformly sam-

pled from {1, 2 · · · , T}.

Theorem 6. Assume A is a finite set. Then, for any ε, δ > 0,
DP-FW-L1 (Algorithm 4) ensures (ε, δ)-differentially pri-
vate. Furthermore, if we set T = O( nε√

ln( 1
δ ) ln(|A|n/η)

) and

{γt}Tt=1 =
√

2
T‖C‖22

. Then with probability at least 1−η, the

following holds

E[GR] ≤ O(
‖C‖1 4

√
ln( 1

δ )
√

ln n|A|
η√

nε
), (8)

where Gt = maxv∈C〈−∇F (xt), v − xt〉.
Corollary 1. If C is an `1-norm ball or a simplex in Rp, then
we can see that A is the set of the vertices of C, in this case,

the Frank-Wolf gap in (8) is EGR = O(
4
√

ln( 1
δ )
√

ln(np)√
nε

).

Note that since A in step 2 of Algorithm 4 is finite and u
is a linear function, it could run in O(|A|p) time; also we can
use Report-Noisy-Max in (Dwork, Roth, and others 2014)
instead of the exponential mechanism, see (Lou and Cheung
2018) for details. The above bound could be the smallest
among all the results presented so far. For example, when
C contains the unit Euclidean ball, GC = Ω(

√
p). Thus, all

the previous results depend on p while (8) depends only on
log(p).

Experiments
In this section, we experimentally study the behavior of dif-
ferentially private gradient descent method with non-convex
loss functions. Particularly, we will consider the sigmoid
function as the loss and with an `1-regularizer, i.e.

min
θ∈Rp

F r(θ,D) =
1

n

n∑
i=1

1

1 + exp(−yiθTxi)
+
λ

2
‖θ‖1.



Experiment Settings
Due to the hardness of computing the Frank-Wolfe gap, we
will measure the `2-norm of the generalized projected gra-
dient. W set λ = 0.01, and test our algorithms on both
synthetic and real world datasets. The synthetic dataset is
generated by Pr(yi|xi) = 1

1+exp(−yiθ∗xi) . That is, we first
randomly choose θ∗, and then for each random vector xi, we
set yi = 1 if 1

1+exp(−yiθ∗xi) >
1
2 . The size of the synthetic

dataset is 10000× 100. We use Covertype dataset (Dheeru
and Karra Taniskidou 2017) as the real world dataset, which
is used for binary classification. We choose 2 × 105 sam-
ples for optimization, and thus the size is (2× 105, 54). We
normalize all the above datasets so that the loss function is
1-Lipschitz.

For the parameter of differential privacy, we choose ε =
0.1, 0.5, 2, 5, respectively, with fixed δ = 0.001. For the
optimization algorithm, the initial vector is selected randomly.
Also since the step size does not affect differential privacy,
we use the way of choosing step size in http://cvxr.com/tfocs/.
All the experiments are performed on MATLAB.

For our methods, we use the practical way proposed in the
previous section. The methods to be compared are the ones in
(Zhang et al. 2017) and in (Wang, Ye, and Xu 2017), where
the constant behind the noise in (Wang, Ye, and Xu 2017) is
determined by the approach in (Abadi et al. 2016).

Figure 1: Results of DP-GD with different level of ε. The
left one is for the synthetic dataset, and the right one is for
Covertype dataset; all iteration numbers T = 200.

Figure 2: Result of DP-GD with different iteration number T .
The left one is for the synthetic dataset, and the right one is
for Covertype dataset; all the privacy parameter ε = 2.

Figure 3: Result of DP-GD with different sample size n.
The left one is for the synthetic dataset, and the right one is
for Covertype dataset; all the privacy parameter ε = 2 and
iteration T = 400.

Figure 4: Results on the Covertype dataset of different meth-
ods of DP-GD with different privacy levels. The left one is
for the case of ε = 0.5, and the right one is for the case of
ε = 2.

Experiments Results

We can see the results from Figure 1 that with lower privacy,
which means that ε is larger, there is less error, ı.e. the norm
of gradient will be smaller. Also, compared with the size of
the two datasets, we can see that with larger n, the error is
smaller.

Figure 2 studies the norm of gradient with different itera-
tion number T , which affects the magnitude of noise added in
each iteration; here we fix ε = 2. We can see that unlike the
effect of ε in Figure 1, the effect of iteration number is less,
since all the upper bounds are independent of T , although it
indeed increases the magnitude of noise.

Figure 3 studies the error with respect to the sample size
n with fixed T and ε. As shown in our analysis, the norm of
gradient is smaller with larger sample size, and the results in
Figure 3 for both synthetic and real world dataset confirm it.

Figure 4 studies the norm of gradient with respect to differ-
ent methods of DP-GD. We can see that whenever ε is large
or small, our method is better than the previous ones. Also, as
mentioned before, our method is more practical and simpler
than the previous ones.
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